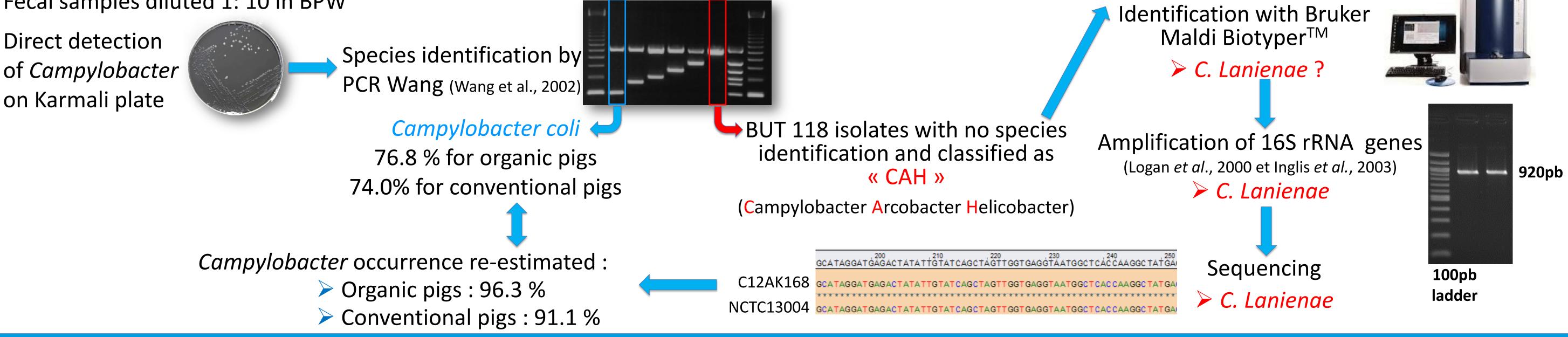
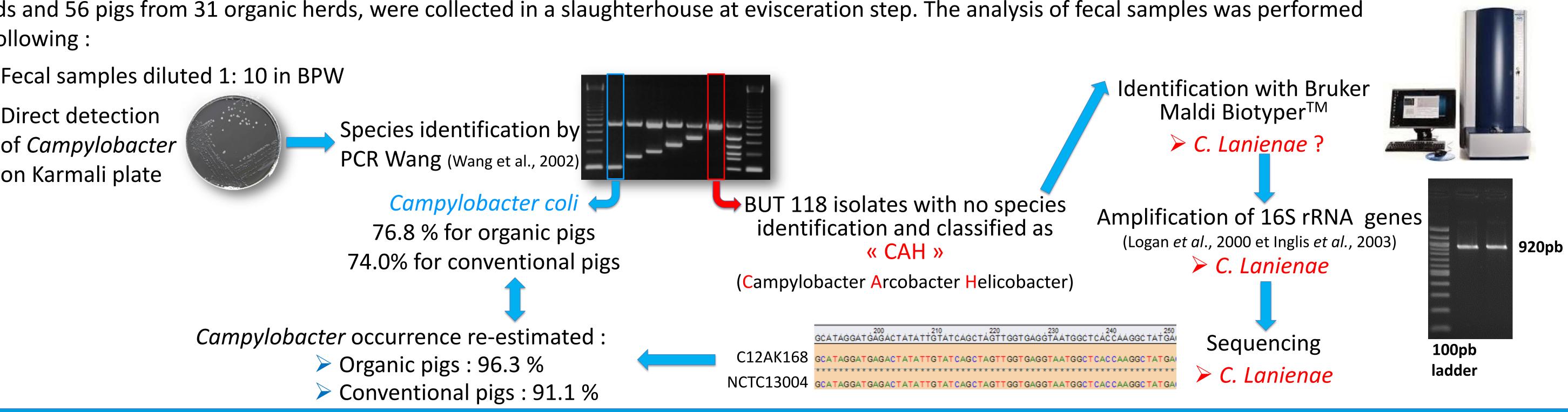
First description of Campylobacter lanienae from feces of organic and conventional pigs in France

Investigate, evaluate, protect

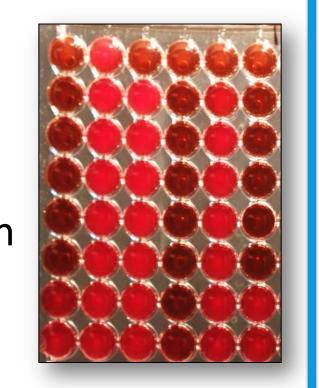

Kerouanton Annaëlle, Nagard Bérengère, Rose Valérie, Samson Vivien and Denis Martine Anses, Hygiene and quality of poultry and pig products unit, University of Bretagne-Loire, BP 53, Ploufragan, France


Context of the detection of *C. lanienae* isolates

In order to evaluate *Campylobacter* occurence, antimicrobial resistance and genotypic diversity, fecal samples of 58 pigs from 31 conventional herds and 56 pigs from 31 organic herds, were collected in a slaughterhouse at evisceration step. The analysis of fecal samples was performed as following :

