The Muencheberg Soil Quality Rating (SQR)

FIELD MANUAL FOR DETECTING AND ASSESSING **PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING**

Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & **Ralf Dannowski** Leibniz-Zentrum fuer Agrarlandschaftsforschung (ZALF), Muencheberg, Germany

with contributions of

Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany

Draft, Nov. 2007

The Muencheberg Soil Quality Rating (SQR)

FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING

Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V., Muencheberg, Germany

with contributions of

Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil
 T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand
 Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia
 Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany

TABLE OF CONTENTS

PAGE

1.	Objectives	4
2.	Concept	5
3.	Procedure and scoring tables	7
3.1.	Field procedure	7
3.2.	Scoring of basic indicators	10
3.2.0.	What are basic indicators?	10
3.2.1.	Soil substrate	12
3.2.2.	Depth of A horizon or depth of humic soil	14
3.2.3.	Topsoil structure	15
3.2.4.	Subsoil compaction	17
3.2.5.	Rooting depth and depth of biological activity	19
3.2.6.	Profile available water	22
3.2.7.	Wetness and ponding	23
3.2.8.	Slope and relief	25
3.3.	Scoring of hazard indicators	26
3.3.0.	What are hazard indicators?	26
3.3.1.	Contamination	28
3.3.2.	Salinisation	29
3.3.3.	Sodification	30
3.3.4.	Acidification	31
3.3.5.	Low total nutrient status	32
3.3.6.	Soil depth above hard rock	33
3.3.7.	Drought	34
3.3.8.	Flooding and extreme waterlogging	39
3.3.9.	Steep slope	42
3.3.10.	Rock at the surface	44
3.3.11.	High percentage of coarse soil texture fragments	45
3.3.12.	Unsuitable soil thermal regime	46
3.3.13.	Miscellaneous hazards	49
3.4.	Rules of final rating	50
3.5.	Diagnostic check of the results	51
4.	Outlook	51
Refere	nces	53
Appendix 1: Examples of soil scoring		
-	_	

Appendix 2: Orientation guides of indicator scoring based on properties of Soil Reference Groups (SRG) and qualifiers of WRB, 2006

Appendix 3: Orientation guides of indicator scoring based on vegetation in Central Europe (Indicators of salinity, alkalinity, acidity, drought and wetness, vegetation data adopted from Ellenberg et al, 2001).

1. Objectives

This manual shall provide guidance of soil quality (SQ) assessment for farming. Farmland is used to feed mankind in a sustainable manner. In this context, SQ may be characterised by the definition: "...the soil's fitness to support crop growth without becoming degraded or otherwise harming the environment "(Acton and Gregorich, 1995, in: Vigier et al., 2003).

During the past years many attempts have been undertaken to evaluate SQ in order to provide "*the soil's fitness or health*". They are focused on management induced aspects of SQ, mainly indicated by a favourable soil structure (INRA/ISTRO - report 2005).

However, *"fitness"* and *"health"* of a subject are not alone the result of a good management, but depend largely upon natural genetic constitution and age.

If common SQ ratings certify a fit and healthy looking soil to promise high yields, this may be erroneous. First is this rating not necessarily the result of proper management and second, the yield expectations may fail. A neighboured soil of more unfavourably looking soil structure and worser rating may possibly be higher in crop yield due to better crucial soil inherent properties like plant available water.

Soil inherent quality should also be taken into consideration when evaluating soil health. However, internationally comparable methods of the soil inherent quality assessment easy to handle are missing. Soil maps in different scales do exist, but they give only indirect hints on quality for cropping or grazing and for the crop yield potential.

The objective of this paper is to present a simple method for rating soil quality of farmland in the field - the Muencheberg SQR. The final result will be a semi-quantitative measure, e. g. a rating score between 1 and 100, of soil suitability for cropping or grazing.

This should provide comparative on-site assessment of the soil suitability for arable and grassland farming and estimation of the crop yield potential. In combination with methods of dynamic soil quality assessment, VSA (Shepherd, 2000), it will also provide recommendations for long-term sustainable use of soils and good agricultural practice. The frame of rating can further be utilised in decision support systems and scenarios of soil use.

Intended benefits of the method are:

- Reliable and fast field scoring of soil quality for farmland in terms of good, moderate, poor and very poor
- Field method, applicable for both extension and collegial contests
- Matching to procedures of dynamic soil quality assessment like VSA (Shepherd, 2000 or SoilPak (McKenzie, 2001)
- Valid for a range of soils over large regions
- Linkable with soil mapping units
- Correlation of final score with the crop yield potential within climatic sub-zones

Potential applications of the method are: Soil resource planning, guiding land purchase, and assessment of sustainability and environmental impacts of land use.

This manual is not valid for some extremely particular soil and cropping conditions:

- No paddy rice systems, no consideration of dual- or multi-cropping systems
- No consideration of direct climatic limitations and hazards of plant growth: frost, fire, wind
- No consideration of local typical risks for cropping like pests, weeds and diseases

Basic principles underlying the manual

- SQ ratings refer to current conditions of a soil pedon including the medium-term soil hydrological, thermal, geological and terrain conditions and the human impact (soil forming factors)

- SQ ratings are performed in the field and will yield in a real-time judgement without delay due to laboratory analyses. However, those analyses are recommended or necessary to validate the results.

- SQ ratings are restricted to soil's suitability for cropping and grazing. The focus is on rainfed cropping in temperate zones and rotations with dominance of cereals, mainly wheat.

SQ ratings for grassland have less focus on particular vegetation or management systems. Grassland ratings assume a minimum level of accessibility and management.

- SQ ratings are grown up on a common description of a soil profile.

- Matching tables will provide a fast orientation to commonly used current assessment of single indicators. These are mainly documented in: The FAO Guidelines for soil description (Guidelines for soil description, 2006) the German "Bodenkundliche Kartieranleitung" (AG Boden, 2005) and the U.S. National Soil Survey Handbook (USDA/NRCS (2005).

- Overall ratings are compatible with internationally acceptable methods of dynamic SQ ratings. These are mainly: Visual soil assessment methods of Shepherd, 2000, Mc Kenzie, 2001 and Munkholm, 2000, (in: INRA/ISTRO - report 2005), and the method of Peerlkamp, mod. by Batey and Ball, 2006 (in: INRA/ISTRO - report 2005).

- SQ indicators are ranked into an ordinal scale, empirically weighted and summarised. Such a procedure minimises, but does not eliminate, different individual judgement based on empirical appraisal. However, as the basis of assessment is documented, one can trace the evaluation back to soil characteristics and can evaluate the relevance of the ratings.

- A growing number of sample ratings (Appendix 1) will provide a data basis for the adjustment of individual ratings and the perpetued improvement of the framework and thresholds

2. Concept

The Muencheberg SQR method shall result in a final score of a given pedon within a 100 point scale. This score is a measure of the long-term soil quality and will provide a rough estimate of the local crop yield potential. A set of indicators will be scored in terms of good, medium or poor, will be weighted and summarised. Indicators will be estimated based on a description of main soil profile features with consideration of the topographical and hydrological position of the pedon. The basic soil scoring procedure is compatible with the VSA method (Shepherd, 2000) for the evaluation of the dynamic soil quality and gives hints at management deficits.

Basic soil indicators (Fig. 2.-1, Table 3.2.0.-1) are scored by using scoring tables. Single scores are on a quasi 5-ball scale ranking from best conditions (2) to worst (0) with possible increments of 0.5, or 0.25 in very sensitive cases. Basic soil indicators will be completely estimated in the field. They can be backed by measurements of soil properties.

The final basic score ranges from 0 (theoretical minimum, practical is about 15) to 34. It is a measure of soil quality for farming. Values less than 20 indicate poor soils, values greater than 27 are typical of good soils.

In a second step (Fig. 2.-1) the rating system does also consider hazard soil properties and indicators. These properties are so critical for farming that they may limit the total soil quality. Hazard soil properties are the result of extremes of soil forming factors, either in excess or in a minimum. They are often determined by climatic factors.

In many soils of the temperate zone the soil quality will not be limited by hazard soil factors. If the latter are present most of them can be identified by field methods or with simple field tool kits or by indicator vegetation.

Fig. 2.-1: Scheme of the Muencheberg SQR

In SQR, hazard indicators are considered as multipliers for the basic soil score, ranging from about 0.01 (hazard properties do not allow farming) and 3 (no hazard properties). The lowest multiplier will be the valid one. The occurrence of more than one suboptimum hazard indicators can be considered in such a way that the multiplier is set to a lower value within the range of scoring. In case of low ratings (< 1.5) of the slope gradient with sub-optimum (ratings < 2) of any further hazard indicator of Fig. 2.-1, the valid multiplier should be ranked into one score class lower than the minimum single lowest hazard indicator.

The rating system yields in a final score (SQR-score) ranging from about 0 to 100. Classes of SQ are < 20 = Very poor, 20 - 40 = Poor, 40 - 60 = Moderate, 60 - 80 Good,

> 80 = Very good.

Pedon ratings are transferable to landscapes.

The Muencheberg SQR of farmland considers both direct soil properties like profile available water and the influence of other factors of soil directly influenced by climate like the soil thermal regime, flooding and drought risk or influenced by relief. As the final rating score is depending not only on the soil pedon, but also on topography and climate, the subject of rating could be commonly called "site" or "land". Agricultural use of soils in a landscape can never be separated from these soil forming factors affecting soil quality permanently. Many authors consider soil quality as a subset of land quality (Singer and Ewing, 2000). We decided to prefer the term **soil** and consider the terms "soil", "earth", "ground", "site" and "land" as synonyms in the context of this paper.

The land used by mankind for one of their basic needs, food production, is soil, a living natural body. Knowledge about the value of soil and recognising degradation risks may help to develop conservation strategies worldwide.

3. **Procedure and scoring tables**

3.1. Field procedure

Communication with the owner or manager of the land and having all permissions required for digging a soilpit or boring a hole is the basic precondition for fieldwork. The field procedure requires a minimum of equipment. This consists of:

Spade + borer + foot rule + knife + this field guide

Additionally some equipment can be useful to detect soil properties of particular interest and for documentation of the work. These are:

- A probe for pH (or pH test strips) and electrical conductivity if acidification, sodification or salinisation is being expected
- A photo camera and GPS for referencing the data
- A stable plastic box, a larger plastic bag and the field guide "Visual Soil Assessment" (Shepherd, 2000) to perform VSA analysis

In the field, the exact sampling point should be determined by using available information from soil maps, airborne data and current or former vegetation pattern.

Fig 3.1.-1: Before performing field tests, having permits and checking the ground for hidden dangers like cables or mines is important.

Fig 3.1.-2: Vegetation patterns are useful for pedon mapping and selection of representative sampling points.

Extreme variability of the soil quality over a few meters is typical of Holocene and Pleistocene soil landscapes in Central Europe. Differences are mainly due to layering of the soil substrate. Coarse and medium sand in the subsoil prevents rooting and has a low water capacity. Location Sophienthal, Germany.

A small soilpit of about 20*30 cm and 40 cm deep will be dug using a common spade. It is recommended to perform the SQR jointly with the VSA method acc. to Shepherd, 2000 to gather more information on the status of the topsoil structure.

To recognise the soil layering or a shallow watertable, an auger of about 7 cm diameter will be drilled from the bottom of the pit down to a depth of 1.6 m. If the soil is expected to be relatively uniform with depth and to have no shallow watertable, a rill soil probe pushed in (Bohrstock) will be an adequate alternative.

The method requires some experience in estimating soil texture class and organic matter content. Variation of soil texture and humus with depth (layering) is a main parameter of interest.

Fig 3.1.-3: Digging a small soilpit and performing the VSA drop scatter test according to Shepherd, 2000, gives information on texture and structure

Fig 3.1.-4: From the bottom of the soilpit a hole will be bored to detect soil layering and a shallow watertable.

Fig 3.1.-5: Examination of soil layering by a rill soil probe.

3.2. Scoring of basic indicators

3.2.0. What are basic indicators?

Basic indicators of Table 3.2.0.-1 characterise important aspects of soil quality for cropping or grazing. They are primarily based on properties and layering of the soil substrate, e. g. texture and soil organic matter (SOM). SQ of current farmland in the temperate zone can be described by those indicators. Most farmland in this zone is prime farmland. Basic soil indicators range only in certain limits, and a single indicator will not prevent farming in most cases. Thus their combination to a total basic SQR score is empirically additive. This kind of rating is completely compatible to the VSA method which is focussing on management induced SQ, mainly soil structure (Shepherd, 2000).

The total SQR basic score as a weighted sum of eight indicators is quite well correlated with the crop yield within a particular region of the temperate zone, for example in the region of Berlin, Germany (Mueller et al., 2005). The depth of the potential rooting zone and the available water within this zone are crucial parameters of soil quality in this sub-humid region.

Basic indicators are recognizable by the look on a soil profile and can be assessed with the aid of scoring tables below. As this kind of data is "soft", the number of indicators has been set to eight. This makes the result of rating robust more than the use of a single indicator like the water capacity of the potential rooting zone (in: AG Boden, 2005).

	Arable Land ¹⁾	Grassland
1	Soil substrate (3)	Soil substrate (3)
2	A horizon depth (1)	Depth of humic soil (2)
3	Topsoil structure (1)	Topsoil structure (1)
4	Subsoil compaction (1)	Subsoil compaction (1)
5	Rooting depth (3)	Biological activity (2)
6	Profile available water (3)	Profile available water (3)
7	Wetness and ponding (3)	Wetness and ponding (3)
8	Slope and relief (2)	Slope and relief (2)

Table 3.2.0.-1: Basic indicators of the SQR method

¹⁾ The terms arable land and cropping land are used synonymously. Values in parentheses represent the weighting factor

Important criteria or further information for basic soil rating are as follows:

Soil substrate

- Soil texture class over the upper 80 cm (cropping land) or 50 cm
- Parent material of soil
- Strong gradients of texture within the upper 80 cm (layering)
- Content of coarse material > 2 mm over the upper 80 cm or 50 cm
- SOM of topsoil (upper 20 cm)
- Proportion of Carbonate, Gypsum, other concretions or artefacts

Depth of A- horizon and depth of humic soil

- A-horizon depth
- Depth of SOM content > 4 %
- Abrupt change from topsoil to subsoil

Aggregates and porosity

- Type and size of aggregates
- Structure ratings of Peerlkamp, Diez, Shepherd-VSA or others

Subsoil compaction

- Increased soil strength or density at 30-50 cm depth
- Redoximorphic feature in the topsoil and upper subsoil
- Structure ratings of Peerlkamp or others

Rooting depth and depth of biological activity

- Occurrence of roots
- Barriers to rooting and their intensity
- Effective rooting depth
- Zustandsstufe Bodenschaetzung

Profile available water

- Depth of watertable
- Water storage capacity of soil
- Grassland "Wasserstufe" (dry branch)

Wetness and ponding

- Depth of ground or perched water table
- Soil drainage class
- Degree of redoximorphic features in the subsoil
- Indicator values of vegetation
- Grassland "Wasserstufe" (wet branch)
- Soil position in a depression
- Wetness by suspended water (soils rich in silt and clay or muck)
- Ponding during soil assessment

Slope and relief

- Slope at the pedon position
- Microrelief and slope aspect at the pedon position

Single basic indicators will be described below.

A note on scoring tables of basic indicators:

Tables contain a score based on a description. To support scoring, prefixed explanatory text, some example photographs and orientation guides in the same or additional tables are given. This all shall support description but can never override it. Orientation guides come from different sources and do not necessarily match between different columns.

3.2.1. Soil substrate

Soil substrate, particularly that of the topsoil, largely controls all function of a soil. Soils of different texture may be advantageous for growing plants. Best soils for farming worldwide originate from loess. These soils are commonly deep, well drained and water storing. They have a large capacity to store nutrients because of their high cation-exchange capacity (CEC). Other soils like humic fine sands are very favourable for smallholder organic farming or for gardening. If soil depth is artificially restricted, for example in pot gardening, completely organic soil substrates are preferred.

Examples of unsuitable soils are those from coarse sand with low organic matter. They have a low storage capacity and tend to excessive leaching.

In the temperate zone of Western and Central Europe, in most soils of appropriate substrate the fertility status is not in a critical range due to a longer cultivation history in compliance with rules of crop rotation and nutrient cycling. This holds for the soil reaction and the content of stones largely too. Organic matter content is also correlated with the content of fine soil particles. For a given type of land use and climate, SOM is largely controlled by texture.

However, in dry regions, undesired components of soil substrate may occur. For example, high concentrations of calcium-sulphate or -carbonate (> 10 %) affect plant nutrition. In clayey soils they restrict root growth of most agricultural plants.

The dominant soil texture over the upper 80 cm (arable land) and 50 cm (grassland) will be scored by Table 3.2.1.-1.

Fig. 3.2.1.-1: Soil substrate from Loess and a well developed A horizon with a not too sharp boundary to the subsoil are features of high soil quality.

However, Loess of this soil is underlain by coarse material at 0.7 m, limiting the substrate score to a suboptimum of 1.5. Rooting depth and water capacity of the rootzone in a sub-humid climate are also limited. Vermi-calcic Chernozem, location Voderady, Slovakia (Surina, 2001).

Fig. 3.2.1.-2: Soil substrate from Loess (substrate score at optimum of 2). However, climate is humid and soil has stagnant properties giving reason for artificial drainage. Stagnic Luvisol, location Ostinghausen, Germany.

