
 
 

 

 

Nitrogen dynamics in temporary multi-species 
grasslands 
 

 

Nawa Raj Dhamala 

 

PhD Dissertation 

Department of Agroecology, Science and Technology 

April 2017 

 

  



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Nitrogen dynamics in temporary multi-species grasslands 
 

 

 

 

NAWA RAJ DHAMALA 

 

PhD Thesis 

Submitted: April 2017 

 

 

 

 

 

 

 

 

 

Department of Agroecology  

Faculty of Science and Technology 

Blichers Alle 20 

P. O. Box 50 

8830 Tjele  

Denmark 

 

 



 
 

Main supervisor 

Jørgen Eriksen  

Professor 

Department of Agroecology, Aarhus University, Denmark 

 

Co-supervisors     

     

Assessment committee 

Chris Kjeldsen 

Senior Researcher 

Department of Agroecology, Aarhus University, Denmark 

 

Jöelle Fustec 

Head of Research Group 

ESA, Ecole Supérieure d'Agriculture d'Angers 

University of Angers, France 

 

Sissel Hansen 

Senior Research Scientist 

NORSØK - Norwegian Centre for Organic Agriculture, Norway

Karen Søegaard 

Senior Scientist  

Department of Agroecology  

Aarhus University, Denmark 

Georg Carlsson 

Researcher  

Department of Biosystems and Technology  

Swedish University of Agricultural Sciences, 

Sweden 

Jim Rasmussen 

Researcher 

Department of Agroecology  

Aarhus University, Denmark 



 
 

i 
 

Acknowledgement  

I acknowledge my main supervisor Prof. Jørgen Eriksen for his ideas to this PhD project, guidance 

and personal encouragement throughout this PhD programme. I feel fortunate to have this 

opportunity to work in this interesting research project under your supervision. Warmest thanks 

goes to my co-supervisors Jim Rasmussen, Karen Søegaard and Georg Carlsson for their valuable 

guidelines, interesting discussion and constructive inputs for improving the manuscript. It was a 

great time working together with you all. Thank you Wenfeng Cong for your nice collaboration and 

valuable input in Paper IV.  

Big thanks to Karin Dyrberg, Margit Paulsen and Bodil Stensgaard for their technical support in 

the field and laboratory. I am also very grateful to all the other technicians who have helped me in 

the different field and laboratory works. Thanks also to David Croft, Jens Bonderup Kjeldsen and 

other Foulumgaard Experimental Station staff for their all-technical support. 

I acknowledge Bent Tolstrup Christensen and Peter Sørensen for agreeing to be the internal 

reviewers of the manuscripts. Thanks to Sanmohan Baby for his help in data analysis. Thank you 

Margit Schacht for proof-reading the manuscripts and helping in cleaning PhD thesis.  

I would like to extend my gratitude to the Graduate School of Science and Technology (GSST) and 

Department of Agroecology, Aarhus University for the PhD grant and all administrative and 

technical support for the completion of this PhD project. I am highly indebted to all the wonderful 

members of Soil Fertility for their great company, cooperation and sense of humour. You created 

really a convivial environment for everyday-work. I really enjoyed our time working together.  

I highly appreciate my office colleagues and all friends working in the Department of Agroecology, 

Foulum for their great friendship, positive attitude and interesting discussions about academic 

and non-academic topics, who provided a homely environment, and support as and when needed. 

Thanks to all the Nepalese friends for their company and having wonderful events and time 

together.  

Heartful thanks to Bina for your love, encouragement and support, and to my other family 

members for their moral support, encouragement, although living physically far from here. 

Finally, I am thankful to you all who are involved directly or indirectly in the completion of this 

PhD study.   

 

 

  

Nawa Raj Dhamala 

April 2017, AU-Foulum, Denmark 



 
 

ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

iii 
 

Preface 

This dissertation, as part fulfilment of the requirements of the Doctor of Philosophy (PhD) degree, 

is submitted to the Faculty of Science and Technology, Aarhus University, Denmark. The main 

objective of the study was to investigate how inclusion of the non-leguminous forb species chicory, 

ribwort plantain or caraway in the traditional grass-clover mixture would influence red clover N2 

fixation and contribute to soil N fertility, and how species diversity in swards containing only 

forage legumes (red clover, white clover or lucerne) would influence biomass production and N2 

fixation. The study was supported financially by the Green Development and Demonstration 

Programme (GUDP project MultiPlant) as part of the Organic RDD-2 programme, coordinated by 

the International Centre for Research in Organic Food Systems (ICROFS) and the Graduate School 

of Science and Technology (GSST). The study was carried out under the supervision of Prof. Jørgen 

Eriksen, Dr. Jim Rasmussen, Dr. Karen Søegaard from the Department of Agroecology at Aarhus 

University and Dr. Georg Carlsson from the Department of Biosystems and Technology at the 

Swedish University of Agricultural Sciences, Sweden.   

This dissertation combines the outcomes from four field and semi-field experiments carried out 

at the Department of Agroeoclogy, Aarhus University, Foulum over a period of three years. The 

details of individual experiments have been presented in four research articles and are attached 

as appendices to this dissertation. The published paper is printed with publishers’ permission. The 

papers are referred to by Roman numerals in the entire thesis.   
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Summary 

Plant diversity is often low in high-yielding temporary grasslands in Europe, with grass-clover 

being the traditional dominant mixture.  Non-leguminous dicot forage herbs have potential as 

complementary species to traditional grassland species. Chicory (Cichorium intybus L.), ribwort 

plantain (Plantago lanceolata L.) and caraway (Carum carvi L.) are the three non-leguminous dicot 

forage herbs (hereafter called forbs) that have attracted most attention. Another form of grassland 

production of increasing interest is the practice of growing species mixtures containing only forage 

legumes for low-input production of biomass with high protein content.  

In this study, grassland nitrogen (N) dynamics were studied in a sward that included the forbs 

chicory, plantain and caraway in a traditional mixture of perennial ryegrass (Lolium perenne L.) 

and red clover (Trifolium pratense L.), with fertilizer application as an additional factor, and in a 

sward containing species mixtures of only forage legumes red clover, white clover (Trifolium 

repens L.) and lucerne (Medicago sativa L.). The objectives of the study were to determine how 

inclusion of forbs in ryegrass-red clover mixtures would influence sward production and red clover 

biological N2 fixation (BNF), red clover N transfer to the companion non-legumes and residual soil 

N fertility, and to investigate how species mixtures of only forage legumes would influence sward 

production and BNF. The BNF and N transfer studies were performed in situ using the 15N isotope 

dilution and 15N leaf-labelling method, respectively. The residual N effect was determined in terms 

of soil initial inorganic N and mineralizable organic N contents, and biomass production and N 

uptake in the subsequent spring barley test crop in a pot experiment.     

Low-input swards containing forbs in ryegrass-red clover or only forage legumes were highly 

productive with seasonal herbage dry-matter (DM) yields of up to 17 t ha-1. Neither the inclusion 

of forbs in the ryegrass-red clover, nor the cultivation of only forage legumes in species mixtures 

demonstrated any species-diversity effect on percentage of legume N derived from BNF (%Ndfa). 

The three forbs displayed different competitive strengths when included in the ryegrass-red clover, 

where chicory and plantain were more competitive than caraway. Plantain and caraway appeared 

more compatible with ryegrass-red clover, where the sward DM yield and BNF of ryegrass-red 

clover-plantain or caraway were comparable to ryegrass-red clover. A high seeding proportion of 

chicory did, however reduce the biomass proportion of red clover in the mixture, thus suppressing 

the seasonal amount of BNF by up to 60% and decreasing sward DM production in unfertilized 

plots by 20%. Fertilization did not affect %Ndfa in the mixtures, indicating a low level of soil N or 
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non-legume competition for plant-available soil N, but tended to decrease the amount of BNF by 

up to 35%, suppressing red clover growth to the benefit of grass. Red clover transferred up to 15% 

of its N to the companion ryegrass and forbs. Forbs included in the ryegrass-red clover relied much 

less on N transferred from red clover – 0.6 to 4% of the red clover N – than the ryegrass, and 

showed no effect on red clover N transferred to co-existing non-legume species or on N 

rhizodeposition in the soil. In addition, including forbs in the ryegrass-red clover did not change 

the residual N fertility in the subsequent spring barley crop. In the sward containing only forage 

legumes, red clover appeared to be the strongest species. Mixtures containing red clover showed a 

similar potential of sward production and input of N from BNF to red clover pure stand. The 

herbage DM yield, N accumulation and amount of BNF increased by 25 to 50%, 11 to 34%, and 

7- 36%, respectively, in the mixtures containing red clover compared to white clover or lucerne in 

pure stands, or a white clover-lucerne mixture.        

The study concludes that when used in right proportions, the non-leguminous forbs chicory, ribwort 

plantain or caraway can be included in the traditional perennial ryegrass-red clover mixture with 

no negative effects on herbage production, red clover BNF, red clover N transfer to non-legumes 

or short-term residual soil N fertility. However, to achieve a balance between legume and non-

legume species in the sward, it is important that the mixture does not include a high seeding 

proportion of chicory. Similarly, the forage legumes red clover, white clover and lucerne can be 

grown in mixtures without compromising herbage production or input of N from BNF compared 

to the pure stand of red clover, as long as red clover is included in the mixture. Thus, the study has 

provided new insights into the design and implementation of multi-species temporary grasslands 

for increasing biodiversity and improving N self-sufficiency and productivity of low-input grass-

arable cropping systems.  
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Sammendrag 

Plantediversiteten er ofte lav i højtproduktive græsmarker i omdrift i Europa, hvor kløvergræs 

traditionelt er den dominerende blanding. Ikke-bælgplante tokimbladede urter har potentiale til 

at komplementere de traditionelle græsmarksarter. Cikorie (Cichorium intybus L.), lancetbladet 

vejbred (Plantago lanceolata L.) og kommen (Carum carvi L.) er tre ikke-bælgplante 

tokimbladede urter, som har tiltrukket opmærksomhed. En anden type græsmarksproduktion, 

som får øget opmærksomhed er dyrkning af blandinger, som udelukkende består af 

græsmarksbælgplanter til lav-input produktion af biomasse med højt proteinindhold. 

I dette studie blev undersøgt kvælstof (N) dynamik i græsmarker med cikorie, vejbred og kommen 

iblandet en traditionel blanding af almindelig rajgræs (Lolium perenne L.) og rødkløver (Trifolium 

pratense L.) med gødningstilførsel som en yderligere faktor og i blandinger, som kun består af 

græsmarksbælgplanterne rødkløver, hvidkløver (Trifolium repens L.) og lucerne (Medicago 

sativa L.). Undersøgelsens formål var at bestemme hvordan iblanding af urterne i rødkløver-

rajgræsblandinger påvirkede produktion, rødkløvers biologiske N2 fiksering (BNF) og N-

overførsel til ikke-bælgplanter samt kvælstofeftervirkning, og at undersøge hvordan blandinger 

med kun græsmarksbælgplanter påvirkede produktion og BNF. BNF og N-overførselsstudierne 

blev udført in situ vha. henholdsvis 15N-isotopfortynding og 15N-bladmærkning. N-eftervirkningen 

blev bestemt i form af uorganisk jord-N, mineralisérbart organisk N, biomasseproduktion og N-

optag i den efterfølgende vårbyg testafgrøde i et potteforsøg. 

Lav-input rødkløver-rajgræsmarker med urter iblandet eller marker kun med bælgplanter var 

meget produktive med årsudbytter op til 17 t ha-1. Hverken iblanding af urter eller dyrkning af 

græsmarker med kun bælgplanter viste nogen positiv effekt af øget diversitet på andelen af 

bælgplante-N, som kom fra BNF (%Ndfa). De tre urter havde forskellig konkurrenceevne iblandet 

rødkløver-rajgræs, hvor cikorie og vejbred var mere konkurrencedygtige end kommen. Vejbred og 

kommen var mere kompatible med rødkløver-rajgræs og udbytter og BNF var sammenlignelige 

med rødkløver-rajgræs. En stor udsædsmængde af cikorie reducerede imidlertid 

biomasseproduktionen af rødkløver i blandingen og reducerede dermed den årlige BNF med op 

til 60 % og reducerede tørstofproduktionen i ugødede parceller med 20 %. Gødning påvirkede ikke 

%Ndfa i blandingerne, hvilket indikerer et lavt niveau af jord-N eller ikke-bælgplante konkurrence 

om plantetilgængeligt jord-N, men med tendens til at reducere mængden af BNF med op til 35 % 

ved at undertrykke rødkløvers vækst på bekostning af græs. Rødkløver overførte op til 15 % af dets 

N til rajgræs og urter i blandingen. Urter i rødkløver-rajgræs var langt mindre afhængige af N 

overført fra rødkløver – 0.6 til 4 % af rødkløver-N – end rajgræs og havde ikke nogen effekt på 

rødkløver-N overført til ikke-bælgplanter eller på N rhizodeposition i jorden. Inklusionen af urter 
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i rødkløver-rajgræs påvirkede ikke N-eftervirkningen i den efterfølgende vårbyg. I marker med 

kun græsmarksbælgplanter var rødkløver stærkest. Blandinger med rødkløver havde samme 

udbyttepotentiale og input af N fra BNF som rødkløver i renbestand. Tørstofudbytte, N-optagelse 

og mængde af BNF blev forøget henholdsvis fra 25 til 50 %, 11 til 34 %, og 7- 36 % i blandinger 

med rødkløver i forhold til hvidkløver eller lucerne i renbestand eller hvidkløver-lucerne-

blandingen. 

Undersøgelsen viste, at tilsat i de rigtige proportioner kan urterne cikorie, vejbred og kommen 

inkluderes i en traditionel rødkløver-rajgræsblanding uden negative effekter på produktionen, 

rødkløver BNF, rødkløver-N overførsel til ikke-bælgplanter eller korttids N-eftervirkning. For at 

opnå en balance mellem bælgplanter og ikke-bælgplanter i marken er det vigtigt at blandingerne 

ikke indeholder en stor andel af cikorie. Tilsvarende kan græsmarksbælgplanterne rødkløver, 

hvidkløver og luverne dyrkes i blandinger uden at kompromittere produktion eller N fra BNF 

sammenlignet med rødkløver i renbestand så længe rødkløver er inkluderet i blandingen. Denne 

undersøgelse har givet ny indsigt i, hvordan mangearts-græsmarker i omdrift kan designes og 

implementeres for at øge biodiversiteten, selvforsyningen og produktiviteten i lav-input 

sædskifter med græs. 
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1. General introduction 
 

1.1 Grassland agriculture 

Grassland production system is the largest and most common use of land in the world. It is broadly 

accepted as one of the important pillars of sustainable agriculture and characterized by multiple 

values and functions (Panunzi 2008; Stypinski 2011; O'Mara 2012). Grasslands, including 

permanent meadows and pastures, occupy 37% of the global terrestrial area and 69% of the 

agricultural area (O'Mara 2012). Grasslands cover 33 and 40% of the agricultural area in the EU 

and Western Europe, respectively, where semi-natural grassland forms an integral part of 

livestock production systems (Stypinski 2011; O'Mara 2012; Bedoin 2013). Temporary grasslands 

integrated in arable cropping systems is an important land-use practice in Europe. In the EU-28, 

grasslands in arable rotations cover over 10% of the arable land (Eurostat, 2010). In Denmark, 

grass and green fodder production is second only to cereal production, where temporary 

grasslands included in arable rotations occupy about 10% of the total agricultural land (Pedersen 

2015). 

Perennial forage legumes are principal components of temporary grasslands (leys) for feed 

production, due to their underpinning role of providing protein-rich forage, improving soil fertility 

and increasing plant productivity (Frame 2005; Lüscher et al. 2014). Recent studies have focused 

on  the ability of species-rich leys including perennial forage legumes and non-legumes to provide  

ecosystem services such as resource-efficient biomass production (Carlsson et al. 2017), increasing 

sward productivity (Nyfeler et al. 2009; Nyfeler et al. 2011) and persistency (Jing et al. 2017), 

improving nutritive value (Sanderson 2010), enhancing biodiversity (Søegaard et al. 2011), carbon 

(C) and nitrogen (N) sequestration in the soil (De Deyn et al. 2009), proportions of biological N2 

fixation (BNF) (Carlsson and Huss-Danell 2003), reducing nitrate leaching (Scherer-Lorenzen et 

al. 2003; Palmborg et al. 2005) and greenhouse gas (GHG) emissions (Carlsson et al. 2017) and 

improving resilience to environmental stress (Sanderson et al. 2005). However, most of the high-

yielding temporary grasslands in many parts of Europe are dominated by just a few clover and 

grass species and their binary mixtures mainly due to the positive effect on quantity and quality 

forage and N self-sufficiency of agricultural systems (Peyraud et al. 2009). Recent studies have 

shown that non-leguminous dicotyledonous forage herbs might complement traditional grassland 

species under varied management and agro-climatic conditions (Sanderson et al. 2005; Labreveux 

et al. 2006; Skinner 2008; Søegaard et al. 2008; 2011).  
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1.2 Forb-based multi-species grassland 

With a growing interest in increasing plant diversity in grasslands, several non-leguminous 

dicotyledonous forage herbs have begun to be included in multi-species swards. Chicory 

(Cichorium intybus L.), ribwort plantain (plantain; Plantago lanceolata L.) and caraway (Carum 

carvi L.) are the three non-leguminous dicot forage herbs (hereafter called forbs) that have 

received special attention. They have shown good competitive strength (Mortensen et al. 2012; 

Søegaard et al. 2013) and an ability to establish well in the swards (Søegaard et al. 2011; Mortensen 

et al. 2012) and grow under adverse weather conditions (Skinner 2008; Younie 2012). When 

included in the swards, the forbs increase forage yield (Sanderson et al. 2005; Skinner 2008; 

Søegaard et al. 2011) and belowground biomass (Eriksen et al. 2012), improve animal performance 

in terms of milk production, live-weight gains, meat quality and animal health (Stewart 1996; Li 

and Kemp 2005; Younie 2012; Somasiri et al. 2015), feed palatability (Søegaard et al. 2008) and 

mineral nutrition (Pirhofer‐Walzl et al. 2011).  

Key features of chicory, plantain and caraway 

Chicory is a deep-rooted, warm-season perennial herb belonging to the Asteraceae family. It forms 

a rosette plant with broad prostrate leaves, has a deep and thick taproot system (Fig. 1) that 

facilitates water and nutrient uptake from deep soil layers and is a good companion species for 

shallow-rooted species in its complementary utilization of above- and below-ground resources (Li 

and Kemp 2005; Thorup-Kristensen 2006; Pirhofer-Walzl et al. 2013). This property makes it 

tolerant to drought and helps to reduce deep drainage and nitrate leaching, which simultaneously 

leads to mitigation of soil acidity and dry-land salinity (Li and Kemp 2005; Thorup-Kristensen 

2006).  Chicory establishes fast and grows rapidly and vigorously, which makes it highly 

productive (Hume et al. 1995; Collins and McCoy 1997; Li and Kemp 2005). It performs well in 

combination with forage legumes and grass species (Hume et al. 1995; Li and Kemp 2005). 

Furthermore, Li and Kemp (2005) reported that animal performance in chicory-based pastures is 

similar to legume-based and superior to grass-based pastures due to the greater quantity and 

quality of forages. In addition, chicory has been shown to improve the leaf water relation and 

growth of companion forage legume species in the mixture (Labreveux et al. 2004). 

Plantain is a perennial herb belonging to the Plantaginaceae family. It has upright rosette growth 

with a deep and dense adventitious root system (Fig. 1). It is widely distributed in temperate 

regions and has adapted well in a wide range of soil conditions including low-fertility soils, and 

has the ability to utilize water and nutrients from deep soil layers (Stewart 1996). These features 

makes it tolerant to adverse weather conditions, especially drought, and productive in a range of 

agro-climatic regions (Stewart 1996). Plantain is easy and rapid to establish and the forage 
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produced is palatable. It has demonstrated a competitive advantage over grasses in low-fertility 

soils and increased root biomass when grown in mixture (Stewart 1996).   

Caraway is a perennial herb of the Apiaceae family, with feathery and finely divided leaves (Plant 

world Seed, 2015) (Fig. 1). It has a tuberous root system (Kiviniemi 2009), with a large root 

biomass (Eriksen et al. 2012; Søegaard et al. 2013) and a high root to shoot ratio where more than 

half of the total biomass is allocated to belowground plant parts (Hakala et al. 2009).   

 

 

Fig. 1  Plant architecture of the forbs species chicory, ribwort plantain, and caraway. Photos: NR Dhamala  

The three forbs differ in several attributes such as competitiveness, persistency, response to 

different management factors and nutritive value. Chicory has demonstrated a higher winter 

survival (Skinner and Gustine 2002), persistency and productivity than plantain (Labreveux et al. 

2004; Sanderson et al. 2003a). Chicory and plantain are more competitive than caraway, 

especially during the initial years of establishment (Søegaard et al. 2008; Mortensen et al. 2012; 

Søegaard et al. 2013), whereas caraway grows better with increasing sward age compared to 

chicory and plantain (Søegaard et al. 2011). They differ in their response to the applied 

management practices such as cutting, grazing and fertilization. Plantain and caraway grow better 

under cutting, whereas chicory performs better under grazing. Chicory and caraway are more 

responsive to N fertilization than plantain (Søegaard et al. 2008; 2011). Caraway or plantain 

developed a greater root biomass than chicory when added to a grass-clover mixture (in a parallel 

study by Cong et al. unpublished). Further, they have different nutritive values such as mineral 

nutrient concentrations, fiber contents and digestibility of organic matter (Sanderson et al. 2003b; 

Labreveux et al. 2006; Søegaard et al. 2008; 2011).   

Chicory Ribwort plantain Caraway 
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The three forbs, therefore, differ among each other and from grass in a range of key traits such as 

above- and below-ground plant architecture, nutrient uptake pattern, forage quality and nutritive 

value, and ability to grow in warmer and water-stressed conditions. These differences in the traits 

are likely to make them promising candidates as complementary species to traditional, species-

poor mixtures of grass and clover in order to improve important production factors such as sward 

productivity, persistency, nutrient use efficiency and nutritional quality (Hume et al. 1995; 

Pirhofer‐Walzl et al. 2011; Pirhofer-Walzl et al. 2013; Jing et al. 2017). However, they are not yet 

widely grown in grasslands in Europe, and used to a very low extent in grasslands in Denmark. 

Only a small number of studies have measured N dynamics in swards including non-legume forbs 

(e.g. Høgh-Jensen et al. 2006; Pirhofer-Walzl et al. 2012; Frankow-Lindberg and Dahlin 2013; 

Pirhofer-Walzl et al. 2013). Hence, investigating N processes in temporary grass-clover swards 

that include the three forbs is expected to generate new knowledge on grassland production, 

agricultural N cycling and efficient N nutrition management in grass-arable cropping systems. 

This led to the objective of the first part of this study of how the forb species chicory, 

plantain or caraway included in the traditional perennial ryegrass (ryegrass; Lolium 

perenne L.) and red clover (Trifolium pratense L.) mixture (hereafter called 

ryegrass-red clover) would affect sward production, red clover BNF, red clover N 

transfer to companion non-legumes and residual soil N fertility to the subsequent 

crop in the crop rotation.   

1.3 Multi-species mixture of forage legumes  

Forage legumes are a common and key component of grassland farming. Red clover, white clover 

(Trifolium repens L.) and lucerne ( Medicago sativa L.) are three forage legume crops most widely 

used on a global level (Phelan et al. 2015) and are adapted to a diverse range of soil and 

environmental conditions (Frame, 2005). They dominate the temperate grasslands by virtue of 

their potential as a protein-rich feed for livestock (Frame 2005) and N input from BNF for plant 

production (Carlsson and Huss-Danell 2003; Rasmussen et al. 2012).    

The EU is largely dependent on imports of protein feed such as soybean meal for livestock 

production, and the demand for homegrown protein sources as an alternative to imported soybean 

meal is growing. For an increased domestic production of plant protein for monogastrics, new 

research projects in collaboration with Danish feed industry has started to investigate the 

extraction of protein from forage legume biomass. Since red clover, white clover and lucerne differ 

in their growth habits and extractable protein concentrations, this research also includes analyses 

of the potential protein production in mixtures of forage legumes without grasses (Solati et al. 

2017).   
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Key features of red clover, white clover and lucerne 

Red clover forms an upright and erect growth habit with solitary crowns (Black et al. 2009; Younie 

2012) and has a deep taproot system. Its crown and taproots store N and carbohydrates which is 

remobilized for shoot regrowth (Black et al, 2009). It assimilates N from the deep soil layer and 

has a high forage yield potential (Frame, 2005).  Red clover has been shown to be more 

competitive than white clover and lucerne in the grass-legume mixture (Black et al. 2009; 

Elgersma and Søegaard 2016). It forms larger shoots but a less dense shoot biomass than white 

clover (Black et al., 2009) and has a larger leaf area, total root length with more branch roots and 

nodulation, but lower root-to-shoot ratio than lucerne (McElroy 2015). It intercepts more light 

and greater distribution of leaf area in the intermediate layer of the canopy (Black et al., 2009). 

Transfer of N from legumes to neighboring plants in species mixtures has been found to be 

intermediate in red clover, i.e. lower than in white clover but higher than in lucerne, while red 

clover was more efficient at assimilating N transferred from companion species than white clover 

and lucerne (Pirhofer-Walzl et al. 2012).  

White clover has a stoloniferous (creeping) growth habit (Younie, 2012) and an ability to produce 

leaves faster from the stem (Black et al., 2009). This property makes it more resistant to frequent 

cutting than red clover (Black et al., 2009) and lucerne, and offers good persistence (Younie, 

2012). The adventitious shallow root systems of white clover favours N uptake mainly from the 

top soil layer (Frame, 2005). The horizontal leaves of the white clover intercept more light at the 

top of the canopy (Black et al. 2009). It has a greater ability for transfer of fixed N to the companion 

species than red clover and lucerne (Høgh-Jensen and Schjoerring 2000; Pirhofer-Walzl et al. 

2012). In addition, white clover has a larger proportion of fine roots with a low C/N ratio than 

lucerne, creating conditions more conducive to rapid residue decomposition and release of N from 

mineralization (Louarn et al. 2015). 

Lucerne forms an upright growth habit with a deep taproot system (Younie 2012) and an ability 

to explore N from the deep soil layer (Kelner et al. 1997). Lucerne is longer lived than red clover 

and grows much deeper on suitable soil such as well-drained (Frame 2005) and calcareous soils 

(Younie 2012). Its root system confers better water use efficiency and resistance to drought 

compared to red clover and white clover (Frame 2005), favours the storage and remobilization of 

N and carbohydrates for shoot regrowth (Barber 1996; Frame 2005) and competes strongly for 

the recycled N via decomposition of plant material (Tomm et al. 1995). It competes better for the 

soil mineral N than red clover (Frankow-Lindberg and Dahlin 2013). It can tolerate high levels of 

soil N for BNF (Kelner et al. 1997). Lucerne, however, has demonstrated relatively low rates of N 

transfer to companion species as well as low assimilation of N transferred from other companion 
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legume species (Pirhofer-Walzl et al. 2012; Frankow-Lindberg and Dahlin 2013; Louarn et al. 

2015).    

The three forage legumes differ in their above-and below-ground plant architecture, canopy 

characteristics, rooting depth, growth habit and competitive ability in a mixture, N uptake pattern, 

tissue composition, N storage in roots and remobilization, competitiveness for the recycled N, 

transfer of fixed N, re-uptake or assimilation of N transferred from companion species. These 

differences between the species are expected to complement each other by combining niche 

optimization and efficient utilization of above- and below-ground resources including available 

soil N, thereby enhancing sward production and reliance upon BNF when grown in a mixture. 

This led to the objective of the second part of the study, of how sward production 

and BNF would be affected when forage legume species red clover, white clover or 

lucerne are grown in mixtures without non-legumes. 

 
1.4 Biological N2 fixation  

Biological N2 fixation is a microbiological process, where atmospheric molecular di-nitrogen (N2) 

gas is converted to plant-usable form. It is carried out by specific N-fixing bacteria, either free-

living in soil or water or associated with the leguminous plants. In legume plants, the Rhizobia 

species of bacteria living in symbiotic association with their root nodules perform this process 

(Carlsson 2005; Haygarth et al. 2013), where plants supply carbohydrate to fuel the bacterial 

growth in return for N (Phillips 1980; Schulze 2004). The symbiosis between legumes 

and Rhizobium constitutes a major source of N from BNF in most cropping systems with a 

potential to complement or substitute N fertilizer (Garg 2007; Fustec et al. 2010). Input of N from 

legume BNF in agro-ecosystems is an important contributor to N nutrition in agricultural soil, 

providing environmental and resource benefits (Jensen et al. 2012; Reckling et al. 2016).      