Fecal samples diluted 1: 10 in BPW

Direct detection of *Campylobacter*

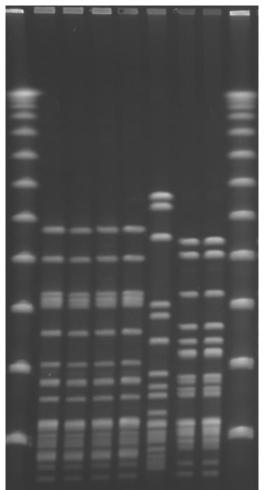

Characterization of *C. lanienae* isolates

Antimicrobial susceptibility

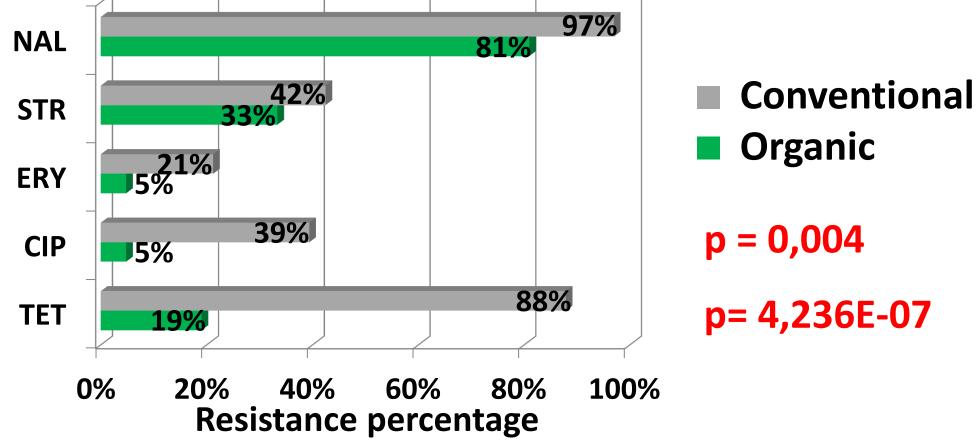
Method

- 55 *C. Lanienae* studied for their antimicrobial susceptibility by Minimal Inhibitory Concentration (MIC) using Sensititre [®] plates (Biocentric, Bandol, France)
- 7 antimicrobials tested : Gentamicin (GEN), Streptomycin (STR), Ciprofloxacin (CIP), Nalidixic Acid (NAL), Tetracycline (TET), Erythromycin (ERY), Chloramphenicol (CHL).
- Results analysed following ECOFFs from Eucast.

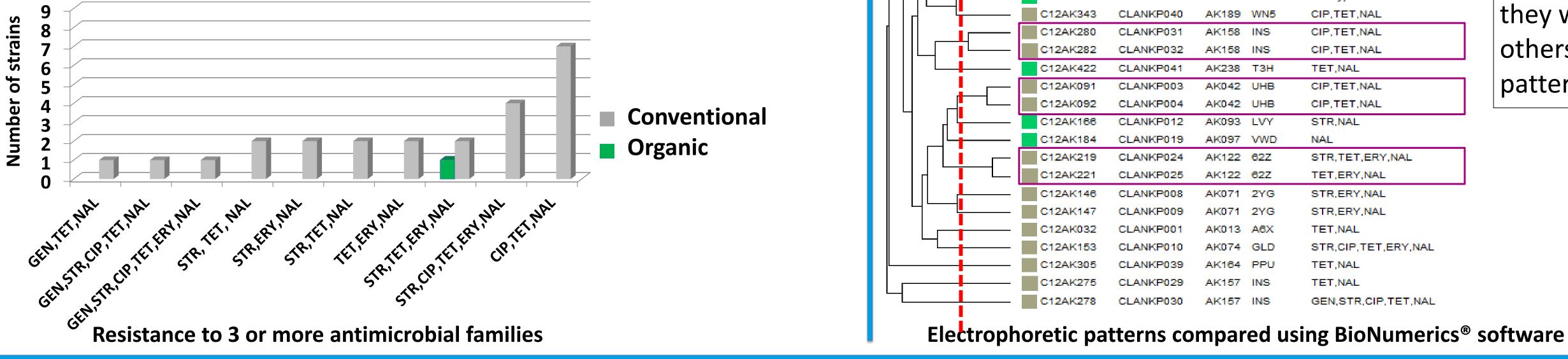
Results



Genotypic diversity : Pulsed-field gel electrophoresis


Method

- DNA preparation, restriction endonuclease digestion and PFGE carried out as described by the Campynet protocol
- DNA macrorestriction performed with *Kpn*I and *Sma*I enzymes.
- Electrophoretic patterns compared using BioNumerics[®] (Applied Maths, Sint-Martens-Latem, Belgium).
- Simpson's index (D) used to assess the genetic diversity of the Campylobacter populations (Hunter & Gaston, 1988).


