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Dry matter yield, chemical composition and
estimated extractable protein of legume and
grass species during the spring growth†
Zeinab Solati,* Uffe Jørgensen, Jørgen Eriksen and Karen Søegaard

Abstract

BACKGROUND: Knowledge of the variation of extractable protein amount in legumes and grasses as affected by harvest time
is important for identifying optimal combinations to enable a high protein production in a biorefinery. The extractability of
protein was estimated using the Cornell Net Carbohydrate and Protein System across six harvests during the spring growth.

RESULTS: The estimated extractable protein [g kg−1 dry matter (DM)] defined as the easily available fractions B1+B2 was
significantly higher in white clover and lucerne at all harvests while, if the more cell wall attached fraction B3 can be extracted,
white clover had the highest extractable protein amongst all species. Total yield of B1+B2 per ha was higher in white clover and
red clover at the early growth while B1+B2+B3 was by far the highest for red clover through all harvests.

CONCLUSION: White clover could be a good candidate for protein production purpose in a biorefinery due to its high extractable
protein content per kg DM. In order to maximise the protein production capacity, harvest should take place during early growth
due to a decline in protein extractability with maturity. The final economy of the concept will depend on the value of the fibre
after extraction of the protein.
© 2017 Society of Chemical Industry
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INTRODUCTION
Europe imports large amounts of protein for animal production
in the form of soybean meal mainly from South America, which
has resulted in concerns among consumers, governments and
non-governmental organisations, that, for example, the increasing
dependency on imported soybean meal makes the livestock sec-
tor vulnerable to price volatility.1

Accordingly, there is an increasing demand for new sources of
protein in the European Union (EU) as alternatives to imported
soybean meal for livestock production. Legumes and grasses have
high protein content with good composition of amino acids (high
in lysine and methionine).2 The production systems for forage
legumes such as clover and lucerne differ from those of grain
legumes such as soybean in the way they provide additional and
enhanced environmental benefits such as a higher soil carbon
storage and biodiversity effects,3,4 and perennial crops are able to
utilise nutrients more efficiently with lower losses of, for example,
nitrate.5

Many studies have investigated the quality of protein with
regard to its availability to animals using the Cornell Net Carbo-
hydrate and Protein System (CNCPS).6 – 9 CNCPS fractionates the
crude protein (CP) based on solubility in the protein precipitant
agents, buffer and detergent solutions.10 According to this system,
protein is fractionated into the fractions A, B and C, where fraction
A is non-protein nitrogen, fraction B is true protein, and fraction C is
bound or unavailable protein. Fraction B is further sub-divided into
B1, B2 and B3 based on decreasing solubility. In our study, CNCPS
was utilised in order to estimate the extractability of the protein in

the biorefining process. Our assumption was that the CNCPS pro-
tein fractions correlate with protein extractability.

A green biorefinery utilises green whole crops such as grasses
and legumes for manufacture of chemicals, materials and fuels
and for a sustainable production of value added products such
as protein.11 Lucerne is a valuable forage crop that is used for
production of protein in the biorefinery, with the added advan-
tages of reducing crop nitrogen fertiliser requirements due to its
nitrogen-fixing ability.12 Feedstock processing in a biorefinery con-
sists of a mechanical fractionation process to generate a juice and
a fibre fraction. The main goal of the treatment is to separate
the soluble components into a liquid phase in order to leave a
fibre fraction for other utilisations.13 Therefore, only soluble pro-
tein fractions such as A, B1 and B2 are expected to be directly
extractable. However, extractability of fraction B3, which is bound
to the cell wall, may become possible by using other pre-treatment
techniques such as ammonia fibre expansion (AFEX) or utilising
enzymes.14 – 16 The protein obtained from the press juice by precip-
itation can be fed to non-ruminants such as pigs and poultry while
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Figure 1. Minimum temperature (min T), maximum temperature (max T),
precipitation (pptn), and global solar radiation (SGR) at Foulum, in spring
2015.

the press cake can be a valuable forage source for ruminants.17 The
herbage cell contents decrease with maturity, CP being the most
notable one.18 The proportion of CP fractions relative to total CP
may also be altered with increasing maturity. The concentration of
CP is higher in legumes and the cell wall content is lower (especially
that of hemicellulose) compared with grasses.19 However, there is
a shortage of thorough comparisons in the literature of legumes
and grasses with regard to their relative contents of CP fractions.