Biological N2 fixation, however, is dynamic in nature and there is considerable spatial and 

temporal variation in legume contribution to soil N fertility through BNF (Carlsson and Huss-

Danell 2003; Hauggaard-Nielsen et al. 2010). It is influenced by a range of internal and external 

factors including selection of plant species, genotype and their interaction with surrounding 

environment (Ledgard and Steele 1992; Vinther and Jensen 2000; Carlsson and Huss-Danell 

2003). Biological N2 fixation is affected by variation in legume dry matter (DM) production 

(Kumar and Goh 2000; Carlsson and Huss-Danell 2003), and applied management strategies 

such as cutting (Dahlin and Mårtensson 2008; Dahlin and Stenberg 2010a), grazing (Unkovich 

and Pate 2000), fertilization (Paynel et al. 2008) and the diversity of legume and non-legume 

plant species (Carlsson and Huss-Danell 2003; Hauggaard-Nielsen et al. 2009).    
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It is well established that the percentage of legume N derived from the atmosphere (%Ndfa) is 

primarily regulated by soil N availability. A high content of plant-available mineral N in the soil 

generally negatively affects nodulation and the BNF (Jørgensen et al. 1999; Unkovich and Pate 

2000) and vice versa with low soil N levels (Ledgard and Steele 1992; Høgh-Jensen and 

Schjoerring 1994) due to a smaller investment of energy to take up soil N as compared to N derived 

from BNF (Phillips 1980).  

In diversified leys, an interaction between forage legume and non-legume species influences the 

available N status and thus legume dependency on BNF, where legumes have shown fertilizing 

functions and the non-legumes N-retention functions (Palmborg et al. 2005; Fargione et al. 2007). 

Nitrogen uptake from the soil is intensified in diversified systems due to non-legume competition 

for plant-available soil N, forcing legumes to rely more on BNF to fulfil their N requirements 

(Ledgard and Steele 1992; Carlsson and Huss-Danell 2003; Rasmussen et al. 2012).   

In the present study, different above- and below-ground plant architectures, growth habits and 

competitive abilities of the three forbs are expected to enhance complementary utilization of 

available above- and below-ground resources with ryegrass-red clover. The deep and dense root 

systems of forbs are expected to offer greater depth penetration and flexibility to take up N from 

varied soil depths and large soil volume (Thorup-Kristensen 2006; Pirhofer-Walzl et al. 2013) 

leading to more competition for plant-available soil N compared to the red clover grown in a 

mixture with ryegrass with a shallow adventitious root system. This led to the hypothesis that 

the inclusion of forbs in the ryegrass-red clover will increase sward production and 

red clover %Ndfa due to functional complementarity between the species, and 

fertilization will decrease %Ndfa, increasing red clover access to available soil N.  

Likewise, differences in the above- and below-ground plant architecture, growth habit and N 

uptake pattern of the red clover, white clover and lucerne are expected to enhance complementary 

utilization of above-and below-ground resources including efficient uptake of N from the soil 

profiles, leading to a greater depletion of the plant-available soil N than when they are grown in 

pure stands. This led to the hypothesis that forage legume species red clover, white 

clover or lucerne grown in a mixture will increase sward production and %Ndfa 

compared to pure stands due to functional complementarity between the species.   

 

1.5 Nitrogen transfer  

Nitrogen transfer is the process of deposition and assimilation or direct movement of N 

compounds from one plant to another. It is an important biological pathway involved in N cycling 

via both above- and below-ground routes. Aboveground N transfer is accomplished through 
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grazing animals via urine and dung (Ledgard and Steele 1992), leaf die-off (Dahlin and Stenberg 

2010b), and decomposition and mineralization of green manure shoot and senesced residues 

(Peoples et al. 2015). The belowground N transfer occurs indirectly through N rhizodeposition- 

release of N compounds in the rhizosphere. Major pathways of N rhizodeposition include 

turnover of legume roots and nodules and legume root exudation of soluble N compounds in the 

rhizosphere (Fustec et al. 2010). The N rhizodeposition constitutes a large pool of soil N of  up to 

70% of total plant N (Fustec et al. 2010) and above 80% of the below ground plant N (Høgh-

Jensen and Schjoerring 2001; Wichern et al. 2008; Fustec et al. 2010), with a significant effect on 

N nutrition of co-existing non-legume species (Høgh-Jensen and Schjoerring 2000; 2001) and 

the following crop in mixed farming systems (Mayer et al. 2003).  

Recent studies have evidenced the direct short-term pathway of inter-plant N transfer that occurs 

either through the exudation of low-molecular-weight soluble organic (Paynel et al. 2001; 

Rasmussen et al. 2013) or inorganic (Paynel et al. 2008) N compounds from living root cells and 

subsequent uptake by companion plants. These compounds include amino acids, hormones and 

enzymes, but major N compounds released are mostly in the form of ammonium, amino acids and 

ureides in the rhizosphere (Fustec et al. 2010). The N transferred is taken up by the companion 

species through direct root contact, a common mycorrhizal network of arbuscular mycorrhizal 

(AM) fungi interconnecting roots between the plant species (Haystead et al. 1988; Moyer-Henry 

et al. 2006) or via mass flow of N compounds to the vicinity of the roots with the soil solution 

(Jalonen 2012). N transfer is multi-directional (Carlsson and Huss-Danell 2014), but it  is larger 

from legume to non-legume (Rasmussen et al. 2007). In mixed stands of forage legumes and non-

legumes, up to 50% (Gylfadóttir et al. 2007; Dahlin and Stenberg 2010b; Rasmussen et al. 2013) 

and 40% (Rasmussen et al. 2007) of legume N was transferred to companion non-legumes. In 

addition, legume-derived N has been found to contribute up to 50% (Gylfadóttir et al. 2007) and 

80% of non-legume N (Moyer-Henry et al. 2006). Hence, estimation of N transfer helps to 

understand the legume contribution to long-term soil N pool formation as well as early growth 

and establishment of the grassland species.   

Nitrogen rhizodepostion and transfer varies due to several factors. Nitrogen released in the 

rhizosphere is influenced by plant community structure in terms of species composition in the 

mixture (Høgh-Jensen and Schjoerring 2001), plant N content (Wichern et al. 2008; Fustec et al. 

2010), root biomass (Phillips et al. 2006) and nutritional status in the soil (Wichern et al. 2008). 

Inter-plant N transfer between legume and non-legume varies due to the influence of root 

architecture and distribution in the soil (Pirhofer-Walzl et al. 2012; Rasmussen et al. 2013), 

biomass production (Rasmussen et al. 2007) and N accumulation (Dahlin and Stenberg 2010b) in 

legume and non-legume species in the mixture, C allocation within the non-legume species and 
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turnover rates of the plant roots in the soil (Rasmussen et al. 2007). In addition, N transfer is 

influenced by choice of legume and non-legume species, and the plant diversity and composition 

of the species in the mixtures (Høgh-Jensen 2006). Plant diversity affects N transfer because of 

changes to species competition, biomass production and N accumulation, root growth and 

architecture of the different species included in the mixture, ability of non-legumes to take up soil- 

and legume-derived N (Høgh-Jensen 2006; Pirhofer-Walzl et al. 2012; Rasmussen et al. 2013), 

and rate of legume BNF (Paynel et al. 2008) which affects the amount and composition of N 

release.  

In this study, the addition of three forbs - with contrasting growth, competitive strength, root 

architecture and N uptake patterns - to the ryegrass-red clover mixture is expected to influence 

sward production, botanical composition, legume N rhizodeposition and transfer to companion 

non-legumes, as well as non-legume N assimilation from soil pools and transferred from 

companion legume plant. The dynamics of N rhizodeposition and transfer might differ with 

different abundances of legume and non-legume species in the sward due to changes in the 

competition for soil- and legume-derived N. This led to the hypothesis that the inclusion 

of forbs in a ryegrass-red clover sward will affect red clover N transfer to companion 

non-legume species, depending on choice of the forbs, due to their varied growth, 

competitive ability and N uptake pattern, and higher proportions of non-legumes in 

the sward increases the competition for red clover derived N. 

 
1.6 Residual N fertility of grassland pre-crop  

Grassland provides a valuable means of improving soil N fertility and plant productivity for the 

following crop in rotation. During the grassland phase, the forage legumes increase the N pools in 

agricultural soil through BNF and transfer of fixed N to the soil via above- and below-ground 

routes. The legume-fixed N retained in plant residues and rhizodeposits or immobilized in soil 

organic matter, microbial biomass and microbial residues is mineralized and contribute to the 

build-up of a reserve N pool for the subsequent crops in the rotation when the grassland is 

cultivated (Eriksen 2001; Vertès et al. 2007; Lemaire et al. 2015). Hence, precise estimation and 

efficient use of residual N have implications for appropriate N budgeting and the N economy of 

cropping systems (Hansen et al. 2005; Rasmussen et al. 2012).  

The residual N available to the succeeding crop depends on the microbial decomposition and 

remineralization of the organic N pool formed during the pre-crop phase, which is influenced by 

the amount and quality of residues and rhizodeposits, with more N available with larger 

populations and activity of soil microorganisms (Høgh-Jensen and Schjoerring 2001; Kumar and 

Goh 2002; Wichern et al. 2008). The phenomenon of accumulation of a soil organic N pool, N 
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release and N balance in the cropping system is influenced by the range of applied management 

practices including the species composition of the grassland pre-crop (Kumar and Goh 2002; 

Hansen et al. 2005; Eriksen et al. 2008). In addition, the residual N fertility  is affected by legume 

productivity, BNF and N yield in the grassland phase (Peoples et al. 2009; Vrignon-Brenas et al. 

2016), and residue quality such as the C/N ratio of the residues (Nykänen et al. 2008; Louarn et 

al. 2015). Residues with a low C/N ratio increases the N required for microbial growth, resulting 

in net N mineralization (Kumar and Goh 2002).  

Belowground tissue holds a large proportion of the accumulated N in the plant and provides a 

substantial residual fertilization effect to the following crop in the rotation (Jørgensen and 

Ledgard 1997; Huss-Danell et al. 2007). Hector et al. (2000) and Cong et al. (2015) found higher 

rates of root decomposition in the soil previously under a diverse plant community mixture 

compared to soil from species-poor vegetation due to changes in abiotic and biotic attributes of 

decomposition microenvironment. Hence, the inclusion of forbs in ryegrass-red clover mixtures 

may be beneficial for the next crop both via improved residue quality (diversity of different tissues) 

and thanks to their large and deep root systems that add more belowground biomass (Eriksen et 

al. 2012) and improve soil structure (Younie 2012). In addition, the three forbs are expected to 

influence the proportion of legumes due to their different competitive ability in the mixture. This 

led to the hypothesis that the inclusion of forbs in the ryegrass-red clover sward will 

increase the residual N effect and belowground residues, and the effect would differ 

depending on the forbs species present in the mixture due to their different residue 

quantities and qualities and influence on the red clover biomass proportions.  

 
1.7 Aim, objective and hypothesis 

This study aimed to improve the understanding of plant productivity and efficient N use in low-

input grass-arable cropping systems for their more sustainable management. 

The overall objective of the study was to investigate how non-legume forbs when included in a 

grass-clover sward and a sward containing only forage legumes would affect plant production and 

grassland N dynamics.  

The objectives of the study were to determine:  

1.  how the inclusion of forb species chicory, plantain or caraway in the conventional 

ryegrass-red clover mixture would affect  

a) sward production and red clover BNF (Paper I),  

b) red clover N transfer to companion non-legume species (Paper II), and  
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c) the residual soil N fertility of a grassland pre-crop for the succeeding cereal crop in the 

rotation (Paper III), and  

2. how sward production and BNF would be affected when forage legume species red clover, 

white clover or lucerne are grown in mixtures without non-legumes (Paper IV).  

The following main hypotheses were tested:  

1. The inclusion of non-legume forbs chicory, plantain or caraway in ryegrass-red clover 

mixtures will 

a) increase sward production and red clover %Ndfa due to functional complementarity 

between the species, and fertilization will reduce %Ndfa, increasing red clover access 

to available soil N, 

b) affect red clover N transfer to companion non-legume species, depending on the 

choice of forbs, due to their varied growth, competitive ability and N uptake pattern, 

and higher proportions of non-legumes in the sward increases the competition for 

red clover derived N,  

c) increase the residual N effect, as will belowground residues, and the effect will differ 

depending on the forbs present in the mixture due to their different residue 

quantities and qualities and influence on red clover biomass proportions.  

2. Forage legume species red clover, white clover or lucerne grown in a mixture will increase 

sward production and %Ndfa compared to pure stands due to functional complementarity 

between the species.   
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2. Description of overall methodology 
 
2.1 Overview of the experiments 

The experiments were conducted at Foulumgaard Experimental Station, Aarhus University, in 

Central Jutland, Denmark. The first three studies (Papers I-III) were conducted in the ley 

established in 2013 with forb species chicory (Cichorium intybus L.), ribwort plantain (Plantago 

lanceolata L.) and caraway (Carum carvi L.) mixed with the traditional grassland species 

perennial ryegrass (Lolium perenne L.) and red clover (Trifolium pratense L.) (hereafter called 

forb-based sward). The swards comprised pure stands of each species and a broad range of species 

combinations of two to five species with different seeding proportions of individual species in a 

replacement design with three replicate blocks.  

In the first study (Paper I), herbage yield, N yield and red clover BNF were evaluated at two 

fertilization levels - zero and equivalent to 216 kg total N ha-1 yr-1 in cattle slurry. In the second 

study (Paper II), red clover N transfer to companion ryegrass and forbs was evaluated among the 

species combinations with two different seeding proportions of ryegrass and red clover including 

one of the forb species: chicory, plantain or caraway. In the third study (Paper III), changes in soil 

N fertility and plant productivity caused by various species combinations of a grassland pre-crop 

including forbs were evaluated.  

 

 

 

 

 

 

 

Fig. 2 Experimental layout of N2 fixation and N transfer study in sward containing (a) perennial ryegrass, 

red clover and non-legume forb chicory, ribwort plantain or caraway, (b) N2 fixation in sward containing 

only forage legumes red clover, white clover and lucerne in the field, and (c) semi-field measurement of 

residual N fertility of grassland pre-crop containing grass, clover and forbs in the spring barley test crop. 

Photos: NR Dhamala    

The BNF (Paper I) and N transfer (Paper II) studies were performed during one growing season, 

comprising four cuts from May to October in the first production year (2014) of the sward. The 

a
. 
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residual soil N fertility effect (Paper III) was determined at the start of the second production 

year, from May to August in 2015, following the measurement of BNF. 

The fourth study (Paper IV) was conducted in the swards established in 2014 including the three 

forage legume species red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and 

lucerne (Medicago sativa L.) sown in pure stands and in two- and three-species combinations 

based on the seeding rate of each species in a pure stand in a replacement design with four 

replicates (hereafter called forage legume sward). The BNF study was performed at the time of 

four cuts during the growing season between May and October in 2015.    

 
2.2 Methods 

2.2.1 Measurement of BNF 

The BNF was determined using the 15N isotope dilution (ID) method as applied by Rasmussen et 

al. (2012) by labelling soil with 15N-enriched N fertilizer in the early growing season followed by 

harvesting and sorting of the above ground biomass (Fig. 3).    

 

 

 

 

 

 

 

Fig. 3 Soil labelling with 15N enriched ammonium sulphate (a), plant sampling in the field (b), and sorting 

of plant samples (c). Photos: NR Dhamala and D Croft   

The samples were then dried, weighted and analyzed for total N concentration and atom fraction 
15N. This method provides a yield-independent and time-integrated measure of BNF (Unkovich 

and Pate 2000). In this method, %Ndfa is estimated by assessing the small difference in 15N 

enrichment between atmospheric N2 and 15N-enriched soil N. The underlying assumption is that 

the N2-fixing and non-fixing species take up soil N with identical 15N enrichment, and that the BNF 

process dilutes the 15N enrichment of legume N in proportion to the amount of N2 fixed from the 

atmosphere (Unkovich et al. 2008). The 15N enrichment of non-N2-fixing (reference) plants grown 

together with fixing plants reflects the 15N enrichment of legume-N derived from soil (Carlsson 

and Huss-Danell 2003). Hence, the precision of this method requires that the legume and non-
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legume species follow the identical N uptake pattern and take up soil N with the same 15N 

enrichment (Jørgensen et al. 1999; Unkovich and Pate 2000).   

2.2.2 Measurement of N transfer and N rhizodeposition  

The N transfer study was carried out using the leaf feeding method with 15N-enriched urea 

(Ledgard et al. 1985). Poly Vinyl Chloride (PVC) cylinders were installed, enclosing plants of all 

the species in the mixture to a confined area where N transfer could be measured (Fig. 4a). The 

red clover leaves in each cylinder were labelled with 15N enriched urea solution contained in 

Eppendorf tubes (Fig. 4b). Aboveground plant biomass was harvested, sorted into individual 

species, dried, weighted and analyzed for total N concentration and atom fraction 15N.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 PVC cylinder installed to confine area of red clover N transfer (a), red clover leaf labelling with 15N-

enriched urea (b), and cylinder excavation (c), and recovery of roots (d). Photos: NR Dhamala    

This is a yield-dependent and direct method of measuring inter-species N transfer in situ, where 

the N transfer is quantified from the fate of 15N in the receiving and donating species. The principal 
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assumption is that the 15N absorbed by donor leaves labels all the N compounds within the plant, 

and that are subjected to transfer to companion receiver species (Ledgard et al. 1985). Hence, the 

N transfer is quantified as the proportion of total 15N-labelled N in the harvested biomass present 

in receiver plants. The quantification assumes that 15N in donor plants at the beginning of the 

growth period is equal to the sum of 15N detected in the labelled donor and unlabelled receiver 

plants at the end of growth period, where the loss of 15N to the soil-plant system is assumed to be 

negligible. Applying this method, the plant root system is not disturbed and estimation of N 

rhizodeposition can also be made (Wichern et al. 2008).  

The N rhizodepsition was estimated at the end of the growing season by taking root and soil 

samples followed by excavation of the cylinders and recovery of the roots using root washing 

method (Fig. 4c and 4d). The soil and root samples were then dried and analyzed for total N 

concentration and atom% 15N.  The percentage of total N in the soil derived from roots (%Ndfr) 

was calculated based on 15N-enrichment in legume roots and soil using the equation proposed by 

(Janzen and Bruinsma 1989), assuming that rhizodeposits and roots have identical 15N-

enrichment at harvest, that root 15N-enrichment is stable over the growing season and that the 15N 

tracer is homogenously distributed in the root system (Mayer et al. 2003). N rhizodeposition from 

red clover, in this study, was estimated as root-deposited N in the soil free from visible roots and 

debris.  

2.2.3 Measurement of residual N fertility  

The residual N effect is studied either by assessing N released from residue decomposition, N 

uptake in following crop or 15N-labelling of pre-crop residues followed by assessing the fate of the 
15N in the soil and plants originating from labelled residues (Crews and Peoples 2005). Hansen 

et al. (2005) and Rasmussen et al. (2012) suggested that the residual N effect is best evaluated 

based on the yield and N use of the subsequent crop in the rotation. Plant N uptake is influenced 

both by the inorganic N content in the soil (Eriksen and Jensen 2001) and mineralization of 

organic N pools (Vertès et al. 2007), more information about the residual soil N fertility can be 

obtained by measuring soil inorganic N content and N mineralization in addition to the yield and 

N accumulation of the following crop (Hansen et al. 2005). In the present study, changes in soil 

N fertility and plant productivity caused by various mixtures of a preceding grassland crop was 

measured in terms of biomass production and N uptake in a spring barley test crop in a pot 

experiment, combined with measurements of potentially mineralizable soil N in an anaerobic 

incubation experiment as applied by Hansen et al. (2005). Briefly, soil with plant residues was 

manually collected in each plot from the plough layer (20 cm) (Fig. 5a). Plant residues were 

separated from the soil, chopped with a chopping machine (Fig 5b) and mixed back into the 
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respective samples. Representative sub-samples were taken and analyzed for initial inorganic N 

concentration and potentially mineralizable N. Then the pot experiment was established using 

the homogenized soil from each plot and sown with spring barley (Fig. 5c). The spring barley 

crop was harvested at maturity (Fig. 5d), dried, herbage dry-matter (DM) weights were recorded, 

and both grain and straw samples were analyzed for total N concentration.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Collection of the soil from grassland plots (a), chopping and mixing of plant residues with the soil 

(b), and spring barley test crop at vegetative growth (c) and at maturity (d). Photos: NR Dhamala and J 

Eriksen   

Further details of the materials and methods for each experiment are provided in the respective 

papers in the appendix of this dissertation.  
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3. Results and discussion 

3.1 Sward production and botanical composition 

Swards containing forbs or only forage legumes showed none of the expected 

species-diversity effects on sward production 

The forbs included in the ryegrass-red clover increased herbage and N yield compared to the non-

legumes in pure stands, but did not show yield advantages compared to red clover in pure stand 

and ryegrass-red clover mixture (Table 1). Total seasonal DM yield tended to increase in fertilized 

plots, but that was not statistically significant (Table 2; Paper I). In the forage legume sward, 

herbage yield increased in the mixtures containing red clover compared to white clover or lucerne 

in pure stands or white clover paired with lucerne (Fig. 2; Paper IV). However, none of the 

mixtures performed better than red clover in the pure stand. Hence, neither the inclusion of forbs 

nor the mixture of forage legume species in swards without non-legumes showed any evidence to 

support the hypothesized yield advantages from increased species diversity.       

Table 1 Relative changes in total seasonal herbage dry-matter (DM) yield, Nitrogen(N) accumulation, red 

clover DM yield and N accumulation, and amount of red clover N2 fixation compared to the ryegrass-red 

clover mixture in the forb-based sward, measured in shoots at two levels of fertilization, 0N and 216 kg total 

N ha-1 yr-1 in cattle slurry. Numbers are given in percentage of the perennial ryegrass-red clover mixture, 

which are set to 100 %.       

Seed mixtures 

Total   Red clover 

DM yield  N yield  DM yield  N yield  N2 fixation 

0N 216N  0N 216N  0N 216N  0N 216N  0N 216N 

Two 

species 
GR+RC 100 100  100 100  100 100  100 100  100 100 

Three 

species 

GR+RC+60CH 078 106  061 088  043 066  040 060  041 062 

GR+RC+20CH 096 106  079 090  061 059  058 059  060 057 

GR+RC+60PL 099 110  084 104  064 073  061 081  064 084 

GR+RC+20PL 100 115  089 105  074 090  072 087  074 088 

GR+RC+60CA 092 101  083 088  075 080  072 074  076 078 

GR+RC+20CA 094 107  091 102  081 098  081 094  082 095 

Five 

species 

GR+RC+20CCP 087 114  072 101  048 077  048 073  049 073 

GR+RC+60CCP 085 104  069 083  045 054  044 049  045 051 

GR+RC+80CCP 073 106  052 083  027 052  026 049  027 051 

GR: Perennial ryegrass, RC: Red clover, CH: Chicory, PL: Ribwort plantain, CA: Caraway, CCP: Chicory- 

Caraway-Plantain 



 
 

20 
 

Table 2 Relative changes in total seasonal herbage dry-matter (DM) yield, N yield and amount of N2 fixation 

compared to red clover in the sward containing only forage legumes, measured in shoots. Numbers are given 

in percentage of the pure stand of red clover, which are set to 100 %.   

     

          

 

 

 

 

 

 

 

RC: Red clover, WC: White clover, LU: Lucerne and 80: percentage of total seeds in the mixture 

Vigorous growth of red clover defined the sward production 

Red clover was often the most dominant species in the mixtures, in both types of swards. In the 

forb-based sward, red clover contributed 30 to 80% and 30 to 60% to total seasonal DM yield 

without and with fertilization, respectively, and 65 to 95% to total seasonal DM in the forage 

legume sward. This is evidence of its strong ability, under the conditions of the present study, to 

exploit above- and below-ground resources. In the unfertilized forb-based sward (Paper I), this 

could be explained by N2 fixing species having a competitive advantage over non-fixing species by 

being able to sustain N nutrition (Carlsson and Huss-Danell 2003; Rasmussen et al. 2012). The 

red clover proportions were suppressed in the three-species ryegrass-red clover-chicory and five-

species mixtures with three forbs (Fig. 2; Paper 1). In unfertilized plots, a decrease in red clover 

proportions in these mixtures tended to reduce total seasonal herbage DM yield by 4 to 27% and 

N yield by 20 to 48% compared to ryegrass-red clover (Table 1). In the forage legume sward, mixed 

stands containing red clover gave herbage DM and N yields, respectively, that were 25 to 50% and 

11 to 34% higher than a white clover pure stand, lucerne pure stand and white clover-lucerne 

mixture (Table 2).  Thus, herbage production in both swards may be influenced by the system 

design or a selection effect where the most competitive species dominates the biomass proportion 

and defines the productivity of the sward (Loreau and Hector 2001) and where complementarity 

of the species is  probably masked by the strong species (Fargione et al. 2007).  

Seed mixtures DM yield N yield N2 fixation 

Pure 

stand 

RC 100 100 100 

WC 065 074 073 

LU 067 076 080 

Two 

species 

RC+WC 097 097 098 

WC+LU 068 076 075 

RC+LU 087 085 085 

Three 

species 

80RC+WC+LU 091 091 092 

RC+80WC+LU 087 091 092 

RC+WC+80LU 095 099 099 

RC+ WC+LU 098 096 097 
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The total seasonal herbage DM yield increased by 1-15% in the three- and five-species mixtures in 

the fertilized forb-based sward (Table 1), and the relative yield total (RYT) was highest (1.2) in the 

three-species mixture with an 80% seeding proportion of lucerne in the forage legume sward 

(Supplementary table 1; Paper IV). In both swards, biomass yield of the species in these mixtures 

were more even than in other species combinations (Fig.2; Papers I and IV). As suggested by 

Kirwan et al. (2007) and Roscher et al. (2008), it seems likely that complementary resource 

utilization may require  an evenness in growth and resource partitioning among the species in the 

mixture and a balance between the dominant and non-dominant species (Jing et al. 2017). An 

alternative explanation could be that competitiveness of the non-dominant species, e.g. white 

clover, lucerne and caraway, may increase over time and therefore not observed in the early phase 

of the swards studied here. Thus, complementarity effects due to better establishment and 

resource utilization of weak species could potentially become evident in later stages of the sward 

(Cardinale et al. 2007; Fargione et al. 2007), which calls for future studies over multiple growing 

seasons.   

Grass and forbs varied in their competitive ability and resource utilization  

Chicory and plantain were more competitive regardless of their seeding proportions and 

fertilization rate than ryegrass and caraway (Fig. 2, Paper I). This reflects the competitive 

advantage of chicory and plantain to utilize above- and below-ground resources. Their tall plant 

architecture may have intercepted more of the light (Søegaard et al. 2013), and their deep and 

dense root systems (Stewart 1996; Li and Kemp 2005)  provided the flexibility to take up nutrients 

from deeper  soil layers (Thorup-Kristensen 2006; Pirhofer-Walzl et al. 2013). This explanation is 

confirmed by the better growth of the ryegrass grown in mixtures with caraway (Fig. 2; Paper I). 

Poor growth of caraway corroborated the findings of Hakala et al. (2009) and Pirhofer-Walzl et al. 

(2012) who suggested that caraway is initially less competitive because of its energy investment in 

establishing a large root system.  

 

Table 3 Seasonal mean percentage of total shoot dry matter yield of species estimated in five-species 

mixtures containing perennial ryegrass, red clover, chicory, ribwort plantain and caraway under 0N and 216 

kg total N ha-1 year-1 (216N) in cattle slurry.  

Fertilization 

level 

Perennial 

ryegrass 
Red clover Chicory 

Ribwort 

plantain 
Caraway 

0N 10 40 24 24 2 

216N 20 35 27 16 2 
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Ryegrass showed a greater response to fertilization than forbs, with an increase in N uptake from 

50 to 225% (Tables 2 and 5; Paper I) and an increase in the mean proportion of total seasonal 

herbage DM yield in five-species mixtures from 10 to 20% (Table 3). Fertilization increased the N 

uptake of chicory by up to 102% and of caraway by up to 150%. In line with Søegaard et al. (2011), 

plantain appeared to be less responsive to fertilization, with an increase in N uptake by up to 54% 

(Tables 2 and 5; Paper I). Fertilization decreased N uptake of plantain by 36 and 21% in the five-

species mixtures with the lowest and highest seeding proportion of forbs, respectively, and with a 

decrease in mean proportion of total seasonal herbage DM yield in five-species mixtures from 24 

to 16% (Table 3). This indicated a better ability of plantain to perform at low N fertility levels and 

a better ability of chicory and caraway to exploit applied N fertilizer. The more moderate response 

of forbs than ryegrass to fertilization may be related to their ability to take up nutrients from the 

deeper soil layer.   

 

Different competitive strengths of the forbs affected red clover growth  

Red clover growth was suppressed when grown with chicory, despite a nearly similar biomass 

proportions of chicory and plantain (Fig. 2; Paper I). In the three-species ryegrass-red clover-

chicory mixture, red clover herbage DM yield decreased by up to 57 % and 41% without and with 

fertilization, respectively, compared to ryegrass-red clover (Table 1). The corresponding decrease 

in the three-species ryegrass-red clover-plantain or caraway was up to 36% without fertilization 

and 27% with fertilization. In addition, in fertilized plots, seasonal DM proportions of the chicory 

correlated negatively with DM proportions of the clover (R2= 0.33). Such relation was not 

observed with plantain. This indicates that reduced red clover growth in five-species mixtures, 

despite similar seeding proportion (20 and 40%) of red clover to three-species mixtures, was likely 

caused by the competition from chicory for resource utilization. It is likely that the taller growth 

and broad leaves of the chicory overtopped and competed more strongly for canopy light than red 

clover, whereas the upright leaves of plantain may have offered a more compatible leaf 

morphology with red clover for light interception (Søegaard et al. 2013). Likewise, in the forage 

legume sward, the stronger growth of red clover may be favoured by its taller growth and large 

root system, resulting in dominance over white clover for the canopy light and soil resources. This 

was supported by the fact that the white clover proportion increased at later cuts at the expense of 

red clover. The poor performance of lucerne, despite its large root system and strong growth habit, 

could be due to environmental and management factors such as soil (e.g. soil pH and availability 

of nutrients other than N) and temperature not being optimal for lucerne as opposed to for red 

clover which can thrive under a broad range of environmental conditions (Frame 2005). Another 

reason is that lucerne might be less tolerant than red clover to the high cutting frequency applied 
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in the present study (Frame 2005). Thus, the results on yield and botanical composition indicate 

that the plant architecture likely influenced above- and below-ground resource utilization and thus 

growth and competitiveness of the species in the swards.  