		Orientation guides				
Score	Characteristics ^{1, 2)}	Texture classes and parent material of the German soil rating system (In: AG Boden, 2005, p. 318)	Texture classes of AG Boden, 2005, p. 142	Texture classes of FAO/USDA (Guidelines, 1990, 2006)		
2	Loess, sandy loam, loam, optimum organic matter (SOM), all soils of SOM 8-20 %, free of coarse material (> 2 mm)	L-Loe, sL-Loe, SL-Loe, L-AI, L-V	lu, su, tu, sl, Il	silt loam, silt, loam, silty clay loam		
1.5	Sandy loam, loam or loess of low SOM (< 2 %), sandy soils of SOM 4-8 %, lowland clay, peat of fens, coarse material < 5 %	L-D, sL-D, sL-AI, sL-V, SL-D, SL-AI, SL-V, IS- Loe, L-Vg, LT-AI, LT-V, T-AI	ut, tl	sandy loam, sandy clay loam, sandy clay, clay loam, sandy clay,		
1	Sand and loamy sand, clay of low SOM, better soils with higher prop. of coarse material (5-10 %), dense clays, peat of bogs	IS-D, IS-AI, IS-V, sL- Vg, SL-Vg, LT-D, LT- Vg, T-D, T-V	ls, us, lt (exc. Tt)	loamy sand		
0.5	Medium to fine textured sands, low to medium SOM, coarse material > 10 %, very stony clays, natural peatsoils without mucky topsoil	SI-D, SI-AI, SI-V, IS-Vg, T-Vg	fS, fSms, Tt	sand, clay		
0	Coarse to medium textured sands, coarse material > 30 %	S-D, S-AI	Ss (exc. fS and fSms)	coarse sand		

Table 3.2.1.-1: Scoring of basic indicator 1: Soil substrate

¹⁾ Presence of a significant textural gradient with depth above 0.8 m leads to a reduction by 0.5, possible maximum of score = 1.5

²⁾If soil substrate is clearly chemically, biologically or physically degraded (for example contaminated or salinised), maximum score should be 0.5

Fig. 3.2.1.-3: Extreme stoniness in the soil profile (substrate score 0, drastic reduction of water capacity, score 0) Hyperskeletic Regosol. Location in Canterbury, New Zealand

Fig. 3.2.1.-4: Sandy soil of a coastal dune rangeland, substrate score 0.5. The iron bank (Ortstein) indicates extremely high leaching potential of the soil above. Location in Florianopolis, Brazil

3.2.2. Depth of A horizon and depth of humic soil

A well developed deep A-horizon is crucial for establishment of crops. It is an aspect of the long-term cultivation status. A-horizon contains the very most organic matter of the soil profile. This SOM plays a central role in maintaining key soil functions. It provides the binding and buffering capacity of soil and is an essential determinant of soil fertility. Intensive mechanisation of agriculture during the past decades has led to deep A-horizons of most soils in Western and Central Europe. Limitations with depth and SOM content and consecutive yield losses occurred mainly by water or tillage erosion (Den Biggelaar et al, 2003). Reduced topsoil thickness may limit crop yields (AI-Kaisi, 2001). In grassland (including rangeland) a deep humic layer is also advantageous like in arable land. Most grasslands of the humid temperate zone in Europe have a long cultivation history and have been converted from forest or re-converted from arable land. Thus the depth of the Aw-horizon is not a reliable indicator of soil quality. Instead of Aw depth the depth will be used as an indicator at which SOM will fall below a threshold.

Score	Depth	Remarks	Orientation guide degree of erosion acc. to AG Boden, 2005, p. 316
2	> 25 cm	If sharp border to lower horizon or	Eg0,1
1.5	20 - 25 cm	the A horizon is diluted by subsoil,	Eg2
1	15 - 20 cm	If A horizon has very low SOM (< 2	Eg3
0.5	10 - 15 cm	%) or has gleyic or stagnic	Eg4
0	< 10 cm	properties, 0.5 score less, and maximum score = 1	Eg5

Table 3.2.2.-1: Scoring of basic indicator 2, arable land: A horizon depth

Table 3.2.2.-2: Scoring of basic indicator 2, grassland: Depth of humic soil (d_h)

Score	Characteristic	Remarks	
2	d _h > 0.6 m		
1.5	d _h 0.3 - 0.6 m	Minimum SOM content of $n = 4 \%$,	
1	d _h 0.15 - 0.3 m	- If n < 4 %, d = depth of rooting zone c - horizon, and maximum score = 1	
0.5	d _h 0.05 - 0.15 m		
0	d _h < 0.05 m		

3.2.3. Topsoil structure

Soil structure is important for many soil properties like water and air flow, water storage, biotic activity and workability (Kay and Angers, 2000). The topsoil structure has to provide germination of seeds and employment of water and nutrients by the plants. Friable, porous topsoils provide suitable conditions for plant roots and soil fauna. They retain the moisture necessary for microbial activity and nutrient cycling. Fine aggregates, extensive porosity and presence of earthworms and intensive rooting are indicators of a good structure. Wormcasts and holes as well as birds behind tillage are further positive indirect indicators of a good structure. Soil structure is mainly influenced by soil management and can be assessed by VSA (Shepherd, 2000) or similar methods.

Structure is also related to soil substrate, e.g. texture and SOM, and changes with structure may be very persistent.

Large sharp-edged or platy aggregates, clods or massiveness are examples of poor structure. In grassland, some species of vegetation indicate insufficient topsoil structure due to compaction. Shell-shaped aggregates indicate former excessive stock trampling.

		Orie	entation guides	
Score	Characteristics	Porosity score of VSA method (Shepherd, 2000)	Structure score acc. to Diez and Weigelt, 1997	Peerlkamp note (Peerlkam p, 1967)
2	Optimum aggregates and porosity, good rooted and aerated, many biopores, no sharp-edged aggregates	2	1, 2	=> 7
1.5	Between 2 and 1	1.5	2, 3	6
1	Markedly disturbed aggregate hierarchy, coarse sharp-edged blocky aggregates of clay soils, or platy aggregates, none or a few biopores, no mottles in topsoils	1, 0.5	3, 4	5
0.5	Like above, but mottling or anaerobic feature below grassland, no or few earthworm burrows or worms	0, 0.5	4	4
0	Massive, no aggregation or extremely large aggregates of hard platy structure, no or extremely hampered root penetration	0	5	=< 3

Table 3.2.3.-1: Scoring of basic indicator 3: Topsoil structure

Note: If single grain structure is dominant, maximum score =1.

Fig. 3.2.3.-1: The arrangement of aggregates after performing the drop-shatter test of the VSA procedure (Shepherd, 2000) indicates differences of soil structure. The Manawatu soil (NZ: Weathered Fluvic recent soil, FAO WRB: Eutric Fluvisol) shows moderate to good structure conditions (score 1.5) whilst the very clayey Kairanga soil (NZ: Typic Orthic Gley, FAO WRB: Eutric Gleysol) has a high proportion of large blocky aggregates (score 0). Performance of the VSA procedure is recommended in conjunction with the Muencheberg SQR.

Fig. 3.2.3.-2: At sub-optimum soil structure roots use interfaces of aggregates. Location: Oderbruch region, Germany

3.2.4. Subsoil compaction

Subsoil compaction occurs when soil is subject to deep mechanical pressure mainly through the use of heavy machinery. Soil compaction is potentially a major threat to agricultural productivity. It affects main aspects of soil quality adversely like restricting root growth, water storage capacity, fertility, biological activity and stability. Subsoil compaction is persistent as natural alleviation processes such as wetting/drying, freezing/thawing and biological activity including root growth decrease with depth. Wheel loads are still increasing and, in consequence, the extent and severity of subsoil compaction will increase too.

Compacted subsoil structure can also be a result of natural physical and chemical processes. High preconsolidation by former glaciation of the land or poor subsoil structure of sodic or dispersive clay are examples.

In cohesive soils sharp-edged large aggregates without any hierarchy are a sign of damaged subsoil.

In grassland, commonly the subsoil begins shallower. On meadows, machinery acts compacting. On pastures deep trampling in wet soil (pugging) can lead to unsuitable soil structure below the grassland. This is frequently combined with hydromorphic features of the subsoil and topsoil above. Sometimes in grassland reconverted from arable land, former subsoil compaction can be evident.

Table 3.2.4.-1 is valid both for arable land and grassland. Table 3.2.4.-2 is a supplement for grassland if unfavourable subsoil structure is combined with redoximorphic feature.

		Orientation guides				
Score	Characteristics	Tillage pan score of VSA ¹⁾	Structure score of Diez and Weigelt, 1997	Peerlkamp note	Packing density acc. to Harrach et al., 1999	Increase of soil mechanical resistance ²⁾
2	No compaction, no sharp-edged aggregates	2	1, 2	=> 7	< 2	Only slight
1.5	Slightly compacted, between 2 and 1	1.5	2, 3	6	< 2	Slight to moderate
1	Moderately compacted, few sharp-edged aggregates, disturbed aggregate hierarchy, biopores	1.5	3, 4	5	2 - 3	Moderate
0.5	Compacted, sharp- edged aggregates, few vertical macropores	0, 0.5	4	4	3 - 4	Distinct
0	Clearly compacted, large sharp-edged aggregates of hard structure, none or very few macropores	0	5	=< 3	> 4	Very distinct

Table 3.2.4.-1 : Scoring of basic indicator 4: Subsoil compaction

¹⁾ If depth of tillage pan > 20 cm

²⁾ Knife test or penetration resistance at comparable substrate and moisture status, below tillage layer related to topsoil and/or deeper subsoil

³⁾ Field assessment and/or estimate: $PD = (DBD - 1.199 - 0.00204 \text{ sand}) 0.1202^{-1}$

Table 3.2.4.-2: Orientation guide of basic indicator 4, subsoil compaction, particularly under grassland

Score	Hydromorphic feature below grassland	Orientation guide
2	No redoximorphic feature ¹⁾ in the upper 30 cm	
1.5	Up to 10 % oximorphic feature	See sample
1	Up to 20 % oximorphic feature, but only a few features of reduction	photographs of VSA (Shepherd, 2000, p. 63)
0.5	Redoximorphic feature > 20 %, also above 15 cm	00)
0	Strong redoximorphic feature, > 50 %, reduction zones	

¹⁾ Includes oximorphic and reductomorphic features, oximorphic: mottles or concretions, reductomorphic: grey, blue, green or black coloured

Fig. 3.2.4.-1: Hydromorphic feature and coarse aggregates below meadow grassland prone to wetness and compaction (score = 0). Soil is a Gleyic Fluvisol (Arenic) Location: Oderbruch region, Germany

3.2.5. Rooting depth and depth of biological activity

A deep rooting system guaranties stable supply of crop water and nutrient requirements. It also minimises the risk of nutrient loss. Potential rooting depth limitation can be management-induced (compaction, water table control) but is often due to natural soil layering. Soils that are deep and have desirable texture and no structure limitations are suitable for most plants. Deep soils contain more plant nutrients and water than shallow soils. Shallow, stony, impervious soils, on the other hand, hold little nutrients and water. Crop yield is clearly correlated with soil rooting depth (Timlin et al., 2001, Sadras and Calvino, 2001), however, this effect can be compensated by irrigation (Timlin et al., 2001) or by climate. In many soils the rooting depth is restricted by physical or chemical barriers. Soil physical characteristics known to influence root development are penetration resistance, aeration, water retention, sharp contrasts in soil properties including fragipans and other compact horizons, cemented layers, lithic or paralithic contacts. Examples of extreme physical barriers are rock, a cemented hardpan, or particularly dense massive clay subsoil. A perched or permanent water table can also act as a barrier to root development. Changes in soil bulk density or mechanical soil resistance due to either compaction or naturally-occurring textural horizons, can significantly affect rooting depth. In terms of soil classification, root-limiting layers may be fragipans, duripans; petrocalcic, petrogypsic, and placic horizons; ortstein, and densic, lithic, paralithic, and petroferric contacts (Pedosphere.com., 2001). A very low pH of about 4.5 or less presents a chemical barrier to root growth. Medium and coarse textured sand may act as physical, chemical and biological barrier to rooting. Cone penetrometer resistance of more than 2 MPa inhibits root growth (Taylor and Gardner, 1963). Some soil types like Rendsinas, Rankers, or Lithic or Petroferric phase or soils in permafrost regions, have a limited potential rooting depth. Rooting depth is determined by both crop and soil properties. Inhibition of root development may also occur in early stages of crop establishment due to sealing of the soil surface.

Fig. 3.2.5.-1: A dense cemented layer of calcium carbonate can limit rooting depth for cropping (score 0.5). Soil is a Limnic Fluvisol (Calcaric, Drainic). Location Baerwinkel, Germany. Under grassland, rooting depth is not a reliable soil quality indicator as shallow roots of grass cannot use the rooting potential of many soils. Deep digging organisms like anecic earthworms indicate the potential of soil to reclaim the resource of deeper soil. As earthworms, especially deep burrowing species avoid hydromorphic zones (Cannavacciuolo et al., 1998) both wormholes and hydromorphic zones seem to be suitable indicators of biological activity and deep rooting potential.

Fig. 3.2.5.-2: Haplic Luvisol from Pliocene parent material. The dark brown Bt horizon has clayey texture and stagnant properties in spring, limiting root development of cereals. Location Lovech, Bulgaria, (Penkov and Mueller, 2001).

Score	Characteristic	Barriers ^{1) 2)} to rooting
2	RD > 1.5 m	
1.5	RD 1.1 - 1.5 m	Water table, anoxic layers, SOM free sandy layers > 0.2
1	RD 0.8 - 1.1 m, maximum of sandy soils	m, coarse SOM free sands > 0.1 m, rock or gravel underground, iron pans, compacted layers > 0.3 m, strongly acid, sodic or saline layers, permanently dry
0.5	RD 0.5 - 0.8 m	subsoil
0	RD < 0.5 m	

¹⁾ If barriers to seedling emergence exist like soil tending to surface crusting, water repellency or hardsetting, reduction by 0.5

²⁾ Rooting depth must be estimated based on visible roots or effective rooting depth. Barriers give an orientation to potential rooting depth (which is a maximum of current observed rooting depth or of potential rooting depth) if they are absolute barriers like uncracked hardrock. Intensity of most barriers may be very different.

Score	Effective rooting depth AG Boden, 2005, p. 356, ¹⁾	Zustandsstufe German soil rating, in: AG Boden, 2005, p. 318	Classes of root-i (Soil Survey M Thre	restricting depth anual, Chapter ee) ²⁾
2	> 1.3 m	1 - 2	Very deep	> 150 cm
1.5	1 - 1.3 m	3	Deep	100-150 cm
1	0.8 - 1 m	4	Moderately deep	50-100 cm
0.5	0.5 - 0.8 m	5	Moderately deep	50-100 cm
0	< 0.5 m	6 - 7	Shallow and very shallow	> 50 cm

Table 3.2.5.-2: Orientation guide of rooting depth (RD)

¹⁾ assuming field capacity moisture status at the begin of the vegetation period

²⁾ http://soils.usda.gov/technical/manual/contents/chapter3e.html#54

Fig. 3.2.5.-3: Soil from volcanic ash (Pumice soil) of extreme low density. Even roots of grass can penetrate this soil down to 0.6 m. Score of biological activity = 2. Location in Taupo region, New Zealand

Fig. 3.2.5.-4: Coarse or medium textured sandy subsoil is a barrier to rooting. Farmers tried to increase rooting depth by deep ploughing. Current rooting depth of cereals is about 0.7 m, rating score 0.5. Soil is a Gleyic Fluvisol (Anthric, Eutric, Arenic, Drainic).

Location Sydowswiese, Oderbruch region, Germany.

Table 3.2.5.-3 : Scoring of basic indicator 5, grassland: Biological activity

Score	Characteristics
2	Indication of active bioporosity > 30 cm, mole activity or potential ¹⁾ , worm holes or worms of deep burrowing species like <i>Lumbricus terrestris</i> , numerous other species of soil fauna, intensive deep rooting of grasses > 60 cm
1.5	Active bioporosity > 20 cm, worm holes or worms of medium to deep digging species, numerous other species of soil macrofauna, rooting of grasses 40-60 cm
1	No indication of macrofauna or biogene pores deeper than 15 cm, moderate rooting of grasses (30-40 cm)
0.5	No indication of macrofauna or biogene pores deeper than 10 cm, restricted rooting of grasses (< 30 cm)
0	No indication of macrofauna or biogene pores deeper than 5 cm , extremely restricted rooting of grasses (< 20 cm)

¹⁾ e. g. moles or similarly living animals in the neighbourhood or at similar soil conditions at the same field

3.2.6. Profile available water

Profile Available Water (PAW) is the water capacity of a soil profile available for vegetation. PAW equals the water storage, commonly estimated as the difference in water content between field capacity and wilting point within the effective soil rooting depth. In case of a shallow watertable, this resource of potential groundwater consumption will be added according to the rules of the AG Boden, 2005. Stone content within the potential root zone diminishes the calculated value.

PAW is a crucial parameter of soil quality, in particular in regions of rain deficit during the vegetation period. It can buffer the effect of insufficient rainfall. Reliable estimation of this indicator is difficult as the stored amount of water at the beginning of the vegetation period can vary. This is mainly dependent on climate. In drier regions, many soils have high water storage capacity but this resource is not available as the store is not filled.

Estimates of Table 3.2.6.-1 are based on a filled store at the beginning of the vegetation period. This can be assumed for the temperate humid climate.

Local adaptions of field capacity related to the climate and the infiltration and depletion processes of different soils should be considered (Schindler et al., 2004). For example, the suction at field capacity could be varied between pF 1.8 (udic local field moisture regime, humid or per-humid climate), pF 2 (sub-humid climate) and pF 3 (aridic local field moisture regime).

On grassland, vegetation indicates the medium-term soil moisture status. Moisture numbers less than 4 of the Ellenberg scale (Ellenberg et al., 2001) or "Grasland-Wasserstufen" less than -2 are indicators of an ecologically dry soil moisture status.

		Orienta	tion guides
Score	Characteristics	PAW in the effective rooting depth of AG Boden, 2005 ¹⁾	Grassland "Wasserstufe" (in AG Boden, 2005, p. 319/320)
2	No deficit of PAW, high water storage capacity of soil substrate (Loess, silty loam) or optimum or shallow water table	> 220 mm	1- (minus) or higher
1.5	Slight water deficit due to sub-optimum storage capacity, rooting depth or water table	160-220 mm	2-
1	Distinct water deficit	100-160 mm	3-
0.5	Strong water deficit, sandy soils and deep water table	60-100 mm	4-
0	Extreme water deficit, coarse sands or very shallow rooting depth	< 60 mm	5-

Table 3.2.6.-1: Scoring of basic indicator 6: Profile available water

¹⁾ The orientation guide of Table 3.2.6.-1 refers to temperate humid conditions assuming the soil profile saturated to field capacity at the beginning of the vegetation period. It is related to differences in suction between -10 and -1500 kPa.