The aim of this study was to investigate the change in pro-
tein fractions over a month and a half during the spring growing
season in three legumes and two grasses. We hypothesised that
there would be a significant effect of morphological development
on protein fractions, due to decreasing content of cell content,
increasing content of cell wall and increasing lignification of the
cell wall. We also hypothesised that there are clear species differ-
ences, and that these differences would be reduced due to mor-
phological changes. Concerning the functional groups (legumes
vs. grasses), we hypothesised that there would be a higher content
of soluble protein in legumes due to their higher CP content and
lower cell wall content, and a lower B3 fraction in legumes due to
a lower content of hemicellulose in legumes than in grasses.

In this study, the effect of harvest at different morphological
stages and plant species on variation of CP fractions and estimated
extractable protein was assessed using CNCPS.

MATERIALS AND METHODS
Field experiment
The field experiment was stablished at Aarhus University, Foulum-
gaard (56∘ 30′ N, 9∘ 35′ E). The soil is classified as a Typic Hapludult,

according to the USDA Soil Taxonomy System with 7% clay, 10%
silt, 81% sand and 1.7% C in the topsoil (0–20 cm). The soil pH
was 5.9 and concentrations of extractable P, exchangeable K and
exchangeable mg were 36, 129 and 39 mg kg−1 soil, respectively.

The legume species consisted of white clover (Trifolium repens L.),
red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.)
and the grass species were perennial ryegrass (Lolium perenne
L.) and tall fescue (Festuca arundinacea L.) undersown in a
spring-barley cover crop in 2014. The cultivars studied were
‘Silvester’ white clover, ‘Suez’ red clover, ‘Creno’ lucerne, ‘Calvan 1’
perennial ryegrass and ‘Tower’ tall fescue. Field plots (1.5× 12 m)
were arranged according to a split plot design (harvest time as
main plot and species as sub-plot) with four replications. The sow-
ing rate was 10 kg ha−1 for white clover and red clover, 20 kg ha−1

for lucerne, and 25 kg ha−1 for the grasses. In 2014, the cover crop
was harvested at maturity and one cut of the grassland species was
made in mid-October. In spring 2015, grasses were fertilised with
140 kg N ha−1 and both grasses and legumes were fertilised with
100 kg K ha−1 in accordance with Danish fertilisation regulations.

The daily maximum and minimum temperature, precipitation
and global radiation for the spring growth period are presented
in Fig. 1. The legume and grass swards were harvested six times
during the spring growth from 11 May to 1 June 2015. The
growth stage of legume and grass species at each harvest date is
presented in Table 1.

The plots were harvested at 7 cm stubble height using a Haldrup
plot harvester (J. Haldrup a/s, Løgstør, Denmark). The time from
harvesting to drying of the samples was recorded to be between
0.5 and 1 h.

A representative sub-sample of approximately 2–3 kg was taken
from the harvested plant material, of which a sub-sample of
200–300 g was taken for DM determination. Samples were dried
at 60 ∘C for 48 h in order to determine the DM yield. Between
50–60 g of dried samples were collected and ground to 1 mm
particle size prior to the laboratory analysis using a Foss Cyclotec
1093 mill. Ground samples were stored in air tight bottles at room
temperature until further analysis.

Laboratory analysis
Crude protein was fractionated into five different fractions accord-
ing to CNCPS following the methods of Licitra et al.10 A minor mod-
ification was applied to the soluble protein determination assay
by substituting sodium azide with ProClin 300. Fractions A and B1

are soluble in a borate-phosphate buffer. Fraction B2 is insoluble in
a borate-phosphate buffer but soluble in a neutral detergent sol-
vent. Fraction B3 is insoluble in a neutral detergent solution but

Table 1. Morphological stages of legume and grass species at different harvests during the spring.