 

Swards containing forbs or only forage legumes were highly productive 

In the forb-based sward, mixtures including forbs resulted in seasonal herbage DM yields from 12 

to 17 t ha-1 and N yields from 250 to 400 kg ha-1, which were comparable to ryegrass-red clover 

mixture. Corresponding values ranged from 11 to 16 t ha-1 and 450 to 590 kg ha-1 for the forage 

legume sward, where mixtures containing red clover produced herbage DM and N yields as high 

as in the highest-yielding pure stand (red clover in the present study). The herbage DM yields from 

both swards were higher or comparable to the reported grassland productions in the various 

studies conducted at the same location (e.g. Pirhofer-Walzl et al. 2012; Rasmussen et al. 2012; 

Elgersma and Søegaard 2016) or other locations in Europe (e.g. Oberson et al. 2013; Pirhofer-

Walzl et al. 2013; Anglade et al. 2015). This demonstrated that swards containing forbs or only 

forage legumes were highly productive in the present low-input production system. Thus, 

including forbs in ryegrass-red clover mixture or growing forage legumes in a mixture does not 

negatively affect the total herbage production and N accumulation, provided that the ryegrass-red 

clover-forb seed mixture does not include a high proportion of chicory and that the forage legume 

sward contains at least a small proportion of red clover in the seed mixture.  

 

3.2 Percentage and amount of N derived from BNF  

In the present study, on a seasonal basis, red clover grown in a mixture with ryegrass or ryegrass 

and forbs derived over 90% of its N from BNF even when fertilized with 216 kg total N ha-1 in cattle 

slurry (Paper I). In the forage legume sward, over 80% of the seasonal N accumulated was derived 

from BNF regardless of species composition (Paper IV). In agreement with the several previous 

studies (e.g. Carlsson and Huss-Danell 2003; Rasmussen et al. 2012; Anglade et al. 2015), the 

three forage legume species demonstrated a high BNF potential in temperate temporary 

grassland.   

Sward containing forbs or only forage legumes showed no species-diversity effect 

on %Ndfa 

Inclusion of forbs in ryegrass-red clover mixture in forb-based sward and species mixtures of forage 

legumes in forage legume sward showed none of the expected positive species-diversity effect on 

%Ndfa. Red clover %Ndfa increased significantly more in ryegrass-red clover than in the pure 

stand. However, the inclusion of forbs in the reygrass-red clover did not change red clover %Ndfa, 

regardless of species composition and seeding proportions of the red clover (Tables 3 and 4; Paper 
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I). Similarly, mixed stands of forage legumes did not influence %Ndfa as compared to the pure 

stands (Tables 3 and 4; Paper IV), regardless of the species composition and seeding proportions 

of the species. Therefore, both the hypotheses that the inclusion of forbs in the ryegrass-red clover 

mixture (Paper I) or that mixed stands containing only forage legumes (Paper IV) would increase 

%Ndfa were not confirmed.  

In forb-based sward (Paper I), a comparison of %Ndfa between a red clover pure stand and 

ryegrass-red clover corroborate the findings of previous authors that non-legume competition for 

plant-available soil N stimulates legume dependence on BNF (e.g. Ledgard and Steele 1992; 

Carlsson and Huss-Danell 2003; Oberson et al. 2013). Most of the previous studies tended to 

include different grass species as companion non-legumes that are known to compete strongly for 

the plant-available soil N (e.g. Carlsson et al. 2009; Nyfeler et al. 2011; Rasmussen et al. 2012) and 

for the N transferred from companion legumes (e.g. Høgh-Jensen et al. 2006; Pirhofer-Walzl et al. 

2012). Hence, no effect on %Ndfa, despite large variations in the red clover proportions (Fig. 6) 

and regardless of the number of forb species included, indicates that ryegrass was likely the main 

factor regulating %Ndfa in the forb-based stands. This may be due to the different abilities of the 

ryegrass and forbs to compete with the legumes for plant-available soil N and their N rhizodeposits 

(root exudates).  

Red clover proportion (% of DM) 

0 20 40 60 80 100

%
N

df
a

60

70

80

90

100

Mixtures - 216N 
Mixtures - 0N
Pure stand - 216N
Pure stand - 0N

 

Fig. 6 Relationship between seasonal red clover proportions of total herbage dry-matter (DM) yield and 

percentage of N derived from the atmosphere (%Ndfa) measured in shoots at two levels of fertilization, 0N 

and 216 kg total N ha-1 in cattle slurry, and at four cuts during the 2014 growing season.  
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Legume re-assimilation of their N rhizodeposits likely influences %Ndfa  

The results from the present study led to a hypothetical explanation that non-legume competition 

with legume plants for uptake of legume root exudation of N compounds may be a regulatory 

mechanism for %Ndfa. Legume N rhizodeposits may be re-uptaken by the legume roots or 

absorbed by the companion non-legume plants (Høgh-Jensen and Schjoerring 2001; Jensen 

1996). Studies have demonstrated a competitive advantage of grass over forbs for uptake of legume 

N rhizodeposits (e.g. Paper II; Høgh-Jensen et al. 2006; Pirhofer-Walzl et al. 2012; Frankow-

Lindberg and Dahlin 2013). In addition, in the present study, the red clover N transferred to the 

companion ryegrass component and N rhizodeposition in the soil estimated at the end of the 

growing season did not differ depending on which forb species was present in the mixture (Figs. 5 

and 6; Paper II). The forbs likely explored additional soil N pools by virtue of their large deep root 

systems, and the grass mainly competed for and reduced red clover re-uptake of its rhizodeposits, 

resulting in a stronger reliance on BNF. Similarly, the lack of an expected mixture effect on %Ndfa 

in the forage legume sward (Paper IV) could be due to the absence of a non-legume competitor for 

their N rhizodeposits. This was supported by the fact that the %Ndfa in lucerne tended to increase 

in the pure stand, where weed abundance was significantly higher than in other mixtures. Thus, 

different functionalities of ryegrass and forbs (Paper I), and forage legumes (Paper IV) showed no 

evidence of change in legume competition for plant-available soil N. The growth and performance 

differences between the ryegrass and forb, and forage legumes grown in a mixture may have been 

mediated by their ability to compete for resources other than N such as light and water with no 

regulatory effect of species combination on %Ndfa.   

 

N fertilization did not affect %Ndfa in non-legume mixtures 

The large majority of previous authors have reported that the rate of legume BNF varies in 

response to soil N level where a high level of plant-available soil N has a negative feedback on 

%Ndfa (e.g. Carlsson and Huss-Danell 2003; Paynel et al. 2008; Peoples et al. 2013). In the 

present study, besides a large range of red clover proportion (Fig. 6), no effect of fertilization was 

observed in the mixtures containing ryegrass or ryegrass and forbs (Table 4; Paper 1) where the 

%Ndfa remained above 80% throughout the experimental period. The consistently high %Ndfa 

and competitive advantage of red clover over non-legumes was likely due to a low level of plant-

available soil N. This was supported also by the fact that red clover %Ndfa was up to 75% in the 

pure stand even when fertilized with 216 kg total N ha-1  cattle slurry (Table 4; Paper I). Previous 

studies have shown that forage legumes often derive less than 60% of their N from BNF when 

grown in pure stands and fertilized with N (e.g. Nyfeler et al. 2011; Peoples et al. 2013; Carlsson 

and Huss-Danell 2014). Another explanation could be an N-sparing effect whereby the red clover 
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may have relied mostly on BNF and the non-legume competed better for the plant-available soil 

N (Peoples et al. 2013). This was supported by significant negative fertilization effect on red clover 

%Ndfa in the pure stand. In addition, fertilization did not significantly change N uptake of the red 

clover and forbs in the mixtures, but ryegrass N uptake increased significantly (Table 5; Paper I). 

This indicated that ryegrass competed for the increased level of plant-available N to support its 

growth without increasing red clover access to soil N. Hence, as observed in the previous studies 

(e.g. Palmborg et al. 2005; Carlsson et al. 2009; Rasmussen et al. 2012), grass competition for the 

available soil N may have a regulatory effect on red clover %Ndfa. Thus, the study showed that 

inclusion of forbs in the ryegrass-red clover mixtures and species mixtures of forage legumes does 

not affect legume dependence on BNF, and highlights the importance to include grasses in multi-

species grasslands for efficient use of both BNF and soil N.   

 

Competitiveness of the species in the sward affected quantity of BNF   

The amount of BNF varied in both swards (Paper I and IV) due to the change in botanical 

composition caused by the different competitive abilities of the species in the mixtures. The 

amount of legume BNF varies due to variations in the %Ndfa and legume productivity (Carlsson 

and Huss-Danell 2003). Since the variations in %Ndfa across the species composition in most 

cases were very small (Table 4; Paper I and IV), as documented in many previous studies (e.g. 

Carlsson and Huss-Danell 2003; Hauggaard-Nielsen et al. 2009; Anglade et al. 2015), a strong 

positive correlation was observed between legume N accumulation and the amount of BNF (R2= 

0.97 in both swards and at both levels of fertilization in forb-based sward).  

In the forb-based sward (Paper I), the amount of BNF decreased in response to the high 

competitive ability of chicory or greater seeding proportions (60% or above) of the forbs and due 

to a negative effect on clover biomass proportions. In the fertilized plots, a negative correlation 

was observed between seasonal herbage DM yield of chicory and the amount of red clover BNF 

(R2= 0.22), but a weak positive correlation was found with the DM yield of plantain (R2= 0.1). In 

the ryegrass-red clover-chicory and five-species mixtures, the amount of red clover BNF fell by 40 

to 73% and 27 to 50% without and with fertilization, respectively, compared to ryegrass-red clover 

on its own (Table 1), whilst the three-species mixtures containing plantain or caraway in most 

cases fixed comparable amounts of N2 to that of ryegrass-red clover. Fertilization decreased the 

red clover seasonal N accumulation and amount of BNF by up to 30 and 35%, respectively, 

restricting red clover biomass proportion and N accumulation, being highest in the three-species 

ryegrass-red clover-chicory with 20% seeding proportion of chicory followed by ryegrass-red 

clover. Regarding herbage DM yield, N accumulation and botanical composition, the study 

suggested that the amount of red clover BNF was influenced by the factors that affect red clover 



 
 

27 
 

growth. This suggests that the choice of forb species and their appropriate seeding proportions - 

depending on the competitive ability - are important when considering integration of forbs in 

multi-species swards. Thus, among the three forbs, plantain appeared to be an important 

component to achieve a balance between legume and non-legume abundance and retaining a 

similar level of sward production and input of N from BNF to ryegrass-red clover mixture without 

losing its biomass proportion.  

In the forage legume sward (Paper IV), mixtures containing the strongest species, red clover, fixed 

as much BNF as red clover in the pure stand (Table 3; Paper IV). Compared to the pure stands of 

white clover, lucerne and their two-species mixture, the seasonal BNF increased in the two- and 

three-species mixtures containing red clover by 16 to 36%, 7 to 25% and 14 to 32%, respectively, 

which in most cases was statistically significant, except for lucerne in the pure stand (Table 3; 

Paper IV). This showed that the amount of BNF is not compromised in the mixture containing red 

clover and could be improved if (at least a small amount of) red clover is included in the mixture 

compared to the pure stand of white clover and lucerne and their two-species mixture. 

Seasonal BNF in the forb-based sward in the three-species mixtures containing plantain or 

caraway was above 200 kg ha-1 even when fertilized with 216 kg N ha-1 in cattle slurry and in the 

forage legume sward it was above 300 and as much as 500 kg ha-1. These amounts were higher or 

within the range of previously estimated BNF levels in European grasslands (Carlsson and Huss-

Danell 2003; Lüscher et al. 2014; Anglade et al. 2015). Thus, the study showed that swards 

containing forbs or only forage legumes have potential to acquire a large input of N from BNF, and 

that the BNF is not compromised when including forbs in the ryegrass-red clover in controlled 

proportions or growing forage legumes in a mixture with red clover.   

 
3.3 Red clover N transfer and N rhizodeposition  
 

Forbs relied less on red clover-derived N and did not influence red clover N transfer 

to the companion non-legume species and N rhizodeposition in the soil 

Red clover transferred up to 15% of its N to neighbouring ryegrass and forb species over a growing 

season in which the ryegrass absorbed 63 to 94% of the total amount transferred. In accordance 

with previous studies (Høgh-Jensen et al. 2006; Pirhofer-Walzl et al. 2012; Frankow-Lindberg 

and Dahlin 2013), ryegrass was a stronger receiver of red clover deposits than the forbs. The three 

forbs demonstrated a similar ability to absorb the N transferred from red clover, ranging from 0.6 

to 4% of red clover N, regardless of seeding proportions of ryegrass and red clover and did not 

affect the amount of N transferred to the grass component. The amount of N transferred to chicory 

and plantain was higher than to caraway, which was associated with their better growth and N 
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accumulation. Hence, the results from this study (Paper II) failed to support the hypothesis that 

the choice of forb species and different seeding proportions of ryegrass and red clover would 

influence red clover N transfer to companion non-legume species.   

The functional difference between the ryegrass and forbs in their abilities to absorb N transferred 

from the red clover was likely associated with legume root exudation of the N compounds taking 

place mainly in the uppermost soil layer, where the grasses have a large fibrous root network and 

develop a close inter-connection with the legume roots (Pirhofer-Walzl et al. 2012; Frankow-

Lindberg and Dahlin 2013;). This was supported by larger proportions, 65 to 100%, of red clover 

N rhizodeposition in the upper 0-10 cm soil layer and transfer of red clover N predominantly to 

the ryegrass component (Figs. 5 and 6; Paper II). On the other hand, such facilitative interaction 

might have been less in forbs due to their deep and thick tap or adventitious root system. It appears 

that forbs may have relied substantially on the N from soil pools due to their ability to assimilate 

N from the deeper soil layer (Thorup-Kristensen 2006; Pirhofer-Walzl et al. 2013). This was 

supported by the fact that the strong growth of chicory and plantain was not generally affected 

either by variations in amount of red clover BNF or by fertilization, whereas ryegrass biomass 

proportions and N uptake was greatly increased with fertilization (Fig. 2 and Table 5; Paper I).  

Despite the functional differences between the ryegrass and forbs in the ability to assimilate N 

transferred from the red clover, ryegrass did not show a growth advantage compared to chicory 

and plantain. It seems that the chicory and plantain either competed strongly with the ryegrass 

for uptake of soil N in all soil layers or that the ryegrass growth was limited by the utilization of 

above- and below-ground resources other than N.  

The dynamics of N transfer tended to vary with biomass production and N accumulation in red 

clover and non-legumes. The percentage of red clover N transfer tended to increase with an 

increase in non-legume N accumulation, that the quantity of N transferred and rhizodeposition 

tended to be higher with large red clover herbage yield and N accumulation (Figs. 5 and 6; Paper 

II). In addition, total seasonal shoot DM and N yield correlated well with the root DM and N yield 

estimated at the end of the growing season. A positive correlation was also found between seasonal 

N transfer measured in shoots and the amount of N rhizodeposition. Hence, this study suggests 

that legume N transfer to companion non-legume species is likely a combined effect of localization 

of donor N rhizodeposits, root architecture of the receiving species, and the competition  between 

donor and receiver plants for above- and below-ground biomass production and N accumulation. 

Thus, the inclusion of forbs in the ryegrass-red clover does not influence red clover N transfer to 

companion non-legumes. It is, therefore, important that grass is included in the multi-species 

swards to enhance assimilation of legume-deposited N and tight internal N cycle of the grassland 

agricultural systems.  
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The forbs assimilated more of the N transferred from red clover by the third and fourth cuts. It is 

not fully clear if this was caused by the better establishment of the forbs or reduced growth of the 

ryegrass. Frankow-Lindberg and Dahlin (2013) found that most of the legume-derived N was 

transferred to grass in first harvest year and that the N transfer to chicory increased in the second 

harvest year. Likewise, %Ndfa tended to increase at the fourth cut in the two-and three-species 

mixtures containing forbs compared to ryegrass-red clover, especially in unfertilized plots (Fig. 4; 

Paper I). These could therefore be indications that the dynamics of BNF and N transfer change 

over time. These aspects need to be further investigated by analyzing dynamics in BNF and N 

transfer in forb-based swards over multiple growing seasons. 

  

3.4 Residual soil N fertility of grassland pre-crop containing forbs  

Including forbs in the ryegrass-red clover mixture did not influence residual soil N 

fertility   

Biomass yield and N uptake in the subsequent spring barley crop increased by 40 to 70% and 70 

to 104%, respectively, when grown in the grassland-based soil than in unfertilized reference soil 

with a history of cereal cropping. However, all mixtures, regardless of species composition, showed 

a stable initial potentially available soil N level, biomass yield and N uptake of a spring barley test 

crop (Figs. 1 and 2; Paper III).  Therefore, the hypothesis that the inclusion of forbs in ryegrass-

red clover would increase residual N effect to the subsequent crop in rotation was not confirmed 

(Paper III).  

Previous studies have suggested that legume biomass production, BNF, N accumulation (e.g. 

Høgh-Jensen and Schjoerring 1997; Vrignon-Brenas et al. 2016), and residue quality such as C/N 

ratio from the grassland pre-crop phase (Nykänen et al. 2008) are good early indicators of N 

released to the succeeding crop in rotation. Palmborg et al. (2005) found a positive association 

between legume biomass and soil inorganic N content in the soil. Many studies have reported a 

higher residual N effect in the presence of forage legumes in the swards than plant communities 

without legumes (e.g. Høgh-Jensen and Schjoerring 1997; Kumar and Goh 2000; Kumar et al. 

2001). Interestingly, no correlation was observed between measured parameters during the 

grassland phase (such as total biomass production, N yield, red clover biomass proportion, input 

of N from BNF, N balance) and the N fertility for the subsequent cereal crop, with a similar N pre-

crop value of red clover in the pure stand and the ryegrass-red clover mixture.   

Eriksen et al. (2015) suggested that N availability to the subsequent crop via mineralization of 

plant residues is a slow-release process and could take some years to have the visible effect. Kumar 

and Goh (2002) observed that mineralization of residues is influenced by its C/N ratio as soil 

microbes need more N to decompose C-rich materials. They suggested that decomposition and 
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mineralization of the residues would be faster for the legume residues due to a lower C/N ratio. It 

is likely that N could initially have been immobilized during the decomposition of the large 

belowground biomass of the forbs. Additionally, as suggested by (Crews and Peoples 2005), all 

potentially available N released from the pre-crop may not have been available to the succeeding 

crop due to the possible loss of N from the system via leaching and denitrification, this loss being 

larger from the clover-dominated plots (Kušlienė et al. 2015). Since the spring barley biomass and 

N uptake when grown in grassland soil were higher than in the reference soil, the N fertility of the 

grassland system may have been caused by a positive pre-crop effect of perennial grassland crops 

compared to cereal crops, regardless of the species composition of the grassland crop. The N 

fertility of the succeeding crop may increase in the following years. This calls for future studies 

covering multiple growing seasons to improve understanding and to generate a more robust 

conclusion. Thus, the study showed that the inclusion of any of the three forbs in the ryegrass-red 

clover mixture does not affect the short-term residual N effect of the grassland pre-crop.   

 

3.5 Methodological reflections  

N2 fixation measurement  

Uneven spatiotemporal distribution of 15N in the soil profile is an important source of uncertainty 

in the %Ndfa estimates obtained using 15N ID method (Unkovich et al. 2008; Burchill et al. 2014). 

Jørgensen et al. (1999) highlighted similar N uptake pattern of legume and non-legume species is 

more important than the temporal variation in the soil 15N enrichment for reliable estimation of 

%Ndfa. In the present study, to minimize the risk of large bias caused by spatiotemporal variations 

in soil 15N enrichment and contrasting N acquisition patterns between legumes and non-legume 

reference plants, as suggested in previous studies ( e.g. Jacot et al. (2000), Unkovich et al. (2008) 

and Carlsson and Huss-Danell (2014)), the average atom% 15N value of all non-legumes grown in 

the same plot as red clover were used as the reference value to estimate %Ndfa in the forb-based 

sward.  Average atom% 15N excess of all non-legumes grown in mixtures constituting at least 40% 

seeding proportions of red clover was used as reference value to estimate %Ndfa in pure stand of 

red clover. Similarly, an approach of using the average 15N of several reference species (pooled 

samples of all weeds present in the sampled plots, representing both grasses and dicotyledon 

species) were applied to estimate %Ndfa in forage legume sward. It is possible that the amount of 

BNF could have been overestimated by the fact that sampling for biomass and BNF measurements 

were made in small 15N dilution plots. However, the biomass yield measured in the dilution plots 

in Paper I was close to the yield measured in the whole plots (Dhamala et al. 2015).   
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Nitrogen transfer measurement 

 It is not always possible to meet all assumptions behind the 15N leaf labelling method for 

quantifying N transfer, which might be associated with multiple methodological biases (Chalk et 

al. 2014). This study showed a clear tendency for overestimation of the proportions of non-legume 

N derived from transfer of red clover N, especially in ryegrass. The uncertainty in the amount of 

N transfer in ryegrass was more pronounced when biomass proportions of ryegrass was very low 

and the biomass proportions of clover was high. The study suggests that caution should be taken 

to apply the method in the swards heavily dominated by legume plants. Methodological bias may 

also be caused by temporal non-uniformity in the 15N enrichment of legume due to continuous 

growth and dilation of 15N by N2 fixation. This bias may be minimized with more frequent labeling 

of legume and shortening the gap between the termination of labelling and plant sampling.  

 

Residual N fertility measurement  

The applied methods to determine the residual N fertility provide measures of potentially available 

soil inorganic N and mineralizable organic N accumulated in soil organic matter (SOM) during the 

grassland pre-crop phase, and mineralized N taken up by the subsequent crop. These provide the 

means of evaluating agronomic utility of grassland pre-crop and N nutrition management of grass-

arable cropping systems (Crews and Peoples 2005). However, it is not clear from the applied 

methodology what factor are most important in controlling the residual N effect of the different 

treatments. Although many studies have highlighted that C/N ratio and microbial decomposition 

of the residues are instrumental in determining the residual N fertility, such measurements were 

not part of this study. Furthermore, nitrate leaching and denitrification losses of N were not 

measured during the grassland phase, and these flows would also be valuable to include for a 

complete determination of the N balance of the grassland pre-crop.    
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4. Summary of main results 

This study showed that:  

• The inclusion of non-leguminous forbs chicory, ribwort plantain or caraway in the 

ryegrass-red clover mixture did not affect red clover %Ndfa. Different competitive abilities 

of the forbs affected the sward production and quantity of BNF through their impact on 

red clover abundance in the mixtures. A comparable herbage and N yield and input of N 

from BNF to ryegrass-red clover was achieved when including plantain or caraway. 

However, a high seeding proportion of chicory reduced the seasonal amount of BNF by up 

to 60% and decreased sward herbage DM yield in unfertilized plots by ca. 20%, decreasing 

biomass proportions of red clover. 

• Plots receiving ca. 220 kg total N ha-1 in cattle slurry did not down-regulate %Ndfa, 

indicating a low soil N level or non-legume competition for plant-available soil N. 

Fertilization lowered amount of BNF by up to 35%, decreasing red clover growth.       

• Red clover transferred up to 15% of its N to the companion non-legume species. When 

including the forbs in a ryegrass-red clover mixture, they relied much less on red clover-

derived N, 0.6 to 4% of red clover N, than the ryegrass and did not influence the amount 

of red clover N transferred to the non-legumes. The forbs showed similar abilities to absorb 

the N transferred from red clover and the choice of forb and the seeding proportions of the 

ryegrass and red clover did not influence the percentage of red clover N transferred to 

ryegrass.  

• Species mixtures of forage legumes behaved like pure stands with no evidence of a species-

diversity effect on %Ndfa. Mixtures containing red clover reached a comparable amount of 

herbage DM and BNF to the red clover pure stand, the strongest species under the 

conditions of the present study.  In the mixtures containing red clover, herbage DM yield, 

N accumulation and BNF increased by 25 to 50%, 11 to 34%, and 7- 36%, respectively, as 

compared to pure stands of white clover and lucerne and their two-species mixture.  

• Biomass yield and N uptake in the subsequent spring barley crop increased by up to 70% 

and 104%, respectively, when grown in the grassland-based soil compared to unfertilized 

reference soil with a history of cereal cropping. However, the very large span in red clover 

biomass proportions and thus input of N from BNF in the grasslands with different forbs 

did not influence residual N fertility in the subsequent cereal crop in the crop rotation.   
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5. Conclusions 

The present study concludes that if used in the right proportions, the non-leguminous forbs 

chicory, ribwort plantain or caraway may be included in the traditional perennial ryegrass-red 

clover mixture for purposes such as enhancing acquisition of water and nutrients from deeper soil 

layers, mineral nutrition, forage quality and biodiversity without negative effects on herbage yield, 

BNF, N transfer from legume to the non-legumes and short-term residual soil N effect. Since the 

strong competitive ability of chicory reduced the red clover proportion and amount of BNF, a high 

seeding proportions of the chicory should be avoided for a balance between legume and non-

legume proportions in the sward. Similarly, red clover, white clover and lucerne can be grown in 

mixtures with no negative effect on herbage production, N accumulation and input of N from BNF 

as compared to the strongest species in pure stand (red clover), provided that the mixtures 

contains at least a small proportion of red clover. Additionally, it appears that grass is an important 

component in multispecies swards because of its complementarity with legumes and forbs. 

  



 
 

36 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 



 
 

37 
 

6. Perspectives of the study 

• This study investigated plant production and N dynamics in the swards including a range 

of multi-species mixtures integrating plant species of the same or different functional 

groups. This provides an important management tool for the farmers for designing and 

implementing new multi-species temporary grasslands to optimize plant diversity and 

efficient use of N resources in grassland-arable cropping systems.  

• Large variations in red clover proportions and fertilization did not significantly influence 

sward productivity, %Ndfa, total N yield or the N fertility of the subsequent crop. Hence, 

the inclusion of a large seeding proportion of a strong forage legume such as red clover can 

be avoided in forb-based high-yielding grasslands in order to efficiently utilize the legume-

fixed N and minimizing risk of excessive N loss from the agricultural soil.  

• The study revealed that a forb-based sward and a sward containing only forage legumes 

can be integrated into a low-input arable crop rotation and provide synchrony between the 

supply of N from legume BNF and crop uptake for plant production. This provides an 

important tool for farmers for crop management and N fertilization to enhance self-

sufficiency in N resources and improve the N economy by using an alternative to N 

fertilizer, thus lowering the cost of animal feed production.  

• Both swards under this study were highly productive. Hence, forbs can be grown in 

ryegrass-red clover and forage legume only in mixed stands, and integrated in arable 

cropping systems to produce larger and more stable yields of green biomass for bioenergy 

or nutrient-rich ruminant fodder without applying N fertilizer. This may be an important 

tool towards protein self-sufficiency in Europe.  

• Low-input high-yielding forb-based sward and sward containing only forage legumes 

provide an important insight towards using marginal land for biomass production.   

 

Future studies 

• It is not fully clear from this study whether the forbs were outcompeted by the ryegrass for 

the red clover-derived N and in regulating %Ndfa and whether they would have different 

abilities when grown in the absence of ryegrass. Hence, both BNF and N transfer studies 

could be performed in mixtures containing forage legumes and forbs only to enhance the 

understanding of the role of forbs in the dynamics of N transfer and BNF.  

• Future studies should focus on including a range of species mixtures such as other forbs in 

the forb-based sward and forage legumes in the sward containing only forage legumes, 

with different growth patterns and root architectures for a more illustrative and clearer 

picture of the underlying mechanisms of the studied N processes.  
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• The study could be performed under a range of management conditions such as cutting, 

grazing, cutting vs. grazing, N fertilization and under conditions such as high or low water 

stress and temperature to enhance the understandings of potentials of new mixtures to 

perform in changing management, resource availability and environmental conditions.  

• Dynamics of N transfer may have been affected by the form of N released from red clover 

and the different N uptake patterns of ryegrass and forbs including access to mineral N in 

the soil. Hence, further work to elucidate the form of N released from red clover and N 

uptake patterns of ryegrass and forb species could help to better understand the dynamics 

of N transfer between forage legume and non-legume and extend our understanding of 

whether forbs rely on N uptake from deep soil layers or compete in all soil layers.  

• All the measurements in the present study were made in aboveground plant parts. Hence, 

a future study could be carried out that incorporates belowground biomass to extend our 

understanding and make stronger recommendation, especially for the residual N effect.  

• Assessment of N transformation processes such as mineralization, immobilization, 

nitrification and denitrification and a simultaneous study of leaching of N and nitrous 

oxide (N2O) emission could be done in different mixtures to extend our  understanding of 

how new swards containing forbs in grass-clover or only forage legumes help to improve 

NUE, thereby reducing N leaching and GHG emissions from the agricultural systems.   