If the climate is sub-humid (P < 500 mm/yr) and the water table deeper than 1.2 m and the substrate score 1 or greater, 50 mm more are required to reach the same score. This is due to sometimes insufficient recovery of the soil water store during winter.

3.2.7. Wetness and ponding

Wetness and ponding (waterlogging) occurs when the soil profile is saturated with water or water appears above the soil and plants lack air. The severity of waterlogging depends on climatic, geomorphological and pedological site properties. Depressions and lowlands are more prone to waterlogging than higher land. The permeability of the soil, depth to water table and plant water use have an influence on the degree of waterlogging. Soils in per-humid regions and soils of impeded internal drainage are also subject to wetness and ponding. High and perched water tables limit the soil aeration status and root development of crops. Ponding reduces the topsoil nutrient status markedly. If the soil is cohesive, numerous days with topsoil water content higher than the plastic limit may delay soil management (technological wetness).

Rust-coloured mottles indicate wetness, but this is not a reliable criterion as the feature may be relictic. A soil profile with dominantly reductomorphic feature (grey, black, blue or green colours) at shallow depth indicates prolonged saturation with water. The water table commonly occupies this zone permanently.

Grasses and wetland plants are more tolerant to waterlogging than arable crops. On grassland, hydrophytic plants are reliable indicators of wetness.

Fig. 3.2.7.-1: Longer ponding on arable land is not tolerable for crops like winter wheat and causes soil compaction and management problems.

Location: Oderbruch region, Germany

Table 3.2.7.-1: Scoring of basic indicator 7: Wetness and ponding ¹⁾

Score	Characteristics	Remarks		
2	No surface ponding or wetness	If soil position is in a		
1.5	Surface ponding extremely rare, temporal wetness in the rootzone can occur for shorter periods	depression, maximum score = 1.5, if soil suffers		
1	Moderate surface ponding up to 3 days after heavy rainfall possible	from wetness by suspended water (soils rich in silt and clay or muck), maximum score = 1.5		
0.5	Significant wetness in the rootzone for longer periods, moderate ponding			
0	Significant surface ponding and wetness in the rootzone can occur for longer than 3 days after heavy rainfall			

Table 3.2.7.-2: Orientation guide of wetness and ponding

Score	Soil drainage class acc. to Soil Survey Manual, chapter three (USDA/NRCS, 2005)	Depth of ground or perched water table m ¹⁾	Degree of redoximorphi c features in the subsoil, AG Boden, 2005, p. 315 ²⁾	Indicator values of vegetation ³⁾	Grassland "Wasser- stufe" (in AG Boden, 2005, p. 319/320)
2	Well, Somewhat excessively, Excessively	> 1	Vn0	=> V, mF < 5.5	1+ (or lower)
1.5	Moderately well	0.8 - 1	Vn1	mF 5.5-6.5	2+
1	Somewhat poorly	0.6 - 0.8	Vn2	IV, mF 5.5-6.5	3+
0.5	Poorly	0.5 - 0.8	Vn3-4		3+ to 4+
0	Very poorly	< 0.5	Vn5-6	>= III, mF > 7	4+ to 5+

¹⁾ Temperate humid and sub-humid zones, if drainage is impeded by soil structure or indications of additional perched water, or clear technological wetness, 0.5 score less.

²⁾ Without consideration of wet humus accumulation, neglecting relictic oxymorphic feature

 $^{3)}$ Ecological degree of wetness acc. to AG Boden, 2005, p. 360-361, mF = mean wetness number of vegetation acc. to Ellenberg et al., 2001 on grassland

Fig. 3.2.7.-2: Rushes (*Juncus spec.*) are indicators of a poor aerated soil due to compaction and /or wetness. Location: Pohangina, Manawatu, New Zealand.

3.2.8. Slope and relief

Slope is a morphologic feature of the landscape and has a significant influence on soil formation, soil management and risk of degradation. Soils with slope gradients greater than 4 percent have risks of higher runoff and soil erosion and require management practices that protect the soil surface and minimise runoff. Worldwide, erosion is the most severe threat of sloped soils. On slopes of less than 7 % common agricultural machinery is applicable (Webb and Wilson, 1995).

Almost flat slopes are best suitable for cropping. Worldwide, in cases of high demand of farmland, very steep slopes (more than 30 %) are commonly used as grassland or even as arable land (Sun et al., 2006). However, the erosion risk is then very high.

Slope aspects and relief position are also important factors of soil quality. Their function is largely climate-dependent. In warm and dry climates on the Northern Hemisphere, southern aspects are more prone to drought, failure of crops and damage by erosion. In cool climates, northern aspects are indicated by late thawing and delay in the development of vegetation.

Slope is associated with soil types to a certain degree. For example, Fluvisols, Gleysols, Histosols, Planosols, Solonchaks, Solonetz and Vertisols are lowland soils (gradient < 8 %). Regosols, Rendsinas, Cambisols, Acrisols, and Nitosols are soils of sloping areas (gradient 8 - 30 %), and Andosols, Rankers and Lithosols are often associated with steep slopes (Fischer et al., 2002).

Score	Slope gradient characteristic	Gradient arable land	Gradient grassland	Orientation guide Inclination acc. to AG Boden, 2005, p. 58
2	No to very weak	< 2 %	< 4 %	NO
1.5	Weak	2 - 4 %	4 - 9 %	N1
1	Weak to moderate	4 - 9 %	9 - 14 %	N2
0.5	Moderate	9 - 12 %	14 - 30 %	N3.1
0	Distinct to steep	> 12 %	> 30 %	=> N3.2

Table 3.2.8.-1: Scoring of basic indicator 8: Slope and relief¹⁾

¹⁾ Within the given score range of 0 to 2, a modification by 0.5 (one class) can be taken into account due to microrelief and slope aspect

Table 3.2.8.-2: Orientation guide for scoring slope gradient on the basis of soil description acc. to Guidelines, 2006, Table 7, p. 12

Slope	Slope gradient Percent	Orientation guide of rating scores		
gradient class		Arable land	Grassland	
< 05	< 2 (Flat to very gently sloping)	2	2	
05	2 - 5 (Gently sloping)	2	2	
06	5 - 10 (Sloping)	1	1.5	
07	10 - 15 (Strongly sloping)	0.5	1	
08	15 - 30 (Moderately steep)	0	0.5	
> 08	> 30 (Steep and very steep)	0	0	

Fig. 3.2.8.-1: Distinctly sloped part within a field grown with winter rye. Slope is associated with loss of the Ahorizon by water and tillage erosion. Soil is a Hypoluvic Arenosol (Dystric). Location: Libbenichen, vicinity of Berlin, Germany

3.3. Scoring of hazard indicators

3.3.0. What are hazard indicators?

Hazard indicators characterise hazard properties of soils. Hazard properties of soils are capable of completely to superimpose other properties and to limit the quality of the total soil profile. For example, if a soil is too shallow or contaminated, no cropping will be possible. Some of the basic properties described above have this potential if their indicators reach extreme values. In this conception hazard properties, if occurring have been considered as multipliers and will clearly downgrade the total soil score. Multipliers in the tables below will provide a certain frame for scoring, depending on the risk of occurrence and the severity of the problem, e.g. possibilities and costs of soil rehabilitation, or dependent on climate.

Reliable scoring of hazard properties may require measurements in some cases. For example, if common indicators like vegetation are not enough sensitive to score acidification or sodification or salinisation, a field test kit for measuring pH and the electric conductivity may be very helpful.

Table 3.3.0.-1: Checklist of Hazard Indicators and thresholds for orientation

Indicator	Thresholds for orientation					
	Direct soil parameters	Indirect parameters of vegetation ²⁾ , climate or others	Soil reference groups (SRG) or <i>qualifiers</i> of WRB ¹⁾			
1. Contamination	Specific for each pollutant acc. to international thresholds	High risk areas: cities, waste affected soils, floodplains	Toxic, (Garbic, Spolic)			
2. Salinisation	EC > 2 mS/cm in topsoil	White crusts on soil surface, occurrence of halophytes, S-number acc. to Ellenberg > 3	Salic, Hypersalic, Puffic, Chloridic			
3. Sodification	ESP > 15 % (SAR > 13), pH > 8.2 in topsoil	High pH indicating plants, R-number acc. to Ellenberg of 9	Sodic, Alcalic, Natric			
4. Acidification	pH < 5.2 (cropping) or 4.5 (grassland) in topsoil	Low pH indicating plants, R-number acc. to Ellenberg of 3 or lower	Hyperdystric, Hyperthionic			
5. Low total nutrient status	Clear deficit of nutrients, cannot be compensated by fertilisation within one year		Hypergypsic, Hypercalcic			
6. Soil depth above hard rock	Hardrock or permafrost < 120 cm (arable land) or < 70 cm (grassland)		Leptic, Lithic, Petric			
7. Drought	Water budget in the main vegetation period < 500 mm, ustic, xeric or aridic soil water regime,	Climatic water balance in the main vegetation period of 4 months < -100 mm, probability of the occurrence of a dry month > 10 %, aridity index acc. to De Martonne < 30, benefit of irrigation for cereals	Aridic			
8. Flooding and extreme waterlogging	Flooding probability > 5 %, aquic or peraquic soil water regime	Delay of beginning of farming on cropping land > 20 d, Grassland mF (Ellenberg) > 8, clear benefit of land drainage	Floatic, Gelistagnic, Subaquic, Tidalic			
9. Steep slope	Arable land gradient > 12 %, grassland gradient > 30 %					
10. Rock at the surface	Arable land > 0.01 % rock outcrop, grassland > 0.05 %		Leptosols; Ekranic, Hyperskeletic			

11. High percentage of coarse soil texture fragments	Arable land > 15 % by mass of coarse fragments (> 2 mm) in topsoil, grassland > 30 %		Leptosols; Hyperskeletic, Skeletic
12. Unsuitable soil thermal regime	Frigid, cryic or pergelic soil thermal regime	Tundra regions Duration of the frost free period < 140 d	Cryosols; <i>Cryic, Glacic</i>

¹⁾ SRG or qualifiers not in brackets are clear hazard indicators

²⁾ See examples of vegetation indicator species of drought, wetness, acidity, sodicity and salinity of Central Europe in Appendix 3. Region-specific values should be preferred if available (for example Bui and Henderson, 2003, Victorian Resources online. 2007. ELLENBERG'S INDICATOR VALUES FOR BRITISH PLANTS, 2007).

A note on scoring tables of hazard indicators:

Tables contain a score based on a description and thresholds if available. To support scoring, prefixed explanatory text, some example photographs and orientation guides in the same or additional tables are given. This information shall support the description but can never override it. Orientation guides come from different sources and do not necessarily match.

Based on the scores, a range of multipliers for the basic score is indicated. Within the given range of multipliers, an expert based individual adjustment of the multiplier will be possible.

3.3.1. Contamination

Commonly, agriculturally used soils are relatively clean. However, due to chemical or nuclear hazards or enhanced soil quality standards, content of detrimental substances can exceed thresholds. This means loss of soil quality and a risk for food quality. Many contaminated soils are relictic. Soil contamination can result in the damage of several soil functions and the contamination of surface water and groundwater. It belongs to the hot spots of soil degradation in Europe (EEA, 2000).

To detect and quantify contamination requires special analyses. However, pressure indicators like knowledge of frequent sewage sludge application or the location of the

field in the vicinity of an industrial emitter can give first information on the risk. Artificial soils (Urban soils, Technosols acc. to WRB, 2006) show high risk of being contaminated. Besides that, most intensively humaninduced and managed soils e. g. garden-like soils within or in the vicinity of big cities or bottomland soils of polluted rivers are prone to contamination.

A sensory analysis of the soil substrate on the basis of common criteria like kind of artefacts, colour and odour (Lichtfuss, 2004) of soil may provide important hints for contamination of soils.

Fig. 3.3.1.-1: Soils developed on debris or urban waste have a high risk of being contaminated. Soil is an Urbic Technosol (Reductic, Arenic). Location Buenos Aires, Argentina.

 Table 3.3.1.-1: Scoring of contamination

Score	Characteristic	Multiplier
2	No contamination	3
1.5	Slight exceedance of thresholds, no risk for food safety	1.5 - 3
1	Slight exceedance of thresholds, minimum risk for food safety	1 - 1.5
0.5	Distinct exceedance of thresholds	0.5 - 1
0	Extreme exceedance of thresholds	0.01 - 0.5

3.3.2. Salinisation

Saline soils contain higher amounts of soluble salts that interfere with the growth of most plants. The physiological functions of the total plant, in particular the roots will be damaged (Vaughan et al., 2002). Salinisation is a typical problem of soils in drier regions with irrigation and may become more important in the currently temperate zone because of climate change. Even in the humid temperate zone salinisation may occur as a local phenomenon due to upward transport of water and diluted salts. Solonchaks are a type of soils having a salic horizon starting within 50 cm from the soil surface. If strong salinisation is manifested in soils, high efforts will be required of leaching the salts by irrigation and drainage. If not controlled, salinisation will result in completely unproductive soils. The electrical conductivity of the saturation extract is a proper measure of salinisation.

Fig. 3.3.2.-1: Devastated soil by salinisation after long-term subsoil- irrigation in a semi-arid environment. Location in Victoria, Australia

Table 3.3.2.-1: Scoring of salinisation (in relation to Withers et al., 1978, p. 91 and Abrol et al., 1988, Soil Survey Manual, 1993 (USDA/NRCS, 2005), Kotuby-Amacher, et al., 1997, Department of Agriculture, Western Australia, 2005)

Score	Characteristics	Electric conductivity EC ¹⁾	Multiplier arable land	Multiplier grasslan d
2	No salinisation, no injury on all plants.	< 2	3	3
1.5	Low salinisation, sensitive plants and seedlings of others may show injury	2 - 4	1.5 - 3	2.6 - 3
1	Moderate salinisation, yields of most non-salt tolerant plants will be restricted, salt-sensitive plants will show severe injury	4 - 8	1 - 1.5	2 - 2.6
0.5	Strong salinisation, salt-tolerant plants will grow, most others show severe restrictions	8 - 16	0.5 - 1	1.5 - 2
0	Extreme salinisation, only very tolerant plants and halophytes will grow, salt crusts at the surface	> 16	< 0.5	< 1.5

¹⁾ Saturation extract of topsoil (mmho $cm^{-1} = mS cm^{-1} = dS m^{-1}$), if EC is measured in 1:5 solution, conversion is necessary according to Guidelines, 2006

3.3.3. Sodification

In the temperate zone, sodification is a phenomenon of drier regions due to the geological and climatic situation or irrigation with sodic water.

Sodicity is due to a high percentage of exchangeable sodium (ESP) of the total cation exchange capacity of the soil. This leads to soil dispersion, associated with clogging up the soil pores, reducing water and air permeability, limiting of root growth and slowing of drainage. The soil is more difficult to cultivate. Surface soil crusting, subsoil waterlogging, low nutrient efficiency and accelerated water erosion are consecutive problems of sodicity.

Sodicity is associated with alkalinity. In a certain range of alkalinity, micronutrients such as iron, zinc, copper, manganese and boron, but also macronutrients like phosphorus and potassium, are less available for plant use. Sodification and salinisation may occur in combination.

Solonetz is a type of soil having a natric horizon within 100 cm from the soil surface. An ESP of more than 15 percent or a sodium adsorption ratio (SAR) value of 13 are considered the threshold value for a soil classified as sodic (Abrol et al., 1988). This means that sodium occupies more than 15 percent of the cation exchange capacity (CEC).

In the field, a soil pH above 8.4 indicates a sodium problem. Sodic soils of high clay content show a typical columnar soil structure.

Fig. 3.3.3.-1: Coarse columnar structure of a Solonetz. Grassland vegetation is adapted to low to moderate sodification, score 1.5, multiplier 2.8. Location at Neusiedler See, Austria (Nelhiebel et al., 2001).

Score	Characteristics	ESP ¹⁾	рН	Multiplier arable land	Multiplier grassland
2	No to slight sodification, very sensitive crops may be slightly adversely affected	< 15	< 8.2	3	3
1.5	Low to moderate sodification	15 - 30	8.2 - 8.4	2.5 - 3	2.7 - 2.9
1	Moderate to high sodification	30 - 50	8.4 - 8.6	2 - 2.5	2.5 - 2.7
0.5	High to very high sodification	50 - 70	8.6 - 8.8	1 - 2	2 - 2.5
0	Extreme sodification, plant growth is adversely affected, only extremely tolerant native grasses may grow	> 70	> 8.8	< 1	< 2

¹⁾ Saturation extract of topsoil

3.3.4. Acidification

Acid soils naturally occur in humid climates through processes of leaching and acid deposition. Soil acidity can vary according to geology, clay mineralogy, soil texture and buffering capacity. Acidification is a major land degradation issue (Bolan et al., 2003). Agricultural management like use of physiological acid fertilisers and nitrogen leaching can greatly accelerate the rate of acidification. When soil becomes more acidic the basic cations (Ca, Mg) are replaced by hydrogen ions or solubilised metals. The basic cations can be leached, and soils become less fertile and more acidic. Commonly, plant and crop growth are limited because of a reduction in the availability of nutrients (calcium, magnesium, boron, phosphorous, molybdenum and potassium) and/or an increase in toxic levels of aluminium, iron or manganese. Many plants can tolerate only small quantities of these elements before the soil becomes toxic and restricts plant growth. Acidity is measured by determining the pH of a soil. A result below pH 5.5 in water indicates growth limitations of acid-sensitive plants like some alfalfa, barley and canola. Acidification can properly be mitigated by liming.