Harvest date White clover Red clover Lucerne Perennial ryegrass Tall fescue

11 May Vegetative Early vegetative Early vegetative Second leaf First leaf
19 May Vegetative Early vegetative Early vegetative Second node noticeable

or visible
Second node noticeable

or visible
26 May Vegetative Mid vegetative Mid vegetative Second node noticeable

or visible
Boot stage

1 June Vegetative Mid vegetative Late vegetative Boot stage Flowers visible/first
spikelets visible

8 June Vegetative Early bud Early bud Stem fully extended Stem fully extended
16 June Primary

flower buds
Early flowering Early bud Fully developed flowers Fully developed flowers

J Sci Food Agric 2017; 97: 3958–3966 © 2017 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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soluble in an acid detergent solution. Fraction A was estimated
by subtracting the precipitated protein using trichloroacetic acid
(TCA) from total CP. Fraction B1 was determined as the difference
between the borate–phosphate buffer insoluble protein and TCA
precipitated protein. Fraction B3 was measured by the difference
between acid detergent insoluble protein (ADIP) and the neu-
tral detergent insoluble protein (NDIP). Fraction C was estimated
as ADIP. Fraction B2 was calculated by the difference between
the borate–phosphate insoluble protein and NDIP. All CP mea-
surements were carried out using the Kjeldahl method with a
nitrogen-to-CP conversion factor of 6.25.20 Neutral detergent fibre
(aNDF) and acid detergent fibre (ADF) were determined within the
CP fractionation procedures used to determine NDIP and ADIP and
the results were expressed inclusive of the residual ash. For the
NDF assay, 50 μL heat-stable amylase number A3306 was used.21

Statistical analysis
The effects of species and harvest date on the yield, chemical
composition and CP fractions were evaluated according to a
linear mixed model using R statistical software. Plant species
and harvest dates were fixed variables while field replica-
tion was the random variable. The following model was used:
Yijk =μ+Hi + Sj +HSij + 𝛿ij(k) + 𝜀ijk, where Yijk is an observation of
the dependent variable, μ is the population mean for the variable,
Hi is the effect of harvest date, Sj is the effect of species, HSij is the
interaction effect of harvest date and species, 𝛿ij(k) is the random
effect, and 𝜀ijk is the random error associated with the observation.
𝛿ij(k) ∼N (0, 𝛿1), 𝜀ijk ∼N (0, 𝛿2), and 𝛿1 + 𝛿2 are independent. The

difference between the mean values was determined by Tukey’s
HSD test. The significance of the change in the proportion of
individual CP fractions during spring growth was examined using
a simple linear regression model as follows: Y = aX + b, where Y is
the proportion of CP fractions, X is the maturity stage which was
expressed as the number of days after the first harvest and a and b
are constants. Unless otherwise specified, a probability of P < 0.05
was considered significant.

RESULTS
Dry matter yield and chemical composition
The significance of the effects of plant species, maturity and their
interaction on DM yield and chemical composition is presented in
Table 2. The yield results presented here only cover early harvest
and not annual yields. There was a significant increase in the yield
of all the species from first to the last harvest with the highest
yield of the grass species on the last harvest whereas the yield
of legume species levelled off and did not increase significantly
afterwards (Fig. 2A).

There was a significant decline in CP content of all the species
across the spring growth (Fig. 2B). A larger decline in CP with
increasing maturity was observed for grass species compared
with legumes. Legumes contained significantly higher amounts
of CP across the harvests compared to grasses. Of all the species,
white clover had a significantly higher CP content which varied
between 292 g kg−1 DM at the first harvest and 214 g kg−1 DM at
the last harvest.