• Since chicory and plantain appear to establish and grow fast, future studies could examine 

the capacities of forb-based catch and cover crop swards, including chicory or plantain, to 

retain residual N and recycle it in the following crop. 

• Biogas potential or changes in nutritional quality of the green biomass in the sward caused 

by different species combinations could be investigated to potentially utilize the harvested 

biomass from these low-input high-yielding swards. 

• A future study could concentrate on the effect of inclusion of different forbs on residue 

quality such as C/N ratio and microbial biomass to enhance the understanding of forb’s 

role in influencing residual N and SOM. 
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Abstract 

Background: Legume N2-fixation is stimulated by a diverse plant community, but studies of 

legume N2-fixation in temporary grasslands including deep-rooted non-leguminous forage herb 

(forb) species are rare.  

Methodology: We investigated N2-fixation and nitrogen (N) yield in a range of grassland 

mixtures consisting three forb species − chicory (Cichorium intybus L.), ribwort plantain 

(Plantago lanceolata L.) and caraway (Carum carvi L.) − mixed into a traditional grassland 

mixture of perennial ryegrass (Lolium perenne L.) and red clover (Trifolium pratense L.) at two 

fertilisation levels.  

Results: The percentage of red clover N derived from the atmosphere (%Ndfa) was higher in 

mixtures than in pure stand, but did not increase with inclusion of forbs. Red clover in all the 

mixtures derived over 90% of its N from fixation even when fertilised with 216 kg total N ha-1. 

Forbs affected the amount of N2-fixation by affecting the clover content in the harvested biomass.  

Conclusions: We conclude that forbs can be included in temporary grassland mixtures to 

increase N use efficiency and herbage production without affecting legume N2-fixation. The 

lacking %Ndfa decline with fertilisation showed that non-legumes either competed hard for soil N 

or that other mechanisms for regulation of %Ndfa were at play.  

Keywords: plant diversity; temporary grassland; chicory; ribwort plantain; caraway; percentage 

of N2-fixation (%Ndfa) 

 

Introduction 

The inclusion of forage legumes in grassland production systems has been shown to improve 

forage quality (Lüscher et al. 2014), enhance soil N fertility (Fustec et al. 2010) and increase plant 

productivity (Nyfeler et al. 2011). Soil N fertility is enhanced through the process of biological N2-

fixation (BNF), N rhizodeposition (Høgh-Jensen and Schjoerring 2001; Rasmussen et al. 2007) 

and turnover of above- and below-ground plant residues (Dahlin and Stenberg 2010b; Rasmussen 

et al. 2008; Rasmussen et al. 2012). The N fertility effect of forage legumes also includes their 

green manuring and catch crop capacities in temporary grassland included in rotation, where the 

soil N pool built up under them is mineralised upon termination of the swards, rendering it 

available to the subsequent crop in the rotation (Eriksen et al. 2008). 

Globally, forage legumes are the second largest source of BNF after grain legumes (Herridge et al. 

2008). However, there are considerable spatial and temporal variations in their abilities of BNF 

(Anglade et al. 2015; Lüscher et al. 2014). The extent of legume BNF is influenced by several 

internal and external factors such as legume plant and rhizobium genotype and their interaction 
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with the surrounding environment, including management practices such as cutting, grazing, 

fertilisation and species composition (Carlsson and Huss-Danell 2003).   

Numerous studies have shown that plant diversification by growing forage legumes in mixtures 

with non-legumes, notably forage grasses, has a direct effect on the extent to which legumes rely 

on BNF for their N acquisition (e.g. Carlsson and Huss-Danell 2003; Hauggaard-Nielsen et al. 

2009; Høgh-Jensen and Schjoerring 1997). The inclusion of a non-legume increases the 

competition for available soil N and increases legume dependence on BNF compared to legumes 

grown in pure stands (Carlsson and Huss-Danell 2003; Hauggaard-Nielsen et al. 2009; Høgh-

Jensen and Schjoerring 1997). Therefore, many studies have focused on legume and non-legume 

diversity in grasslands to improve BNF and soil N fertility. However, the majority of studies on N 

dynamics in grasslands tend to be confined to binary mixtures of grass and clover. Studies on BNF 

in multi-species grasslands including deep-rooted non-leguminous forage herbs (forbs) are scarce 

(exceptions: Frankow-Lindberg and Dahlin 2013; Pirhofer-Walzl et al. 2012).  

Chicory (Cichorium intybus L.), ribwort plantain (Plantago lanceolata L.), hereafter plantain, and 

caraway (Carum carvi L.) are three forbs that may be adopted in grassland mixtures. They have 

potential as important components of grasslands due to their high competitive abilities in 

mixtures with different forage legume and non-legume species (Søegaard et al. 2013). They 

increase herbage production (Søegaard et al. 2008, 2011), forage quality (Høgh-Jensen et al. 

2006; Søegaard et al. 2008), mineral nutrition (Pirhofer‐Walzl et al. 2011) and can tolerate 

adverse weather conditions (Younie 2012). They have deep and diverse root systems (Li and Kemp 

2005; Stewart 1996) and can take up N from deeper soil layers (Pirhofer-Walzl et al. 2013; Thorup-

Kristensen 2006). Thus, the synergistic effects of including forbs with different above- and below-

ground traits in grass-clover mixtures are expected to increase soil N acquisition and the 

competition for available soil N with accompanying legume species, thereby affecting the 

dependence of the legume species on BNF. However, forbs are not widely included in grassland 

mixtures in Europe, and little is known about how different forbs in grass-clover mixtures 

influence legume BNF. Here we conducted an experiment with the objectives of determining how 

the inclusion of non-leguminous forb species in grassland mixtures of red clover (Trifolium 

pratense L.) and perennial ryegrass (Lolium perenne L.), hereafter grass and clover, respectively, 

would affect sward composition (clover, grass, forbs) in terms of dry matter (DM) production and 

N accumulation as well as the percentage (%Ndfa) and amounts of clover BNF when exposed to 

two levels of fertilisation. The following hypotheses were tested: 1) percentage of clover N derived 

from the BNF (%Ndfa) can be increased by increasing plant species diversity via the inclusion of 

companion non-legume forbs, and 2) cattle slurry application reduces the clover dependency on 

BNF. 
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Materials and methods 

Experimental site  

The field experiment was carried out at Foulumgaard Experimental Station, Aarhus University, in 

Central Jutland, Denmark (56° 29°N and 09° 34°E). The experimental field was part of an organic 

dairy crop rotation with a cropping history of both grassland and arable crops since 1987. The soil 

is a loamy sand characterised as Typic Hapludult with 7.7% clay and 1.6% carbon (Eriksen et al. 

2015) and 0.14 % total N. The mean monthly temperatures during the experimental period (April-

October, 2014) were between 8 and 19 °C, with July the warmest months. The monthly 

precipitation varied between 35 and 117 mm, with May, August and October being relatively damp 

(Fig. 1).  
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Fig. 1 Mean monthly air temperature and monthly precipitation during the experimental period from April 

to October 2014 measured at a climatic station near the experimental field. 

Experimental design and establishment of experimental plots 

Sixteen seed mixtures composed of different combinations of perennial ryegrass (Lolium perenne 

L., cultivar Stefani), red clover (Trifolium pratense L., cultivar Rajah) and three non-leguminous 

forbs: chicory (Cichorium intybus L., cultivar Spadona), ribwort plantain (Plantago lanceolata L., 

wild type) and caraway (Carum carvi L., cultivar Volhouden) were established in spring 2013 

(Table 1). 
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Table 1 Composition of the seed in the mixtures (percentage and amount are based on the seeding rate of each species in a pure stand) 

Seed mixtures 

Percentage of seed in the 

mixture (%) 
 Seeding rate (kg ha-1) 

GR RC CH PL CA  GR RC CH PL CA 

Pure stand 

Perennial ryegrass        (GR) 100      15     

Red clover                      (RC)  100      4    

Chicory                           (CH)   100      12   

Ribwort plantain          (PL)    100      12  

Caraway                         (CA)     100      12 

Two 

species 
50GR+50RC 50 50     7.5 2    

Three 

species 

33CH+33PL+33CA   33 33 33    4 4 4 

20GR+20RC+60CH 20 20 60    3 0.8 7.2   

40GR+40RC+20CH 40 40 20    6 1.6 2.4   

20GR+20RC+60PL 20 20  60   3 0.8  7.2  

40GR+40RC+20PL 40 40  20   6 1.6  2.4  

20GR+20RC+60CA 20 20   60  3 0.8   7.2 

40GR+40RC+20CA 40 40   20  6 1.6   2.4 

Five 

species 

40GR+40RC+7CH+7PL+7CA 40 40 7 7 7  6 1.6 0.84 0.84 0.84 

20GR+20RC+20CH+20PL+2+20CA 20 20 20 20 20  3 0.8 2.4 2.4 2.4 

10GR+10RC+33CH+33PL+33CA 10 10 27 27 27  1.5 0.4 3.24 3.24 3.24 
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The species were sown in a replacement design based on the proportion of each species’ seeding 

rate in a pure stand of 15, 4 and 12 kg ha-1 for grass, clover and forbs, respectively, in 1.5 x 8 m 

plots in three replicates. Each mixture was treated with two levels of N fertiliser, 0 and 216 kg total 

N ha-1, in the form of cattle slurry applied in four split doses − 91 kg at the start of the growing 

season in early April, and the rest after the first, second and third cuts in nearly equal amounts 

(39, 44 and 42 kg ha-1, respectively). The plots were irrigated after the first and second cuts. The 

quantitative analysis of clover BNF over a growing season was carried out in 2014 using the 15N 

isotope dilution method (e.g. Rasmussen et al., 2012). For this purpose, a subplot measuring 1×1 

m was demarcated in each experimental plot and the soil was labelled with ammonium sulphate 

0.1 g N m-2 (atom% 15N = 98 ) in early April 2014 to artificially enrich the soil 15N above natural 

abundance.  

 

Plant sampling and analysis  

The shoot biomass was sampled by harvesting by hand to 5 cm stubble height in one 0.25 m2 

subplot per experimental plot four times during the growing season on 27 May, 30 June, 18 August 

and 3 October. At each cut, unlabelled plant samples were collected adjacent to the experimental 

plots (but at least 5 m from the 15N-labeled subplots). The biomass samples were sorted into 

individual species, dried at 80 °C for 24 hours and weighed. The dried samples were milled to a 

fine powder, packed in small tin capsules and analysed for total N and atom% 15N at the UC Davis 

Stable Isotope Facility, University of California, USA, on an ANCA-SL Elemental Analyzer coupled 

to a 20-20 Mass Spectrometer using the Dumas dry-combustion method. The total N yield was 

quantified based on N concentrations and shoot DM yields of each species in the subplot.   

 

Calculations  

BNF was quantified based on excess atom% 15N in legume and non-legume species, here grass and 

forbs grown in the same plot as clover were used as non-legume reference plants, i.e. to estimate 

how much excess atom% 15N clover was derived from soil.  The percentage of clover N derived 

from the atmosphere (%Ndfa) was calculated using the following equation (McNeill et al., 1994):    

%Ndfa = (1 - (excess atom% 15N legume / excess atom% 15N reference)) x 100  

where excess atom% 15N was calculated by subtracting the  atom% 15N of the legume and 

companion non-legume species in unlabelled plots (background atom% 15N) from the atom% 15N 

of these species in 15N-labelled plots. The background atom% 15N values measured in both clover 

and non-legume species were affected by neither cutting time nor plant species, so the average 

values measured in clover of 0.3664 atom% and in grass and forb species of 0.3678 atom% were 
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used as background. In mixtures containing more than one non-legume species, the average value 

for excess atom% 15N of all non-legumes species was used as reference value. Since the reference 

plants should reflect the 15N signature of the soil N available for uptake by the legume (Carlsson 

and Huss-Danell 2014), the average excess atom% 15N value of all non-legume species grown in 

mixtures containing at least 40% clover (according to seeding rate) was used as the reference value 

to estimate %Ndfa in pure stands of clover. The amount of BNF was calculated by multiplying 

%Ndfa with clover N accumulation in shoots for each cut separately. The average %Ndfa for the 

whole growing season was estimated by dividing the total amount of BNF over the growing season 

by the total amount of clover shoot N accumulated.   

 

Data analysis 

The data were analysed in the open-source statistical program R (R Core Team, 2016) (Version 

3.1.0). Seasonal clover N yield and N uptake, and seasonal total DM and N yield data were log-

transformed before analysis to obtain a normal distribution of residuals. A two-way analysis of 

variance was used to determine the effect of the two fixed factors (sown species composition and 

slurry application) on each of the dependent variables (DM yield, N yield, %Ndfa and amounts of 

BNF). The effect of cutting time on DM yield, N yield, %Ndfa and amount of BNF for each slurry 

level was analysed using the linear mixed model, where sown species composition (fixed effect) 

and cutting time (repeated fixed effect) were independent variables with the blocks as a random 

variable and the plots were nested in the blocks. The model was tested using ANOVA. The pairwise 

comparisons were made by lsmean using the adjusted Tukey method. The probability of 

hypothesis rejection was tested at the 0.95 confidence level (P˂0.05).  

 

Results 

The weather conditions measured at the experimental site during the growing season (May to early 

October; Fig. 1) showed that the temperature was similar to the 30-year average, while the mean 

monthly precipitation was about 17% higher than the 30-year average at the same experimental 

station.   

Dry matter production and botanical composition 

Clover had significantly higher DM yields than the other pure stands in plots without slurry 

application, and significantly higher than grass and caraway in plots with slurry application (Table 

2). The three- and five-species mixtures did not achieve significantly higher DM yields than the 

two-species grass-clover mixture, either with or without slurry application. The total DM 

production measured over the growing season was generally highest at the first and third cuts 
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(P<0.001) and lowest at the fourth cut and the difference was most pronounced without slurry 

application.  

Table 2 Total seasonal total shoot dry matter (DM) and N yields measured under two levels of slurry 

application, 0N and 216 kg total N ha-1 year-1.  Values are means (± SE; n = 3), with different letters within 

each column indicating a statistically significant (p<0.05) difference between species compositions and ̒∗ ̕ 

indicating a significant (P<0.05) effect of slurry application within each variable.    

Seed mixtures 
DM yield (t ha-1)  N yield (kg ha-1) 

0N 216N  0N 216N 

Pure 

stand 

Perennial ryegrass        (GR) 04.5±0.1a 07.9±0.8a∗  076±5a 127±12a∗ 

Red clover                       (RC) 15.4±0.7e 14.8±0.9bc  479±7e 491±68d 

Chicory                            (CH) 07.1±1.6ab 10.8±0.9ab∗  106±26ab 180±23a∗ 

Ribwort plantain           (PL) 08.3±0.9bc 12.1±1.0bc∗  124±15ab 190±16ab∗ 

Caraway                          (CA) 04.7±0.3a 07.4±0.4a∗  093±6ab 134±8a∗ 

Two 

species 
50GR+50RC 15.8±0.9e 14.5±0.3bc  468±16e 397±28d 

Three 

species 

33CH+33PL+33CA 08.9±0.9bcd 12.8±0.7bc∗  135±10b 208±15abc∗ 

20GR+20RC+60CH 12.4±1.4cde 15.3±1.0bc  283±34cd 349±36cd 

40GR+40RC+20CH 15.2±0.5e 15.4±0.6bc  372±29cde 359±28d 

20GR+20RC+60PL 15.6±1.4e 15.9±1.0bc  392±52cde 411±28d 

40GR+40RC+20PL 15.8±1.0e 16.7±0.1c  416±26de 418±33d 

20GR+20RC+60CA 14.5±1.7e 14.4±1.8bc  389±53cde 349±52cd 

40GR+40RC+20CA 14.8±0.6e 15.5±0.9bc  426±9de 403±22d 

Five 

species 

40GR+40RC+7CH+7PL+7CA 13.7±0.1e 16.5±1.2c  337±1cde 402±39d 

20GR+20RC+20CH+20PL+20CA 13.4±1.5de 15.0±0.1bc  324±54cde 331±14cd 

10GR+10RC+27CH+27PL+27CA 11.6±0.9cde 15.3±0.4bc∗  243±29c 331±26bcd∗ 

 

On an annual basis, slurry application significantly increased total DM yield by 43 to 75%  in pure 

stands of non-legumes and the three species mixture of forbs (P<0.001). In the grass-clover-forb 

mixtures, the changes in yield ranged between -8 and 32%, with the two highest values in the five-

species mixture containing 27% of each forb (P<0.001) and the three-species mixture with 60% 

seeding density of chicory (Table 2).  

The proportion of clover in harvested biomass was often higher than the seeded proportion. Over 

the growing season, the clover produced the largest DM yield at the first and third cuts. The clover 

had the highest proportions of total DM yield in the two-species mixture (Fig. 2).   
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Fig. 2 Botanical composition of shoot herbage dry matter yield of different species mixtures grown without (0N) and with (216 kg total N ha-1) slurry 

application (n=3) sampled four times over the growing season in 2014. 
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In the three-species mixtures, the clover generally had the highest proportion of total DM yield in 

the grass-clover-caraway combination followed by grass-clover-plantain mixtures. The clover 

proportions often decreased in the grass-clover-chicory and five-species mixtures. Slurry 

application decreased the clover proportion, especially in the two-species (grass-clover) and grass-

clover-chicory mixtures (Fig. 2).  

Grass generally had higher DM yields in a pure stand followed by the two-species mixture. In the 

grass-clover-forb mixtures, the grass yielded more in the three species grass-clover-caraway 

mixture (Fig. 2). Slurry application increased grass growth (P<0.001) in the majority of the 

mixtures with the proportions of grass generally increasing at the expense of clover (Fig. 2).    

Similar to grass and clover, the forb species also had the highest DM yields in pure stands. Chicory, 

in general, produced the highest yield in the mixture followed by plantain, whereas caraway 

generally produced relatively little DM (Fig. 2). Slurry application had a similar effect on chicory 

and plantain in three species mixture. In the five-species mixtures, it benefitted chicory DM yield 

at the expense of plantain.  

 

N yield  

Total seasonal N accumulation in different mixtures varied from 76 to 479 kg N ha-1 without and 

126 to 491 kg N ha-1 with slurry application (Table 2). As the clover dominated the mixtures, the 

differences in total N yields of the mixtures were mainly dependent on the clover content. On an 

annual basis, clover in pure stands produced the highest N yields followed by the two-species 

mixture without slurry and the three-species grass-clover-plantain or caraway mixtures with a 

high seeding density of clover with slurry application. The total N yields did not differ significantly 

between the mixtures containing clover with slurry application. Without slurry application, the N 

yield in the grass-clover-chicory and a five-species mixture with the highest seeding density of 

forbs was significantly lower (P<0.001) than in the two-species mixture. Slurry application 

increased (P<0.001) the seasonal total N yield for pure stands of non-legumes and the three-

species mixture of forbs by 44 to 70%, but always much less than the 216 kg N applied. The changes 

in N yield of grass-clover-forb mixtures ranged between -5 and 36%, with a greater effect in the 

five species mixture with a high seeding density of forbs.  

 

Percentage and amount of red clover N derived from BNF 

The atom% 15N measured in all five species at all four sampling occasions was sufficiently above 

the background and there was a clear distinction between clover and non-legumes to calculate the 
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%Ndfa. The excess atom% 15N was highest at the first cut and decreased for succeeding cuts. In 

mixtures, the grass was often more enriched compared to forbs (data not shown).   

The percentage of N in clover derived from BNF significantly increased (P<0.001) in mixtures 

compared to the pure stands of clover (Table 3). The seasonal %Ndfa in clover grown in mixtures 

was consistently above 90%, and there was no significant difference between mixture 

compositions with and without slurry application (Table 3). 
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Table 3 Total seasonal red clover N yields, and percentage (%Ndfa) and amount of red clover N derived from the atmosphere measured in shoots under 

two levels of slurry application, 0N and 216 kg total N ha-1 year-1.  Values are means (± SE; n = 3), with different letters within each column indicating 

statistically significant (p<0.05) differences between species compositions and ̒∗̕ indicating a significant (P<0.05) effect of slurry application within each 

variable.  

Seed mixtures 

Red clover N yield  

(kg ha-1) 
 %Ndfa  N2-fixation (kg ha-1) 

0N 216N  0N 216N  0N 216N 

Pure 

stand 
Red clover 479±7d 491±68b  81.2±4.6a 69.3±2.8a∗  389±21e 339±42b 

Two 

species 
50GR+50RC 412±14cd 283±40ab∗  92.9±1.3b 91.4±2.1b  383±18de 258±36ab∗ 

Three 

species 

20GR+20RC+60CH 164±33ab 170±44a  96.8±0.7b 94.0±0.8b  159±33ab 159±39a 

40GR+40RC+20CH 240±34bcd 167±35a  95.6±1.0b 89.8±2.8b∗  229±32abcd 148±26a 

20GR+20RC+60PL 253±49bcd 230±24ab  96.9±0.6b 94.4±0.7b  245±46abcde 217±22ab 

40GR+40RC+20PL 297±33bcd 247±48ab  95.1±0.5b 92.3±1.9b  283±32bcde 226±41ab 

20GR+20RC+60CA 298±57bcd 210±47a  97.3±0.3b 95.5±0.2b  290±55bcde 200±45ab 

40GR+40RC+20CA 333±10bcd 265±13ab  94.7±1.0b 92.7±0.8b  315±7cde 245±10ab 

Five 

species 

40GR+40RC+7CH+7PL+7CA 197±13abc 207±33a  94.9±0.9b 91.3±1.2b  187±13abc 189±28ab 

20GR+20RC+20CH+20PL+20CA 183±53ab 139±23a  95.0±0.6b 94.7±0.2b  174±51abc 132±22a 

10GR+10RC+27CH+27PL+27CA 108±32a 138±28a  96.9±0.4b 95.0±0.1b  105±30a 131±27a 

    GR: Perennial ryegrass, RC: Red clover, CH: Chicory, PL: Ribwort plantain, CA: Caraway 
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Table 4 Percentage of red clover N derived from the atmosphere (%Ndfa) measured in shoots at two levels of slurry application, 0N and 216 kg total N 

ha-1 year-1. Values are means (± SE; n = 3), with different letters within each column indicating statistically significant (p<0.05) differences between 

species compositions and ̒∗̕ indicating a significant (p<0.05) effect of slurry application within each cut. 

Seed mixtures 

%Ndfa 

Cut 1  Cut 2  Cut 3  Cut 4 

0N 216N  0N 216N  0N 216N  0N 216N 

Pure 

stand 
Red clover 86.0±3.0a 70.6±5.0a∗  83.2±4.0a 64.3±2.3a∗  80.6±5.6a 75.0±3.0a∗ 

 
58.1±7.0a 53.7±4.7a 

Two 

species 
50GR+50RC 97.5±0.1b 96.7±0.4c  96.3±0.1b 95.5±1.3c  92.3±1.6b 92.9±2.2b 

 
76.6±5.0b 75.2±4.9b 

Three 

species 

20GR+20RC+60CH 97.1±0.4b 93.9±0.4bc∗  96.7±0.8b 93.7±0.5bc  97.9±0.5b 95.8±0.9b  90.4±3.4cd 83.7±2.4bc 

40GR+40RC+20CH 96.3±1.0b 92.3±1.4b∗  95.4±1.1b 90.4±0.7b∗  96.7±0.7b 88.9±6.7b∗  89.0±1.9cd 80.5±3.5bc∗ 

20GR+20RC+60PL 97.5±0.6b 96.3±0.3bc  96.9±0.7b 95.6±0.6c  97.6±0.6b 95.7±1.0b  92.4±1.0cd 84.7±3.1bc 

40GR+40RC+20PL 97.4±0.4b 96.0±0.9bc  96.3±0.4b 94.6±0.7c  94.8±1.0b 93.4±2.2b  83.3±2.0bc 79.3±5.0bc 

20GR+20RC+60CA 97.6±0.3b 96.1±0.4bc  97.1±0.1b 93.8±0.5bc  97.7±0.4b 96.7±0.3b  94.6±0.4d 87.4±1.6c 

40GR+40RC+20CA 97.1±0.5b 96.0±0.5bc  94.9±1.2b 93.8±0.6bc  94.4±1.2b 92.6±0.8b  85.4±3.8bcd 79.7±1.5bc 

Five 

species 

40GR+40RC+7CH+7PL+7CA 96.5±0.6b 93.7±0.5bc  94.8±1.7b 91.7±1.7bc  95.7±0.9b 93.4±0.9b  88.5±0.9cd 77.2±2.7bc∗ 

20GR+20RC+20CH+20PL+20CA 95.5±0.2b 94.6±0.6bc  95.1±0.7b 95.5±0.2c  95.5±1.0b 96.6±0.4b  90.6±2.0cd 80.5±2.8bc∗ 

10GR+10RC+27CH+27PL+27CA 96.8±0.6b 95.1±0.7bc  97.0±0.6b 95.4±0.7c  97.9±0.2b 96.6±0.5b  92.6±0.4cd 89.1±1.2c 

GR: Perennial ryegrass, RC: Red clover, CH: Chicory, PL: Ribwort plantain, CA: Caraway 
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The percentages of clover BNF were consistently high during the first three cuts and lower at the 

fourth cut (P<0.001) (Table 4). The species composition of the mixture in the unfertilised 

treatment had no significant effect on clover %Ndfa in the first three cuts, whereas at the fourth 

cut %Ndfa in the unfertilised grass-clover-forb mixtures was mostly significantly higher than in 

the grass-clover mixture. Clover %Ndfa showed nearly the same pattern in the treatments with 

slurry application, with little effect of mixture composition during the first three cuts. In the fourth 

cut, %Ndfa was higher in the grass-clover-caraway mixture with 20% clover and the five-species 

mixture with 10% clover than in the grass-clover mixture (Table 4).  

 

Slurry applications of 216 kg total N ha-1 generally did not significantly lower %Ndfa in the 

mixtures, although there were individual exceptions (Table 4). The effect on the specific mixture 

varied depending on cutting time and composition of seed mixtures with a significant interactive 

effect (P<0.001) for both levels of slurry application. On a seasonal basis, the slurry application 

significantly (P<0.001) decreased %Ndfa in the pure stand of clover and in the grass-clover-

chicory mixture with a high seeding density of clover (Table 3).  

 

The amount of BNF differed depending on seed mixture and cut, with significant interactive 

effects, especially with slurry application (P<0.05). The amount of BNF was closely related to the 

pattern of clover DM and N accumulation. There was a strong linear association between the 

amount of N2 fixed and both total N yield (R2= 0.81 with slurry and R2= 0.94 without slurry) and 

clover N yield (R2= 0.97 both with and without slurry). The total amount of seasonal BNF in 

different mixtures ranged between 105 and 390 kg N ha-1 without and from 130 to 340 kg N ha-1 

with slurry application (Table 3). The amount of BNF was highest in the pure stand of clover 

followed by the two-species grass-clover mixture. The clover in the three-species mixtures with 

plantain or caraway fixed in excess of 200 kg N ha-1 yr-1 at both levels of slurry application, which 

in most cases was not significantly different from clover in the pure stand and the two-species 

clover-grass mixture. The amount of BNF was suppressed in the grass-clover-chicory and five-

species mixtures, especially with high a seeding density of forbs, compared to other species 

compositions (Table 3), which was mainly caused by a decrease in the proportion of clover in the 

harvested biomass (Fig. 2).   

 

Slurry application generally lowered the amount of BNF in the majority of the mixtures, which 

was most pronounced at the first and second cuts (data not shown). The amount of BNF declined 

mainly due to a decrease in the clover content in the harvested biomass in treatments with slurry 

application (Fig. 2). On an annual basis, slurry application lowered the seasonal BNF by up to 35%, 
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with a larger effect in the two- and three-species mixtures than in the five-species mixtures. In 

three-species mixtures there was a tendency for the effect of slurry application to be larger with a 

high seeding density of clover. The effect of slurry application was, however, significant only in the 

two-species mixture (P<0.001).  

 

N uptake in red clover and non-legumes 

The uptake of soil N in clover was highest in the pure stand followed by the two-species mixture 

of clover and grass (Table 5). The range of difference due to slurry application was small across all 

the treatments and was not statistically significant for clover, and all the forb species in the 

mixtures.  

 

When included in unfertilised grass-clover-forb mixtures with a 20% or lower proportion in the 

seed mixture, clover took up significantly less soil N than in the two-species mixture with grass 

(Table 5). While all non-legume pure stands significantly increased their N uptake in response to 

slurry application (Table 2), only grass (i.e. none of the forbs) significantly increased its N uptake 

with slurry application when grown in grass-clover-forb mixtures. Chicory and plantain in grass-

clover-forb mixtures almost always took up more N than perennial ryegrass – the only exception 

was the fertilised five-species mixtures with 40% of grass (Table 5).  
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Table 5 Seasonal N uptake from soil pools in red clover, perennial ryegrass, chicory, ribwort plantain and caraway measured under two levels of slurry 

application, 0N and 216 Kg total N ha-1 year-1.  Values are means (± SE; n = 3), with different letters within each column indicating statistically significant 

(p<0.05) differences between species compositions and ̒∗ ̕ indicating a significant (P<0.05) effect of slurry application within each variable. 