Score	Characteristics	рН ¹⁾	Multiplier arable land	Multiplier grassland
2	No significant acidification	> 5.2	3	3
1.5	Low to moderate acidification, sensitive crops may be adversely affected	4.5 - 5.2	2.5 - 3	3
1	Moderate to high acidification	4 - 4.5	2.2 - 2.5	2.7 - 3
0.5	High to very high acidification	3.3 - 4	2 - 2.2	2.5 - 2.7
0	Extreme acidification, plant growth is adversely affected, only extremely tolerant native grasses may grow	< 3.3	< 2	< 2.5

Table 3.3.4.-1: Scoring of acidification (related to AG Boden, 2005, p. 367)

¹⁾ in 1:5 soil (air dried) : water extract

Fig. 3.3.4.-1: Rangeland consisting of *Corynephorus canescens* and lichens vegetation on an acid sandy soil (Umbric Podzol, pH 4, acidification score 0.5-1, multiplier 2.7), Location: Garnischberg, Oderbruch region, Germany

3.3.5. Low total nutrient status

Mainly due to climatic conditions and parent material, some soils may have an extreme low nutrient status. Also some soils which do not clearly meet criteria of salinisation/sodification or other hazards, may have an extremely low nutrient status. For example, de-salinised soils may maintain their low nutrient status for a long time. Low nutrient status will only act as a hazard indicator as common fertilisation will not counterveil against the soil nutrient deficiency.

Table 3.3.5.-1: Scoring of the soil nutrient status

Score	Characteristics	Multiplier arable land	Multiplier grassland
2	No lack of nutrients, or slight deficits can be compensated by single fertilisation	3	3
1.5	Moderate deficit of some nutrients, shortfall of soil-specific recommendation values	2.5 - 3	2.8 - 3
1	Clear deficit of some nutrients, compensation only by ameliorative fertilisation	2 - 2.5	2.5 - 2.8
0.5	Clear deficit of most nutrients, compensation possible over several years only	1.5 - 2	2.2 - 2.5
0	Extreme deficit of nutrients, high risk for food security, deficits can only be compensated by high doses of fertilisation over several years or not at all	1 - 1.5	2 - 2.2

3.3.6. Soil depth above hard rock

Hard rock or permanently frozen soil are extreme barriers to rooting and cannot be modified by common human cultivation activity. This is in contrast with the barriers described by the basic indicators above.

In terms of soil typology, Rankers or Rendsinas above rock or many Gelisols, e. g. soils with permafrost belong to soils having hazard of soil depth limitation. Hard rock at shallow depth seriously influences not only the root zone of plants, but also soil management.

Multipliers should be primarily adapted to the soil moisture regime and thus to climate. Applying higher values in case of humid climate and lower values in case of arid climate is recommended. In case of a per-humid climate or a humid climate of very even distribution of rain over the vegetation period, upgrading by 0.5 score is possible. In case of hardrock having clear cracks and fissures preventing stagnant water, upgrading by 0.5 is also possible.

Table 3.3.61: Scoring	of soil (depth above	hard rock ^{1, 2}
·			

Score	Characteristic	Multiplier ²⁾ arable land	Multiplier ²⁾ grassland
2	No depth limitations by hard rock ¹⁾ within 120 cm	3	3
1.5	Hard rock in 120-60 cm	2 - 3	2.7 - 3
1	Hard rock in 30-60 cm	0.5 - 2	1 - 2.7
0.5	Hard rock in 10-30 cm	0.1 - 0.5	0.5 - 1
0	Hard rock < 10 cm	< 0.1	< 0.5

¹⁾ Permafrost can also be considered as hard rock

²⁾ Consequent adjustment of multipliers (within the indicated range) to climate is recommended: Higher multipliers at deeper soil and perhumid/humid climate, lower multipliers at shallower soils and semiarid/arid climate

3.3.7. Drought

Lack of water for plants is the most severe limitation of soils for cropping and grazing worldwide (Hillel and Rosenzweig, 2002). Drylands cover more than 50 % of the global land surface (Asner and Heidebrecht, 2005). Negative impacts of global warming on crop yield are expected also for currently productive cropping areas (Lobell and Asner, 2003). There is also evidence of climatic change leading to serious drought in grassland ecosystems (WMO, 2004).

Reduction in precipitation over an extended period of time affects the soil moisture regime. Other climatic factors (such as high temperatures and low relative humidity) can increase the severity.

Drought is difficult to define. Sometimes it will be considered as a temporary aberration only, in contrast to aridity, which is described as a permanent feature of climate. However in a high precipitation area, a reduction of rain will not induce soil water deficits to the plant cover. Thus, agricultural drought should include aridity as a special case.

As drought influences plant growth via the soil water regime, effects of drought often accumulate slowly over a certain period of time.

For any particular site, the drought risk is depending on the probability of occurrence and the level of severity of deficit precipitation, as well as the profile available water (water supply in the effective rooting depth of AG Boden, 2005, see Table 3.2.6.-1). As a consequence of drought, affected soils are classified as suitable for irrigation. Thus, on the other hand, available classifications of irrigation benefit can be used as orientation guides of drought severity.

Within a climatic region, an unbalanced soil water budget over the vegetation period can be used as a measure of drought (Schindler et al., 2006). It is a sum of the profile available water of soil, the effective rainfall and the irrigation water within the vegetation period.

If the soil is not irrigated, climatic indices of drought including aridity have to be taken into consideration.

Examples of simple climatic indices are the Climatic water balance (AG Boden, 2005, p. 374) or the aridity index of UNEP (In: Rivas-Martínez, 2004). As the estimation of the potential evapotranspiration can lead to very different results in dependence on the method applied, diverse older indexes based on temperature and precipitation like the factors of Lang, de Martonne, Bagnouls/Gaussen or Emberger (In: Rivas-Martínez, 2004) also seem to be acceptable. Though these indices are very similar, classification results however may differ. For example, the climate in the region of Berlin, Germany (P = 550 mm, T = 9 °C) can fall into the following groups of classification:

Lang: Temperate warm to semiarid De Martonne: Subhumid to humid Emberger: Humid Bagnouls/Gaussen: Axeric cold to axeric temperate UNEP: Humid

Rating of drought is a very sensitive item of the SQR. Therefore, in Tables 3.3.7.-2 to 4, different orientation guides are given.

Note: Drought can also be rated 1.5 or less in case of PAW ratings of 2. Loess soil in a sub-humid or semi-arid climate (Chernozems, for example) may have 220-250 mm of PAW (optimum score of 2), but a drought risk score of 1.5.

Fig. 3.3.7.-1: Soils prone to both flooding and drought are typical of many regions in semi-arid and arid zones. Location in Queensland, Australia

Long-term soil water regime and vegetation provide also potential indicators of drought, like the Grassland "Wasserstufe" of the German soil rating system (in AG Boden, 2005, p. 319). Wasserstufe values of 4- and 5- or Ellenberg values less than 4 indicate dry soils in Central Europe. If the climate is between humid and sub-humid conditions (many landscapes east of the Elbe river in Central Europe) and the profile available water (see basic indicator 6) is lower than 120 mm, a certain drought risk of score 1.5 can be expected.

Table 3.3.7	'1:	Scoring	of dre	ought	risk
-------------	-----	---------	--------	-------	------

Score	Characteristic	Multiplier arable land	Multiplier grassland
2	No risk of drought	3	3
1.5	Low risk of drought	2.5 - 3	2 - 3
1	Medium risk of drought	1 - 2.5	1 - 2
0.5	High risk of drought	0.1 - 1	0.5 - 1
0	Extreme high risk of drought	< 0.1	< 0.5

Score	Water budget mm ¹⁾	Climatic water balance in the main vegetation period of 4 months ^{2,3)}	Benefit of irrigation	Water regime classes of Soil Survey Manual 4)
2	> 500	> -100	None to low	Udic (or wetter)
1.5	350 - 500	-100200	Moderate	Ustic
1	200 - 350	-200300	High	Xeric
0.5	100 - 200	-300500	Very high	Aridic
0	< 100	< -500	Extremely high	Aridic

Table 3.3.7.-2: Orientation guide of drought risk

¹⁾ During the main vegetation period of 4 months, WB = Effective Precipitation (sum of daily P > 2 mm) plus PAW (storage capacity plus groundwater supply) plus irrigation ²⁾ Precipitation minus FAO-PM Grass reference ET (Allen et al., 1998)

³⁾ Climatic criteria of Table 3.3.7.-3 give orientation for rain-fed cropping and zonal soils, not for soils under irrigation and not for soils influenced by groundwater. In case of irrigation the actual water budget and its risk of deficiency have to be taken into consideration.

⁴⁾USDA/NRCS, 2005

Fig. 3.3.7.-2 Global orientation of soil moisture regime classes, map adopted from USDA/NRCS (2007)
Score	Probability of the occurrence of a dry month ²⁾	Aridity index acc. to De Martonne ³⁾	Bailey moisture index ⁴⁾	Ombrothermic index lo ⁵⁾ of Rivas- Martínez, 1997
2	< 10 %	> 30 (humid)	> 8.7 (humid and perhumid)	>7 (humid and hyperhumid)
1.5	10 - 20 %	20 - 30 (subhumid)	6.4-8 (moist subhumid)	3.6-7 (subhumid)
1	> 20 %	15 - 20 (semiarid)	4.7-6.4 (dry subhumid)	2-3.6 (dry)
0.5	> 20 % and more than 1 month	5 - 15 (arid)	2.5-4.7 (semi- arid)	1-2 (semiarid)
0	> 50 % and more than 1 month	< 5 (extremely arid)	< 2.5 (arid)	< 1 (arid and hyperarid)

Table 3.3.7.-3: Orientation guide of drought risk, continuing ¹⁾

¹⁾ Climatic criteria only for rain-fed cropping and zonal soils, not for soils under irrigation and not for soils influenced by groundwater

²⁾ Dry month acc. to Bagnouls/Gaussen: P < T/2, where P = monthly sum of precipitation in mm and T = monthly mean temperature in °C, within the main vegetation period

period ³⁾ AI = [P/(T + 10) + 12 p/(t + 10)]/2, P = annual precipitation, T = mean annual temperature, p = precipitation of the driest month, t = temperature of the driest month ⁴⁾ Bailey moisture index Si = Sum of months 1 to 12 (0.18 p/1.045**t), where p = monthly

precipitation, t = monthly temperature in °C $^{5)}$ Io = Pp * 10/Tp. The quotient resulting from the value of the yearly precipitation in mm of the months with average temperature higher than 0 °C divided by the value, expressed in centigrade degrees resulting from the total of the monthly average temperatures higher than 0 °C.

Score	Main biomes
2	Tundra, Alpine, Boreal forest (Taiga), Temperate forest, Tropical rain forest
1.5	Temperate Grassland
1	Mediterranean, Chaparral, Savanna
0.5	Desert-scrub
0	Desert

Fig. 3.3.7.-3 Global orientation of biomes, map adopted from USDA/NRCS (2007)

Fig. 3.3.7.-4: Spatial variability of drought. Growing of cereals in a local depressional area by using surface recharge flow from adjacent hills. Recharge of > 100 mm/yr improves the water budget. Surrounding grassland without water surplus suffers from drought. "Brown soils" from Colluvium. Location near Pune, state of Maharashtra, India

Fig. 3.3.7.-5: In case of irrigation the current soil moisture regime due to irrigation management determines the soil water capacity and the drought risk. Additionally the SQ without irrigation should be scored. Location Niedergoersdorf, vicinity of Berlin, Germany. Soils are Haplic Luvisols and **Eutric Cambisols, texture loamy** sand. At this location sprinkler irrigation eliminates the slight drought risk completely; the basic water capacity score is at

optimum of 2 and no more drought risk. As no further hazard occurs, the multiplier is at maximum of 3 (2.94). Without irrigation the basic score of water capacity is at sub-optimum of 1, the hazard score would be 1.5 and the multiplier would be lower, around 2.6. Total SQR-score of the soil is 80 with irrigation and 67 without irrigation.

Another very rough orientation for scoring drought risk related to Koeppen climatic zones is given in the later section 3.3.12.

3.3.8. Flooding and extreme waterlogging

Susceptibility to flooding (including inundation and extreme wetness due to permanent high water tables or perched water) imposes a serious limitation to farming, especially to cropping. Assessment of potential frequency, severity and duration of flooding is difficult and requires long-term knowledge about the site. In Western and Central Europe most rivers have intact constructed levees and the risk of flooding is mainly restricted to the recent floodplain. The flooding risk depends on the relative height of the soil above the river level.

Outside of floodplains, due to moderate rainfall distribution in the temperate climate, the inundation risk of soils in the landscape is limited to some lowlands and depressions.

Risk assessment includes both the flooding probability and the possible severity/damage.

Soils in bottomlands and/or in high rainfall areas may suffer from extreme waterlogging, which can farming affect very adversely or make impossible. A clear benefit of land drainage is an indirect parameter of extreme waterlogging.

The following Tables 3.3.8.-1 to 4 provide a frame for scoring hazard by flooding or extreme waterlogging. In case of occurrence of combinations of extreme waterlogging with flooding risk, the lowest score or a score of a class deeper is possible.

Score	Characteristics of flooding regime	Characteristics of extreme waterlogging	Multiplier arable land	Multiplier grasslan d
2	No or low risk of flooding (< 5 %)	Low or moderate level of waterlogging	3	3
1.5	Low risk of flooding (< 10 %) and/or short inundation (< 20 days) at the beginning of the vegetation period ²⁾	Occurrence of surface water (ponding) for longer time in the vegetation period, Ground or perched water dominating the topsoil for more than 20 days in the vegetation period	1 - 3	2.5 - 3
1	Medium risk of flooding (10-20 %) and/or longer inundation (2040 days) at the beginning of the vegetation period	Very long period of wetness, ground or perched water occupying the topsoil for more than 60 days in the vegetation period	0.5 - 1	2 - 2.5
0.5	High probability of flooding (20-50 %) and/or longer inundation (40-90 days) at the beginning of the vegetation period	Very long wetness period	< 0.5	1 - 2
0	Extremely high probability of flooding (> 50 %) and/or longer inundation (> 90 days) at the beginning of the vegetation period	Extreme waterlogging, cropping impossible, only a short growing period for grassland	< 0.1	< 1

Table 3.3.8.-1 : Scoring of flooding hazard risk or extreme waterlogging ¹⁾

¹⁾ Flooding and extreme waterlogging should be rated independently. If both occur, the lowest rating or a score one class deeper is recommended

²⁾ If inundation occurs later in the vegetation period, inundation damage is higher and the allowable length for this score has to be cut in half for the next three months, for example: Vegetation period starts in March, and inundation is in March, than inundation of 20 days possible, if inundation is in April, only 10 days possible, if inundation is in May, only 5 days, June, July, August and September (end of main vegetation period) 2-3 days

Fig. 3.3.8.-1: Flooded Grassland meadow soils; WRB: Gleyic Fluvisols (Arenic); along the Oder river, (flood hazard risk score 0.5, multiplier 1.5), Location: Oderbruch region, Germany

Table 3.3.8.-2: Orientation guide of scoring flooding risk

Score	Inundation frequency and duration (based on Soil Survey Manual, chapter three ¹⁾)	Examples in floodplain areas
2	None or rare (Less than 5 times in 100 years) and brief (less than 2 days)	Soils outside of levees or highlevel terraces
1.5		Dune ridges, sand plains above general level of terrace plain
1	Occasional (5 to 50 time in 100 years) and long (1 week to 1 month)	Gullies, scoured drainage zones and prior stream channels within midlevel terraces
0.5		Low terraces including drainage zones and shallow ridges
0	Frequent (> 50 times in 100 years) and very long (> 1 month)	Immediate river margins, very low terraces

¹⁾ http://soils.usda.gov/technical/manual/contents/chapter3c.html#28

Table 3.3.8.-3: Orientation guide of scoring extreme waterlogging

Score	Water regime classes of Soil Survey Manual	Benefit ¹⁾ of land drainage
2	Udic or drier	None to low
1.5	Perudic	Moderate
1	Aquic	High
0.5	Peraquic	Very high
0	Peraquic	Extremely high

¹⁾ Benefit in terms of crop yield increase and better soil management

Table 3.3.8.-4: Orientation matrix of scoring extreme waterlogging by perched water (based on classes of the Soil Survey Manual, Chapter Three, Table 3-5)¹⁾

Cumulative annual pattern / Depth	Very Shallow (SV) < 25 cm	Shallow (S) 25 to 50 cm	Moderately Deep (DM) 50 cm to 1 m	Deep (D) 1.0 to 1.5 m	Very Deep (DV) > 1.5 m
Absent (A) Not observed	2	2	2	2	2
Very Transitory (TV) Present <1 month	1	1.5	2	2	2
Common (C) Present 1 to 3 months	1	1	1	1.5	2
Transitory (T) Present 3 to 6 months	0.5	0.5	1	1	2
Persistent (PS) Present 6 to 12 months	0	0.5	0.5	1	2
Permanent (PM) Present Continuously	0	0	0.5	1	2

¹⁾ http://soils.usda.gov/technical/manual/contents/chapter3c.html#28

3.3.9. Steep slope

Slope is a landscape property of particular importance for agricultural land use. Considering good agricultural practice, low to moderate gradient can provide farming without hazard to soil, whilst steep slopes can lead to the complete loss of soil by erosion or landslide. This possible hazard is being considered in the second rating of the slope.

Loss of soil due to erosion by water or tillage is a major problem associated with slope. Erosion hazards are caused by a combination of climate, vegetation cover and agricultural practices (EEA, 2000, Eswaran et al., 2001). The risk of water erosion was considered indirectly by slope gradient rating (section 3.2.8).

Fig. 3.3.9.-1: Gully erosion on steep land in a tropical humid environment. Acrisol soil landscape,

Location Pinheiral, State of Rio de Janeiro, Brazil.

Fig. 3.3.9.-2: Farmland use of very steep slopes can lead to landslide (slip) erosion. Intact deep A-horizons at very different slope positions at this site show slip erosion appeared for the very first time since cultivation. Location: Pohangina, Manawatu, New Zealand.

Score	Arable land gradient %	Grassland gradient %	Multiplier
2	< 12	< 30	3
1.5	12 - 18	30 - 40	2.5 - 3
1	18 - 27	40 - 50	2 - 2.5
0.5	27 - 36	50 - 60	1 - 2
0	> 36	> 60	< 1

Table 3.3.9.-1: Scoring of hazard from slope

Table 3.3.9.-2: Recommendation values of multipliers for slope gradient classes acc. to Guidelines, 2006, Table 7, p. 12

Slope gradient class	Description	Slope gradient Percent	Multiplier arable land	Multiplier grassland
< 07	Sloping to flat	5-10	3	3
07	Strongly sloping	10-15	2-3	3
08	Moderately steep	15-30	1-2	3
09	Steep	30-60	< 1	1-3
10	Very steep	> 60	0	< 1

3.3.10. Rock at the Surface

Rock outcrops or stones and boulders at the surface create cultivation hazard. They hinder the agricultural use of soil for cropping in particular. The damage to pastoral grazing is much less.