Results

- \succ Only one isolate was pansusceptible (1.8%)
- > All isolates were susceptible to Chloramphenicol and 94.5% susceptible to Gentamycin
- > Resistance to Nalidixic acid (93 %) is very high : natural resistance
- Resistance to Tetracycline and Ciprofloxacine was significantly different between the two productions

- > 17 resistance patterns were identified
- \succ Isolates from conventional pigs were mostly multiresistant (73%) vs only 5% of isolates from organic pigs

	8 8 3	3 8 ^g				
			C12AK165	CLANKP011	AK093 LV	Y ND
			C12AK301	CLANKP038	AK163 PP	U TET,ERY,NAL
			C12AK293	CLANKP034	AK161 CU	4 GEN,STR,CIP,TET,ERY,NAL
[C12AK295	CLANKP034	AK162 CU	4 STR,CIP,TET,ERY,NAL
			C12AK297	CLANKP034	AK162 CU	4 STR,CIP,TET,ERY,NAL
			C12AK291	CLANKP033	AK161 CU	4 STR,CIP,TET,ERY,NAL
Г			C12AK079	CLANKP002	AK039 3L4	CIP, TET, NAL
	ſ		C12AK429	CLANKP042	AK241 G7/	A TET,NAL
			C12AK431	CLANKP043	AK241 G7/	A GEN, TET, NAL
			C12AK129	CLANKP005	AK067 DY	E STR,NAL
			C12AK130	CLANKP005	AK067 DY	E STR
		L	C12AK131	CLANKP008	AK067 DY	E STR,NAL
			C12AK189	CLANKP022	AK099 T70	D STR,TET,NAL
			C12AK299	CLANKP035	AK163 PP	U STR, TET, ERY, NAL
			C12AK303	CLANKP037	AK164 PP	U TET,NAL
			C12AK304	CLANKP038	AK164 PP	U TET,NAL
			C12AK170	CLANKP014	AK094 LV	Y CIP,NAL
			C12AK280	CLANKP028	AK150 3ZH	H STR, TET, ERY, NAL
			C12AK186	CLANKP020	AK098 VW	D NAL
	[]		C12AK187	CLANKP021	AK098 VW	D NAL
	║┍┥		C12AK194	CLANKP023	AK102 DY	3 STR,TET,NAL
			C12AK258	CLANKP027	AK149 3ZH	H NAL
			C12AK174	CLANKP016	AK095 3ZH	H NAL
			C12AK175	CLANKP017	AK095 3ZH	H NAL
			C12AK173	CLANKP015	AK095 3ZH	H NAL
			C12AK168	CLANKP013	AK093 LV	Y STR,NAL
			C12AK144	CLANKP007	AK070 UH	B TET
			C12AK248	CLANKP026	AK140 INS	NAL
			C12AK182	CLANKP018	AK097 VW	D Wildtype
			C12AK343	CLANKP040	AK189 WN	5 CIP, TET, NAL
			C12AK280	CLANKP031	AK158 INS	CIP, TET, NAL
			C12AK282	CLANKP032	AK158 INS	CIP, TET, NAL
			C12AK422	CLANKP041	AK238 T3F	H TET,NAL
			C12AK091	CLANKP003	AK042 UH	B CIP, TET, NAL
	Ц _		C12AK092	CLANKP004	AK042 UHI	B CIP, TET, NAL
			C12AK166	CLANKP012	AK093 LV	Y STR,NAL
11					ALCOOT	

- \succ High diversity whatever the origin of strains, and the enzyme used (ID > to 0.98)
- \succ No interest to use *Sma*l enzyme (lot of strains no typable)

At 80% of similarity :

> 9 clusters

> No evidence of genetic clusters linked to a type of production or to a resistance pattern

 \succ When isolates showed a same PFGE pattern, they are from the same sample or same herd

The patterns are distinct when they were compared with the others *Campylobacter* species patterns

Conclusion

This study allowed us to demonstrate for the first time in France that pigs, known to be a reservoir for Campylobacter coli may also carry in their feces *Campylobacter lanienae*, a species rarely highlighted. The species was present in conventional fecal samples as well as organic fecal samples. The lower level of antibiotic resistance and multiresistance of C. Lanienae strains for organic pigs may be related to the restricted use of antibiotics in this production and / or colonization of organic pigs with susceptible environmental strains. The genotypic diversity by RFLP-PFGE is very high, as generally observed for other more common species of *Campylobacter*.

References:

- Hunter PR & Gaston MA (1988). Journal of clinical microbiology 26: 2465-2466.
- Inglis GD & Kalischuk LD (2003). Applied and environmental microbiology 69: 3435-3447.
- Logan JM, Burnens A, Linton D, Lawson AJ & Stanley J (2000). International journal of systematic and evolutionary microbiology 50 Pt 2: 865-872. Wang G, Clark CG, Taylor TM, Pucknell C, Barton C, Price L, Woodward DL & Rodgers FG (2002). Journal of clinical microbiology 40: 4744-4747.

Aknowledgement to CORE Organic II Funding Bodies, partners of the FP7 ERA-Net project, anses.tr for funding SAFEORGANIC project www.coreorganic2.org