Seed mixtures 

N uptake (kg ha-1)    

Red clover  Perennial ryegrass  Chicory  Ribwort plantain  Caraway 

0N 216N  0N 216N  0N 216N  0N 216N  0N 216N 

Pure 

stand 
Red clover 90±22e 152±30c 

            

            

Two 

species 
50GR+50RC 29±4d 025±8b  56±3bc 114±13e∗          

Three 

species 

33CH+33PL+33CA       045±25a 098±27ab  083±15ab 098±2bc  08±1ab 12±2a 

20GR+20RC+60CH 05±1ab 011±4ab  22±6ab 040±11ab  098±9a 138±21ab       

40GR+40RC+20CH 11±3abcd 019±9ab  39±2abc 063±14abcd∗  093±12a 130±9ab       

20GR+20RC+60PL 08±3abc 013±3ab  21±2ab 046±9abc∗     119±6b 135±7c    

40GR+40RC+20PL 14±1bcd 020±8ab  45±5abc 075±17bcd∗     073±10ab 097±4bc    

20GR+20RC+60CA 08±2abc 010±3ab  43±5abc 088±3de∗        48±3c 51±6b 

40GR+40RC+20CA 18±4cd 019±3ab  63±10c 093±5de∗        30±11bc 45±10b∗ 

Five 

species 

40GR+40RC+7CH+7PL+7CA 10±1abcd 019±5ab  34±5abc 080±11cde  046±23a 068±20a  056±22a 0036±4a  04±2a 10±6a 

20GR+20RC+20CH+20PL+20CA 09±2abc 007±1a  18±5a 059±5abcd∗  077±1a 074±20a  042±1a 0053±4ab  05±1a 07±1a 

10GR+10RC+27CH+27PL+27CA 04±1a 007±1a  14±5a 032±6a  048±9a 097±13ab  066±8a 0052±2ab  07±2ab 12±2a 

GR: Perennial ryegrass, RC: Red clover, CH: Chicory, PL: Ribwort plantain, CA: Caraway 
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Discussion 

Our focus was on investigating how new non-legume species with different functional traits 

influence legume growth, competition for available soil N and BNF when included in the 

conventional grass-clover mixture.  

 

Red clover growth dynamics and sward competition   

We found a yield advantage in mixtures containing clover compared to non-legume pure stands 

and the three-species mixture of forbs, but in the presence of clover the total DM and N yield were 

generally not affected by plant species diversity, seeding density of clover or slurry treatment. The 

total DM and N yield of the mixtures were comparable to similar two-species mixtures of grass 

and clover (Rasmussen et al. 2012), but higher than in a multi-species forage legume, grass and 

non-legume forb mixture (Pirhofer-Walzl et al. 2012) previously measured at the same location. 

Hence, the present study indicates that a potential yield advantage expected from increasing the 

number of species may be overshadowed by the high productivity of a competitive forage legume 

– in this case clover. 

Clover generally dominated in the mixtures regardless of species composition and seeding 

densities of clover and non-legumes, and thus defined the DM and N yield of the mixtures, 

especially without slurry application. This reflects the strong competitive ability of clover for 

above- and below-ground resources (Rasmussen et al. 2012) and the competitive advantage from 

BNF under zero fertilisation (Carlsson and Huss-Danell 2003).  The clover proportions of total 

DM and N yield were suppressed in grass-clover-chicory and five-species mixtures, but clover 

showed a competitive advantage when grown with plantain and caraway in three-species mixtures. 

Our results showed that chicory competed strongly with the other crops in herbage production, 

which is in line with the observations of Goh and Bruce (2005) and may be explained by the plant 

functional traits. The tall rosette plant and broad prostrate leaves of chicory would have shaded 

neighbouring plants (Søegaard et al. 2013), and its deep-growing roots may compete successfully 

for soil and water resources (Pirhofer-Walzl et al. 2013; Thorup-Kristensen 2006). Despite better 

competitiveness in the mixture, the plantain may have favoured the growth of clover by its more 

upright leaves letting in more light (Søegaard et al. 2013). We observed increased growth of 

caraway later in the growing season, which could be related to its initial energy investment for 

establishing a large root system (Hakala et al. 2008; Søegaard et al. 2013).  

 

Comparing grass and clover, the main finding was that addition of slurry increased the proportion 

of grass at the expense of clover in the sward. Thus, although clover generally dominated the 
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swards, its growth varied with non-legume seeding proportions and slurry application. The clover 

proportion varied from 30 to 80% of the sward biomass, which may be expected to affect the 

availability of soil N and therefore, in theory, also the proportion of N that clover derived from 

BNF (%Ndfa).    

Proportion of red clover N derived from BNF (%Ndfa) 

The proportion of N in clover derived from BNF (%Ndfa) was stimulated in all the mixtures 

compared to the pure stand of clover, but it was remarkably consistent across the two-, three- and 

five-species mixtures, both with and without slurry application. Hence, we could not confirm our 

first hypothesis that clover reliance on BNF would increase with increasing species diversity of 

companion non-legumes. Previous studies have reported that the %Ndfa is primarily influenced 

by legume production, soil N availability and competition for the available soil N among co-

existing non-legumes (e.g. Carlsson and Huss-Danell 2003; Høgh-Jensen and Schjoerring 1997; 

Ledgard and Steele 1992; Nyfeler et al. 2011). Carlsson et al. (2009), Nyfeler et al. (2011) and 

Oberson et al. (2013) have shown a stimulatory effect of higher proportions of N sinks (non-

legumes) on %Ndfa. Carlsson et al. (2009) further suggested that in diversified leys species 

composition and functional traits (e.g. efficient soil N uptake by competitive grasses) are more 

important than species richness per se for an effect of companion non-legumes on legume BNF.  

In contrast to those studies, we found no relation between species diversity and composition on 

%Ndfa in clover for the two-, three- and five-species mixtures. Furthermore, we found no effect of 

slurry application on %Ndfa in the majority of the mixtures, even in the mixtures dominated by 

clover (i.e., a significant effect of slurry application on %Ndfa was only detected in the clover pure 

stand). This fails to support our second hypothesis and contrast with the previous findings that 

demonstrated negative effects of elevated soil N levels (N fertilisation) on %Ndfa in red clover (e.g. 

Pirhofer-Walzl et al. 2012; Rasmussen et al. 2012) and white clover (e.g. Høgh-Jensen and 

Schjoerring 1997), also when grown in mixtures with non-legumes. Carlsson et al. (2009) found 

that increasing soil N levels affect %Ndfa, depending on companion non-legume species’ 

competition for available soil N. They found %Ndfa to decrease with increases in soil N level in 

species-poor communities and to increase in species-rich communities containing grass. 

However, we found no such response to slurry application when comparing the proportion of 

different functional groups in the different mixtures included in the present study.  

 

The lack of an effect of slurry on %Ndfa when clover was growing in a mixture with grasses and 

forbs could be due to very low soil N levels. If the soil N status was initially very low, then 

application of fertiliser N would benefit the non-legumes of the sward, which was indeed the case 
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in our experiment. However, in most mixtures it was only the proportion of grass in harvested DM 

which increased with slurry application, whereas the proportion of forbs in most cases did not 

increase. Also, the increased soil N uptake in response to slurry application was significant only 

for grass in the mixtures, not for forbs. These observations point to the likely explanation that soil 

N availability was limiting only for grass and that the forbs could acquire sufficient amounts of N 

− potentially by uptake from deeper soil layers − for their growth even without slurry application. 

This is in line with a parallel study on N transfer from red clover to the grass and forbs, showing 

that forbs to a greater extent relied on soil N compared to grass, which also relies on clover-derived 

N (Dhamala et al. 2017). The observed increases in the proportion of harvested DM and N uptake 

by grass in slurry-fertilised mixtures support the hypothesis that grass efficiently competes for 

available soil N, thereby stimulating high %Ndfa in companion legumes even if the mixture is 

fertilised with N (e.g. Carlsson and Huss-Danell 2003; Carlsson et al. 2009; Palmborg et al. 2005). 

Furthermore, since the percentage of clover in the sward varied greatly, it seems unlikely that the 

clover was not able to compete for soil N. It implies that an explanation other than a regulatory 

effect of available soil N is needed.  

 

In addition to the complementarity between soil N uptake and BNF, we suggest that the grass is 

also a strong competitor for N derived from clover via rhizodeposition and N transfer (Dhamala 

et al. 2017). Consequently, when growing in mixtures, clover would not be able to re-assimilate its 

deposited N (root exudates), which could have provoked the clover to rely on its own BNF. Hence, 

grass competition with clover for clover exudations of N could explain the observed pattern of high 

%Ndfa in all treatments. In contrast, since the forbs were shown to rely less on red clover-derived 

N than grass (Dhamala et al. 2017), it is logical that the presence of forbs in the three- and five-

species mixtures did not have a significant regulatory effect on %Ndfa.  

 

We observed a seasonal variation in %Ndfa, where %Ndfa decreased at the fourth cut, especially 

in clover pure stands and the two-species mixtures of grass and clover. The reduction in the %Ndfa 

could be related to a low carbohydrate supply to the root nodules and thus lower nitrogenase 

activity, due to the reduction in photosynthetic activity with the fall in light intensity and 

temperature at the fourth cut in October (Gralle and Heichel 1982; Roughley and Dart 1970). 

Furthermore, it could be that the reduction in non-legume growth, especially of grass, likely 

increased clover access to N from the soil. A lower N demand of grass later in the growing season 

was also found by Nyfeler et al. (2009; 2011), but contrast with the study of Frankow-Lindberg 

and Dahlin (2013) who found a greater reliance of grasses on legume-derived N towards the latter 

part of the growing season. In summary, the %Ndfa of clover was mostly at a high level in all 
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mixtures even with slurry application, which implies that the studied non-legumes in general 

competed efficiently for soil N, thereby stimulating a high %Ndfa by clover. 

 

The amount of red clover N derived from BNF  

Since we observed a consistently high %Ndfa across two-, three- and five-species mixtures, the 

amount of BNF in mixtures generally followed the same trend as the DM and N yield of the clover. 

This confirms that legume DM production is the main factor controlling the amount of N derived 

from BNF, as shown in several previous studies (e.g., Anglade et al. 2015; Carlsson and Huss-

Danell 2003; Dahlin and Stenberg 2010a; Unkovich et al. 2010). The clover in grass, clover and 

plantain or caraway mixtures fixed in excess of 200 kg N ha-1, which was comparable to clover in 

a pure stand and the two-species grass-clover mixture. The only treatment that affected the 

amount of BNF was for the mixture with a high chicory content and with slurry application, which 

reduced the proportion of clover in the sward.  

 

The amount of shoot N derived from clover BNF (105– 400 kg N ha-1 yr-1) in the present 

experiment was lower than the highest amount recorded (545 kg N ha-1yr-1) in red clover in Europe 

(Anglade et al. 2015). However, it was within the previously reported range in legumes of 

European grasslands (100-380 kg N ha-1yr-1) (Lüscher et al. 2014) and comparable to the reported 

amounts of BNF in red clover in northern European grasslands (373 kg N ha-1yr-1, Carlsson and 

Huss-Danell 2003; 324 with and 357 kg N ha-1 yr-1 without slurry, Rasmussen at al. 2012). Thus, 

the present organic temporary grassland system obtained large amounts of N from clover BNF 

and forb species and seeding density in the mixture were the main influences on the amount of 

BNF via their effect on the share of legumes in the harvested biomass.  

 

Conclusions 

Our study did not show any strong effect of plant species diversity on red clover dependency on 

biological N2-fixation when grown in two-, three- and five-species mixtures with grass and non-

legume forbs. The presence of a negative effect of slurry on the proportion of red clover N derived 

from biological N2-fixation when in a pure stand but not in most of the mixtures − even with the 

high share of red clover − indicates that either the non-legumes competed well for soil N or soil N 

availability was not the main regulating mechanism for %Ndfa. The red clover content in the 

harvested biomass defined, as previously reported, the amount of N originating from biological 

N2-fixation, with some variation due to the seeding densities of the species and application of 

slurry.  
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We conclude that forbs can be included in a temporary grassland mixtures without negative effects 

on biological N2-fixation and N yield, provided that the mixtures do not include very high seeding 

densities of chicory. The study suggests that forb species and seeding density are important factors 

in the design and implementation of multi-functional multi-species grasslands that help to 

combine N input from legume biological N2-fixation and efficient N use to produce herbage and 

quality forage.  
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Abstract
Background and aims There is substantial evidence that
legume-derived Nitrogen (N) is transferred to neighbor-
ing non-legumes in grassland mixtures. However, there
is sparse information about how deep rooted non-
legume forage herbs (forbs) influence N transfer in
multi-species grasslands.
Methodology Red clover (Trifolium pretense L.) was
grown together with perennial ryegrass (Lolium perenne
L.) and one of three forb species: chicory (Cichorium
intybus L.), ribwort plantain (Plantago lanceolata L.) or
caraway (Carum carvi L.) in a field experiment. During
the first year after the establishment, red clover leaves
were labeled with 15N-urea to determine the N transfer
from red clover to companion ryegrass and forbs.
Results On an annual basis, up to 15 % of red clover N
was transferred to the companion ryegrass and forbs, but
predominantly to the grass. The forb species did not
differ in their ability to take up clover N, but biomass
production and soil N acquisition was higher in chicory
and plantain than in caraway.

Conclusions Grass relied to a great extent on clover N,
whereas forbs relied on soil N. Soil 15N-enrichment
indicated that N transfer occurred in the upper soil layers
and that a dependence on clover-derived N did not
necessarily give grass a growth advantage.

Keywords Grasslandmixture . Red clover . Perennial
ryegrass . Non-leguminous forb . 15N-leaf labeling

Introduction

In agriculture, forage legumes have been shown to
provide a high-quality forage (Lüscher et al. 2014),
promote the buildup of soil N fertility and increase plant
productivity (Carlsson and Huss-Danell 2003). In grass-
land mixtures of forage legumes and non-legumes, the
legumes improve N supply and thereby the growth of
companion non-legume species through biological N2-
fixation and N rhizodeposition (Dahlin and Stenberg
2010; Høgh-Jensen and Schjoerr ing 2001) .
Rhizodeposition occurs via the decomposition of dead
plant parts including nodules and roots cells and plant
root exudation of soluble N compounds (Fustec et al.
2010). In addition, direct facilitative N transfer has been
shown to occur from N-rich legume plants to compan-
ion non-legume plants (Høgh-Jensen and Schjoerring
2000) and vice-versa (Gylfadóttir et al. 2007; Carlsson
and Huss-Danell 2014). It occurs either through the
exudation of low-molecular-weight soluble organic
(Paynel et al. 2001; Rasmussen et al. 2013) or inorganic
(Paynel et al. 2008) N compounds from living root cells
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and subsequently uptake by companion species through
direct root contact or interconnecting roots between
arbuscular-mycorrhizal fungi and the plant species
(Haystead et al. 1988).

Studies have shown that significant amounts of N of
up to 15–50 % of legume N can be transferred to
neighboring non-legume species (Dahlin and Stenberg
2010; Gylfadóttir et al. 2007; Rasmussen et al. 2007;
Rasmussen et al. 2013). Under field conditions, the
transfer is affected by climatic or seasonal variation in
plant growth and soil conditions (Rasmussen et al.
2013) and internal factors such as plant root type and
distribution in the soil (Pirhofer-Walzl et al. 2012), traits
controlling root turnover and residue quality such as
carbon to nitrogen ratio and lignin content (Louarn
et al. 2015), the ratio between legume and non-legume
biomass, C allocation within the non-legume and turn-
over rates of the plant roots in the soil (Rasmussen et al.
2007), and the ratio of legume to non-legume N (Dahlin
and Stenberg 2010). The N transfer is also influenced by
management factors such as selection of legume and
non-legume plant species and genotypes, age of the
sward and harvesting time of plant materials (Carlsson
and Huss-Danell 2014; Chalk et al. 2014). In addition,
the plant species diversity of the grassland mixture has
been found to affect the direction and magnitude of N
transfer due to differences in the ability of non-legumes
to acquire soil- and legume-derived N (Høgh-Jensen
2006; Pirhofer-Walzl et al. 2012) as well as variations
in the rates of legume growth and N2-fixation (Paynel
et al. 2008; Rasmussen et al. 2013).

Temporary grasslands in mixed rotations are usually
dominated by two plant functional groups: grasses and
forage legumes. To date, studies conducted on grass-
lands have mostly focused on simple mixtures of forage
legumes and grasses, but more recent studies have in-
volved a multi-species mixture in temporary grasslands
with a greater range of plant species, including non-
leguminous dicot forage herbs (forbs). Chicory, ribwort
plantain and caraway are three such promising forage
herbs because of their high competitive ability (Eriksen
et al. 2011; Søegaard et al. 2013) and tolerance of
adverse weather conditions (Younie 2012). They have
the potential to increase plant diversity and herbage
yield (Sanderson et al. 2005; Søegaard et al. 2011) and
also herbage quality in terms of its mineral nutrition
(Pirhofer‐Walzl et al. 2011), effect on animal health
(Younie 2012) and palatability (Søegaard et al. 2008).
In addition, their physiological and morphological

characteristics include diverse root systems e. g. deep-
rooted plant species (Eriksen et al. 2012; Li and Kemp
2005; Søegaard et al. 2013; Stewart 1996). Studies have
suggested that deep-rooted species are efficient at utiliz-
ing N from deeper soil layers (Pirhofer-Walzl et al.
2013; Thorup-Kristensen 2006), and that the plant di-
versity of diverse root system confers variability to the
pattern of N acquisition from soil and N transferred from
N-rich companion legume plants (Lesuffleur et al. 2007;
Pirhofer-Walzl et al. 2013; Pirhofer-Walzl et al. 2012).
However, these deep-rooted forbs are still very rarely
included in grassland mixtures in Europe and the dy-
namics of N processes in multi-species grasslands in-
cluding forbs are very rarely investigated.

A field experiment was therefore conducted to inves-
tigate how the inclusion of a non-legume forb species
(chicory, ribwort plantain or caraway) in a mixture with
perennial ryegrass and red clover would influence the
dynamics of interspecies N transfer. Themain objectives
of the study were to determine how the choice of forb
species and the seeding proportions of grass and clover
in the seed mixture would affect: 1) The shoot biomass
and N accumulation of ryegrass, red clover and forbs, 2)
the N transfer from red clover to grass and forbs, and 3)
the total root biomass and root N accumulation. The
following main hypotheses were tested:

1. The proportion of clover N transfer increases with
increasing above-ground biomass production and N
accumulation in companion grass and forb species,
and

2. The total seasonal N transfer to above-ground plant
parts and to the soil increases with an increase in
total root biomass and N accumulation in legume
and non-legume species in the mixture.

Materials and methods

Experimental site and design

The field experiment was conducted at Foulumgaard
Experimental Station, Aarhus University in central Jut-
land, Denmark (09° 34° E and 56° 29° N). The exper-
imental field formed part of a dairy crop rotation with a
history of grass-arable cropping and managed according
to EU organic standards since 1987. The soil is a loamy
sand characterized as a typical Hapludult, containing
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7.7 % clay, 1.6 % carbon (Eriksen et al. 2015) and 0.12–
0.16 % total N. The monthly precipitation and mean
monthly temperatures during the experimental period
between April and October were 35–117 mm, and 8–
19 °C, respectively. June, July and August were the
warmest months, while May, August and October were
the wettest (Fig. 1).

Six grassland mixtures were established in spring
2013, each including one of the three forb species of
chicory (Cichorium intybus L.), ribwort plantain
(Plantago lanceolata L.) or caraway (Carum carvi L.)
in addition to the traditional grassland mixture of peren-
nial ryegrass (Lolium perenne L.) and red clover (Trifo-
lium pratense L.). The species were sown based on their
seeding rate in a pure stand: 15, 4 and 12 kg ha−1 for
perennial ryegrass, red clover and forbs, respectively.
The mixtures were either dominated by clover (mixtures
1–3) or grass (mixtures 4–6) at 80 % of their pure stand
seeding rates (Table 1). The experimental plots were
harvested twice during the year of establishment,
and the experiment was conducted in the following
growing season.

In early April 2014, polyvinyl chloride (PVC) cylin-
ders of 30 cm internal diameter and 30 cm height were
inserted 28 cm into the soil enclosing all three species in
the mixture to confine the area of N transfer. Four
replicate cylinders were randomly installed within
an area of each seed mixture measuring approxi-
mately 1.5 × 8 m and at least 50 cm apart to avoid
cross-contamination.

Leaf-labeling

Leaf-labeling with 15N-enriched urea was used to deter-
mine N transfer (Ledgard et al. 1985). Five fully-
developed medium sized clover leaves in each cylinder
were gently inserted into 2-ml Eppendorf tubes contain-
ing 1 ml urea solution (0.5 %w/v and 98 atom %15N).
The tubes were sealed with sticky-tack sealing materials
(taking care not to damage leaf petioles or other parts of
the plant) to avoid the loss of l5N (e.g. evaporation) and
intrusion of rainwater. After 3–4 days, the leaves were
detached at the petioles and the tubes were removed
along with the entire leaf. During labeling and removal
of tubes, care was taken to prevent contaminating soil
and plants with the labeling solution. Two labeling
sessions were conducted during each of four growth
periods (May, June, July to mid-August, mid-August
to early October). The number of clover plants in the
cylinder varied between one and five. One leaf from
each plant was labeled when five plants were present in
the cylinder, and two to five leaves from the same plants
were labeled when numbers of plants were less than five
in the cylinder. Different leaves from the same plant
were selected at the second labeling. Hence, clover
plants were labeled eight times during the growing
season, amounting to 40 leaves in total and resulting in
40 ml urea labeling solution in each cylinder. This
supplied a total of 1.36 g N m-2.

Plant sampling and analysis

Each growth period was terminated approximately
2 weeks after the second labeling by harvesting all
above-ground plant material. The sampling was done
manually by hand cutting with scissors to a stubble
height of 5 cm. The first sample was taken on 27 May
following labeling on 1 and 12 May; the second on 30
June following labeling on 23 and 27 June; the third on
15August, with labeling on 11 and 28 July; and the final
sampling on 3 October following labeling on 12 and 23
September. The interval between two labeling events
and between the second labeling and sampling was
shorter for the second sampling event than for the
others. Unlabeled plant samples were collected from
each plot, at a distance of at least 50 cm from the
cylinder, for analyzing background 15N-abundance.
The plant samples were sorted into individual species,
dried at 80 °C for 24 h, and dry matter (DM) weight
determined. Samples were then coarsely milled,
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subsampled and ball-milled into a fine powder, and
packed into tin capsules for analyses of total N and atom
% 15N.

Root and soil samples were taken at termination of
the experiment after the last plant sampling in October,
by collecting three soil cores (2 cm diameter) from each
cylinder at 0–10 cm and 10–30 cm depth, respectively,
and 5 g soil from each cylinder and depth was dried at
105 °C for 24 h and DM amount was recorded. The
remaining soil in each cylinder was passed through a 1-
mm sieve, liberated from plant material by removing
visible roots and other debris with the help of tweezers
and dried at 80 °C for 24 h for analyzing total N
concentration and atom% 15N. Immediately after the
soil sampling, the cylinders were manually excavated
along with the intact soil and plant materials and weight-
ed. All plants were removed with intact root systems up
to the depth of cylinder and the bulk soil was homoge-
nized. Representative samples of 1 kg fresh soil were
obtained from each cylinder using a Rifle-splitter and
roots were recovered manually by washing roots on a
500-μm sieve. The roots with intact plants were sorted
into different species, and those that could not be iden-
tified were collected and bagged separately. The sam-
ples were dried at 80 °C for 24 h and weighed. The
background soil and root atom% 15N was estimated in
the samples collected in the same plots but at a

minimum 50 cm from the cylinder. The root and soil
samples were separately ground to a fine powder and
packed into tin capsules. All the above-ground plant,
root and soil samples were analyzed for total N and
atom% 15N at UC Davis Stable Isotope Facility, Uni-
versity of California, USA on an ANCA-SL Elemental
Analyzer coupled to a 20-20 Mass Spectrometer using
the Dumas dry-combustion method.

Calculations

The 15N was applied to clover plants as multiple pulses.
The N transfer from 15N-labeled clover to unlabeled
grass and forbs shoots was estimated based on differ-
ences in atom % 15N excess and N content in above-
ground plant tissues of clover and grass or forb species.
The principle assumption was that the loss of 15N in the
soil and plant system would be minimal, and the 15N
assimilated by the legume would label all the N com-
pounds subjected to transfer to companion non-legume
species (Ledgard et al. 1985). The proportion of N
transferred was estimated based on the assumption that
clover N at the beginning of the growth period is equal
to the 15N measured in clover plus the 15N transferred to
receiving plants at harvest using the following equation
in Ledgard et al. (1985) and modified in Pirhofer-Walzl
et al. (2012):

%Ndfd ¼ Nreceiver 1‐2ð Þ � Excess atom%15Nreceiver 1−2ð Þ

Nreceiver 1−2ð Þ � Excess atom%15Nreceiver 1−2ð Þ þ Ndonor � Excess atom%15Ndonor

� �� � 100

where %Ndfd denotes the percentage of red clover N
transferred to grass and forb plants, Nreceiver and Ndonor

are amounts of N accumulated in the above-ground
tissue of unlabeled grass or forb species (receivers)

Table 1 Composition of seed mixtures (percentage is based on each species seeding rate in pure stand)

Seed mixtures Percentage of seed in the mixture (%) Seeding rate (Kg ha−1)

GR RC CH PL CA GR RC CH PL CA

1 Clover dominated CH-RC 10 80 10 1.5 3.2 1.2

2 PL-RC 10 80 10 1.5 3.2 1.2

3 CA-RC 10 80 10 1.5 3.2 1.2

4 Grass dominated CH-GR 80 10 10 12 0.4 1.2

5 PL-GR 80 10 10 12 0.4 1.2

6 CA-GR 80 10 10 12 0.4 1.2

GR Perennial ryegrass, RC Red clover, CH Chicory, PL Ribwort plantain, CA Caraway
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and 15N-labeled clover (donor), respectively. Receiver
(1–2) denotes two non-legume species grass and forbs.
Excess atom % 15Nreceiver and

15Ndonor are the atom %
15N of grass or forbs and clover grown inside the cylin-
der minus the atom% 15N in samples of the correspond-
ing plant species grown adjacent to the cylinder. The
background atom % 15N measured in clover was not
affected (P > 0.05) by cutting time, and that measured in
non-legume species was also unaffected (P > 0.05) by
both cutting time and plant species. Therefore, the aver-
age values from the four cutting times were used as
background atom % 15N, which were 0.3664 and
0.3678 for clover and all non-legumes, respectively.
Then the amount of legume N transfer was calcu-
lated by multiplying %Ndfd with the N accumu-
lated in clover. Similarly, the weighted mean of
%Ndfd and N accumulation in clover over four
cuts were used to express the total amount of N
transferred over the season.

The N deposited to the soil was estimated based on
excess atom % 15N in clover roots and soil using the
following equation proposed by (Janzen and Bruinsma
1989), assuming that the sampled clover roots and de-
posited N have the same excess atom% 15N and the 15N
tracer is uniformly distributed throughout the root sys-
tem (Mayer et al. 2003):

%Ndfr ¼ Excess atom %15Nsoil

Excess atom %15Nroot

� 100

where %Ndfr denotes the percentage of N in the soil
derived from roots, and the excess atom % 15N of soil
and roots is calculated as the atom % 15N in roots and
soil in the cylinder minus the atom % 15N measured in
soil and respective plant roots adjacent to the cylinder.
The clover roots were not separated from all recovered
roots in the cylinder. Hence, the excess atom % 15N of
clover roots analyzed in separated fractions was used for
the calculation. The average atom % 15N in clover roots
and soil measured in six plots was used as background,
at 0.3665 for clover and 0.3689 for soil. The amount of
N deposited was quantified as the product of %Ndfr and
soil N content. The soil atom % 15N was measured in
two different soil profiles, 0–10 cm and 10–30 cm.
Therefore, the below-ground measurements including
soil N content and amount of rhizodeposits were made
up to the depth of cylinder assuming one third of total
soil from the upper and two thirds from the lower soil
profile. Then the weighted average, based on total

rhizodeposits and N content in both soil profiles, was
calculated to express %Ndfr in each cylinder. The root
density was calculated as the ratio of total root DM to
the total soil dry weight in each cylinder and expressed
as g root kg−1 dry soil.

Statistical analyses

Data were analyzed using the open source statistical
program R (R Core Team 2014) (version 3.1.0). The
normal distribution of residuals was tested and, when
required, improved by log transformation of data. One-
way analysis of variance was used to statistically test the
effect of seed mixture on each dependent variable (bio-
mass yield, N accumulation, excess atom% 15N, and
proportion and amount of N transferred from clover to
non-legumes and soil). The effect of seed mixture and
soil depth on soil excess atom% 15N were tested using
two-way analysis of variance. The effect of cutting time
on DM yield, N accumulation, excess atom% 15N,
%Ndfd and amount of N transferred was analyzed using
a linear mixed model, where seed mixture (fixed effect)
and cutting time (repeated fixed effect) were indepen-
dent variables and cylinders as random effect. Pairwise
comparisons were made between least square means
using the adjusted Tukey method. The confidence level
used was 0.95, and the probability of rejection of hy-
pothesis was set at P 0.05. Correlations were tested
using Pearson’s correlation analysis.

Results

Above-ground DM yield, botanical composition and N
accumulation

The above-ground DM yield was significantly higher in
the first and third cuts compared to the second and
fourth cuts (P < 0.001), and was highest in the clover-
dominated seed mixtures with chicory or plantain
(Fig. 2a).