Table 3.3.10.-1: Scoring of stones and boulders at the surface (related to Soil Survey Manual (USDA/NRCS, 2005) Chapter 3, Table 3-12.) ¹⁾

Score	Characteristic	Percentage	Orientation guide of Soil Survey Manual ¹⁾	Multiplier arable land	Multiplier grassland
2	No stones or boulders at the surface	< 0.01		3	3
1.5	Low to moderate stony or bouldery	0.01 - 0.1	Class 1	2 - 3	2.8 - 3
1	Very stony or very bouldery	0.1 - 3.0	Class 2	1 - 2	2 - 2.8
0.5	Extremely stony or extremely bouldery	3.0 - 15	Class 3	< 1	1.5 - 2
0	Very rubbly	> 15	Class 4 - 5	< 0.5	< 1.5

¹⁾ http://soils.usda.gov/technical/manual/contents/chapter3e.html#54

Fig. 3.3.10.-1: Left part: Extremely shallow soils and rock at the surface. Score 0, multiplier grassland < 1. Association of Nudilithic and Lithic Leptosols with Leptic and Colluvic Regosols, Location near Pune, state of Maharashtra, India

Fig. 3.3.10.-2: Extremely high proportion of stones at the surface limits SQ for grassland use (score 0, multiplier < 1). Hyperskeletic Leptosol. Location in Canterbury, New Zealand.

3.3.11. High percentage of coarse soil texture fragments (> 2 mm)

Coarse fragments limit the effective surface of soil particles and may diminish the storage of water and nutrients and the filtering and buffer function of soils. On cropping land, the total management may be hampered. Growing rootcrops may be difficult or impossible.

On the other hand, on very shallow soils, a certain proportion of coarse material may be advantagous to provide a minimum of rooting depth.

Score	Characteristics	Orientation guide % by mass ¹⁾	Multiplier arable land 2)	Multiplier grasslan d
2	Low percentage of coarse fragments	< 15	3	3
1.5	Moderate	15-40	2 - 3	2.5 - 3
1	High proportion of coarse fragments	40-60	1 - 2	2 - 2.5
0.5	Very high proportion of coarse fragments	60-85	0.5 - 1	1.5 - 2
0	Extremely high proportion of coarse fragments, mainly angular shape and fraction > 63 mm	> 85	< 0.5	< 1.5

Table 3.3.11.-1: Scoring of coarse soil texture fragments (> 2 mm)

¹⁾ Related to classes of AG Boden, 2005, Table 33, p. 150, values refer to the rooting zone

²⁾ Within a class, higher multipliers in case of smaller fractions, round aggregates and a more humid climate, and smaller multipliers if fraction is coarser, blocky or non-natural (e.g. construction waste), and climate is dry

3.3.12. Unsuitable soil thermal regime

The soil thermal regime is important for all physiological processes of plants. On grassland and rangeland, species were able to adapt to the thermal conditions. Cropping of annual plants requires critical minimum temperatures for all stages of development. Most grasses germinate at temperatures > 5 °C and many arable crops germinate and grow at temperatures > 10 °C. An upper limit of soil temperatures for adequate farming seems to exist with temperatures > 30 °C, exceeding this limit is thus detrimental for plant growth. High fluctuations of temperature in combination with other hazards which occur in semi-desert and desert regions are more important for the potential of soil for farming. Temperature recordings of the air thermal regime (e.g. climate data) are proper indicators of the soil thermal regime. The length of both the vegetation period and the frost free period are direct agro-climatic constraint for cropping, but also an indirect indicator of the soil thermal regime.

Modifications may be considerably determined by the snow cover in winter. Even under very harsh climate conditions snow can protect soils against deep freezing and provide acceptable conditions of cropping.

Table 3.3.121: Scoring of soil thermal regime (related to Soil Survey Manual,
USDA/NRCS, 2005, and Guidelines, 2006, p. 88-90.)

Score	Characteristics	Multiplier arable land	Multiplier grasslan d
2	Suitable or moderate regime, frost free period > 140 days	3	3
1.5	Slightly too cold or too hot	2.5- 3	3
1	Too cold or too hot	1-2.5	1.5-3
0.5	Very cold, very short vegetation period or too hot	0.5-1.5	1-1.5
0	Extremely cold, permafrost or extremely hot	< 0.5	< 1

Table 3.3.12.-2: Orientation guide of multipliers for temperature regime classes of Soil Survey Manual

Soil moisture regime	Multiplier arable land	Multiplier grassland
Pergelic	< 1	< 1.5
Cryic	1-2.5	1.5-3
Frigid	2.5-3	2.5-3
Isofrigid	2.5-3	3
Mesic	3	3
Isomesic	3	3
Thermic	3	3
Isothermic	3	3
Hyperthermic	3	3
Isohyperthermic	3	3

Table 3.3.12.-3: Orientation guide of scores for the soil thermal regime

Score	Duration of frost-free period (days) ¹⁾	Main biomes	Mean annual temperature for grassland in the temperate climate, ° C ²⁾
2	> 140	Tropical rain forest, Temperate forest, Mediterranean, Savanna, Temperate Grassland	> 8
1.5		Forest steppe in Asia	< 8
1	90-140	Boreal forest	< 5
0.5			< 3
0	< 90	Tundra	< 1

¹⁾ Within the 6 warmest months (vegetation period)
 ²⁾ Orientation for mountain regions within the temperate climate only

Fig. 3.3.12.1: Global orientation of the soil thermal regime, map adopted from USDA/NRCS (2007)

Table 3.3.124: Orientation	uide of drought and soil thermal regime scores fo
Koeppen climatic zones ¹⁾	

Climatia zono		Drough	nt score	Thermal regime score	
Climatic zone		Arable land	Grass- land	Arable land	Grass- land
Tropical (Af) (tr	opical wet)	2	2	2	2
Monsoon (Am)	(tropical monsoon)	1.5	1.5	2	2
Courses	As	0.5	1	2	2
Savanna	Aw	1	1.5	2	2
A ni al	BWh (desert hot)	0	0	1	1
Aria	BWk (desert cold)	0	0	1	1
Comi orid	BSh Subtropical (warm) Steppe	0	0.5	2	2
Semi-arid	BSk Midlatitude (cool) Steppe	0.5	1	1.5	1.5
L Lu una i al	Cfa Humid Subtropical Year- Round Wet	2	2	2	2
subtropical	Cwa (moist, dry winters, long hot summer) Humid Subtropical Winter-Dry	0.5	1	2	2

	Cile (maritima tamparata maiat				
	all year, mild winters, long cool summers)	2	2	2	2
Oceanic	Cwb	1.5	1.5	2	2
	Cfc subpolar oceanic (moist all year, mild winters, short cool summers)	2	2	1.5	1.5
Moditorrangan	Csa (moist, mild winter, long hot dry summer)	0.5	1	2	2
Mediterranean	Csb (moist mild winters, long cool summers)	1	1.5	2	2
	Dfa (moist all year, cold winters, long hot summers)	1	1.5	1.5	1.5
Humid	Dwa Humid Continental Winter- Dry	1.5	1.5	1.5	2
commental	Dfb (moist all year, cold winters, long cool summers)	2	2	1.5	1.5
	Dwb	1.5	2	1.5	2
	Dfc (moist all year, cold winters, short cool summers)	2	2	0.5	1
Subarctic	Dwc	1.5	2	1.5	2
	Dfd	2	2	0.5	1
	Dsa	0.5	1	1.5	2
High-altitude Moditorranoan	Dsb	1	1.5	2	2
Mediterranean	Dsc	1.5	1.5	2	2
Subarctic Winte	1	1.5	0.5	0.5	
Polar	ET (polar tundra)	1.5	2	0	0
rulai	EF (polar icecap)	1	1	0	0
Alpine (ETH)		1.5	2	0	0.5

¹⁾ For global orientation see also the World Map of the Koeppen-Geiger climate classification by Kottek et al., 2006

3.3.13. Miscellaneous hazards

Examples of further hazards to soils and farming are: Subsidence of organic soils, streambank erosion, frost action and gypsum at the surface (Muckel, 2004). They may be also rated according to the common criteria of Table 3.3.13.-1. Another hazard, wind erosion is a big concern to human and environment. The occurrence is more related to soil management and rating is thus part of the VSA method (Shepherd, 2000) which is recommended to be performed in combination with the SQR method. In case of serious deflation of the soil or depositiony (dune formation with burying the current soil) this can be rated as a hazard acc. to Table 3.3.13.-1. A rule of thumb is that pure sandy soils (clay < 5%, silt < 10%) have a very high wind erosion risk if the annual average of windspeed at 10 above the ground is higher than 3 m/s. If soils are sandy-silty (clay < 8%, silt < 50%) the wind erosion risk is classified as very high at windspeeds > 5 m/s (Deutsche Norm, DIN 19706, 2004).

Also, common soil erosion by water can be scored if the slope gradient is less than 12 % (cropping land) or 30 % (grassland) and distinct soil erosion is evident. For example soils in "Thalways" are prone to erosion at very weak gradients.

Just water erosion risk assessments are scale-dependent and may extremely differ between nations and continents. For example, the classification of prime farmland (Soil Survey Staff, 1993, 2006) permits a criterion of erodibility $K^*S= <2$ (K=soil factor, S=slope factor). In Germany, the potential risk of water erosion is classified as very high if $K^*S > 0.3$ (Deumlich et al, 2007). At a given Loess soil prone to erosion of K= 0.5 the acceptable slope gradient would be 22 % (prime farmland criterion) or 12 % (criterion in Germany, matching to Table 3.3.9.-1).

The list of hazard factors is extendable as from the conception the lowest multiplier will be valid.

Fig. 3.3.13.-1: Streambank erosion at 1999 flood. Location in Canterbury, New Zealand

 Table 3.3.13.-1: Scoring of Miscellaneous hazards

Score	Characteristic	Multiplier arable land	Multiplier grassland
2	No	3	3
1.5	Low	2 - 3	2.5 - 3
1	Medium	1 - 2	2 - 2.5
0.5	High	0.5 - 1	1 - 2
0	Very high	< 0.5	< 1

3.4. Rules of final rating

In general, the lowest hazard multiplier will be multiplied with the basic score. If two ore more hazard indicators are sub- optimum, final ratings should follow Table 3.4.1.

Number of sub- optimum Hazard Indicators (rating < 2)	Remarks	Rule
1		Basic score * hazard multiplier
2	Both have same rating	Basic score * multiplier of the most serious indicator,
		Multiplier less than average within the range

Table 3.4.-1: Rules of final rating

2	Both different	Basic score * lowest hazard multiplier
3	No steep slope	Basic score * multiplier of the most serious
		indicator,
		Multiplier at minimum of the range
3	Steep slope	Basic score * multiplier of the most serious
		indicator,
		Multiplier in the range of 1 rating class deeper
4 or more	No steep slope	Basic score * multiplier of the most serious
		indicator,
		Multiplier in the range of 1 rating class deeper
4 or more	Steep slope	Basic score * multiplier of the most serious
		indicator,
		Multiplier in the range of 2 rating classes deeper

3.5. Diagnostic check of the results

In a final stage of rating the results in terms of SQR score and classes of soil quality should experience a diagnostic check to avoid misclassifications (Table 3.5.1.).

Table 3.5.1:	Diagnostic	check of	the	final	rating	score	(SQR	score) o	of d	cropping
land										

SQR score	Soil quality	Criteria to meet		
	assessment			
< 20	Very poor			
20-40	Poor	- Save cropping of a main basic crop ⁴⁾		
40-60	Moderate	- Criteria of unique farmland ¹⁾		
		- Save cropping of corn ³⁾		
60-80	Good	- Criteria of farmland of statewide importance ¹⁾		
		- Save cropping of winter wheat in Eurasia and		
		Northern America		
> 80	Very good	- Criteria of prime farmland ¹⁾		
		- Acceptable risk of water and wind erosion ²⁾		
		- Save cropping of maize for corn		

¹⁾ http://en.wikipedia.org/wiki/Prime_farmland, Soil Survey Staff (1993). Soil Survey Manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. Retrieved on 2006-08-30. ²⁾ Soil loss less than tolerable limit, for example methodics of water erosion risk assessment acc. to Deutsche Norm, DIN 19708 (2005) and Bavarian LfL (2004), wind erosion acc. to Deutsche

Norm, DIN 19706 (2004)

³⁾ Cereal of highest local importance (maize, wheat, barley, rye, millet and others)

⁴⁾ Crop adapted to local conditions that provides subsistence farming (basic food of humans, for animal husbandry or a cash crop like potato, buckwheat or others)

4. Outlook

The Muencheberg SQR is an empirical rating system. The approach presented here has been developed and tested in the temperate climatic zone.

As the method includes the majority of soil hazard properties occurring worldwide, their validity should cover a larger range of soils suitable for cropping or grazing in different climatic zones and can thus provide a comparison of soil quality over large areas.

Sufficient correlations of the rating score with the crop yield potential are to be expected within climatic subzones and at a defined level of farming.

Fig. 4.-2: Prime farmland soil for cropping. Haplic Chernozem (Siltic) from loess. Basic score 32, No hazard limitations, Multiplier= 2.94, Total SQR score 94. Location Rossdorf near Marburg, Germany

Fig. 4.-1: Extremely acid and sulphurcontaminated soil, not suitable for farmland. Only extremely adapted native brushes (*Leptospermum scoparium*, Manuka) can grow.

Basis score = 14, Hazard score = 0, Multiplier < 0.05 (0.01), Total SQR score = 1. Thionic Leptosol.

Location: Rotorua, New Zealand

The approach has potential for modifications at different levels of evaluating soil properties.

Authors appreciate field tests on feasibility of this system worldwide. They are hopeful on applicability at different regions and spatial scales because of its simplicity, robustness and relatively fast handling.

A note on further orientation guides:

The World Resources Map index (USDA/NRCS, 2005,

(http://soils.usda.gov/use/worldsoils/mapindex/) gives a rough orientation on Global Soil Temperature Moisture Regimes, Soil Regions, Biomes and Risks of land use. The FAO has similar data available (FAO, 2000: Global Agro-Ecological Zones).

If sites have been classified by WRB, 2006, Appendix 2 of this manual will provide a list of orientation scores according to soil reference groups and their qualifiers.

Acknowledgements

Mrs. Ute Moritz provided data management and the layout of the front and back covers. Photographs in the section "Field Procedure" were contributed by Mr. Andre Schwarz, Potsdam.

Authors appreciate their thanks for this work.

REFERENCES

Abrol, I.P., Yadav, J.S.P., Massoud, F.I. (1988): Salt-Affected Soils and their Management. FAO soils bulletin 39, Food and Agriculture Organisation of the United Nations, Rome,

(http://www.fao.org/documents/show_cdr.asp?url_file=/docrep/x5871e/x5871e05.htm).

AG Boden (2005): Bodenkundliche Kartieranleitung (KA5), 5th ed. Hannover, 432 pp.

Al-Kaisi M. (2001): Soil Erosion, Crop Productivity and Cultural Practices., Iowa State University Extension (http://www.extension.iastate.edu/Publications/PM1870.pdf)

Allen, R.G., Pereira, L.S., Raes, D., Smith, M. (1998): FAO Irrigation and Drainage Paper 56. Crop Evapotranspiration: Guidelines for computing crop water requirements. Food and Agriculture Organisation of the United Nations, Rome, 300 p.

Asner, G.P., Heidebrecht, K.B. (2005): Desertification alters regional ecosystem-climate Interactions. Global Change Biology 11, 182-194.

Bavarian LfL (2004): Bodenerosion, Information, 8 p.

Bui, E. N., Henderson, B. L. (2003) Vegetation indicators of salinity in northern Queensland. Austral Ecology 28 (5), –. doi:10.1046/j.1442-9993.2003.01311.x

Bolan, N. S., Adriano, D.C., Curtin, D. (2003): Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability Advances in Agronomy Volume 78, 215-272.

Cannavacciuolo, M., Bellido, A., Cluzeau, D., Gascuel, C., Trehen, P. (1998): A geostatistical approach to the study of earthworm distribution in grassland. Applied Soil Ecology 9, 345-349.

Den Biggelaar, C., Lal, R., Wiebe, K., Breneman, V. (2003): The Global Impact of Soil Erosion on Productivity. I: Absolute and Relative Erosion-induced Yield Losses. Advances in Agronomy, Volume 81, 1-48.

Department of Agriculture, Western Australia, Soil salinity tolerance of plants for agriculture and revegetation, Salinity measurement, monitoring and equipment, (http://www.agric.wa.gov.au/servlet/page?_pageid=449&_dad=portal30&_schema=POR TAL30&p_start_url=/pls/portal30/docs/FOLDER/IKMP/LWE/SALIN/SMEAS/PLANT_SA LT_TOLERANCE.HTM)

Deumlich, D., Kiesel, J., Thiere, J. (2007): Methoden zur Regionalisierung von Standortkennzeichnungen und –beurteilungen und ihre Anwendung. - In: Agrarinformatik im Spannungsfeld zwischen Regionalisierung und globalen Wertschöpfungsketten : Referate der 27. GIL Jahrestagung ; 5. - 7. März 2007 in Stuttgart, Germany: 51-54; Bonn

Deutsche Norm, DIN 19706 (2004): Soil quality – determination of the soil exposure risk from wind erosion, May 2004, 14 p.

Deutsche Norm, DIN 19708 (2005): Soil quality - predicting soil erosion by water by means of ABAG, February 2005, 25 p.

Diez, T., Weigelt, H. (1997): Bodenstruktur erkennen und beurteilen, Anleitung zur Bodenuntersuchung mit dem Spaten. Sonderdruck diz agrarmagazin. Bayer. Landesanstalt fuer Bodenkultur und Pflanzenbau, Freising-Muenchen. 2. Auflage, 16 S.

EEA (2000): Down to earth: Soil degradation and sustainable development in Europe. A challenge for the 21st century. Environmental issue series No 16. European Environment Agency EEA, Copenhagen

(http://reports.eea.eu.int/Environmental_issue_series_16/en/envissue16.pdf).