The aNDF content increased significantly from the first to the
last harvest in all legume and grass species, whereas the highest
increase in aNDF (108%) was observed for lucerne from the first
to the last harvest (Fig. 2C). Although legume species showed a
higher increase in aNDF content from the first to the last harvest,
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Figure 2. Dry matter yield (A), CP content (B), aNDF (C), and ADF (D) in legume and grass species across the harvets during the spring growth. Data
represent least square means and standard error.

the amount of aNDF was significantly higher in grasses compared
with legumes at all harvests. The ADF content was more affected
by maturity than by plant species and increased significantly from
the first to the last harvest (Fig. 2D). White clover had a significantly
lower aNDF and ADF compared with other species at late harvests.

Crude protein fractions
The significance levels from the analysis of variance for CP fractions
based on total CP are presented in Table 2.

Fraction A
Generally, on a CP basis, legumes had a significantly higher accu-
mulation of fraction A compared with the grass species, except for
the first and last harvests (Fig. 3A). A significant increase in frac-
tion A across the spring growth was only observed for white clover.
Relative to DM content, fraction A (g kg−1 DM) decreased signif-
icantly in red clover and grass species across the spring growth
(Table 3).

Fraction B
Fraction B1 relative to CP (g kg−1 CP) showed a significant decrease
across the harvests in white clover, lucerne, and perennial ryegrass
(Fig. 3B). At the first harvest, a significantly lower B1 was noted
for legume species with the exception of lucerne. As maturity
progressed during the spring growth period less variation was
observed among legumes and grasses up to the third harvest, and
at the last harvest there was no inter-species difference. Relative
to the DM content, a significant decline was observed in the B1

fraction (g kg−1 DM) with increasing maturity in all the species,
except for red clover (Table 3). The size of fraction B1 relative to
DM was affected more by maturity than by plant species.

Relative to CP, fraction B2 was the largest fraction and it was
highly affected by the plant species with especially a lower content
in red clover. A significant decline in fraction B2 (g kg−1 CP) was

observed in white clover and lucerne across the spring growth
(Fig. 3C). Relative to DM content, fraction B2 declined significantly
in all the species with increasing maturity (Table 3).

Relative to CP, the trend for change in fraction B3 across the
spring growth was not significant in any of the species (Fig. 3D).
Red clover contained most B3 at all harvests whilst lucerne had sig-
nificantly less B3 at most of the harvests. In contrast to our hypoth-
esis, we observed a significantly larger B3 (despite significantly
less aNDF compared with grasses) fraction in red clover compared
with grass species. Relative to DM content (g kg−1 DM), fraction
B3 declined significantly only in red clover and perennial ryegrass
across the spring growth. Red clover had significantly more B3

across all the harvests compared with other species (Table 3).

Fraction C
Relative to CP (g kg−1 CP), a significant increase in fraction C was
observed for red clover, lucerne and tall fescue across the spring
growth (Fig. 3E). Relative to DM content, a significant increase in
fraction C was observed only in red clover with increasing maturity
(Table 3). Grasses contained significantly less fraction C at most of
the harvests compared with the legume species.

Estimated extractable protein
The potentially extractable true protein amount was defined as
B1 + B2 and as B1 + B2 + B3 in case fraction B3 can be extracted too
and was expressed based on g kg−1 CP, g kg−1 DM and kg ha−1

in Fig. 4. The significance levels from the analysis of variance for
extractable protein amount are presented in Table 2.

The extractable protein fraction B1 + B2 (g kg−1 CP) significantly
declined across the spring growth in all the species except in red
clover, which was always at a lower level than the other species
(Fig. 4A). Relative to DM content, extractable protein significantly
decreased across the spring growth in all the species (Fig. 4C).
White clover had a significantly higher B1 + B2 protein at the

J Sci Food Agric 2017; 97: 3958–3966 © 2017 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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Figure 3. Crude protein fractions in legume and grass species across the harvests during the spring growth. Data represent least square means and
standard error.

first two harvests (182 and 154 g kg−1 DM, respectively), while
from the third harvest onward white clover shared that position
with lucerne. Estimated extractable protein per ha significantly
increased with increasing maturity in all the species except in red
clover (Fig. 4E). White clover and red clover had a significantly
higher extractable protein content per ha at the first two harvests
compared with the other species.