The DM yield of mixtures was mainly dominated by
red clover even when grass was the main component in
the seed mixture (Fig. 2a). The clover produced the
highest DM yields (P < 0.001) in the first and third cuts,
while the grass DM yield was highest in the first cut
(P < 0.001) and decreased in succeeding cuts. The grass
proportion was particularly suppressed when grown in
mixtures containing chicory and plantain (Fig. 2a). The
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DM yield between forb species was not significantly
affected by the seeding proportions of grass and clover.
Chicory and plantain constituted larger proportions of
the total biomass production than grass, which wasmore
pronounced in grass dominated seed mixture. However,
the caraway always had a significantly lower DM yield
(P < 0.001) than chicory and plantain (Fig. 2a). There
was a negative correlation between total seasonal DM
yield of forbs and grass (P < 0.001, R2 = 0.45).

On an annual basis red clover, ryegrass and forbs
yielded between 19 and 46, 3.4 and 6.7, and 1.3 and
9 g N m−2, respectively. The pattern of N yield and
proportions in the mixture closely resembled the pattern
of DM production (Fig. 2b). The clover in different
mixtures constituted on average 72 % of the total sea-
sonal N accumulation, ranging from 76 to 83 % in
clover-dominated and from 57 to 75 % in grass-
dominated seed mixtures (Fig. 2b).

Above-ground 15N-enrichment

The atom % 15N in both clover and companion non-
legume species was substantially above the natural
abundance, ranging from 0.37 to 2.5 depending on plant
species and cutting times, which revealed that the label-
ing was successful and that some of the clover N was
transferred to the companion non-legume species. The
excess atom % 15N measured in all species was com-
paratively low in the first cut, ranging from 0.0031 to
0.4611, but generally increased in later cuts when DM
yield was low.

Clover 15N-enrichment and N transfer per cut

The average excess atom % 15N in red clover varied
between 0.0686 and 0.9332 depending on cut and mix-
ture (Fig. 3a). The clover was more enriched in the
grass-dominated seed mixtures than the clover-
dominated mixtures, but clover 15N-enrichment was
not affected by the species of forb used in the seed
mixtures. A correlation analysis of weighted atom %
15N from all four cuts with the respective total seasonal
DM (P < 0.001, R2 = 0.46) and N yield (P < 0.001, R2 =
0.49) showed a negative relation in clover.

The propor t ion of c lover N transfer red
(%Ndfd) to companion non-legume species var-
ied between 7 and 33 %, depending on time of
cut and mixture (Fig. 3b), but without interac-
tions. The amount of clover N transferred to

grass and forbs at different cutting times ranged
between 0.34 and 1.98 g N m−2, with no interac-
tions between mixture and time of cut (Fig. 3c).
Unlike %Ndfd, the amount of the N transfer was
found to be closely influenced by N accumulation
in clover. However, neither the proportion nor the
amount of clover N transferred was significantly
affected by seed mixture.

15N-enrichment and N transfer in grass and forbs

Grass had a greater ability to absorb N from clover
compared to forbs (Fig. 4), since the excess atom %
15N in forbs was consistently lower (P < 0.001) than in
grass (data not shown). The average excess atom % 15N
in grass varied between 0.0357 and 1.0398 at the differ-
ent cuts and mixtures, whereas in forbs it ranged be-
tween 0.01 and 0.07. The excess atom % 15N in grass
was generally highest in grass-dominated mixtures, and
lower when grown with caraway. The excess atom%
15N in forbs was not affected by either species or the
seeding proportions of the grass and clover measured in
all four cuts.

The proportion of clover N (%Ndfd) transferred to
grass was highest at the second cut (P < 0.001), but there
was no effect of seed mixture at any of the cuts. The
amount of N transferred was generally not affected by
either time of cut or by mixture (data not shown). The N
transferred to forbs varied depending on mixture and
cut, with significant interaction (P < 0.001). The N
transferred was comparatively low at the first and sec-
ond cuts, and increased significantly at the third and
fourth cuts in chicory and at the third cut in plantain
(P < 0.001). Chicory and plantain took up significantly
more of the N transferred from clover than caraway
(P < 0.001) but the N transferred from clover to the forbs
was not affected by the different seeding proportions of
grass and clover.

�Fig. 2 Above-ground dry matter (a) and Nitrogen (b) yield of red
clover, perennial ryegrass and non-legume forb mixtures grown in
PVC cylinders in the field. Values are mean (± SE, n = 4)measured
at four cuts during the 2014 growing season. Different letters
indicate statistically significant differences at the 0.05 level. Ab-
sence of letter above the bars means that there was no significant
difference between the treatments. CH: chicory, PL: ribwort plan-
tain, CA: caraway. RC: clover-dominated seedmixture, GR: grass-
dominated seed mixture

Plant Soil



0

5

10

15

20 bc
bc

a

ab

a

c

Seed mixtures

C
H

- 
R
C

P
L
 -
 R
C

C
A
 -
 R
C

C
H
 -
 G
R

P
L
 -
G
R

C
A
 -
 G
R

0

10

20

30

40

50

60

ab

b

ab

a
a a

b

W
h
o
l
e
 
s
e
a
s
o
n

Seed mixtures

C
H
 -
 R
C

P
L
 -
 R
C

C
A
 -
R
C

C
H
 -
 G
R

P
L
 -
 G
R

C
A
 -
 G
R

0

500

1000

1500

2000
ab ab

ab
ab

a

b

0

5

10

15

20

C
u
t
 
4

0

200

400

600

800

N
 
a
c
c
u
m
u
l
a
t
i
o
n
 
(
g
 
N
 
m
-
2
)

0

5

10

15

20

ab

b

ab

a
a

a

D
r
y
 
m
a
t
t
e
r
 
y
i
e
l
d
 
(
g
 
m
-
2
)

C
u
t
 
3

0

200

400

600

800
b

b

ab
ab

a a

C
u
t
 
2

0

200

400

600

800

ab

b

ab ab ab

a

C
u
t
 
1

0

200

400

600

800
ab

b

ab

ab ab

a

0

5

10

15

20

ab

b

ab

ab
ab

a

a b
Red clover

Perennial ryegrass Chicory

Ribwort plantain

Caraway

Plant Soil



Seasonal %Ndfd and N transfer

On an annual basis, 9.5 to 15 % of clover N, equivalent
to 2.5 to 5.8 g N m−2, was found to be transferred to
grass and forbs (Fig. 5a and b). The %Ndfd generally
increased with increasing non-legume N accumulation,
while the amount of N transferred correlated positively
with clover N accumulation (P < 0.05, R2 = 0.35). How-
ever, neither the proportion nor the amount of total

clover N transferred was affected by the seed mixture
(Fig. 5a and b).

Of the total amount of N transferred from clover to
non-legumes, grass received a very high proportion,
ranging from 63 to 94 %. This transfer was unaffected
by grass and clover seeding proportions and the identity
of the forb species present in the mixture. The total
seasonal N transfer estimated in forbs ranged from
0.24 to 1.33 g N m−2, equivalent to 0.6 to 4 % of clover
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Fig. 3 Excess atom fractions 15N in red clover (a), and percentage
(b) and amount of red clover N transferred (c) to perennial ryegrass
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n = 4) measured at four cuts during the 2014 growing season.

Different letters indicate statistically significant differences at the
0.05 level. Absence of letter above the bars means that there was
no significant difference between the treatments. CH: chicory, PL:
ribwort plantain, CA: caraway. RC: clover-dominated seed mix-
ture, GR: grass-dominated seed
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N. The proportions of clover N transferred to chicory
and plantain was significantly higher (P < 0.001) than to
caraway (Fig. 5a).

Below-ground DM and N yield

Total root DM and N accumulation varied between 252
and 352 g DM m−2, and 4.5 and 7.6 g N m−2, respec-
tively, with the tendency towards higher yields in clover

dominated seed mixtures. However, there was no sig-
nificant effect of seed mixture for neither DM nor N
yields. There was a positive correlation between total
root DM and total seasonal shoot DM yield (P < 0.001
and R2 = 0.52), and total root N accumulation and total
seasonal shoot N accumulation (P < 0.001 and R2 =
0.66). Similarly, the estimated total seasonal N transfer
in shoots was positively correlated with root DM yield
(P < 0.01, R2 = 0.29), root N accumulation (P < 0.001,
R2 = 0.4) and root density (P < 0.01, R2 = 0.34).
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15N-enrichment in clover roots, %Ndfr and amount
of rhizodeposition

The excess atom% 15N measured in clover roots ranged
from 0.0474 to 0.1674 (Fig. 6a) and was strongly

correlated to the excess atom % 15N in clover shoots
(P < 0.001 and R2 = 0.7). Similar to shoots 15N, the
excess atom% 15N in roots was also negatively correlat-
ed (P < 0.001, R2 = 0.48) to clover shoot N yield; and
similar to shoots, forbs roots were less enriched than
grass roots.

The excess atom % 15N in soil was higher (P < 0.05)
in the top 10 cm soil compared to the 10–30 cm layer,
and in general more than 80 % of the rhizodeposition
occurred in upper top 10 cm soil layer, but there was no
significant difference between the mixtures (Fig. 6b).
The proportion and amount of soil N deposited from
clover roots varied widely between the mixtures, rang-
ing from 0.56 to 4.3 % of soil N, equivalent to 3 to
24 g N m−2 (Fig. 6c). There was a correlation between
the rhizodepsition and total root DM (P < 0.05, R2 =
0.22), root N accumulation (P < 0.01, R2 = 0.30), and
root density (P < 0.05, R2 = 0.16). A correlation was
also found between total seasonal N transfer measured
in shoots and N deposited to the soil (P < 0.05 and R2 =
0.24).

Discussion

Critical reflection on methodology

In our study, nearly all the N accumulated in grass
grown in a clover-dominated seed mixture with chicory
and plantain was found to be transferred from clover. In
some cases, it even exceeded the total amount of N
accumulated in grass. This is of course not possible
and clearly highlights an overestimation of N transfer
(Chalk et al. 2014; Chalk and Smith 1997). In other
studies on N transfer (e.g. Rasmussen et al. 2007, 2013
and Gylfadóttir et al. 2007) the proportions of grass in
the mixture were close to 50 % or more. Since our
system was strongly clover-dominated and the overesti-
mation mainly occurred when the grass proportions
were very low, it shows that the leaf-labeling 15N-based
method for estimating the proportion of non-legume N
derived from transfer should be used with caution in
swards heavily dominated by N-rich, N2-fixing species.
In addition, the method used to assess the N
rhizodeposition does not meet the assumptions (Mayer
et al. 2003) and question the accuracy of measurement.
It confronts multiple bias caused by unrecovered root
parts in soil, spatial and temporal variations in root 15N
enrichment and different 15N enrichment in roots and

a

R
e
d
 
c
l
o
v
e
r
 
r
o
o
t
 
e
x
c
e
s
s
 
a
t
o
m
%
 1
5
N

0,00

0,05

0,10

0,15

0,20

0,25

ab

a

a

b

ab

ab

C
H
 -
 R
C

P
L
 -
 R
C

C
A
-
R
C

C
H
 -
 G
R

P
L
 -
G
R

C
A
 -
 G
R

R
h
i
z
o
d
e
p
o
s
i
t
i
o
n
 
(
g
 
N
 
m
-
2
)

0

5

10

15

20

25

30 c

Seed mixtures

S
o
i
l
 
e
x
c
e
s
s
 
a
t
o
m
%
 1
5
N

0,000

0,001

0,002

0,003

0,004

0,005

0,006

0,007 b  0 - 10 cm

10 - 30 cm

10 - 30 cm

 0 - 10 cm

Fig. 6 Excess atom% 15N in red clover roots (a), and percentage
(b) and amount (c) of soil N deposited from red clover root grown
in PVC cylinder in the field. Values are mean (± SE, n = 4)
measured at the end of the 2014 growing season. Different letters
indicate statistically significant differences at the 0.05 level. Ab-
sence of letter above the bars means that there was no significant
difference between the treatments. CH: chicory, PL: ribwort plan-
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rhizodeposits leading to overestimation of rhizodeposited
N (Rasmussen 2011). Nevertheless, even though the pos-
sible methodological bias may have overestimated the
quantities of N rhizodeposition and transfer, our results
provide novel insights about the relative use of clover-
derived N and soil N among ryegrass and the three studied
forbs in an unfertilized organic system.

Growth dynamics of clover, grass and forbs

The swards were dominated by red clover irrespective
of seeding proportions of red clover and perennial rye-
grass. Hence, red clover defined the DM and N yield of
the swards, with a strong tendency for greater DM andN
yield in mixtures with high red clover seeding propor-
tions. These observations reflect the strong ability
of red clover to compete for available light and
soil resources (Rasmussen et al. 2012) and the
competitive advantage of the N2-fixing legume
over non-legume forage plant under unfertilized
conditions (Carlsson and Huss-Danell 2003).

The growth dynamics among the non-legumes
showed poor growth of perennial ryegrass as compared
to chicory and plantain, even when it was the main
component in the seeded mixtures. The significant neg-
ative correlation between forb and grass DM yield
showed that chicory and plantain utilized the available
resources more successfully than grass. One explanation
could be the competition for light due to different plant
architecture of grass and forbs (Søegaard et al. 2013)
that both the chicory and plantain grow taller than
ryegrass and may have a competitive advantage over
grass for light interception. This explanation is support-
ed by the fact that grass grew much better in mixtures
with caraway, with a less dense canopy than chicory and
plantain. It was in line with Søegaard et al. (2013), who
found caraway to grow less during first and second year
of ley establishment. Caraway is known to initially
invest in its root system and increase its competitiveness
with sward age (Hakala et al. 2009; Pirhofer-Walzl et al.
2012; Søegaard et al. 2013). Another explanation for the
observed differences in grass-forb growth could be the
individual species’ ability to acquire N from companion
red clover or from the soil. The greater N yield of
chicory and plantain indicates that these two species
may have been more efficient to acquire available N
resources than grass. The 15N-leaf-labeling of red clover
made it possible to compare the uptake of red clover

derived N in neighboring non-legume species and hence
indirectly their ability to use soil N.

Grass and forbs acquisition of clover-derived N

Perennial ryegrass showed a strong ability to absorb red-
clover-derived N as compared to the three forb species.
The ability of grass to receive N from clover has been
demonstrated in previous studies with mixtures of grass
and chicory grown together with white clover, lucerne
or birdsfoot trefoil (Høgh-Jensen et al. 2006), in four-
species mixtures of two grasses, red clover and chicory
or lucerne (Frankow-Lindberg and Dahlin 2013) and in
multi-species mixtures of different grasses, forbs and
forage legumes (Pirhofer-Walzl et al. 2012). The ability
of the grasses to compete for clover N can be explained
by a combination of the localization of red clover N
deposits in the upper part of the soil profile and the
previously documented presence of dense grass roots
in this layer (Frankow-Lindberg and Dahlin 2013;
Pirhofer-Walzl et al. 2012), where our data on soil
15N-excess showed that red clover predominantly de-
posited N in the uppermost soil layer (0–10 cm). Similar
observations on the process of clover N deposition and
subsequent grass acquisition of N in the upper soil layer
have been reported by Frankow-Lindberg and Dahlin
(2013). The fibrous root system of perennial ryegrass
may have facilitated the close intermingling with neigh-
boring clover roots and favored absorption of the clover-
derived N, as observed in faba bean-wheat intercropping
by Xiao et al. (2004). In contrast, the forbs may be more
adapted than grasses to acquire N in the lower soil
profile due to their deep roots (Eriksen et al. 2012; Li
and Kemp 2005; Søegaard et al. 2013; Stewart 1996).
The root structure of forbs limits the intermingling with
red clover roots and thereby reduces the forbs’ capacity
to acquire clover-derived N in the upper soil layer. In
addition, as suggested by Rasmussen et al. (2013), the
horizontal root distribution may play a more important
role than rooting depth for interspecies N transfer. This
suggests that root architecture is one of the most impor-
tant factors influencing the competition between grass
and forbs for clover-derived N.

The excess atom % 15N in the three forbs demon-
strated similar abilities to absorb the N transferred from
clover, with the amount of N received from clover
closely related to the total N yield of each of the forbs.
Hence, forbs must have relied on soil N to a much
greater extent than clover-derived N, and vice versa for
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grass. Frankow-Lindberg and Dahlin (2013) also ob-
served that forbs rely more on soil N and compete less
with the grasses for clover-derived N in upper soil
horizon. In the present study, one explanation could be
a double N-sparring effect, where the N2-fixing clover
allowed companion non-legume species greater access
to soil N, and the grass was capable to take up clover-
derived N in the upper soil layer. Hence we could have
niche complementarity between grass and forbs in terms
of N source used than instead of that spatial niche
complementary with depth (Hoekstra et al. 2015). An-
other explanation, however, could be that the forbs,
especially chicory and plantain, in the present experi-
ment established rapidly and competed more success-
fully for soil N in all soil layers forcing grass to seek the
clover-derived N. In contrast to Daudin and Sierra
(2008), despite a strong ability to receive N from clover,
the poor growth of the grass in our study indicated either
a higher energy investment in the take-up of clover-
derived N or that the availability of clover-derived N
was not enough to support the grass growth under the
conditions of the study. Thus, our results demonstrated
that a strong reliance on N transfer from companion N-
rich species does not always give the receiving species
an advantage in terms of plant growth and productivity.

Red clover contributions to the N nutrition
of companion species; correlations with above-
and below-ground parameters

There are two ways of looking at the clover N transfer to
companion species: the proportions (%Ndfd) and the
amounts transferred. We observed a general trend to-
wards a higher %Ndfd with higher proportions of non-
legume DM and N yield in the mixture, which was in
line with our first hypothesis. This indicates that the
studied non-legumes, especially grass have a higher
capacity to take up clover-derived N compared to clover
itself, thus allowing clover less chance to re-assimilate
deposited N, and suggested that the growth of non-
legumes in the mixture play an important role for le-
gume N transfer. The observed tendency could have
been even stronger if the forbs, especially chicory and
plantain, had a higher ability to absorb clover-derived N.
The amount of N transferred from clover was mainly
determined by the DM and N accumulated in clover
shoots, which was also reflected in higher soil 15N-
enrichment and root N accumulation under high clover
seeding proportions. As discussed in Rasmussen et al.

(2013) and (2007), this highlights the importance of the
growth of the donating legumes in the mixture for
understanding the N transfer source and sink dynamics.
Thus, our study suggests that the extent of N
transfer is influenced both by the ability of non-
legumes to acquire clover-derived N and by the
ability of both legume and non-legume plants for
DM production and N accumulation.

We observed temporal dynamics in the N transfer,
with low levels in the first cut, highest levels at second
cut, and an increase in N transfer to forbs at the third and
fourth cuts. Despite higher DM and N yields in both
clover and non-legumes, we observed the lowest pro-
portions and amounts of N transferred at the first cut.
This could be because of clover investing N in above-
ground growth or it could be a methodological issue,
where 15N from the first labeling event did only repre-
sent short-term routes of N transfer, whereas at later cuts
the 15N from the early labeling event would be available
for more long-term deposition routes, e.g. fine root
turnover (Haystead and Marriott 1979) or leaf die off
(Dahlin and Stenberg 2010). At the second cut, the high
N transfer could be due to low clover proportions rela-
tive to grass, especially for the high seeding proportions
of grass. N transfer to forbs increased in the last two
cuts, especially the third cut, indicating an increased
ability of forbs to acquire clover-derived N later in the
growing season. The reasons for this may be two-
fold: that their roots were better established and
functioned later in the season and that chicory and
plantain peaked in DM production at the third cut
and caraway at the fourth cut, which, combined
with a low proportion of grass late in the season
allowed forbs greater access to clover-derived N
than at first and second cut.

We found that root DM and N at the end of the
growing season correlated well with total shoot DM
and N yield, with total seasonal N transfer measured in
shoots, and with N deposited to soil, which support our
second hypothesis. These tendencies towards higher
root DM and N in clover-dominated mixtures show that
above-ground DM yield is an indicator of root biomass.
The correlation between 15N in clover shoot and root
and between 15N in root and total N transfer underlined
that the internal allocation of N in clover was a key
factor controlling N transfer, in line with the findings
of Rasmussen et al. (2007). Furthermore, the internal
15N allocation in clover was linked to the soil excess
atom% 15N and total N deposition.
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The amount of rhizodeposition estimated in the pres-
ent study was higher than found by Gylfadóttir et al.
(2007) but lower than in the study by Høgh-Jensen and
Schjoerring (2001). In addition to the potential method-
ological bias when estimating rhizodeposition, as
discussed above, the results could also have been influ-
enced by differences in plant species and their relative
proportions in the mixture, as soil 15N enrichment and
rhizodeposition was observed to be higher in clover-
dominated mixtures and our system had a higher pro-
portion of clover DM than in the study by Gylfadottir
and colleagues. As pointed out by Rasmussen (2011),
total N deposition may also be overestimated due to
uneven temporal and spatial distribution of 15N in sam-
pled roots, or due to unrecovered roots in the soil sam-
ples (Gardener et al. 2012) as soil 15N enrichment and
rhizodeposition was observed higher in clover dominat-
ed mixtures and in upper soil layear between 0 and
10 cm.

Conclusions

Our study confirmed the results of previous studies on
the ability of grass to absorb N transferred from neigh-
boring legume plants, and provided new knowledge on
the N competition between perennial ryegrass and three
deep-rooted non-legume forb species: chicory, ribwort
plantain and caraway.

Forbs differed in their biomass production and N
accumulation, chicory and plantain had stronger growth
than caraway, but showed no differences in their ability
to absorb clover-derived N. Hence, our study demon-
strated that forbs in grassland did not rely on N trans-
ferred from red clover and that this did not limit their
growth, revealing that the forbs mainly acquired N from
the soil pool. Despite the strong ability of grass to absorb
N transferred from red clover, its low biomass produc-
tion when in mixture with chicory and plantain demon-
strated that a high reliance on N transfer does not nec-
essarily give the species an advantage for growth and
resource utilization including N acquisition from the
soil. The dynamics of N transfer were positively influ-
enced by root biomass and N accumulation in red clo-
ver, which confirms the importance of below-ground
productivity in plant-soil systems. Hence, our study
enables the disentangling of temporal and spatial dy-
namics of N transfer from forage legume to non-
legumes and improve the knowledge on how to design

and manage the multi-species temporary grassland in-
cluding grass-clover-forb mixture. To increase our
understanding of grassland N transfer dynamics
future studies need to include both legume and
non-legume behavior in relation to e.g. N deposi-
tion and root growth.
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Abstract 

Increasing food production with minimum use of N fertilizer and environmental impact is a 

challenge. Temporary legume-based grasslands in crop rotations improve soil N fertility and 

substitute N fertilizer in both the grassland and arable crop phase. Here, we determined residual 

soil N fertility of grassland pre-crops containing clover, grass and non-legume forage herbs (forbs) 

and covering a large range in N2-fixation inputs. Two measures of potentially available N, soil 

inorganic N and mineralizable organic N, were determined along with spring barley N uptake in a 

pot experiment using soil collected from the temporary grasslands. We estimated the fertilizer 

replacement value of the grassland mixtures by comparing barley N uptake to a neighboring soil 

with a history of cereal cropping. The residual soil N fertility was surprisingly similar across the 

pre-crops of red clover pure stand, grass-clover, and grass-clover-forb mixtures. However, 

biomass production and N uptake in spring barley was significantly higher following the grassland 

mixtures than reference soil with previous cereal cropping, corresponding to a fertiliser 

replacement value of about 100 kg N ha-1. In conclusion, variation in N input from N2-fixation and 

replacement of the grass with strong forb species in the preceding grass phase did not affect the 

residual soil N fertility in the subsequent cereal crop. Forbs that enhance mineral nutrition, forage 

quality and biodiversity can therefore be included in the grassland mixtures without negative 

effects on short- term soil N fertility. 

Key words: grassland; residual effect, chicory, ribwort plantain, caraway  

Introduction 

Nitrogen (N) is one of the important yield determining elements of plant nutrition.  Increasing 

human population and demand of food production without expanding arable land has been 

increasing the global demand of N resources in agriculture, which is mainly supplemented by 

industrial N fertilizer (Erisman et al., 2011). However, the efficiency of applied N resources, both 

mineral and organic, in agricultural production is often low (Baligar et al., 2001; Paustian et al., 

2016) and carries the risk of several environmental problems (Fowler et al., 2013). Therefore, 

efficient use of N resources is essential to enhance sustainable N use in arable crop production 

system with minimum negative environmental impacts.  

Legume based grasslands are widely considered an important mean of improving soil N fertility 

and plant productivity. In grassland-arable crop rotations, build-up of soil N pool and crop 

residues in the grassland phase provides an important input of N to the arable phase (Rasmussen 

et al., 2012; Bedoin, 2013, Christensen et al., 2009). During the grassland phase, forage legumes 

increases the soil N pool through the process of biological N2-fixation (Rasmussen et al., 2012; 

Dhamala et al. submitted) and rhizodeposition (Høgh-Jensen & Schjoerring, 2001; Rasmussen et 
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al., 2007). The part of legume derived N left in plant residues or immobilized in soil organic matter 

provides an additional soil N pool to the subsequent crops when decomposed (Vertès et al., 2007; 

Eriksen et al., 2008; Yang et al., 2010). Multiple studies have suggested that the residual N effect 

is highly influenced by cropping history and applied management practices such as cutting, 

grazing, ploughing and fertilization together with age and species composition of the grassland 

pre-crop (Høgh-Jensen & Schjoerring, 1997; Hansen et al., 2005; Eriksen et al., 2008; Bedoin, 

2013). The soil N buildup depends on grassland production, legume content, N2-fixation and total 

N incorporated in the soil during grassland phase (Høgh-Jensen & Schjoerring, 1997; Peoples et 

al., 2009; Vrignon-Brenas et al., 2016). Variations in the build-up and decomposition of the soil 

N pool in grasslands are also caused by differences in residue quality, depending on species 

composition (Wichern et al., 2008; Louarn et al., 2015).   

Residual soil N fertility effects of grassland pre-crops have been widely studied with respect to 

forage legumes (Kumar & Goh, 2000; Kumar et al., 2001; Askegaard & Eriksen, 2008), grasses 

(Høgh-Jensen & Schjoerring, 1997; Kumar et al., 2001; Askegaard & Eriksen, 2008) and mixtures 

of forage legume and grasses (Høgh-Jensen & Schjoerring, 1997; Eriksen, 2001; Eriksen et al., 

2008; Nykänen et al., 2008; Rasmussen et al., 2012). However, the residual soil N fertility effects 

of non-legume forage herbs (forbs) has not been studied. Chicory (Cichorium intybus L.), ribwort 

plantain (Plantago lanceolata L.) and caraway (Carum carvi L.) are three promising forb species 

for inclusion in grassland mixtures. The forbs are adopted in grasslands for plant diversity and 

herbage production (Søegaard et al., 2011; Dhamala et al., 2015), forage quality (Søegaard et al., 

2008), mineral nutrition (Pirhofer‐Walzl et al., 2011), and N utilization from deeper soil layers 

(Thorup-Kristensen, 2006; Pirhofer-Walzl et al., 2013). The different plant architecture of the 

forbs with deep and diverse root systems (Stewart, 1996; Li & Kemp, 2005) could affect the 

buildup of N under the grass sward and the quality of the residues left upon grassland termination. 

In this study, we investigated the residual N effect of grassland mixtures containing different forbs 

at varying proportions along with clover and grass. The following hypotheses were tested:  

 The main driver for residual N effect is the content of red clover in the pre-crop grassland, 

and therefore mixtures with higher proportions of red clover will have a greater N input via 

N2-fixation and build-up of soil N as compared to mixtures with lower proportions of red 

clover, and  

 The inclusion of forbs in the pre-crop grassland will affect the quality of plant residues left in 

the soil upon termination of the grassland and therefore, the presence of different plant 

species will affect the release of N to a subsequent cereal crop.  
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Materials and methods 

Experimental site and description of the grassland pre-crop       

The soil for the experiment came from plots established in the organic dairy crop rotation long-

term field experiment at Foulumgaard Experimental Station, Aarhus University, Central Jutland, 

Denmark (9°34′ E and 56° 29′ N). The soil is loamy sand characterized as a typic Hapludult 

containing 7.7% clay and 1.6% carbon (Eriksen et al., 2015). The pre-crop grassland mixtures, 

established in spring 2013, were composed of red clover (Trifolium pratense L., variety Rajah), 

perennial ryegrass (Lolium perenne L., variety Stefani), chicory (Cichorium intybus L., variety 

Spadona), ribwort plantain (Plantago lanceolata L., wild type) and caraway (Carum carvi L., 

variety Volhouden) in different seeding mixtures ranging from pure stands to five species (Table 

1). Aboveground biomasses were harvested twice during the growing season (May to October) in 

2013 and four times in 2014. In spring 2015, soil was sampled in selected grassland mixtures, 

including red clover pure stand and mixtures of varying species richness and composition (Table 

1). Nearly 50 kg soil with plant residues was collected from the plough layer (20 cm) in each of the 

previous 15N dilution plots. Plant residues were separated from the soil, cut into 0.5 cm pieces 

using a chopping machine and then mixed back into the soil from the respective samples. 