ELLENBERG'S INDICATOR VALUES FOR BRITISH PLANTS, online: http://science.ceh.ac.uk/products_services/publications/online/ECOFACT/vol2apdf/ellen berg.pdf

Ellenberg, H., Weber, H.E., Duell, R., Wirth, V., Werner, W., Paulissen, D. (2001): Zeigerwerte von Pflanzen in Mitteleuropa: Indicator values of plants in Central Europe, Goettingen: Goltze, 3., durchges. Aufl., 262 S. (Scripta Geobotanica; 18).

FAO (2000): Global Agro-Ecological Zones - 2000. Food and Agriculture Organisation of the United Nations. Rome, Italy, International Institute for Applied Systems Analysis, Laxenburg, Austria (http://www.fao.org/landandwater/agll/gaez/index.htm).

Fischer, G., van Velthuizen, H., Shah, M., Nachtergaele, F. (2002): Global Agroecological Assessment for Agriculture in the 21st Century: Methodology and Results, In: RR-02-02, January 2002, (http://www.iiasa.ac.at/Research/LUC/SAEZ/index.html)

Guidelines for soil description (1990): FAO, Rome, 3rd edition (revised) 70 p. Guidelines for soil description (2006): FAO, Rome, 4th edition, 95 p.

Eswaran, H., Lal, R., Reich, P.F. (2001): Land Degradation: An overview (http://soils.usda.gov/use/worldsoils/papers/land-degradation-overview.html).

Gaussen, H. (1963): Bioclimatic map of Mediterranean Zone. UNESCO, Paris, Arid Zone Research, 21.

Harrach, T., Kuhn, W., Zoerb, H. (1999): Klassifizierung von Gefuegekennwerten zur Abgrenzung und Beurteilung von Schadverdichtungen nach wurzeloekologischen Kriterien. Mitteilgn. Dtsch. Bodenkundl. Gesellsch. 91 (3), 1217-1220.

Hillel, D., Rosenzweig, C. (2002): Desertification in relation to climate variability and change Advances in Agronomy, Volume 77, 1-38.

INRA/ISTRO - report 2005: Field meeting "Visual soil structure assessment", held at the INRA research station, Estrees-Mons, France, 25-27 May 2005, detailed report, 24p.

Kay, B.D., Angers, D.A. (2000): Soil Structure. In: Sumner, M. E. (edt): Handbook of Soil Science, Chapter A-229-276, CRC press, 1st edition, 2000

Kottek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. (2006): World Map of the Koeppen-Geiger climate classification updated. *Meteorol. Z.*, **15**, 259-263.

DOI: 10.1127/0941-2948/2006/0130.

Kotuby-Amacher, J., Koenig, R., Kitchen, B. (1997): SALINITY AND PLANT TOLERANCE, Utah State University, July 1997, (http://extension.usu.edu/files/agpubs/salini.htm)

Lichtfuss, R. (2004): Bodenkundlich- sensorische Ansprache von Bodenproben. Bodenschutz 1/04, 21-24

Lobell, D.B., Asner, G.P. (2003): Climate and Management Contributions to Recent Trends in U.S. Agricultural Yields. Science. 14 February 2003: 1032.

Martonne E. de (1923): Areisme et indices d'aridité. Academié des Sciences, Comptes Rendus, 182 (23): 1395-1398.

McKenzie, D.C. (2001): Rapid assessment of soil compaction damage I. The SOILpak score, a semi-quantitative measure of soil structural form. Australian Journal of Soil Research 39 (1) 117-125

McKenzie, D.C., Bernardi, A. L., Chan, K.Y., Nicol, H.I., Banks, L.W., Rose, K.L. (2002): Sodicity v. yield decline functions for a Vertisol (Grey Vertosol) under border check and raised bed irrigation. Australian Journal of Experimental Agriculture 42 (3): 363-368.

Muckel, G.B. (editor), (2004): Understanding Soil Risks and Hazards. Using Soil Survey to Identify Areas With Risks and Hazards to Human Life and Property, United States Department of Agriculture, Natural Resources Conservation Service, National Soil Survey Center, Lincoln, Nebraska,

(ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Risks/risk_low_res.pdf)

Mueller, L., Shepherd, T. G., Schindler, U., Eulenstein, F., Behrendt, A. (2005): Test of field methods to assess soil quality under arable and grass land. DBG Mitteilungen, Band 107. 507-508.

Nelhiebel, P., Pecina, E., Baumgarten, A., Aust, G., Pock, H. (2001): Exkursion K1, Die Boeden des Naturraumes Neusiedler See (Burgenland). In: DBG Mitteilungen, Band 94. 77-91, p. 88.

Pedosphere.com (2001): Searchable Keys to Soil Taxonomy, Eighth Edition [Online WWW]. Available URL: http://www.pedosphere.com/resources/sg_usa/

Peerlkamp, P. K. (1967): Visual estimation of soil structure. In: de Boodt, Frese, Low and Peerlkamp (Eds), West European Methods for Soil Structure Determination. Ghent, Belgium, State Faculty Agric. Sci. 2, 11, 216-223.

Penkov, M., Mueller, L. (2001): Properties, degradation risks and rehabilitation possibilities of heavy soils in Bulgaria. Archives of Agronomy and Soil Science, 46, 493-516.

Rivas-Martínez, S. (1997) Syntaxonomical synopsis of the North America natural potential vegetation communities, Itinera Geobotánica 10: 5-148

Rivas-Martínez, S. (2004): Other bioclimatic indices Worldwide Bioclimatic Classification System, Phytosociological Research Center, Spain,

(http://www.ucm.es/info/cif/form/indices.htm).

Sadras, V.O., Calviño, P.A. (2001): Quantification of Grain Yield Response to Soil Depth in Soybean, Maize, Sunflower, and Wheat. *Agronomy Journal* 93: 577-583

Schindler, U., Thiere, J., Steidl, J., Mueller, L. (2004): Bodenhydrologische Kennwerte heterogener Flaecheneinheiten - Methodik der Ableitung und Anwendungsbeispiel fuer Nordostdeutschland. Wissenschaftlicher Fachbeitrag. Landesumweltamt Brandenburg. Potsdam, Heft 87, Bodenschutz 2, 56 S.

Schindler, U., Steidl, J., Mueller, L., Eulenstein, F., Thiere, J. (2006): Drought risk of farmland in Northeast and Central Germany

Shepherd, T. G. (2000): Visual soil assessment. Volume 1. Field guide for cropping and pastoral grazing on flat to rolling country. Horizons.mw/Landcare Research, Palmerston North. 84 p.

Singer, M. J., Ewing, S. (2000): Soil Quality. In: Sumner, M. E. (edt): Handbook of Soil Science, Chapter G-271-298, CRC press, 1st edition, 2000

Sun, D.-F., Li, H., Dawson, R., Tang, C.-J., Li, X-W. (2006): Characteristics of Steep Cultivated Land and the Impact of the Grain-for-Green Policy in China. Pedosphere 215-223.

Surina, B. (2001). Soils of Danube Lowland. DBG Mitteilungen No. 94, 294-317

Taylor, H.M., Gardner, H.R. (1963): Penetration of cotton seedling taproots as influenced by bulk density and, moisture content, and strength of soil. Soil Sci. 96(3): 153-156.

Timlin, D.J., Pachepsky, Y., Snyder, V.A., Bryant, R.B. (2001): Water budget approach to quantify corn grain yields under variable rooting depth. Soil Sci. Soc. Am. J. 65: 1219-1226.

Tjumenzev, N.F. (1975). Custhnost bonitirovki potsv na genetiko- proisvodsvennoj osnove. Isdatelstvo Nauka 1975, 140 p.

USDA, (2005): U.S. Department of Agriculture, Natural Resources Conservation Service: National Soil Survey Handbook, title 430-VI. (http://soils.usda.gov/technical/handbook/)

USDA/NRCS (2005): United States Department of Agriculture, Natural Resources Conservation Service, World Resources Map index (USDA/NRCS, 2005, online source: (http://soils.usda.gov/use/worldsoils/mapindex/)

USDA/NRCS (2005): United States Department of Agriculture, Natural Resources Conservation Service, Soil Survey Manual.1993, updated 2005. online source: http://soils.usda.gov/technical/manual/

USDA/NRCS (2005): Soil Survey Manual, Chapter Three, online source: http://soils.usda.gov/technical/manual/contents/chapter3e.html#54

USDA/NRCS (2007) World Soil Resources Map Index, online http://soils.usda.gov/use/worldsoils/mapindex/index.html

Vaughan, L.V., MacAdam, J.W., Smith, S.E., Dudley, L.M. (2002): Root Growth and Yield of Differing Alfalfa Rooting Populations under Increasing Salinity and Sero Leaching Crop Science 42: 2064-2071.

Victorian Resources online. 2007. Statewide - Spotting Soil Salinity Plant List, http://www.dpi.vic.gov.au/dpi/vro/vrosite.nsf/pages/statewide_sss

Vigier, B., Gregorich, E.G., Kroetsch, D., King, D. (2003): (Revised Edition). Benchmark site documentation: 14 & 44-ON (Rockwood, Ontario). Eastern Cereals and Oilseeds Research Centre, Agriculture and Agri-Food Canada, Ottawa, ON. 54 pages. ECORC Technical Bulletin No. 03-197E.

Webb, T. H., Wilson, A.D. (1995): A manual of land characteristics for evaluation of rural land. Landcare Research Science Series No. 10, Lincoln, Canterbury, New Zealand, 32 p.

Withers, B., Vipond, S., Lecher, K. (1978): Bewaesserung. 1st edt. Verlag Paul Parey, Berlin und Hamburg, 241 p.

WMO (2004): WORLD METEOROLOGICAL ORGANISATION COMMISSION FOR AGRICULTURAL METEOROLOGY CAGM Report No. 96, IMPACT OF AGROME-TEOROLOGICAL INFORMATION ON RANGELAND AND PASTURE ECOLOGY AND MANAGEMENT, Prepared by L. V. Lebed (Co-ordinator), Y. Gandega, D. Rijks. Report of the Joint Rapporteurs on Impact of Agrometeorological Information on Rangeland and Pasture Ecology and Management WTO/TD No. 1229 Geneva, Switzerland, August 2004

WRB (2006): World Reference Base for Soil Resources 2006, A Framework for International Classification, Correlation and Communication, FAO Rome, 2006, World Soil Resources Reports 103, 145p

Appendix 1: Examples of soil scoring

Examples of Muencheberg SQR: Seelow Silty Clay, Germany

Muencheberg Soil Quality Rating (SQR)

Cropping land

Score card, Page 1: Basic soil data

Location name:	Seelow, Oderbruch region, Germany
Coordinates:	52°32`28.97``N, 14°26`35.99``E, elevation 7.4 m
Soil name:	Seelow Silty Clay, Profile G1/2
Land use:	Annual cropping (winter wheat, maize, sunflower)
Landform and topography:	River basin (former floodplain), flat
Date and Name of rating person:	22.11.04, L. Mueller

Soil profile data: Seelow Silty Clay

		Pedon field description						
	m	Texture of	class	Horizon	Humus	Water	Gravel,	
		USDA/FAO	National		%	table	Stones	
	0.1							
	0.2	SiC ↓	Tu2 ↓	Sw-rAp	4.2		None↓	
	0.3							
	0.4							
	0.5			Sd-rGo-M	3.1			
	0.6					High		
Ser a ser and	0.7			Sd-M-Go				
	0.8				2			
	0.9							
	1.0					$Mean \nabla$		
	1.1							
	1.2							
	1.3							
	1.4					Low		
	1.5							

Soil classification	
Local	Pseudovergleyter Vega-Gley-Reliktgley aus Auenton
WRB	Gleyic Fluvisol
WRB 2006	Gleyic Fluvisol (Humic, Eutric, Clayic, Drainic)
US Taxonomy	
Remarks:	Former backwater area of the Oder river, drained polder, water table 0.7 to 1.4 m below surface, fluctuating, drainage class: Imperfect German soil assessment: LT 5 AI, 54/54

References to further date on soil profile and landscape: Excursion guide Oderbruch: http://www.zalf.de/home_zalf/institute/blf/blf_e/mitarbeiter/mueller/pdf/exkurs.pdf

Muencheberg Soil Quality Rating (SQR) Cropping land							
Score card, Page 2: Relevant criteria of Basic Rating							
Indicator	Relevant criteria of Basic Rating	Pedon data					
	Soil texture class over the upper 80 cm 50 cm	SiC					
Soil	Parent material of soil	Alluvium					
substrate	Strong gradients of texture within 80 cm (layering)?	None					
	Content of coarse material > 2 mm over 80 cm	< 1 %					
	(cropping) or 50 cm (grassland)						
	SOM of topsoil (upper 20 cm)	4.2 %					
	Proportion of concretions or artefacts	None					
A horizon	A-horizon depth (cm)	20					
depth and	Depth of OM content > 4%	30					
depth of	Abrupt change from topsoil to subsoil ?	No					
humic soil							
	Type of topsoil aggregates	Angular to					
Topsoil		subangular blocky					
structure	Size of topsoil aggregates	Medium					
	Ratings of Peerlkamp, Diez, or Shepherd- VSA or	VSA structure and					
	other soil structure ratings	porosity ratings < 1					
		(medium to low)					
	Increased soil strength or density at 30-50 cm depth?	Slight					
Subsoil	Redoximorphic feature in the topsoil and upper	Slight					
compaction	subsoil?						
	Tillage pan score VSA	1.5 (slight)					
	Other subsoil compaction features	Blocky structure					
	Abundance of roots	Few					
Rooting	Barriers to rooting	Springtime					
depth and		watertable at 0.8 m					
biological	Effective rooting depth AG Boden, 2005, p. 356	< 0.8 m					
activity	Zustandsstufe Bodenschaetzung AG Boden, 2005,	V					
	p. 318	-					
	Abundance of deep burying earthworms (Grassland)	Few					
D (1)	Abundance of moles (Grassland)	0045					
Profile	Depth of watertable	0.8-1.5 M					
available	vvater storage capacity of soll	very nign					
water	Grassiand Wassersture	2-/2+					
	Depth of ground or perched water table	U.8 (slight wetness)					
	Soli drainage class						
wetness	Degree of redoximorhphic features in the subsoil	Slight					
and ponding	Indicator values of vegetation						
	Soli position in a depression ?	No, land is level					
	vvetness by suspended water (soils rich in silt and	Yes					
	ciay or muck) ?	N I -					
	Ponding during soil assessment	NO Z des					
	Delay of begin of farming on cropping land (days)	< / days as					
		compared with soils					
01		in the vicinity					
Slope and	Slope at the pedon position	level					
relief	Microrelief and slope aspect at the pedon position						

Muencheberg Soil Quality Rating (SQR) Cropping land

Score card, Page 3: Basic Rating

Basic indicators		Score	Weighting factor	Total	Remarks		
1	Soil substrate	1.5	3	4.5	Clay soil, Table 3.2.11		
2	A horizon depth	1.5	1	1.5	20 cm, Table 3.2.21		
3	Topsoil structure	1	1	1	Unfavourable aggregate features, Table 3.2.31		
4	Subsoil compaction	1.5	1	1.5	Few signs of compaction, Table 3.2.41		
5	Rooting depth (RD)	1	3	3	RD 0.8-1.1 m, limited by water table, Table 3.2.51		
6	Profile available water (PAW)	2	3	6	> 220 mm due to capillary supply, Table 3.2.61		
7	Wetness and ponding	0.5	3	1.5	Moderate ponding and additional perched water, Table 3.2.71		
8	Slope and relief	2	2	4	Flat, no limitations, Table 3.2.81		
Tot	al basic score			23	Medium score, maximum would be 34		

Winter wheat on Seelow Silty Clay, *Phragmites australis* indicates wetness problems

Muencheberg Soil Quality Rating (SQR)

Cropping land

Score card, Page 4: Vegetation and climate data

Landuse	Cropping land, ploughless
Main species of vegetation	Cropping plants: winter wheat, maize, sunflower
	Weeds: Agropyron repens, Phragmites australis
Vegetation indicators	Ellenberg : F= 6-7, Wasserstufe 2-/3+
Above ground biomass	8-12 t/ha*yr, 4-6.5 t/ha*yr grain of wheat
Main biome (potential natural	Temperate forest
vegetation)	

Precipitation: 460 mm/a, Temperature: 8-9° C, Koeppen climatic zone: Cfb

Monthly temperature, °C

1	2	3	4	5	6	7	8	9	10	11	12	1-12
-1,2	-0,1	3,2	7,7	13,2	17,1	18,1	17,5	13,8	9	4,4	0,5	8,5

Agroecological data:

Latest/ first frost (p> 10 %)	May, 13 / Oct, 10
Begin of vegetation period (t> 5°C)	March, 25
Length of growing period (t>5°/ t> 10°)	250 / 190 days
Temperature sum (t>5°/ t> 10°)	3500 / 3000
Depth of soil freezing	40 cm
Snow days during winter	10-20 %

	Muencheberg Soil Quality F Cropping land	Rating (SQR)
Score card, Pag	e 5: Criteria of Hazard rating	
Indicator	Relevant criteria of Hazard Rating	Pedon data
Contamination	Position in a risk area?	None
Salinization	Electric conductivity	
	Salt crusts or coatings	None
	Salt indicator vegetation	None
Sodification	рН	6.5
Acidification	SAR	
	ESP	
Low total nutrient status	Malnutrition features of crops ?	None
Soil depth above hard rock		> 50 m
Drought	Water budget mm/yr	> 500
	Climatic water balance in the main vegetation period of 4 months	
	Benefit of irrigation	
	Probability of the occurrence of a dry month	
	Aridity index acc. to De Martonne	
	Bailey moisture index	
	Ombrothermic index Io) of Rivas- Martínez (1997)	
Flooding and	Inundation frequency and duration	None
extreme waterlogging	Water regime class of Soil Survey Manual	Imperfect
	Benefit of land drainage	Moderate to low
Steep Slope	Slope %	0
Rock at the surface		None
Coarse soil texture fragments		None
Unsuitable soil thermal regime	Soil thermal regime	None
Miscellaneous hazards		None
Remarks		