Estimated extractable protein (g kg−1 CP) defined as B1 + B2 + B3

significantly declined in white clover and red clover and tended to
decline in lucerne across the spring growth (Fig. 4B). Grass species
had significantly more extractable protein than legumes from
the second harvest onward. Relative to DM content, extractable
protein significantly declined in all the species with increasing
maturity (Fig. 4D). White clover had by far the highest B1 + B2 + B3

protein content from the second harvest onward (ranging from
174 to 120 g kg−1 DM). Extractable protein per ha significantly
increased in lucerne and grass species with increasing maturity
and was by far the highest in red clover (ranging between 514 and
726 kg ha−1) at all harvests (Fig. 4F).

DISCUSSION
Dry matter yield and chemical composition
This study only covered the development across the spring cut
date for grasses and legumes, and two or more cuts are expected
over the whole season. Thus, a total DM yield of up to 6–8 ton
ha−1 in the grasses and in red clover indicates a high productivity.
The pattern in DM accumulation of legume and grass species with

increasing maturity is important for proper timing of the harvest,
where even though delaying the harvest will increase the DM yield
of the crop significantly, the quality, i.e. the CP content in the DM,
will decline.

The decline in CP concentration with increasing maturity reflects
the alterations in CP fractions and thus soluble protein content as
the plant matures. Accordingly, harvest date has a great impor-
tance if we are to achieve the highest protein production potential
in a biorefinery. Alzueta et al.7 similarly reported a decreasing trend
in CP content of a common vetch forage crop over two seasons
as the plant matured beyond flowering. A notable decline in CP
content was observed by Givens et al.18 in spring-grown herbage
with increasing maturity. The reduction in CP with maturity could
be caused by the decrease in the proportion of leaves that con-
tain higher amount of protein.22 Our observation of a significantly
higher amount of CP in legumes than in grasses agreed with the
study by Sanderson and Wedin23 and our finding of a signifi-
cantly lower CP content in red clover compared with other legume
species agrees with the study of Hoffman et al.,24 who observed a
significantly lower CP content in red clover compared with lucerne.

The chemical composition and structure of cell walls in
legume and grass species may affect the protein extraction
as pre-treatment techniques that alter the cell wall structure
resulted in enhanced protein extraction yields.25 The increase in
aNDF with advancing maturity is probably a result of changes in
the composition of the cell wall with maturity.26 Grasses contain
more NDF compared with legumes, which is mostly due to differ-
ences in the NDF contents between grass and legume leaves.27

wileyonlinelibrary.com/jsfa © 2017 Society of Chemical Industry J Sci Food Agric 2017; 97: 3958–3966
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Table 3. Concentrations of CP fractions (g kg−1 DM) at different
harvests during the spring.

CP fractions (g kg−1 DM)