In order to estimate the fertilizer replacement value of the dairy grassland based crop rotation a 

reference soil was taken from a neighboring field with a history of cereal production for at least 

the five years (since 2010) prior to sampling for the experiment. The cereal production soil had 

received N fertilizer ranging from 84 to 179 kg N ha-1 yr-1 in the preceding years in NPK fertilizer. 

About 750 kg reference soil was collected and prepared for the experiment as described above. 

Characterization of available soil N pools 

Three representative sub-samples were taken from each grassland soil as well as the reference soil. 

The sub-samples were used to determine the initial inorganic N concentration, water content and 

potentially mineralizable N. 

Soil initial inorganic N 

Initial inorganic N concentration in fresh soil was measured in a 100 g sub-sample, which was 

extracted in 200 ml of 1 M KCl and shaken for 1 hr at 30 rpm before filtration through GC-50 filter 

paper. The filtrates were analyzed for ammonium and nitrate concentration in the soil on a 

Technicon Auto-Analyzer III (Bran+Luebbe, Norderstedt, Germany). The dry matter content of 

the soil was determined by drying 20 g fresh soil at 105 °C for 24 hours and recording the dry 

weight.   
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Table 1 Species composition (proportion of the seed mixture), and seasonal red clover and total N yield, red clover percentage of total dry matter 

production, , total N input from fixation and N balance during the grassland pre-crop phase in 2014. Values are means (± SE; n = 3), with different 

letters within each column indicating a statistically significant (p<0.05) difference between the species compositions. The percentage and amount in the 

seed mixtures are based on the seeding rate of each species in a pure stand. 

 2013  2014     

Seed mixtures 

Percentage of seed in the 

mixture sown in 2013 
 N yield (Kg N ha-1)  

Red clover 

percent of 

total DM 

production 

Total N 

fixation 

input 1 

N balance 

(kg N ha-1)2 
GR RC CH CA PL  

Red 

clover 
Total  

Pure stand Red clover  100     480±7c 480±7  100±0c 617±18b -137±19c 

Two species GR+RC 50 50     412±14bc 468±16  082±1bc 594±27b -126±11c 

Three 

species 

GR+RC+CH 20 20 60    164±33a 283±34  045±6a 246±50a 0-37±16ab 

GR+RC+CA 20 20  60   298±57abc 389±53  066±7ab 450±85ab -060±32bc 

GR+RC+PL 20 20   60  253±49ab 392±52  052±5a 380±72ab 0-13±21ab 

Five species GR+RC+60CCP 20 20 20 20 20  183±53a 324±54  043±7a 270±79a 0-54±26a 

GR: Perennial ryegrass, RC: Red clover, CH: Chicory, PL: Ribwort plantain, CA: Caraway, CCP: Chicory-Caraway-ribwort plantain.  

1Total N input is the sum of N fixed in red clover shoot, roots and stubble including fixed N transferred to companion non-legume species and N 

immobilized in soil organic N pool calculated using an empirical module purposed by Høgh-Jensen et al. (2004). 

2The N balance is the difference between total N input and removal by harvested aboveground biomass.    
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Potentially mineralizable N in anaerobic incubation    

Potentially mineralizable N was estimated by an anaerobic incubation experiment (Waring & 

Bremner, 1964), modified by (Keeney, 1982). Seventy-five g of fresh soil sample was mixed with 

demineralized water in the ratio of 1:2.5 in a plastic bottle. The bottles were tightly closed and 

incubated at constant temperature (40 °C) for two weeks. Thereafter, ammonium was extracted 

with 4M KCL in a soil: KCl- ratio of 1:2.5 followed by shaking for 1 hr. and filtration through GC-

50 filter paper. The filtrates were analyzed for the concentration of ammonium on a Technicon 

Auto-Analyzer III (Bran+Luebbe, Norderstedt, Germany). The potentially mineralizable N was 

estimated as the difference between the initial ammonium concentration and the concentration 

after two weeks of incubation.  

 Establishment of pot experiment with spring barley 

A pot experiment was set up in rectangular pots (0.1 m2 surface area, 31 L volume) with a 12 mm 

hole in the bottom and a PVC grid covered by a glass fiber mat placed on the bottom ensuring 

free drainage. Each pot was filled with 36 kg homogenized soil, from one of the grassland plots 

or reference soil, and randomly placed on metal frames installed in an outdoor experimental 

facility at Foulum, Aarhus University. Additionally, in order to produce an N response curve 

fifteen reference soil pots were prepared, placed randomly together with the pots with grassland 

soil and supplied with five different levels of N fertilisation: 0, 1, 2, 3, and 4 g N per pot, equivalent 

to 0, 100, 200, 300 and 400 kg total N ha-1, in the form of Ca (NO3)2. The N fertilization was 

added 3.5 weeks after sowing the spring barley. 

Spring barley (Hordeum vulgare L., variety evergreen) was sown in the last week of April (27 

April) with 32 spring barley seeds per pot, at 5 cm soil depth. Upon germination, the spring barley 

was thinned to 26-28 seedlings in each pot. The pots were supplied with demineralized water to 

its water holding capacity in regular intervals. The drainage water was collected in individual 

reservoirs placed underneath each pot and recycled during the next watering. The pots received 

a basic fertilization of 0.25 g Mg, 0.025 g Mn and 0.05 g Cu, equivalent to 25, 2.5 and 0.5 kg ha-1 

three weeks after sowing, followed by 0.5 g P, 1.75 g K, 0.2 g S and 0.001g Mo, equivalent to 50, 

175, 20 and 0.1 kg ha-1, at four weeks after sowing the spring barley, to ensure sufficient 

availability of all nutrients except N.  

The pots were manually weeded every 3-5 days. Spring barley, especially in N fertilized reference 

pots, showed symptoms of fungal infection around the third week of June and therefore all pots 

were treated with the fungicides Proline EC 250 (0.2 lit ha-1) and Comet Pro (0.15 lit ha-1) on 2 

July.  The mean monthly air temperature during the pot experimental period from April to 

August 2015 were between 7 and 17 °C, with June, July and August being the warmest months.   
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Harvest and measurements of the spring barley 

The spring barley was harvested at maturity in the last week of August (28 August 2015). The 

plants were dried at 60 °C for 48 hours and total DM yields were measured at constant weight. 

The grains were threshed and weighted. The grain and straw were separately milled to a fine 

powder, packed into tin capsules and analyzed for total N concentration and atom fraction 15N at 

UC Davis Stable Isotope facility in University of California, USA on an ANCA-SL Elemental 

Analyzer couple to 20-20 Mass Spectrometer (Sercon Ltd., Cheshire, UK) using the Dumas dry-

combustion method.   

 Calculations 

The N balance in the grassland phase 2014 was estimated as the difference between N input and 

N output in the leys. The N input equaled N from red clover N2-fixation, and the N output equaled 

the harvested N yield in forage legume and non-legume shoot biomass. The input of N from 

biological N2-fixation was calculated using an empirical model (Høgh-Jensen et al., 2004) 

including the N fixed in legume shoots, roots and stubbles and additionally fixed N transferred to 

companion non-legume species and immobilized in the soil organic N pool.  

The plant N uptake in above ground biomass was calculated as the product of above ground dry 

matter yield and N concentration. The N fertilizer replacement value of the grassland soils was 

calculated as the amount of N fertilizer required in reference soil to obtain the same spring barley 

N yield as spring barley grown in the grassland soil. 

Data analysis 

The results were analyzed in the open source statistical program R (Version 3.1.1) (R Core Team, 

2016). The effect of species composition of grassland pre-crop on each of the dependent variables: 

soil initial inorganic N, potentially mineralizable N, biomass production and N uptake in spring 

barley, and N input and balance during grassland phase was tested using one-way analysis of 

variance (ANOVA). The comparisons between the seed mixtures were made with least square 

means using the adjusted Tukey method. The probability of rejection of hypothesis was tested at 

the confidence level 0.95 (P˂0.05). Pearson’s correlation analysis was used to test the correlation 

between the different dependent variables. The data violating the assumption of normality and 

homogeneity of variance were log transformed before analysis to minimize heteroscedasticity. 
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Results 

N2-fixation and N balance during the grassland phase 

The grassland mixtures varied widely for the red clover proportion, input of N from N2-fixation, N 

uptake in shoots and N balance depending on species composition and clover proportions in the 

seed mixtures (Table 1). The N2-fixation ranged from 160 to 390 kg N ha-1, total N input from 246 

to 617 kg N ha-1 and N balance from -54 to 137 kg N ha-1. 

Initial N availability and potentially mineralizable N  

The initial inorganic N concentration of the grassland soils ranged from 3.2 to 5.7 mg N kg-1 dry 

soil, with the concentration of nitrate being greater than ammonium (Figure 1a).  

 

 

 

Fig. 1 Soil initial inorganic N 

concentration (a) and net N 

mineralized in anaerobic incubation (b) 

in the soil previously under different 

composition of grassland pre-crop 

measured at the beginning of the 

growing season at the third year of ley 

establishment in 2015. The values are 

means (±SE; n=3), with the bars 

following the different letters are 

significantly different at the level of 

0.05. GR: perennial ryegrass, RC: red 

clover, CH: chicory, CA: Caraway, PL: 

ribwort plantain, CCP: Chicory-

caraway-ribwort plantain   
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The mineral N concentration was generally lower in soils following the grassland mixtures than in 

the reference soil. However, no significant differences were seen in the inorganic N concentration 

across the six different grassland pre-crops. 

The potentially mineralizable N was in general significantly higher in the soil following grasslands 

compared to the reference soil (p<0.01), with the N mineralized in the grassland soil ranging from 

52 to 67 mg N kg-1 dry soil (Figure 1b). However, there was no significant differences in the 

potentially mineralizable N among the grassland pre-crops. A correlation analysis from the 

measurements in grassland soils showed no association between initial inorganic N concentration 

and N mineralized in anaerobic incubation (R2= 0.01).  

Spring barley dry matter and N yield 

The N uptake in spring barley following the grassland mixtures ranged from 11 to 13 g N m-2, which 

was predominately in grain (Figure 2b).  

 

 

Fig. 2 Biomass mass production (a) and N 

uptake (b) in spring barely test crop grown in 

the soil previously under different 

composition of grassland pre-crop measured 

during the growing season at the third year of 

ley establishment in 2015 in pots in a semi-

field experiment. Values are means (±SE; 

n=3), with the bars following the different 

letters are significantly different at the level of 

0.05. GR: perennial ryegrass, RC: red clover, 

CH: chicory, CA: Caraway, PL: ribwort 

plantain and CCP: Mixture of Chicory, 

caraway and ribwort plantain. 0N, 100N, 

200N, 300N, 400N indicates different levels 

of N fertilizer application, equivalent to 0, 

100, 200, 300 and 400 kg total N ha-1.   
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The total N uptake in spring barley following grassland pre-crops was significantly higher than N 

uptake in unfertilized reference soil (p<0.001) and similar to the reference soil fertilized with 100 

kg total N ha-1. However, N uptake was unaffected by the species composition of the grassland pre-

crop. The increasing rate of N fertilization in the reference soil significantly increased N uptake of 

spring barley (p<0.001), with a significant linear association for both grain (R2=0.98) and straw 

(R2=0.93).   

We observed no correlation between neither clover N2-fixation or N yield, grassland total N yield 

nor the grassland N balance and the residual N effect as measured as initial inorganic N, N 

mineralized during anaerobic incubation, spring biomass production and N yield.    

Discussion 

In the present experiment, different species composition and the variation in red clover 

proportion, N2-fixation, N yield, and total N input and N balance during the grassland phase did 

not affect the residual N effect for the subsequent spring barley crop. This is surprising since 

previous studies have shown that species composition of grassland pre-crop affects the residual 

soil N fertility of the succeeding crop the in rotation due to variations in input of N from N2-fixation 

and total N incorporated in the soil (Høgh-Jensen & Schjoerring, 1997; Nykänen et al., 2008),  and 

that pure legume pre-crops resulted in higher residual N fertility than legume-grass mixtures 

(Høgh-Jensen & Schjoerring, 1997; Kumar et al., 2001; Kumar & Goh, 2002; Askegaard & Eriksen, 

2008). Further, Vertès et al. (2007) and Eriksen et al. (2008) suggested that residual N effect is 

influenced by the build-up of the C and N pools during the grassland phase, soil N losses, N 

mineralization from soil organic matter, together with the N demand of succeeding crop. Vrignon-

Brenas et al. (2016) found that the biomass yield of preceding legumes correlate with the N gain 

in the following maize crop and suggests that the biomass of preceding legume is a good early 

indicator of N released to the subsequent crop in rotation. In the present experiment, red clover 

N yield, N2-fixation and the N balance during the grassland phase differed significantly among the 

six forage mixtures (table 1). The estimates of red clover N yield from the pure stand of red clover 

and the two species grass-clover mixture was up to three times as high as from the mixtures 

containing forbs. These large differences would be expected to have larger effects on the measured 

parameters of residual soil N fertility than we observed. 

The surprisingly similar residual N effect across the different grassland mixtures could be caused 

by a number of reasons. Firstly, the N balance for the pre-crop grassland phase is based on above-

ground N yield data and a subsequent estimation of non-harvested N input using the empirical 

model of Høgh-Jensen et al. (2004). It may well be that there is not a fixed ratio between above-

ground production and below-ground standing plant biomass and N build-up. In fact, a parallel 
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study of N transfer and rhizodeposition in grasslands including forb containing mixtures showed 

no significant effect of grassland species composition on red clover rhizodeposition (Dhamala et 

al., 2017). Secondly, part of the N buildup during the grassland phase may have been lost via 

denitrification or leaching, with the leaching loss potentially being negatively correlated with the 

presence of non-legumes (Kušlienė et al., 2015) i.e. greater potential N leaching from the red clover 

pure stands and red clover dominated two-species mixtures as compared to the three- and five 

species mixtures. Thirdly, the input of C and N under the different mixtures may have differed in 

quality and quantity affecting the immobilization of N in soil, and then upon termination of the 

grassland also the release of N. A recent study shows that root biomass of grass-clover is increased 

by inclusion of caraway or plantain (Cong et al. submitted), and greater rates of root 

decomposition was found in soils previously cultivated by species-diverse mixtures (Hector et al. 

2000; Cong et al., 2015)   Finally, it could be that the active uptake period of the spring barley test 

crop was too short (mainly May and June) to detect any differences among the pre-crop mixtures.  

Eriksen et al. (2015) observed that the effect of different grassland managements (e.g. cut vs. 

grazing) was not reflected in the N uptake in the spring barley whole crop, but rater in the 

perennial ryegrass catch crop taking up N released after harvest of the spring barley. Therefore, 

the present study point to that the fertility effect of temporary grasslands should be seen at the 

cropping system level. This becomes clear when comparing the grassland mixtures with the 

reference soil from cereal based cropping system, where we observed that the long-term fertility 

buildup in the grassland based crop rotation corresponded to a fertilizer effect of about 100 kg N 

ha-1 in the spring barley test crop. The positive pre-crop effect is further highlighted by the fact 

that the grassland mixtures did not receive any N fertilizer, while the reference soil had been 

fertilized with up to 179kg N ha-1 yr-1 during the cereal phase. 

Conclusions 

In our study, variation in legume proportion and N input, and replacement of the grass 

component with  forbs in preceding grassland phase did not change the residual soil N fertility in 

the subsequent spring barley test crop. However, we observed higher residual N effect following 

the cultivation of grasslands compared to unfertilized reference soil with a history of cereal 

production and N fertilization for at least for five years. We conclude the forbs can be included in 

the grassland mixtures for e.g. enhanced biodiversity and forage quality, without any negative 

effects on short-term soil N fertility for the succeeding crop. Future studies can be done to increase 

the understanding of the longer term residual N effect of grassland pre-crops including non-

leguminous forbs.   
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Abstract 

Background and aims: While N2-fixation in diversified grasslands including forage legumes 

and non-legumes has been widely studied, N2-fixation in swards containing only forage legumes 

remains unclear. In this study, we investigated N2-fixation in pure stands and mixtures of three 

forage legumes. 

Methodology: N2-fixation, dry matter (DM) and nitrogen (N) yields were quantified in a field 

experiment for red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne 

(Medicago sativa L.) pure stands and mixtures using the isotope dilution method.  

Results: All three forage legume species derived most (around 85%) of their N from atmospheric 

N2-fixation (%Ndfa). However, no positive effect of species diversity was found in any of the 

mixtures. Species composition of the forage legume mixtures affected the amount of N from N2-

fixation by affecting DM production and N accumulation of the species, where the seasonal 

amount of N2-fixation ranged from 370 to 500 kg N ha-1; which was highest in the presence of red 

clover. 

Conclusions: We found that mixtures of the three forage legumes were highly productive, but 

did not show positive advantages compared to the red clover pure stands in terms of DM, N yield 

and %Ndfa. 

Key words: grassland; forage legume mixture; percentage of N derived from atmosphere 

(%Ndfa); N yield  

Introduction 

The EU is nearly 30% self-sufficient in protein feed (Bouxin 2014), and there is an increasing 

demand for new homegrown sources of protein in the EU as alternatives to the import of soybean 

meal for livestock production. Nitrogen (N) is one of the most limiting crop nutrients, and to 

produce the required protein sources from crops requires large inputs of N. However, the 

efficiency of applied N resources is often low and such resources carry the risk of several 

environmental, economic and agronomic problems (Fowler et al. 2013). Hence, there is societal 

need to produce large amounts of plant protein without N fertilization or with more efficient use 

of available N resources. Compared to cropping systems containing only annual crops, grassland-

based cropping systems that contain perennial legume-grass leys have shown more ecosystem 

benefits such as enhanced soil C and N sequestration, soil organic matter, soil fertility and 

biodiversity, reduced greenhouse gas emission and improved possibility to use marginal land for 

biomass prouduction (Tilman et al. 2006; Glover et al. 2010; Carlsson et al. 2017). In this context, 

forage legumes have the potential to produce N-rich plant biomass with no inputs of N fertilizer. 
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Forage legumes are widely used in agriculture as a valuable means of supplying protein-rich feed 

(Lüscher et al. 2014) and maintaining soil N fertility and plant productivity (Anglade et al. 2015). 

Forage legumes in cropping systems introduce atmospheric N2 to the soil N pool through the 

process of biological N2-fixation and improve the N supply to companion non-legume species 

(Fustec et al. 2010; Pirhofer-Walzl et al. 2012) and subsequent crops in the rotation (Eriksen et al. 

2008; Rasmussen et al. 2012). However, multiple studies have reported wide spatial and temporal 

variations in legume N2-fixation and contribution to soil N fertility (e.g. Carlsson and Huss-Danell 

2003; Lüscher et al. 2014; Anglade et al. 2015). N2-fixation is the result of internal and external 

factors such as legume species and genotype, their interaction with the environment, management 

practices such as cutting, grazing and fertilization, and plant species diversity and composition 

(Carlsson and Huss-Danell 2003; Carlsson et al. 2009; Rasmussen et al. 2012).  

Numerous studies on N2-fixation have shown that plant species diversity associating forage 

legumes with non-legumes in grasslands are some of the most efficient management factors that 

can be applied to increase legume reliance on N2-fixation (e. g. Carlsson and Huss-Danell 2003; 

Carlsson et al. 2009; Nyfeler et al. 2011). The studies suggest that N2-fixation is regulated by 

legume competition for available soil N, defined as the gap between N availability in the soil and 

the N demand of the plant species in the mixtures, where non-legume species compete for the 

available soil N forcing the legume species to acquire more N from biological N2-fixation.   

To date, the N dynamics in diversified grasslands with forage legume and forage grasses have been 

extensively studied. The dynamics of N2-fixation in swards including only forage legume species 

remain poorly understood. In this new experiment, we investigated how each of the three forage 

legume species: red clover (RC; Trifolium pratense L.), white clover (WC; Trifolium repens L.) 

and lucerne (LU; Medicago sativa L.) in a sward influence the growth, N2-fixation and N 

acquisition of the other legumes in the mixture.  

These three forage legumes are widely cultivated and commercially important forage legumes 

across the globe (Phelan et al. 2015) and are potential biological N2-fixers in temperate grasslands 

(Carlsson and Huss-Danell 2003; Rasmussen et al. 2012). They differ in several key traits that are 

likely to influence growth, biomass production and N dynamics when included in species mixtures. 

In contrast to the deep tap root systems and large erect shoots of RC and LU, WC has clonal or 

stoloniferous and shallow adventitious root systems and higher shoot biomass. WC also forms 

leaves from stem faster than RC and is more resistant to frequent cutting (Black et al. 2009). 

Regarding canopy structure (leaf position and angle) and light interception, WC has horizontal 

leaves, which favors more light interception at the top of the canopy, while RC has greater 

distribution of the leaf area and light interception in the intermediate layer of the canopy (Black 
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et al. 2009). When included in the species mixtures, RC is more competitive to grass than LU and 

WC (Black et al. 2009; Elgersma and Søegaard 2016). The three species also differ in their patterns 

of N uptake from the soil, of build-up and utilization of the N reserve in roots and in their ability 

to compete for recycled N. LU has shown ability to assimilate N from deep soil layers (Kelner at 

al. 1997), WC with their shallow roots take up N from upper soil layers (Rasmussen et al. 2013; 

Younie 2012). RC and LU build-up and remobilize carbohydrates and N stored in their large tap 

root system for shoot growth (Black et al. 2009; Barber et al. 1996). Moreover, they differ in their 

ability to fix atmospheric N2, to transfer and rhizodeposit fixed N, and to receive N transferred 

from companion species as well as re-uptake of rhizodeposited N. RC and LU have shown  to fix 

higher amount of N2 than WC (e.g. Rasmussen et al. 2012), whereas RC has been found to reach 

higher rate of transfer of fixed N to the companion species than RC and LU (Høgh-Jensen and 

Schjoerring 2000; Louarn et al. 2015; Pirhofer-Walzl et al. 2012). RC has demonstrated better 

ability to absorb N transferred from companion spcies than WC (Pirhofer-Walzl et al. 2012), while 

low rates of N transfer have been found in LU, both as donor (Frankow-Lindberg and Dahlin 2013; 

Louarn et al. 2015) and as receiver (Pirhofer-Walzl et al. 2012).  

Varied above- and below-ground resource utilization and niche differentiation in space and time 

might occur between these species when grown in a mixture due to differences in plant 

architecture, and growth and N uptake patterns. In particular, the functional complementarity 

between forage legume species in a mixture might increase the utilization of soil N resources, 

making them stronger competitors for the available soil N in the rhizosphere, thereby increasing 

total plant production, N acquisition and the proportion of atmospheric N2-fixation in the mixture 

compared to the species grown in pure stands. Hence, exploration of plant production and N2-

fixation in a mixture of forage legume species is expected to generate new knowledge towards 

achieving higher and more stable biomass and N yields. In addition, integration of sward 

containing forage legumes only in grassland is expected to increase the supply of protein without 

N fertilization.  Thus, we conducted this study with the objectives of determining how the swards 

of forage legume species will affect: herbage yield, botanical composition, N yield and the 

percentage and amount of N derived from the atmosphere. The following hypotheses were tested: 

functional complementarity between the species with different above-and below-ground 

architecture increases 1) the herbage yield and N accumulation, and 2) the proportion of legume-

N derived from the atmosphere in the forage legume mixtures compared to pure stands .  
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Materials and methods 

Experimental site 

This field experiment was conducted at Foulumgaard Experimental Station, Aarhus University, 

located in Central Jutland, Denmark (09° 34° E and 56° 29° N). The experimental field has grown 

cereals at least since 2010 prior to the establishment of the present experiment in 2014. The soil 

is loamy sand characterized as typic Hapludult comprising 7% clay, 10% silt, 81% sand, and 1.7% 

carbon in the upper soil layer (0- 20 cm) (Solati et al. 2017). Soil extractable P was 36 mg kg-1, soil 

exchangeable K was 129 mg kg-1 and pH 5.9. The mean monthly air temperature during the 

experimental period between April and October 2015 ranged between 7 and 17 °C, with July and 

August the warmest months. The monthly precipitation ranged from 21 to 117 mm, where May, 

June, July and September were the wettest months (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Monthly precipitation and mean monthly air temperature during the experimental period from April 

to October in 2015 measured at a climate station near the experimental field. 

Experimental design and establishment of experimental plots 

Ten different species mixtures, including pure stands, two- and three-species mixtures, were 

established in spring 2014 including commonly used cultivars of three forage legume species: red 

clover (Trifolium pratense L. var. Suez), white clover (Trifolium repens L. var. Silvester)  and 

lucerne (Medicago sativa L. var. Creno). The species were undersown in a spring barley cover crop 
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in a replacement design, with different proportions of the species in the mixture based on their 

seeding rates in pure stands, in plots measuring 1.5 x 12 m and in four replicates. The seeding rates 

in pure stands were 10, 10 and 20 kg ha-1 for WC, RC and LU, respectively (Table 1).  

 

Table 1 Composition of seed mixtures (percentage is based on each species seeding rate in pure 

stand) 

Seed mixtures 

Percentage of seed in the 

mixture (%) 
 Seeding rate (Kg ha-1) 

RC WC LU  RC WC LU 

Pure 

stands 

RC 100    10   

WC  100    10  

LU   100    20 

Two 

species 

RC+WC 50 50   5 5  

WC+LU  50 50   5 10 

RC+LU 50  50  5  10 

Three 

species 

80RC+WC+LU 80 10 10  8 1 02 

RC+ 80WC+LU 10 80 10  1 8 02 

RC+ WC+80LU 10 10 80  1 1 16 

RC+ WC +LU 33 33 33  3.3 3.3 6.6 

RC: Red clover, WC: White clover, LU: Lucerne   

The LU seeds were inoculated with rhizobium (Nitragin Gold) before sowing. The spring barley 

crop was harvested at maturity and N2-fixation was determined in situ during the first production 

year over the growing season between April and October in 2015 using the 15N isotope dilution 

method as applied by Rasmussen et al. (2012). In this method, N2-fixation is measured by 

comparing the dilution of soil-derived 15N by atmospheric N2 in the N2-fixating plan to the 15N 

enrichment of plants that derived all their N from soil. The non-legume reference plants are thus 

assumed to reflect the 15N enrichment of legume derived N from soil (Unkovich et al. 2008; 

Carlsson and Huss-Danell 2014). At the onset of the growing season, during the second week of 

April, a subplot (dilution plot) measuring 1×1 m was demarcated in each experimental plot and 

the soil was labeled with ammonium Sulphate 0.1 g N m-2 (15N enriched to 98 atom% ) to artificially 

enrich the soil with 15N above the background natural 15N abundance.   

Plant sampling and analysis  

The shoot biomass in each subplot was manually sampled four times during the growing season 

in a 0.25 m2 area at a stubble height of 5 cm, following common agricultural practice in cut 
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grassland. The first sampling was done on 22 May, the second on 1 July, the third on 17 August 

and the last on 5 October. The plant samples were manually sorted into individual species and 

weeds, air-dried at 80 °C for 24 hours and dry matter (DM) weight was recorded. The dried 

samples were milled, subsampled and ball-milled into a fine powder, packed into small tin 

capsules and analyzed for total N concentration and atom% 15N at UC Davis Stable Isotope Facility, 

University of California, USA, on an ANCA-SL Elemental Analyzer coupled to a 20-20 Mass 

Spectrometer using the Dumas dry-combustion method. The N yield in each plot was determined 

as a product of shoot DM yield and N concentration in each species in the harvested biomass. 

Calculations  

The N2-fixation was quantified based on excess atom% 15N in legumes and non-legumes using the 

weed species (representing both grasses and dicotyledon weed species)  growing together with the 

legume species as reference plants (Carlsson and Huss-Danell 2014), using pooled samples of 

different weed species to avoid potential bias caused by spatiotemporal unevenness in soil 15N 

enrichment (Carlsson et al. 2009; Unkovich et al. 2008). The percentage of N derived from the 

atmosphere (%Ndfa) was calculated using the following equation (Chalk et al. 2016):    

%Ndfa = (1 - (excess atom%15N legume / excess atom%15N reference)) x 100  

where, excess atom% 15N was calculated by subtracting the background atom% 15N (determined 

by analyzing 15N in legumes and weed species grown in unlabeled field plots adjacent to the 15N-

labeled plots) from the atom% 15N determined in the corresponding species in 15N-labeled 

subplots. The average background atom% 15N was 0.3676 in non-legumes and 0.3663 in legumes, 

and did not vary significantly across cutting occasion or legume species. Then the amount of N2-

fixation was expressed as a product of %Ndfa and N accumulation for the respective legume 

species. In the mixtures containing two or three legume species, the average %Ndfa for the whole 

mixture was estimated as the ratio of total amount of N2-fixed to the total N accumulated in shoots, 

and the seasonal %Ndfa was estimated as the ratio of the total amount of N2-fixed over the growing 

season to the total amount of shoot N accumulated. The soil N uptake was estimated subtracting 

the amount of N2-fixation from the N accumulated in shoots.  