Muencheberg Soil Quality Rating (SQR) Cropping land

Score card, Page 6: Final rating

		<u> </u>			
Haz	ard indicators	Score	Range of multipliers	Multiplier	Remarks
1	Contamination	2	3	3	
2	Salinisation	2	3	3	
3	Sodification	2	3	3	
4	Acidification	2	3	3	
5	Low total nutrient status	2	3	3	
6	Soil depth above hard rock	2	3	3	
7	Drought	2	3	3	No limitationa
8	Flooding and extreme waterlogging	2	3	3	by hazard factors
9	Steep Slope	2	3	3	
10	Rock at the surface	2	3	3	
11	Coarse soil texture fragments	2	3	3	
12	Unsuitable soil thermal regime	2	3	3	
13	Miscellaneous hazards	2	3	3	
Lo	west multiplier			3 (2.94)	

Final rating score (SQR score, rounded) = Total basic score* lowest multiplier

SQR score = 23 * 2.94 = **68**

Cropland Soil quality assessment:

< 20= Very poor, 20 - 40 = Poor, 40 - 60= Moderate, 60 - 80 Good, > 80= Very good

Comment on final rating: Good cropping site, possible limitations due to temporary wetness and high clay content, associated with farm traffic induced sub-optimum soil structure, slight climatic drought risk can be compensated by capillary groundwater supply

Muencheberg Soil Quality Rating (SQR) Grassland

Score card, Page 1: Basic soil data

Location name:	Genschmar, Oderbruch, Germany
Coordinates:	52°37`43.50``N, 14°32`24.21``E, elevation 10 m
Soil name:	Genschmar Sand, Profile G1/3
Land use:	Grassland, Rangeland, nature conservation area, unfertilized pasture, grazing by cows and sheep
Landform and topography:	River floodplain, flat
Date and Name of rating person:	22.11.04, L. Mueller

Soil profile data: Genschmar Sand

			Pede	on field des	cription		
	m	Texture class		Horizon	Humus	Water	Gravel,
		USDA/FA O	National		%	table	Stones
A Marsha	0.1	IS	St2	Ah1	10		None↓
A MARTINE CONTRACTOR	0.2			Ah2	6		
Contraction of the second	0.3			ilCv	3		
	0.4	S (mS) ↓	fSms	fAh			
	0.5				< 1↓		
	0.6						
	0.7						
in the second	0.8		mS	ailCv			
ALL ALL ALL ALL	0.9						
	1.0		mSfs \downarrow	aGo1			
and and the	1.1						
- And - The fam is	1.2						
atterned to	1.3						
	1.4						
	1.5			aGo2		2.5 m	

Soil classification

Local	Regosol über Paternia aus Kippsand über Fluvisand
WRB	Dystric Fluvisol
WRB 2006	Haplic Fluvisol (Dystric, Arenic)
US Taxonomy	
Remarks:	Pedon in the floodplain near the Oder river, fluvial sand covered by
	shallow eolic and anthropogenic sand deposit, water table 1.8 to 3.5
	m below surface, fluctuating, flooding probability < 2 %, drainage
	class: E, German soil assessment: IS II a 4(-), 33/30

References to further date on soil profile and landscape: Excursion guide Oderbruch: http://www.zalf.de/home_zalf/institute/blf/blf_e/mitarbeiter/mueller/pdf/exkurs.pdf

Muencheberg Soil Quality Rating (SQR) Grassland								
core card, Pa	ge 2: Relevant criteria of Basic Rating							
Indicator	Relevant criteria of Basic Rating	Pedon data						
Soil substrate	Soil texture class over the upper 80 cm 50 cm Parent material of soil Strong gradients of texture within 80 cm (layering)?	S Alluvium None						
	Content of coarse material > 2 mm over 80 cm (cropping) or 50 cm (grassland) SOM of topsoil (upper 20 cm)	< 1 % 3 %						
	Proportion of concretions or artefacts	None						
A horizon	A-horizon depth (cm)	25						
depth and depth of humic soil	Depth of OM content > 4% Abrupt change from topsoil to subsoil ?	25 No						
	Type of topsoil aggregates	Singular grain						
Topsoil structure	Size of topsoil aggregates Ratings of Peerlkamp, Diez, or Shepherd- VSA or other soil structure ratings	VSA structure and porosity ratings < 1 (medium to low)						
	Increased soil strength or density at 30-50 cm depth?	None						
Subsoil compaction	Redoximorphic feature in the topsoil and upper subsoil?	None						
	Tillage pan score VSA	2 (No pan)						
	Other subsoil compaction features	None						
	Abundance of roots	Few						
Rooting	Barriers to rooting	Sandy soil substrate						
depth and	Effective rooting depth AG Boden, 2005, p. 356	0.6 m						
activity	Zustandsstufe Bodenschaetzung AG Boden, 2005, p. 318/319	11						
	Abundance of deep burying earthworms (Grassland)	Few						
	Abundance of moles (Grassland)							
Profile	Depth of watertable	1.8-3.5 m						
available	Water storage capacity of soil	Very low						
water	Grassland Wasserstufe	3-						
	Depth of ground or perched water table	None						
Wotnoss	Soli drainage class	Excessively drained						
and ponding	Degree of redoximompnic reatures in the subsoil	inone						
and ponding	Soil position in a depression 2	No. land is loval						
	Wetness by supported water (soils rich in silt and							
	clay or muck) 2	INU						
	Ponding during soil assessment	No						
	Delay of begin of farming on cropping land (days)	No						
Slope and	Slope at the pedon position	level						
relief	Microrelief and slope aspect at the pedon position							

Muencheberg Soil	Quality Rating (SQR)
------------------	----------------------

Grassland

Score card, Page 3: Basic Rating

Basic indicators		Score	Weighting factor	Total	Remarks
1	Soil substrate	0.5	3	1.5	Sand, Table 3.2.11
2	Depth of humic soil	1	2	2	0.15- 0.3 m, Table 3.2.22
3	Topsoil structure	1	1	1	Single grain, Diez score 3-4 Table 3.2.31
4	Subsoil compaction	2	1	2	None, Table 3.2.42
5	Biological activity	1	2	2	Less than 15 cm, Table 3.2.53
6	Profile available water (PAW)	0.5	3	1.5	Strong deficite, Wasserstufe 4-, Table 3.2.61
7	Wetness/ ponding	2	3	6	None, Table 3.2.71
8	Slope and relief	2	2	4	Flat, Table 3.2.81
Total basic score (TBS)				20	Medium score, maximum would be 34

Grazing cattle on Genschmar sand, elevated position in the floodplain of the Oder river

Muencheberg Soil Quality Rating (SQR) Grassland

Score card, Page 4: Vegetation and climate data

Landuse	
Main species of vegetation	Agropyron repens, Calamagrostis epigejos, Rumex acetosa, Carex praecox, Alopecurus pratensis
Vegetation indicators	Ellenberg :F= 4.6, Wasserstufe 3- to 4-
Above ground biomass	3-5 t/ha*yr
Main biome (potential natural vegetation)	

Monthly temperature, °C

1	2	3	4	5	6	7	8	9	10	11	12	1-12
-1,2	-0,1	3,2	7,7	13,2	17,1	18,1	17,5	13,8	9	4,4	0,5	8,5

Agroecological data:

Latest/ first frost (p> 10 %)	May, 13 / Oct, 10
Begin of vegetation period (t> 5°C)	March, 25
Length of growing period (t>5°/ t> 10°)	250 / 190 days
Temperature sum (t>5°/ t> 10°)	3500 / 3000
Depth of soil freezing	40 cm
Snow days during winter	10-20 %

	Muencheberg Soil Quality Grassland	Rating (SQR)								
Score card, Page 5: Criteria of Hazard rating										
Indicator	Relevant criteria of Hazard rating	Pedon data								
Contamination	Position in a risk area?	Yes, located in a floodplain								
Salinization	Electric conductivity									
	Salt crusts or coatings	None								
	Salt indicator vegetation	None								
Sodification	pH	4.6-5.6								
Acidification	SAR									
	ESP									
Low total nutrient status	Malnutrition features of crops ?	None								
Soil depth above hard rock		No hard rock								
Drought	Water budget mm/yr	450								
	Climatic water balance in the main vegetation period of 4 months	210 mm deficit								
	Benefit of irrigation									
	Probability of the occurrence of a dry month									
	Aridity index acc. to De Martonne									
	Bailey moisture index									
	Ombrothermic index Io) of Rivas- Martínez (1997)									
Flooding and extreme waterlogging	Inundation frequency and duration	High position in the risk area, flooding probability < 2 times per 100 yrs								
	Water regime class of Soil Survey Manual	Excessive								
	Benefit of land drainage	None								
Steep Slope	Slope %	0								
Rock at the surface		None								
Coarse soil texture fragments		None								
Unsuitable soil thermal regime	Soil thermal regime	None								
Miscellaneous hazards		None								
Remarks										

Muencheberg Soil Quality Rating (SQR)

Grassland

Score card, Page 6: Final rating

Haz	ard indicators	Score	Range of multipliers	Multiplier	Remarks				
1	Contamination	2	3	3					
2	Salinisation	2	3	3					
3	Sodification	2	3	3					
4	Acidification	2	3	3					
5	Low total nutrient status	2	3	3					
6	Soil depth above hard rock	2	3	3	Slight limitations				
7	Drought	1.5	2-3	2.2	by flooding,				
8	Flooding and extreme waterlogging	1.5	2.5-3	2.7	drought, water				
9	Steep Slope	2	3	3	450 mm, low				
10	Rock at the surface	2	3	3	risk of riverbank				
11	Coarse soil texture fragments	2	3	3	erosion				
12	Unsuitable soil thermal regime	2	3	3					
13	Miscellaneous hazards: Risk of riverbank erosion	1.5	2.5-3	2.7					
Lo	west multiplier			2.2					
Fil Ta	nal Multiplier acc. to ble 3.41			2.0					

Final rating score (SQR score, rounded) = Total basic score* Lowest multiplier

SQR score = 20 * 2.0 = **40**

Grassland Soil quality assessment: < 20= Very poor, 20 – 40 = Poor, 40 – 60= Moderate, 60 – 80 Good, > 80= Very good Comment on final rating: Poor to moderate grassland site, main limitations by drought

Appendix 2: Orientation guides of indicator scoring based on properties of Soil Reference Groups (SRG) and qualifiers of WRB, 2006

Note : Following Tables indicate only those limitations that are very highly probable to exist because of conflicting definitions of SRG and qualifiers with definitions and thresholds of Basic and Hazard soil rating tables.

Reference Soil	Soil	Α	Topsoil	Subsoil	Rooting	Profile	Wetness	Slope
Groups	substrate	horizon	structure	compact-	depth	available	and	and relief
		depth		ion		water	ponding	
Acrisol AC	≤1.5 (1)	(1)	(1)	(1)	≤1.5 (1)	(1)	(1.5)	(1)
Albeluvisol AB	(1)	(1.5)	(1)	(1.5)	(1)	(1)	(1.5)	(1.5)
Alisol AL	≤1.5 (1)	(1)	(1)	(1)	≤1.5 (1)	(1)	(1)	≤1.5 (1)
Andosol AN	(1.5)	(1.5)	(1.5)	(1.5)	(2)	(2)	(2)	≤1.5 (1)
Anthrosol AT	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)
Arenosol AR	≤1 (0.5)	(1)	(1)	(1)	≤1 (0.5)	(0.5)	(2)	(1.5)
Calcisol CL	≤1.5 (0.5)	(0.5)	(0.5)	(1)	≤1.5 (0.5)	(0.5)	(1.5)	(1.5)
Cambisol CM	(1)	(1.5)	(1.5)	(1)	(1.5)	(1.5)	(1.5)	(1.5)
Chernozem CH	≥0.5 (2)	(2)	(1.5)	(1.5)	(1.5)	(1.5)	(2)	(2)
Cryosol CR	(0.5)	(0.5)	(1)	(1)	≤1.5 (0.5)	(1.5)	≤1.5 (0.5)	(1.5)
Durisol DU	≤1.5 (0.5)	(0.5)	(0.5)	(0.5)	≤1.5 (0.5)	(1)	(2)	(1.5)
Ferralsol FR	≤1 (1)	(1)	(1)	(1)	(1.5)	≤1.5 (1)	(1.5)	(1)
Fluvisol FL	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	(1.5)	≥1 (2)
Gleysol GL	(1)	(1)	(1)	(1)	≤1.5 (1)	(2)	≤1.5 (0.5)	≥1 (2)
Gypsisol GY	≤1 (0.5)	(0.5)	(0.5)	(1)	≤1.5 (0.5)	(0.5)	(1.5)	(1)
Histosol HS	1-1.5 (1)	(1.5)	(1.5)	(1.5)	≤1.5 (1)	≥1 (2)	(0.5)	≥1 (2)
Kastanozem KS	(2)	(1.5)	(1.5)	(1.5)	(1.5)	(1)	(2)	(2)
Leptosol LP	≤1 (0.5)	≤1.5 (0.5)	(1)	(0.5)	≤1 (0.5)	(0.5)	(1.5)	(0.5)
Lixisol LX	≤1.5 (1)	(1.5)	(1)	(1)	(1)	(1)	(1.5)	(1)
Luvisol LV	(1.5)	(2)	(1)	(1)	(1.5)	(1.5)	(1.5)	(1.5)
Nitisol NT	≤1.5 (1)	(1.5)	(1.5)	(1.5)	(1.5)	(1)	(1.5)	(1)
Phaeozem PH	(2)	(1.5)	(1.5)	(1.5)	(2)	(1.5)	(2)	(2)
Planosol PL	≤1 (1)	(0.5)	(0.5)	≤1 (1)	≤1 (1)	≤1.5 (1)	≤1.5 (1)	≥1 (1.5)
Plinthosol PT	≤1.5 (1)	(1)	(0.5)	≤1.5 (0.5)	≤1.5 (0.5)	(1)	(1)	(1.5)
Podzol PZ	≤1.5 (1)	(1)	(0.5)	(1)	≤1.5 (1)	≤1.5 (1)	(1.5)	(1)
Regosol RG	(1)	(1)	(1)	(1)	(1)	(1)	(1.5)	(1)
Solonchak SC	≤1.5 (0.5)	(0.5)	(1)	(1.5)	≤1 (1)	(1)	≤1.5 (1)	≥1 (1.5)
Solonetz SN	≤1.5 (1)	(1)	(1)	(1.5)	≤1 (1)	(1)	≤1.5 (1)	≥1 (1.5)
Stagnosol ST	(1)	(1.5)	(1)	(1)	≤1 (1)	≤1.5 (1)	≤1.5 (0.5)	(1.5)
Technosol TC	≤0.5 (0.5)	(1)	(1)	(1)	(1)	(1)	(1)	(1.5)
Umbrisol UM	(1.5)	(1.5)	(1)	(1)	(1)	(2)	(1)	(0.5)
Vertisol VR	1	(1.5)	(1)	(1)	(1.5)	(1.5)	≤1.5 (1)	≥1 (1.5)

Table A2-1:	Limitations	of Basic	indicators	based on	SRG
		or passe	marcavors		~

Table A2-2: Limitations of Basic indicators based on qualifiers

Qualifiers	Soil	Α	Topsoil	Subsoil	Rooting	Profile	Wetness	Slope
	substrate	horizon	structure	compact-	depth	available	and	and
		depth		ion		water	ponding	relief
Abruptic ap	≤1.5 (1)				≤1.5 (1)		≤1.5	
Aceric ae	≤1 (1)				≤1 (0.5)			
Acric ac	≤1 (1)							
Acroxic ao	≤1.5 (1)							