Species Harvest A B1 B2 B3 C

White clover 11 May 79a,AB 29b,B 153d,C 20ab,B 11a,C

19 May 87ab,C 24b,BC 130c,D 20a,B 10a,B

26 May 95b,C 12a,BC 100b,D 35b,BC 10a,C

1 Jun 86ab,C 13a,AB 100b,B 34ab,B 8a,B

8 Jun 87ab,D 14a,AB 98b,D 25b,C 8a,B

16 Jun 85ab,D 8a,A 84a,C 28ab,B 9a,B

Red clover 11 May 73d,A 18b,A 93c,A 61bc,C 6a,AB

19 May 72cd,B 8a,A 78b,A 55bc,D 9abc,B

26 May 74cd,B 4a,A 48a,A 67c,D 10b,C

1 Jun 66bc,B 7a,A 57a,A 50b,C 14c,C

8 Jun 58ab,B 8a,A 50a,AB 36a,D 12bc,C

16 Jun 50a,B 5a,A 44a,AB 39aC 13bc,C

Lucerne 11 May 87c,B 34c,B 121c,B 6a,A 8a,BC

19 May 81bc,C 28c,C 112c,C 12ab,A 8a,AB

26 May 90bc,C 14ab,C 93b,D 18ab,A 8aBC

1 Jun 72abc,BC 19b,B 89b,B 17abc,A 9a,B

8 Jun 69a,C 17b,B 84ab,C 12ab,A 11a,BC

16 Jun 73ab,C 7a,A 74a,C 14bc,A 9a,B

Perennial ryegrass 11 May 78d,AB 46c,C 96d,A 48d,C 4ab,A

19 May 50c,A 19b,B 90d,B 38cd,C 7b,AB

26 May 45bc,A 9a,ABC 61c,B 36c,C 5b,AB

1 Jun 37ab,A 11a,A 58bc,A 26b,B 4ab,A

8 Jun 31a,A 9a,A 47ab,A 18a,B 3a,A

16 Jun 32a,A 5a,A 37a,A 17a,A 3a,A

Tall fescue 11 May 81d,AB 31c,B 97d,A 25b,B 4a,A

19 May 54c,A 19b,B 96d,B 23b,B 5a,A

26 May 47bc,A 6a,AB 75c,C 25b,B 3a,A

1 Jun 40ab,A 12ab,AB 65bc,A 22ab,AB 4a,A

8 Jun 35a,A 10a,A 58ab,B 17a,B 4a,A

16 Jun 38ab,A 5a,A 48a,B 18ab,A 4a,A

Significance
Species (S) <0.001 <0.001 <0.001 <0.001 <0.001
Maturity (M) <0.001 <0.001 <0.001 <0.001 0.43
S×M <0.001 <0.001 <0.001 <0.001 <0.001
SEM 5.08 3.38 5.37 4.91 1.77

a,b,c,dResults within a column without a common letter show signifi-
cant (P < 0.05) differences between the means at different harvests for
individual species.
A,B,C,DResults with different letters show significant difference among
the species at different harvests.

According to Buxton,27 lucerne and most of the legume species
have an ADF content that is 100 g kg−1 lower than NDF, while this
difference is 200 g kg−1 for grass species.

Crude protein fractions: effects of species and morphological
development
To assess the proportion of individual CP fractions is essential for
determination of protein solubility and thus its potential extrac-
tion in the biorefinery. The compartmentation of protein across the
later harvest was more allocated to A, B3 and C fractions, which are
the least valuable for extraction compared to B1 and B2.

In a study by Krawutschke et al.28 a significant increase was
observed in fraction A for red clover during the spring growth
which was in contrast to our finding of no significant change.

Other studies claim that the size of fraction A is not affected
by plant maturity in the spring season.6,29 The discrepancy in
changes in fraction A across the growing period between studies
may be explained by different environmental conditions such as
the supply of mineral N, water stress and soil acidity.28 Our data
pertaining to a higher accumulation of fraction A in legumes than
in grasses is supported by the study of Yu et al.9 who observed
a higher fraction A content for alfalfa than for timothy (415 vs.
165 g kg−1 CP). This is probably due to the different nitrogen (N)
metabolism of N-fixing and non-N-fixing plants.30 The significantly
higher fraction A content in legumes compared to grass species
across most of the harvests was consistent with significantly higher
CP contents in legumes than in grasses. The study by Krawatschke
et al.28 also described a positive correlation between the total N
yield and the fraction A content of legume species during the
spring growth.

The noted decline in fraction B1 relative to total CP across the
harvests may be a result of an increase in cell wall-bound proteins
with maturity.31 The similar trend of a change in the B1 fraction for
all the species across the spring growth may be related to both
morphological development and environmental factors. Accord-
ing to Buxton,27 temperature and solar radiation are some of the
most important environmental factors with temperature having
the greatest impact on forage quality of which protein quality
is an important element. Many environmental factors affect the
rate of phenological development, but during the spring growth
when the water supply is ample, temperature has the greatest
influence.32 Nevertheless, we could not detect any clear correla-
tion between the temperature and changes in the B1 fraction. In
line with our observation, Hoffman et al.24 found less fractions A
and B1 in red clover than in lucerne across three maturity stages.