The relative yield (RY) was calculated for each species as its DM yield in the mixture as a 

proportion of its DM yield in the pure stand, with relative yield total (RYT; the sum of RYs for all 

species included in the mixture) values higher than 1 indicating the presence of complementarity 

effects in the mixture (Hector 1998).  
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Data analysis 

The data were analyzed using the open-source statistical program R (R Core Team 2016) (Version 

3.1.1). A one-way analysis of variance (ANOVA) was used to determine the effect of sown species 

composition on each of the dependent variables: DM yield, N yield, atom% 15N, %Ndfa, amounts 

of N2-fixation, N uptake, RY and RYT, and the effect of two fixed factors (species composition and 

individual species) was tested using two-way ANOVA.  The effect of time of cut on DM yield, N 

yield, %Ndfa and amount of N2-fixation was tested using the linear mixed model. In the model, 

the composition of sown species (fixed effect) and time of cut (repeated fixed effect) were 

independent variables and block was a random factor, where plots were nested in the blocks. The 

model was then tested using ANOVA. For all dependent variables, the tests for significant 

differences between the seed mixtures were made using least square means in the adjusted Tukey 

method. The probability limit for rejection of the hypothesis was set at the confidence level 0.95 

(P˂0.05). The correlations between different dependent variables were tested using Pearson’s 

correlation coefficient. The data violating the assumption of normal distribution were generally 

log-transformed before analysis to achieve a normal distribution of residuals.  

Results 

The weather at the experimental site measured during the experimental period from April to early 

October, 2015 (Fig. 1) showed similar temperatures to the 30-year average measured at the same 

experimental station, while the mean monthly precipitation was about 30% higher than the 30-

year average.   

Dry matter production and composition of the sward 

The seasonal total DM yield of the mixtures ranged from 10.7 to 16 t ha-1, with significant effect of 

species composition (p<0.001) (Fig. 2). RC produced the highest DM yield among the pure stand, 

all species mixtures containing RC produced higher than pure stands of WC and LU and the WC 

paired with LU (Fig. 2). However, there was no significant difference between the seed mixtures 

containing RC. Species composition and seeding density affected the DM production in WC and 

LU, with the higher DM yield in the pure stand followed by the two-species mixture and three-

species mixture with their 80% seeding density. Weeds were most abundant in the pure stand of 

LU, which was significantly higher than in all other treatments and was strongly suppressed in the 

mixtures containing RC.  The proportions of total DM yield differed markedly between the species 

across all mixtures. RC was the most productive of the three species, and the proportion of RC in 

the total harvested biomass was always much higher than its relative proportion in the seed 

mixture (Fig. 2). Hence, RC could be defined as the most competitive of the three legume species 

under the conditions of the present study.  WC was always strongly suppressed by RC, but made 
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up a higher proportion in the harvested biomass than its sown proportion in the two-species 

mixture with LU, and could thus be defined as less competitive than RC but more competitive than 

LU. LU was always strongly suppressed in all mixtures.   

 

 

Fig. 2 Whole season shoot dry matter (DM) yield of red clover, white clover, lucerne and weeds grown in 

the field. Values are mean (±SE; n= 4) measured at four cutting times during the 2015 growing season. 

Different letters indicate statistically significant differences between species composition at the 0.05 level. 

RC: Red clover, WC: White clover, LU: Lucerne and 80: percentage of total seeds in the mixture. 

The RYT values based on total seasonal DM yield were higher than 1 only in the WC+LU mixture 

(1.06) and the three-species mixture with 80% LU (1.2) (Supplementary Table 1). In two of the 

RC-dominated mixtures, RYT was lower than 1, i.e. 0.91 in RC+LU and 0.93 in the three-species 

mixture with 80% RC. 

N accumulation 

The average total seasonal N accumulation ranged from 440 to 595 kg ha-1, with significant 

differences between seed mixtures (p<0.001). Since RC defined the DM yield of the mixtures, the 
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total N accumulation of the mixtures mirrored the pattern of RC DM production, with 

considerable higher  seasonal N accumulation in mixtures containing RC compared to pure stands 

of WC, LU and the WC+LU mixture, respectively (Table 3). WC accumulated from 10 to 440 kg N 

ha-1, with the largest amount in the pure stand followed by WC+LU and RC+80WC+LU. Similarly, 

N accumulation in LU ranged from 10 to 450 kg ha-1 with the largest amount in the pure stand 

followed by RC+ WC+80LU and RC+LU.     

Proportions and amounts of N2-fixation 

The values of atom% 15N in forage legumes and reference species were substantially above the 

natural abundance, and differences between the 15N enrichment of legumes and reference species 

were sufficient to estimate the %Ndfa. The 15N enrichment was highest at the first cut and 

decreased from the second cut onwards. The excess atom% 15N in the legumes ranged from 0.2087 

to 3.5486 at the first cut and from 0.0718 to 0.9688, 0.0221 to 0.2687 and 0.0372 to 0.1679 at the 

second, third and fourth cuts, respectively (data not shown). The excess atom% 15N in weed species 

did not show any significant difference between species composition treatments (Table 2), and the 

average weed excess atom% 15N (used as reference plant values for the calculation of N2-fixation 

at each cut) was 3.9784, 1.1790, 0.3386 and 0.2373 for the first, second, third and fourth cuts, 

respectively.  

Table 2 Excess atom% 15N in shoots of reference plants (pooled samples of weed species). Values are mean 

(±SE; n= 4) measured at four cuts during the 2015 growing season. No significant difference between the 

treatments was found at any of the cuts. 

Seed mixtures Cut 1  Cut 2  Cut 3  Cut 4 

Pure 

stand 

RC 4.484±1.250  1.302±0.280  0.333±0.043  0.278±0.024 

WC 3.458±0.986  1.215±0.101  0.219±0.044  0.206±0.011 

LU 2.830±0.920  0.835±0.039  0.253±0.006  0.214±0.008 

Two 

species 

RC+WC 5.632±0.568  1.399±0.100  0.428±0.065  0.283±0.034 

WC+LU 3.858±0.355  1.419±0.143  0.387±0.070  0.162±0.001 

RC+LU 3.645±1.107  1.265±0.250  0.328±0.035  0.261±0.029 

Three 

species 

80RC+WC+LU 4.034±0.199  1.274±0.127  0.374±0.032  0.253±0.028 

RC+80WC+LU 2.862±0.780  0.857±0.068  0.269±0.019  0.200±0.012 

RC+WC+80LU 3.742±0.383  1.031±0.078  0.351±0.060  0.246±0.024 

RC+ WC+LU 4.095±0.693  1.106±0.288  0.363±0.042  0.222±0.016 

RC: Red clover, WC: White clover, LU: Lucerne and 80: percentage of total seeds in the mixture 
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Table 3 Whole season N accumulation in red clover, white clover and lucerne, percentage (%Ndfa) and amount of N2-fixation in red clover, white clover, 

lucerne and in the whole mixture, and total N uptake in pure stands and the whole mixture measured in shoots. Values are mean (±SE; n= 4) measured 

at four cutting times during the 2015 growing season. Different letters within the same column indicate statistically significant differences between 

species compositions at the 0.05 level.  

 

RC: Red clover, WC: White clover, LU: Lucerne and 80: percentage of total seeds in the mixture 

Seed mixtures 

N accumulation (kg N ha-1)  % Ndfa  N2-fixation (kg N ha-1)  
Total N 

uptake 

(kg N  

ha-1) 
RC WC LU  RC WC LU Weighted  RC WC LU Total  

Pure 

stand 

RC 595±18b    85±0.3a   85±0.3a  506±15b   506±15d  89±3c  

WC  440±8c    84±0.9a  84±0.9a   370±7e  370±7a  71±4b 

LU   450±10c    90±0.5a 90±0.5b    405±10c 405±10abc  45±2a 

Two 

species 

RC+ WC 558±22ab 020±4a   86±1.0a 74±4.5a  86±0.8ab  480±20ab 015±4ab  495±17d  82±5bc 

WC+LU  410±9c 045±18ab   84±0.5a 76±5.2a 84±0.7a   345±6e 034±16ab 380±15ab  73±2b 

RC+LU 453±49ab  050±22ab  86±1.3a  77±8.5a 86±1.4ab  390±31ab  040±20ab 430±22abcd  71±9b 

Three 

species 

80RC+WC+LU 524±25ab 010±3a 010±7a  86±0.8a 77±7.5a 81±4.0a 86±0.9ab  450±25ab 008±3a 008±6a 466±22bcd  75±2bc 

RC+80WC+LU 376±48a 155±34b 012±7a  87±0.6a 84±1.3a 75±9.0a 86±0.9ab  327±44a 130±28de 009±6a 466±28bcd  76±6bc 

RC+WC+80LU 374±81a 100±37ab 114±38b  86±0.6a 83±2.0a 85±3.0a 86±0.5ab  322±71a 083±31cd 097±32b 502±30d  82±6bc 

RC+ WC+LU 520±25ab 037±8a 012±8a  87±0.4a 87±1.0a 60±13.0a 86±1.0ab  452±23ab 032±7bc 007±3a 492±16cd  78±8bc 
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On a seasonal basis (Table 3), all the three forage legume species in the pure stand derived above 

80% of their N from atmospheric N2-fixation (%Ndfa), which was similar for WC and RC. The 

%Ndfa in the pure stand of LU was significantly higher than in the pure stand of WC and RC and 

the mixture of WC+LU (p<0.01). In the two- and three-species mixtures, the %Ndfa in WC and 

RC was mostly above 80%, irrespective of composition of seed mixtures, but tended to decrease 

in LU (Table 3). However, the %Ndfa estimated in all three species was not affected by the 

composition of the seed mixture. Since RC dominated the mixtures, the weighted %Ndfa for the 

whole mixtures closely resembled the %Ndfa in RC, which was consistently above 80% with no 

significant difference between the two- and three-species mixtures. 

The measured %Ndfa at each cut (Table 4) showed that RC and WC mostly derived above 80% of 

their N from fixation during the first three cuts. The %Ndfa in LU tended to be higher in the pure 

stand than in mixtures, and this difference between LU pure stands and LU in mixtures was more 

pronounced than the corresponding differences between pure stands and mixtures in RC and WC. 

However, the species composition, in general, did not affect the %Ndfa in either of the three 

species or the weighted average %Ndfa for the whole mixture. 
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Table 4 Percentage of N derived from the atmosphere (%Ndfa) in shoots of red clover, white clover and lucerne. Values are mean (±SE; n= 4) measured at 

four cutting times during the 2015 growing season. Different letters within the same column indicate statistically significant differences between species 

compositions at the 0.05 level.  

Seed mixtures 
Cut 1  Cut 2  Cut 3  Cut 4 

RC WC LU  RC WC LU  RC WC LU  RC WC LU 

Pure 

stand 

RC 88±0.5a    88±0.5a    83±0.9a    75±0.6b   

WC  92±0.8b    90±1.0a    76±2.0a    71±1.5ab  

LU   93±0.6a    92±0.8a    92±0.7a    77±0.5a 

Two 

species 

RC+WC 90±0.9a 49±18.0a   89±0.4a 85±1.5a   83±1.4a 80±2.6ab   77±1.0b 73±1.3ab  

WC+LU  92±0.5b 83±3.0a   90±1.0a 70±9.0a   78±1.0a 67±9.0a   70±0.9a 60±10.0 a 

RC+LU 90±0.8a  84±7.0a  90±0.8a  79±5.5a  84±1.8a  73±11.0a  71±3.9ab  67±12.0a 

Three 

species 

80RC+WC+LU 90±1.0a 88±2.6b 86±2.4a  89±0.9a 88±1.0a 71±8.2a  84±0.7a 84±1.0ab 62±12.0a  75±2.8ab 75±3.4ab 57±19.0a 

RC+80WC+LU 92±0.6a 89±1.0b 82±5.8a  89±0.9a 90±0.9a 78±5.0a  83±0.8a 83±1.6ab 55±15.0a  69±2.7a 72±2.5ab 54±10.0 a 

RC+WC+80LU 90±1.0a 88±1.0b 88±3.2a  89±0.4a 89±1.7a 82±5.8a  84±2.4a 82±2.2ab 85±2.2a  71±1.8ab 71±3.8ab 78±2.0a 

RC+ WC+LU 91±0.8a 89±1.2b 58±19.0a  90±0.3a 90±0.9a 49±15.0a  85±0.3a 87±0.9b 55±13.0a  73±3.0ab 75±1.0b 46±8.2a 

RC: Red clover, WC: White clover, LU: Lucerne and 80: percentage of total seeds in the mixture 
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The %Ndfa in RC and WC did not change with species composition, variation in DM production 

or botanical composition (Fig. 3). However, %Ndfa in LU appeared to be positively influenced by 

biomass yield at low yield levels, i.e. up to around 1 t DM ha-1. At higher biomass yields, the %Ndfa 

tended to be more stable around or above 80% (Fig. 3).  

 

 

 

 

 

 

 

 

Fig. 3 Relationship between the dry matter 

production and percentage of N derived from 

atmosphere (%Ndfa) in the three forage legume 

species measured at four cutting times during the 

2015 growing season. The dashed vertical line in c. 

Lucerne represent threshold line for positive 

association between LU dry matter production and 

%Ndfa.  

 

 

 

 

 

 

 

 

The amount of N2-fixation varied between the mixtures and cuts, with a significant interaction 

effect (p<0.001). The N2-fixation was generally higher in the pure RC stand and in the mixtures 

containing RC. The seasonal amount of N2-fixation in the mixtures ranged from 370 to 500 kg N 
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ha-1, with significant differences between the seed mixtures (p<0.001) (Table 3). Since %Ndfa was 

not affected by the composition of the seed mixture, the amount of N2 fixed in all three species was 

closely related to the N accumulation. The pure stand of RC, and the WC+RC and WC+RC+80LU 

mixtures fixed amounts of N that were significantly higher than in the pure stands of WC, LU and 

the WC+LU mixture. Similarly, all the three-species mixtures fixed significantly larger N amounts 

than the pure stand of WC.       

When looking at each species, RC in the mixtures generally fixed as much N as in the pure stand, 

with the exception of the three-species mixture with the high seeding density of WC or LU. 

However, the seeding density influenced the N2-fixation in WC and LU, affecting their proportion 

of total DM in the harvested biomass. On a seasonal basis, WC fixed more N when grown with LU 

in the two-species mixture, which was nearly similar to the WC in the pure stand. However, N2-

fixation in LU was suppressed in the mixtures, irrespective of seeding density, with significantly 

lower amounts of N2-fixed compared to its pure stand (Table 3).  

The seasonal soil N uptake was significantly lower in pure stand of LU (p<0.01), but did not differ 

across the two-and three-species mixtures (Table 3).    

 

Discussion 

Plant growth and sward competition 

In the present study, the pure RC stand and mixtures containing RC showed a yield advantage 

compared to pure stands of WC and LU and the WC+LU mixture. However, there was no evidence 

of an effect of diversity leading to transgressive over-yielding (Palmborg et al. 2005), since none 

of the mixtures were more productive in terms of biomass yield, N accumulation or N2-fixation 

than the highest-yielding pure stand (RC). One explanation for the lack of an over-yielding effect 

could be that we had no non-legume species in the mixture that would benefit from legume-fixed 

N (Dhamala et al. 2017; Nyfeler et al. 2011) and increase the complementarity of N use in mixtures 

with the fertilizing function of legumes and the uptake of this N by non-legumes (Palmborg et al. 

2005). Since the WC and LU were outcompeted in  mixtures with RC, another explanation for the 

lack of transgressive over-yielding could be a lack of evenness in the growth of the species in the 

mixture (Kirwan et al. 2007) or the lack of evenness in the resource partitioning among the species 

in the mixture (Roscher et al. 2008). In our study, the mixture with the most even biomass yield 

proportions of the three species, i.e. the three-species mixture with 80% LU, also had the highest 

RYT value (1.2). This observation supports previous findings that evenness of species proportions 

in mixtures enhances complementarity effects in resource use among the mixed species.  
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The total DM and N yields of the mixtures containing RC in the present experiment (i.e. without 

grass in the mixture) were comparable to previous studies of grass-legume mixtures at the same 

location (Elgersma and Søegaard 2016; Pirhofer-Walzl et al. 2012; Rasmussen et al. 2012) and 

higher or within the range of grassland production measured in various geographical regions in 

Europe (e. g. Anglade et al. 2015; Kirwan et al. 2007;Phelan et al. 2015). Thus, our study showed 

that when RC was present in the seed mixture, total DM and N yields were not compromised in 

the forage legume mixtures. Furthermore, the abundance of weeds was strongly suppressed in the 

pure stands of RC and WC as well as in the mixtures containing RC compared to the LU pure stand. 

This suggests that the mixtures containing competitive legumes attributed to lower weed invasion 

(Kirwan et al. 2007) and there was a high resource utilization efficiency of the sown species in the 

mixture (Sanderson et al. 2005).  

We observed contrasting growth and competition between the three forage legume species in the 

mixture. RC consistently dominated in the mixtures irrespective of species composition and 

seeding densities of WC and LU; hence, RC defined the DM and N yields of the mixtures. This 

demonstrates the strong ability of RC to compete for above- and below-ground resources 

(Pirhofer-Walzl et al. 2012). We observed that RC was the most productive in the pure stand and 

always dominated in the mixture, with the RY value ranging from 0.63 to 0.94 and the RYT value 

below or near 1 in most of the mixtures, with the evidence that there was no complementarity 

between the species in the RC-dominated mixtures for the resource utilization (Hector 1998). 

Canopy characteristics of the species in the mixture was found to play an important role for light 

interception for photosynthesis and thereby growth in the study by Black et al. (2009), and an 

explanation for the restrained growth of the WC and LU in our study could be that they were 

shaded by the vigorous upright growth of RC (Frame 2005) and therefore outcompeted for light. 

The poor light interception could have lowered the leaf/stem ratio and the photosynthetic activity 

in LU and WC. Thompson and Harper (1988) showed that many growth attributes such as stolon 

branching, petiole and internode lengths and number of branched and rooted nodes in WC are 

affected by canopy light interception (quality of radiation transmitted) under the canopies of 

different grass species. We observed that the proportions of WC and LU increased with later cuts, 

while the RC generally showed the opposite trend with a significantly lower DM yield at the fourth 

cut. A second explanation could be environmental factors in that the mean monthly air 

temperature during the growing season (Fig. 1) remained lower than the optimum growth 

temperature required for the three species, the better performance of RC could be potentially due 

to its ability to grow in a wider range of temperatures than WC and LU (Frame 2005). A third 

explanation for the poor growth, especially of LU, could be the preference of LU for a less frequent 

cutting regime than the four cuts per year applied in this study (Frame 2005; Wolf and Smith 
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1964). Our result indicate that the dominant species, RC in the present experiment, was the better 

able of the three to exploit the available resources.  

Proportions of N derived from the atmosphere (%Ndfa) 

We observed that the three forage legume species relied mainly on N derived from atmospheric 

N2-fixation, regardless of whether they were grown in pure stand or in two- or three-species 

mixtures. Hence, our second hypothesis that the proportion of legume-N derived from the 

atmosphere would increase in mixtures compared with pure stands was not confirmed. Numerous 

studies on N2-fixation have demonstrated that the %Ndfa is positively influenced by plant diversity 

in grasslands that are made up of a mixture of forage legumes and non-legumes due to non-legume 

competition for available soil N (e.g. Carlsson and Huss-Danell 2003; Nyfeler et al. 2011; 

Rasmussen et al. 2012). Carlsson et al. (2009) and Palmborg et al. (2005) further suggested that 

functional traits of the species in the mixture play a more important role for efficient N uptake and 

stimulatory effect on %Ndfa. In this light, previous studies have shown that forage legumes in 

swards containing non-legumes, especially grasses, often derive up to 90% or more of their N from 

atmospheric N2-fixation (Carlsson and Huss-Danell 2003; Rasmussen et al. 2012). The present 

study showed that the three studied forage legumes were equally good (or bad) competitors for 

soil N, i.e. that there was no difference between intra- and inter-specific competition for soil N, 

indicating that legume-legume mixtures behave like pure stands of legumes in terms of soil N 

acquisition. Hence, the documented trait differences between the three studied legumes (see 

references in introduction) in above- and below-ground growth, dynamics in acquisition and use 

of different N sources and competitive ability did not influence their N2-fixation when grown 

together in mixture without non-legumes. Thus, in order to have a mixture effect on %Ndfa, the 

swards needs to contain non-legume species, which compete more efficiently for available soil N 

than the legumes.  

The normally accepted regulation mechanism for %Ndfa is the availability of soil N, whereby a 

high N availability reduces %Ndfa and a low N availability increases %Ndfa. It is possible that the 

consistently high %Ndfa in our study was a consequence of generally low levels of plant-available 

soil N, since the field experiment was not fertilized, and that the legumes therefore relied to a large 

extent on N2-fixation for their N acquisition also when grown in pure stands. The lack of the 

expected effect of mixture could also be explained, at least in part, by complementary rooting 

patterns among the three forage legume species reducing the direct competition for plant-

available soil N.  LU has a relatively higher capacity to absorb N from deep soil layers (Kelner et 

al. 1997), whereas WC has been shown to assimilate nutrients more easily from the upper soil 

layers with the help of stoloniferous (creeping) roots (Younie 2012; Rasmussen et al. 2013). The 
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large root system of RC may have given it more flexibility to explore the N from both upper and 

lower soil profiles.  Furthermore, RC and LU accumulate and use their large root system as an N 

reserve, and that their shoot regrowth is mainly supported by the supply of N from roots (Barber 

et al. 1996; Black et al. 2009). Thus, LU and RC, in the present experiment, could have built up 

more reserve N in their roots and therefore competed less with companion species for the available 

soil N. Given the fairly large variation in the proportions of the three legumes across the mixtures, 

the finding that none of the three legumes seemed to be affected by competition for available soil 

N indicates that the legumes competed mainly for other resources, such as light, water and 

nutrients other than N.   

Previous studies have shown that all three forage legume species are net donors of N when in 

mixture with non-legume species. WC is a generous N-donor (Høgh-Jensen and Schjoerring 

2000; Pirhofer-Walzl et al. 2012), but a poor receiver of the N transferred from companion species, 

while RC is an intermediate donor and a good receiver (Pirhofer-Walzl et al. 2012). LU has been 

shown to retain its plant N with a lower proportion being transferred (Frankow-Lindberg and 

Dahlin 2013; Louarn et al. 2015) and less fixed N being rhizodeposited (Louarn et al. 2015; 

Wichern et al. 2008), including a poorer ability to absorb the N transferred from companion 

species (Pirhofer-Walzl et al. 2012). Thus, we suggest an alternative regulation mechanism for 

%Ndfa that the re-uptake by the legume of its N exudates may be regulating %Ndfa . Our result 

indicates that the legumes, especially RC, could access their N exudates due to the absence of non-

legume competition for the legume-derived N, as observed by the net transfer of N to companion 

species in mixtures with non-legumes (e.g. Rasmussen et al. 2013; Dhamala et al. 2017).  

Interestingly, the %Ndfa of LU showed a dependency on DM yield, which was not found for RC 

and WC. The LU, in general, had a relatively lower %Ndfa than RC and WC in the mixtures, but 

this tended to be higher in the pure stand (Tables 2 and 3).  Therefore, despite comparable levels 

of shoot yields of WC and LU, the %Ndfa tended to be lower in LU than WC. The differences in 

%Ndfa between the two species could partly be the result of differences in their pattern of N 

uptake. LU has been shown to compete more strongly for available soil N and act as both a soured 

clovere and sink for the recycled mineral N (Tomm et al. 1995). Therefore, LU in the present 

experiment when grown in mixtures must have extracted more N from the soil pool, resulting in 

less dependency on atmospheric N2-fixation when the DM yield of LU was low. In contrast, with a 

higher biomass production in pure stand, soil N might have become limited and LU had to increase 

its reliance on N2-fixation. Another possible explanation that the higher weed abundance in pure 

stand of LU may have led higher competition for the available N, thereby reducing its access to 

soil N and stimulating a higher %Ndfa in LU pure stand. Buildup and utilization of the N reserve 

in the roots may have been lower in WC because of a higher rate of transfer and rhizodepositon of 
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fixed N (Pirhofer-Walzl et al. 2012; Louarn et al. 2015) and a fast turnover and N release from 

roots (Louarn et al. 2015). Hence, the dependency on N2-fixation was in general higher for WC 

than for LU. Furthermore, the lower %Ndfa of LU at DM productions below 1 t DM ha-1 could also 

be related to a higher metabolic cost of N2-fixation as the plants should be able to supply the 

necessary carbohydrates produced from photosynthesis for the N fixed from bacteria (Schulze 

2004). This indicates that the growth of LU at low densities might have been limited by resoured 

cloveres other than soil N (e.g. light, water, other nutrients) caused by competition from RC and 

WC. In summary, our result suggests that the three forage legume species varied in their 

competitiveness, including their N acquisition strategies, but that these differences did not cause 

significant variations in %Ndfa when the studied legumes were grown together in different 

mixtures.  

Variations in %Ndfa estimates obtained with the 15N isotope dilution method might be confounded 

by spatiotemporal unevenness in soil 15N enrichment after the addition of 15N-labelled fertilizer, 

as documented by Burchill et al. (2014). Such unevenness would undermine the assumption that 

the excess atom% 15N in the sampled reference plants represents the 15N enrichment of soil N 

available to the legume, at least if the legume and the reference plant differ in their soil N uptake 

patterns. To avoid the risk of large bias caused by spatiotemporal variations in soil 15N enrichment, 

we followed the approach to use the average excess atom% 15N of several reference species (pooled 

samples of weeds, representing both grasses and dicotyledon species) as suggested by e.g. Carlsson 

et al. (2009), Jacot et al. (2000) and Unkovich et al. (2008). Furthermore, we avoid the risk of 

misinterpreting temporal variations in N2-fixation as we analyze effects of the different species 

compositions at each individual cutting occasion or on the seasonal mean value instead of 

analyzing temporal variations between cutting occasions. 

Amount of N2-fixation 

In the present study, given the similar levels of %Ndfa, the differences in N2-fixation among the 

species were mainly driven by the differences in DM production and N accumulation, as observed 

in previous investigations and documented in reviews (e.g. Anglade et al. 2015; Carlsson and Huss-

Danell 2003; Nyfeler et al. 2011).  

The seasonal amount of N fixed in the whole mixture (370-500 kg ha-1) in the present experiment 

was higher than a previously reported range of N2-fixation (100–380 kg N ha-1 yr-1) in European 

grasslands (Lüscher et al. 2014). The fixed amount of N was comparable to the highest amount of 

N2-fixation recorded in RED CLOVER (545 kg ha-1)  and LU (443 kg ha-1) in Europe (Anglade et 

al. 2015), and the reported highest amounts of N2-fixation in WC (545 kg ha-1), RC ( 373 kg ha-1) 

and LU (350 kg ha-1) in northern European grasslands (Carlsson and Huss-Danell 2003). Thus, 
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the present organic temporary grassland demonstrated a high N input from N2-fixation. Since we 

did not observe any transgressive over-yielding, none of the mixtures in the present study fixed 

more N than the highest performing pure stand (RC). However, the amounts of N2-fixation in 

mixtures containing RC were comparable to the strongest species in the pure stands and mostly 

higher than the pure stands of WC and LU and the WC+LU mixture. Hence, the lower amount of 

N2-fixed in the WC and LU pure stands and in the WC+LU mixture was compensated when RC 

was incorporated in the seed mixture, at least in a relatively small proportion. Thus, our study 

showed that forage legumes have the potential to deliver a high herbage production, N 

accumulation and N2-fixation, and provide protein-rich biomass without the need for N 

fertilization. These perennial crops are therefore a strong tool in the challenge of increasing 

European protein self-sufficiency. In addition, mixtures of perennial legumes might be more 

stable in their biomass yields and amount of N2-fixed when measured across more than one 

growing season- an aspect that calls for further researed cloverh since it was not included in the 

present study. 

Conclusions 

Our study showed that mixtures of forage legume species had high biomass productivity and N 

yield from N2-fixation. The proportion of N derived from N2-fixation, and soil N uptake in most 

cases, in the mixtures was similar to that of the respective pure stands; hence, we did not observe 

a mixture effect on N2-fixation as known from mixtures of legumes and non-legumes. Red clover 

was highly competitive under the study conditions, and there was no indication of complementary 

resoured clovere use in red clover-dominated mixtures. We conclude that mixtures consisting of 

only forage legume species do not express strong complementarity or over-yielding. However, 

such mixtures can be grown without compromising herbage production, N accumulation and 

input of N from N2-fixation, provided that the mixture contains the dominant species (red clover 

in the present study) at least as a small proportion in the seed mixture. 
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Supplementary Table 1 Relative yield (RY) of red clover, white clover and lucerne, and relative yield 

total (RYT) calculated based on whole season shoot biomass. Values are mean (±SE; n= 4) measured at 

four cuts during the 2015 growing season. Different letters within the same column indicate statistically 

significant differences between species compositions at the 0.05 level. 

Seed mixtures 

RY 

RYT 
Red clover 

White 

clover 
Lucerne 

Two 

species 

RC+WC 0.94±0.020 b 0.05±0.009a  0.99±0.022a 

WC+LU  0.94±0.022d 0.12±0.040 ab 1.06±0.016 a 

RC+LU 0.78±0.100 ab  0.14±0.038 b 0.91±0.090 a 

Three 

species 

80RC+WC+LU 0.89±0.043 b 0.02±0.006a 0.03±0.020 a 0.93±0.030 a 

RC+80WC+LU 0.63±0.063 a 0.34±0.078c 0.03±0.016 a 1.00±0.050 a 

RC+WC+80LU 0.64±0.145 a 0.23±0.093bc 0.33±0.026 c 1.20±0.070 a 

RC+ WC+LU 0.91±0.038 b 0.08±0.015a 0.03±0.020 a 1.02±0.054 a 

RC: Red clover, WC: White clover, LU: Lucerne and 80: percentage of total seeds in the mixture 
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