In accordance with our results, Elizalde et al.29 also found fraction
B2 to be the largest CP fraction in forages during the spring. Our
results pertaining to a significant decline in fractions B1 and B2

across the harvests in white clover and lucerne contradict the
results of Kirchhof et al.,6 who stated that plant maturity does not
affect the aforementioned fractions in legume species.

Elizalde et al.29 noted that the increase in fraction B3 with increas-
ing maturity was consistent with the higher NDF content with
maturity in lucerne, but they found no relationship between
B3 and NDF contents in grass species. The larger fraction B3 in
grasses compared with legumes in our study correlated well with
a high NDF content in these species. Our data were consistent
with Elizalde et al.29 who showed that fraction B3 was significantly
smaller in lucerne than in grasses and that grasses had four to six
times more B3 compared with lucerne.

The high B3 concentration in freeze-dried samples of red clover
compared with other legume species (i.e. white clover, lucerne,
etc.) in the study by Kirchhof et al.6 was attributed to the polyphe-
nol oxidase (PPO) activity in red clover. Weiher et al.33 concluded
that oven-drying contributes to the larger size of fraction B3 in red
clover when compared with freeze-drying. Grabber34 reported B3

values of 68 and 137 g kg−1 CP for freeze-dried lucerne and red
clover, respectively. Compared to the values in our study, it was
similar for lucerne (69 g kg−1 CP on average across the harvests),
but was less than half that for oven-dried red clover at its peak
level of 332 g kg−1 CP. We speculate that this may be related to
the handling of sample material prior to drying which may have
resulted in the formation of quinones and subsequent formation
of quinone-protein complexes. This result indicates that harvest
and storage conditions for extraction of protein from red clover
could be critical for a commercial operation in a green biorefinery.

J Sci Food Agric 2017; 97: 3958–3966 © 2017 Society of Chemical Industry wileyonlinelibrary.com/jsfa



3964

www.soci.org Z Solati et al.

0

100

200

300

400

500

600

700

800

WC RC LU PR

(A)

0

100

200

300

400

500

600

700

800

White clover

Red clover

Lucerne

Perennial ryegrass

Tall fescue

(B)

0

50

100

150

200

250
(C)

0

50

100

150

200

250
(D)

0

100

200

300

400

500

600

700

800
(E)

0

100

200

300

400

500

600

700

800

11 May 19 May 26 May 1 June 8 June 16 June 11 May 19 May 26 May 1 June 8 June 16 June

(F)

Estimated extractable protein 

(B1+B2) 
Estimated extractable protein 

(B1+B2+B3) 

g
 k

g
-1

 D
M

k
g
 h

a
-1

k
g
 h

a
-1

g
 k

g
-1

 C
P

g
 k

g
-1

 C
P

g
 k

g
-1

 D
M

Figure 4. Estimated extractable protein defined as B1 + B2 (left side shown with letters A, C, E) and B1 + B2 + B3 (right side shown with letters B, D, F) in
legume and grass species across the harvests during the spring growth. Data represent least square means and standard error.

In line with Kirchhof et al.6 we noticed a greater increase in
fraction C in red clover with increasing maturity. Sanderson and
Wedin23 reported that the fraction C increased with advancing
maturity in red clover, lucerne, timothy and brome grass as a
result of a general decline in CP and increase in ADF with increas-
ing maturity. Significantly larger C fractions in legumes compared
with grass species was also noted by Sanderson and Wedin.23

This is probably due to higher lignin concentrations in legumes
compared with grasses.24,35 Accordingly, higher ADF contents
of legume species, especially for the last harvest dates (where
legumes showed significantly larger C fractions compared with
grasses), were expected since the ADF residue is used for deter-
mination of fraction C. Nevertheless, an earlier study by Machacek
and Konnonoff 36 showed that ADF content is poorly related
to fraction C content and thus is not appropriate for such pre-
diction. Sanderson and Wedin23 stated that factors other than
or including the lignin content may contribute to the size of
fraction C.

Despite the stage of maturity was reported to greatly influence
the quality of forage,27 we observed less variation in CP frac-
tions as affected by maturity than by plant species, although the
harvest of species was performed over a long growing period
where great phenological changes take place for individual
species.

The estimated extractable protein and its implication
Expression of the extractable protein as g kg−1 CP, g kg−1 DM and
kg ha−1 revealed different results when comparing different plant
species. Extractable protein based on g kg−1 CP is the traditional
way of presenting the results for use in evaluation of forage
feed quality.37 For biorefinery purposes, displaying the extractable
protein in g kg−1 DM may be more relevant as the protein content
per unit mass is of huge importance for logistics and design of
equipment in terms of capacity and perhaps mobility. Finally,
expressing the extractable protein in kg ha−1 is of economic
importance to the farmers.

The significantly larger amount (kg ha−1) of extractable protein
(B1 + B2 + B3) in red clover across all harvests was consistent with
the significantly high DM yield for most of the harvests during the
spring. Especially at early harvests extractable protein is already
high in red clover, and after cutting early an early regrowth can be
achieved.

In agreement with our results, McKenzie38 observed a remark-
able decrease in protein extractability of grasses with increasing
maturity. A trend for extracted protein yields to decrease with
increasing maturity was also observed by Nanda et al.39 which was
attributed to the increase in the density of the cell wall material.
The lower extractable protein content (g kg−1 DM) in grasses com-
pared with legumes was expected from the significantly lower
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protein content in grasses, despite their significantly higher DM
yield. The possibility of achieving high protein yields by using
the ammonia fibre expansion (AFEX) pre-treatment method which
intensively disrupts the cell has previously been reported.40 – 42 A
further increase in the yield of extracted protein was reported by
Luis et al.40 using cellulase to hydrolyse the cellulose. Dotsenko and
Lange16 were able to extract approximately 80% of the remaining
protein in the pulp fraction of white clover and perennial ryegrass
using proteases. Therefore, the extraction of fraction B3 is expected
to be facilitated by using the pre-treatment techniques.

Allocation of protein to the least valuable fractions for extraction
(A, B3 and C) at the last harvest indicates that taking the cut at the
fourth harvest time might be the most optimal in practice, as total
extractable protein per ha only increased slightly (and only if B3

can also be extracted) after then or even an earlier cut may be most
beneficial, as it would allow for more cuts across the whole season.

The final choice of optimal species and harvest time will depend
on the value created from each fraction of the feedstock in the
biorefinery, and not just the protein. The fibre fraction seems to
be a valuable cattle feed that may be used locally if decentralised
biorefineries are established. But it may also be further refined
into chemicals or energy products such as HTL bio-oil (Johannsen,
http://dca.au.dk/en) or biogas.43 Thus, it is a complex calculation
to decide which species and cutting time will provide the most
profit in the process, and it will probably be an individual decision
between specific biorefinery set-ups, and over time, as product
portfolios develop. If protein is the most desired and profitable
component to be extracted, it seems that legumes will provide
the best feedstock quality, especially when harvested early. White
clover showed the highest content of extractable fractions per
kg DM, and has been shown to give high total yields with many
cuts.44 However, if red clover can be managed without too much
quinone formation that hampers the protein solubility, it seems
to be able to provide very high total amounts of protein per ha
already by early harvest, which can contribute to a good overall
business economy.

CONCLUSIONS
This study provides a thorough comparison of legume and
grass species in terms of DM yield, chemical composition and
extractable protein amount across the spring growth. The results
showed superiority of white clover and lucerne to grasses includ-
ing perennial ryegrass and tall fescue with regard to extractable
protein per kg DM. However, extractable protein amount in peren-
nial ryegrass showed promise at the start of growing season in
case fraction B3 can be extracted. The final choice of species and
harvest time for a given biorefinery will depend strongly on the
end use of the other products of the refinery process and logistics
of the production chain as well as the regrowth potential over the
remaining growing season for each species. Although extractabil-
ity of protein per ha increased in especially lucerne and grass
species with increasing maturity, delaying the harvest time was
plainly detrimental to extractable protein amount on a DM basis.
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