Albic ab								
Alcalic ax	≤1 (0.5)				≤1 (0.5)			
Alic al	<1 (1)							
Aluandic aa	(-)							
Thantaluandic								
Alumic au	<1 (0.5)				<1 (0.5)			
Andic an	_1 (0.0)				_1 (0.0)			
Anthraquic aq			<1(1)	<1 (0.5)	<1 (0.5)			(2)
Anthric am	>1	>1 (2)	_1 (1)	<u>_1</u> (0.5)	<u>_1</u> (0.5)			(2)
Arenic ar	$\leq 15(1)$	<u>_</u> 1 (2)			<15(1)	<15(1)		
Enjarenic arn	$\leq 1.0(1)$				$\leq 1.5(0.5)$	$\leq 1.5(1)$		
Epideorenic arn	$\leq 15(1)$				$\leq 1.5(0.3)$	$\leq 1.5(0.3)$		
Aric ai	<u></u> (1)				<u></u> (1)	<u></u> (1)		
Aridic ad	<1(1)	<15(1)						
Artic au	$\leq 1 (1)$	 (1)			<05(05)		< 15(0.5)	
Rizic az	$\leq 1 (0.5)$				$\leq 0.3(0.3)$	<15(1)	$\leq 1.5(0.5)$	
Calcorio co	$\leq I(0.3)$				$\leq I(0.3)$	$\leq 1.3(1)$		
Calcalic ca								
Calcic cc								
Carline ch	~1 5 (1)							
Carbonatia ar	$\geq 1.3(1)$				<1 <i>E</i> (1)			
Carbonatic cn	$\leq 1.5 (0.5)$				$\leq 1.5(1)$			
Chloridic cl	≤1.5 (0.5)				≤1.5 (0.5)			
Chromic cr							(1)	
Clayic ce	$\leq 1.5(1)$				$\leq 1.5(1)$		(1)	
Epiciayic cep	$\leq 1.5(1)$				$\leq 1.5(1)$			
	≤1.5 (1)				≤1.5 (1)			
Colluvic co								
Crylc cy					<u>≤1.5(1)</u>			
Cutanic ct				<0.5	0 (0)			
Densic dn					0(0)	<u>≤1.5 (0.5)</u>	>0.5(1)	
Drainic dr					~1 5 (1)		∠0.5 (1)	
Endedurie ad	~1 5 (1)				$\leq 1.5(1)$			
Endoduric nd	$\leq 1.5(1)$				$\leq 1.5 (0.5)$	$\leq 1.5 (0.5)$		
Duratria du	$\leq 1.5(1)$				<u>≤1.5 (0.5)</u>	<u>≤1.5 (0.5)</u>		
Orthodystria dyo	$\leq 1.5(1.3)$				<15(1)			
Elizania ale	$\leq 1.5(0.3)$	<15(0.5)	0		$\leq 1.5(1)$			
Eklanic ek Endedustrie ny	$\frac{1}{(15)}$	<u>≤1.5 (0.5)</u>	U	≤0.5 (0.3)	$\leq \mathbf{I}(1)$	≤0.5 (0.3)		
Endoaystric ny	≤1.5 (1.5)							
Endoeuuric ne								
Endoniuvic m Endoglaria ng	~1 5(1)				~1 (1)		<15(15)	
Endolantia nl	$\leq 1.3(1)$				$\leq I(1)$		≤1.3 (1.3)	
Endoselia na	$\leq \mathbf{I}(1)$				$\leq I(1)$			
Endosane lis					≤I (1)			
Entite et	<15(1)							
Epidystile ed	$\leq 1.3(1)$							
Epiculie ec	<1 (0.5)				<1 (0.5)			
Epiteptic et	$\leq 1(0.3)$				$\leq 1(0.3)$		< 15(0.5)	
Epigicyic eg	$\leq 1.3(1)$				$\leq 0.5 (0.5)$		$\leq 1.5(0.5)$	
Episalic ea	<u> 50.3 (0.3)</u>				<u> 50.3 (0.3)</u>			2
Escane ce								2
Orthoeutric euo					<1(15)			
Eutrosilic es					<u>SI (1.5)</u>			
Eurolia fl	<15(1)							
Hyperformatio flb	(1)				<15(1)			
Hypoterralic flu	<u></u> (1)				<u></u> (1)			
Ferric fr	<1 (1)				<15(1)			
Hyperferrie frh	(1)				$\leq 1.5(1)$	<15(1)		
Fibric fi	$\leq 15(0.3)$				$\leq 1.3(1)$	<u></u> (1)		
	 (0.5)				 (0.5)			
Floatic ft	≤1.5 (0.5)			2	≤0.5	2	0	2
-------------------	------------------------------------	------------------	-------------------	-----------------	--------------------	-------------------	--------------------	---
Fluvic fv	`````							
Folic fo	<1 (0.5)		<1.5(1)					
Thantofolic	(0.0)				<1 (1)			
Fractinetric fn	<1 (1)				$\leq 15(1)$			
Fractinlinthic fa	≤ 1 (1)				$\leq 1.5(1)$			
Fragic fo	(1)			<15(1)	$\leq 1.5(1)$			
Fulvio fu	<u></u> (1)			<u></u> (1)	<u></u> (1)			
Carbia aa	<15(1)							
Galic ga	≤1.5 (1)				~1 5 (1)			
Gelic ge					$\leq 1.5(1)$		<05(05)	
Genistagnic gt			~1 5 (1)		$\leq 0.5 (0.5)$		≤0.5 (0.5)	
Geric gr	≤1.5 (1)		≤1.5 (1)		≤1.5 (1)			
Gibbsic gi								
Glacic gc	$\leq I(0.5)$				$\leq I(0.5)$		≤ 1.5 (0.5)	
Gleyic gl					≤1.5 (1.5)			
Glossalbic gb								
Glossic gs								
Greyic gz								
Grumic gm								
Gypsic gy	≤1.5 (1)				≤1 (0.5)	≤1.5 (1)		
Gypsiric gp	≤1 (1)				≤1.5 (1)			
Haplic ha								
Hemic hm	≤1.5 (1)				≤1.5 (1)			
Histic hi	≤1.5 (1)				≤1.5 (1)			
Thaptohistic hib	< 1.5 (1.5)				< 1.5 (1.5)			
Hortic ht	>1 (1.5)	>1 (1.5)						
Humic hu	_1 (1.0)	_1 (1.0)						
Hyperhumic huh	>15(2)	2						
Hydragric hg	$\leq 1.5(2)$	-	<1 (0.5)	<1 (0.5)	<05(05)		<15(0.5)	
Hydright hy	<u></u> (1)		<u>1 (0.5)</u>	<u>_1</u> (0.5)	<u>_0.5 (0.5)</u>		<u>_1.5</u> (0.5)	
Hydrophobic hf	<15(0.5)		<1(0.5)		<15(1)			
Hyperelbie be	$\leq 1.5(0.3)$		$\leq 1 (0.3)$		$\leq 1.3(1)$			
Hyperatolic hi	$\leq 1.3(1)$				~1 5(1)			
Hyperane in	$\leq 1.5(1)$				$\leq 1.5(1)$			
Hypercalcic nc	$\leq I(0.5)$				$\leq I(0.5)$			
Hyperdystric hd	≤1.5 (0.5)				$\leq I(0.5)$			
Hypereutric he					<u>≥I (1.5)</u>			
Hypergypsic hp	$\leq 1 (0.5)$				≤ 1.5 (0.5)			
Hyperochric ho	≤1.5 (0.5)		$\leq 1 (0.5)$		≤1.5 (0.5)			
Hypersalic hs	≤1 (0.5)				≤1 (0.5)	≤1 (0.5)		
Hyperskeletic hk	≤0.5 (0.5)	≤1 (0.5)	≤1.5 (1)		≤0.5 (0.5)	≤1.5 (0.5)		
Hypocalcic wc								
Hypogypsic wg					≤1.5 (1)			
Hypoluvic wl								
Hyposalic ws	≤1.5 (1)				≤1.5 (1)			
Hyposodic wn	≤1.5 (1)				≤1.5 (1)			
Irragric ir	`, , , , , , , , , , , , , , , , ,							
Lamellic ll								
Laxic la								
Leptic le	≤1.5 (1)				≤1 (0.5)			
Lignic lg	<1 (1)				< 1.5 (0.5)			
Limnic Im	(1)							
Linic le					<1.5 (0.5)			
Lithic li	0	< 0 5 (0)		Λ		0		
Liviely		_0.0 (0)		v	v	U		
Luvie ly								
Magnesic mg	<15 (1)							
Manganifamia auf	$\geq 1.3(1)$				<15(1)			
Magia me	$\geq I(1)$				$\geq 1.3(1)$			
Mazic mz	≤ 1.5 (0.5)		≤0.5 (0.5)		≤ 1.5 (0.5)			
Melanic ml								

Mesotrophic ms								
Mollic mo	≥1 (1.5)	≥1 (1.5)	≥1.5 (2)		≥1 (1.5)	≥1 (1.5)	≥1 (1.5)	
Molliglossic mi	≥1 (1.5)	≥1 (1.5)	≥1.5 (2)		≥ 1 (1.5)	≥ 1 (1.5)	≥1 (1.5)	
Natric na	<1.5 (0.5)				<1.5 (0.5)			
Nitic ni	<1 (1)				< 1.5 (1.5)			
Novic nv								
Areninovic anv	<1.5 (1)				<1.5 (1)			
Nudilithic nt	0	0	0	0	0	0	0	
Ombric om	< 1 (1)	0	•	•	<15(05)	>1 (2)	<1 (0.5)	>1 (2)
Ornithic oc	(1)				(0.5)	(2)	_1 (0.0)	_1 (2)
Ortsteinic os	<1 (0.5)			<1.5 (0.5)	<1 (0.5)			
Oxvaguic oa	(***)				<1.5 (0.5)		<1.5 (1)	
Pachic ph	>1 (2)	>1.5 (2)	>1.5 (2)	>1.5 (1.5)	>1.5 (1.5)	>1 (1.5)	>1 (1.5)	
Pellic pe	< <u>1</u> (1)	< <u>1(1)</u>	<1.5 (1)				(10)	
Petric pt	< 1.5 (1)	(-)	()		<1.5 (1)			
Endopetric ptn	<1 (1)				<1 (1)	<1.5(1)		
Epipetric ptp	< 0.5 (0)				<0.5 (0)	$\leq 1 (0.5)$		
Petrocalcic pc	$\leq 15(05)$				$\leq 15(05)$	$\leq 15(05)$		
Petroduric pd	$\leq 1.5 (0.5)$				$\leq 1.5 (0.5)$	$\leq 1.5 (0.5)$		
Petroglevic py	$\leq 1.5(0.5)$				$\leq 1.5(0.5)$	(0.5)	<15(05)	
Petrogynsic ng	$\leq 1.5 (0.5)$				$\leq 1.5(1)$	<15(0.5)	<u>_1.5</u> (0.5)	
Petroplinthic pp	$\leq 1.5(0.5)$				$\leq 1.5(0.5)$	$\leq 1.5(0.5)$		
Petrosalia ne	$\leq 1.5(0.5)$				$\leq 1.5(0.5)$	$\leq 1.5(0.5)$		
Disoplinthia py	$\leq 1.5(0.5)$				$\leq 1.5(0.5)$	$\leq 1.5(0.5)$		
Pisopinitiic px	$\leq 1.5(0.5)$				$\leq 1.5(0.3)$	$\leq 1.5(0.3)$		
Placic pi	$\leq 1.5(0.5)$	>1(2)			<u>≤1.5 (0.5)</u>	<u>≤1.5</u> (0.5)		
Plaggic pa	$\leq 1.5(1)$	≥I (2)						
Plinthic pl	≤ 1.5 (0.5)				≤1.5 (1)	≤1.5 (0.5)		
Posic po								
Profondic pf	≤ 1.5 (1)							
Protic pr	<u>≤1.5 (0)</u>	≤1 (0)			<u>≤1.5 (0.5)</u>	<u>≤1.5 (0.5)</u>		
Puffic pu	≤1.5 (0.5)				<u>≤1.5 (0.5)</u>	≤1.5 (0.5)		
Reductaquic ra	$\leq 1 (0.5)$				<u>≤1.5 (0.5)</u>		≤1.5 (0.5)	
Reductic rd	≤1.5 (0.5)				≤1.5 (0.5)			
Regic rg								
Rendzic rz	≤1 (1)		≥1 (1.5)		≤1.5 (1)			
Rheic rh	≤1.5 (1.5)				≤1.5 (1)	≥1.5 (2)	≤1.5 (1)	≥1 (2)
Rhodic ro								
Rubic ru								
Ruptic rp	≤1 (0.5)				≤1.5 (0.5)			
Rustic rs	≤1.5 (0.5)				≤1.5 (0.5)			
Salic sz	≤1.5 (1)				≤1.5 (1.5)	≤1.5 (1)		
Sapric sa	≤1.5 (1.5)				≤1.5 (1)			
Silandic sn								
Thaptosilandic	≤1.5 (1)							
Siltic sl	≥1 (1.5)				≥1 (1.5)			
Endosiltic sln	≥1 (1)				≥1 (1)			
Episiltic slp	≥1 (2)				≥1 (1.5)			
Skeletic sk	0				≤1.5 (0.5)	≤1.5 (0.5)		
Endoskeletic	≤1 (0.5)				≤1.5 (0.5)	≤1.5 (1)		
Episkeletic	0			≤1 (0.5)	≤1 (0.5)	≤1.5 (0.5)		
Sodic so	≤1.5 (0.5)				≤1.5 (0.5)			
Endosodic	≤1.5 (1)				≤1.5 (1)			
Solodic sc	≤1.5 (1)				≤1.5 (1)			
Sombric sm	≤1.5 (1)				≤1.5 (1)			
Spodic sd	≤1.5 (0.5)				≤1.5 (0.5)			
Spolic sp	≤ 1 (0.5)				≤1 (0.5)	≤1.5 (1)		
Stagnic st	≤1.5 (1)				≤1.5 (1)	≤1.5 (1)	≤1.5 (1)	
Endostagnic stn	≤ 1.5 (1)				≤1 (1)	≤1.5 (1)	≤ 1.5 (1)	
Epistagnic stc	<u>≤1.5</u> (0.5)				≤0.5 (0)	≤1.5 (1)	≤0.5 (0.5)	

Subaquatic sq	0	0	≤0.5 (0)	0	0	2	0	2
Sulphatic su	≤1.5 (0.5)				≤1.5 (0.5)			
Takyric ty	0		0		≤1 (0.5)	≤1 (1)	≤1.5 (0.5)	≥ 1.5 (2)
Technic te	≤0.5 (0.5)		≤1.5 (1)		≤1.5 (1)	≤1.5 (1)		
Tephric tf	≤1.5 (1.5)							
Terric tr	≤0.5 (1)	≥1						
Thaptandic ba								
Thaptovitric by	≤1.5 (1)							
Thionic ti	≤1.5 (0.5)				≤1.5 (1)			
Hyperthionic tih	≤1 (0)				≤1 (0)			
Orthothionic tio	≤1.5 (0)				≤1.5 (0.5)			
Protothionic tip	≤1.5 (1)				≤1.5 (1)			
Thixotropic tp	≤1 (0.5)		≤1				≤1.5 (0.5)	
Tidalic td	≤1.5 (0.5)	≤1 (1)	≤1.5 (1.5)		≥ 1.5 (0)	≥1.5 (1.5)	0	2
Toxic tx	0				≤1 (0)	≤1 (0)		
Anthrotoxic atx	0				≤1 (0)			
Ecotoxic etx	0				≤1 (0)			
Phytotoxic ptx	0				≤1 (0)			
Zootoxic ztx	0				≤1 (0)			
Transportic tn								
Turbic tu	≤1.5 (1)							
Umbric um	≤1.5 (1)		≤1.5 (1)					
Umbriglossic ug	≤1.5 (1)		≤1.5 (1)					
Urbic ub	0		≤1 (1)		≤1 (1)	≤1.5 (1)		
Vermic vm	≥1.5 (1.5)	≥1.5 (1.5)	≥1.5 (1.5)	≥1 (1.5)	≥ 1.5 (1.5)	≥1.5 (1.5)	≥1.5 (1.5)	
Vertic vr	≤1 (1)		≤1 (1)		≤1.5 (1)	≤1.5 (1)	≤1.5 (1)	
Vetic vt	≤1 (0.5)				≤1.5 (0.5)	≤1.5 (0.5)		
Vitric vi	≤1.5 (1)							
Voronic vo	≥1 (2)	2	2		≥1 (2)	≥1 (2)	≥1 (2)	≥1 (2)
Xanthic xa	≤1.5 (1)							
Yermic ye	0	0	0		≤1 (0.5)	≤1 (0.5)		

Table A2-3: Limitations of Hazard indicators based on SRG

- 1. Contamination
- 2. Salinisation
- 3. Sodification
- 4. Acidification
- 5. Low total nutrient status
- 6. Soil depth above hard rock
- 7. Drought
- 8. Flooding and extreme waterlogging
- 9. Steep slope
- 10. Rock at the surface
- 11. High percentage of coarse soil texture fragments
- 12. Unsuitable soil thermal regime
- 13. Miscellaneous hazards

Reference Soil	1	2	3	4	5	6	7	8	9	10	11	12	13
Groups													
Acrisol AC				≤1.5	≤1.5		≤1.5						
Albeluvisol AB													
Alisol AL							≤1.5						
Andosol AN													
Anthrosol AT													
Arenosol AR													
Calcisol CL							≤1.5						
Cambisol CM													
Chernozem CH							≤1.5						
Cryosol CR												≤1.5	
Durisol DU							≤1						
Ferralsol FR													
Fluvisol FL									2				
Gleysol GL									2				
Gypsisol GY					≤1.5		≤1						
Histosol HS									≥1				
Kastanozem KS							≤1.5						
Leptosol LP						≤1				≤1	≤1		
Lixisol LX							≤1.5						
Luvisol LV													
Nitisol NT													
Phaeozem PH													
Planosol PL									≥1.5				
Plinthosol PT													
Podzol PZ													
Regosol RG													
Solonchak SC		≤1.5					≤1.5		≥1.5				
Solonetz SN			≤1.5				≤1.5		≥1.5				
Stagnosol ST													
Technosol TC											≤1.5		
Umbrisol UM													
Vertisol VR									≥1.5				

Table A2-4: Limitations of Hazard indicators based on qualifiers

- 1 Contamination
- 2 Salinisation
- 3 Sodification
- 4 Acidification
- 5 Low total nutrient status
- 6 Soil depth above hard rock
- 7 Drought
- 8 Flooding and extreme waterlogging
- 9 Steep slope
- 10 Rock at the surface
- 11 High percentage of coarse soil texture fragments
- 12 Unsuitable soil thermal regime
- 13 Miscellaneous hazards

Qualifiers	1	2	3	4	5	6	7	8	9	10	11	12	13
Abruptic ap													
Aceric ae													
Acric ac													
Acroxic ao													
Albic ab													
Alcalic ax			≤1.5										
Alic al													
Aluandic aa													
Thaptaluandic													
Alumic au													
Andic an													
Anthraquic aq													
Anthric am													
Arenic ar													
Epiarenic arp													
Endoarenic arn													
Aric ai													
Aridic ad													
Arzic az													
Brunic br													
Calcaric ca													
Calcic cc													
Cambic cm													
Carbic cb													
Carbonatic cn													
Chloridic cl		≤1.5											
Chromic cr													
Clayic ce													
Colluvic co													
Cryic cy													
Cutanic ct													
Densic dn													
Drainic dr													
Duric du													
Endoduric nd													
Hyperduric duh													

Dystric dy									
Orthodystric									
dvo									
Ekranic ek								0	
Endoduric nd									
Endodustric ny						 			
Endoeutric ne						 			
Endocutic ne Endofluvio nf									
Endoglavia ng									
Endolentic nl				 <15		 			
Endosalic ns				 <u></u>		 			
Endosane ns									
Enidestria ad			<15						
Epidystile ed			<u> 1.3</u>						
Epieuric ee							<u>~1</u>		
Epileptic el						 			
Epigleyic eg	 <1.5	 		 		 			
Episalic ea	≤1.5								
Escanc ec									
Eutric eu									
Orthoeutric euo									
Eutrosilic es		 		 		 			
Ferralic fl									
Hyperterralic									
flh									
Hypoterralic									
flw									
Ferric fr									
Hyperferric frh									
Fibric fi									
Floatic ft					0				
Fluvic fv									
Folic fo									
Thaptofolic						 			
Fractipetric fp						 			
Fractiplinthic fa						 			
Fragic fg						 			
Fulvic fu						 			
Garbic ga									
Gelic ge									
Gelistagnic gt					≤1.5			≤1.5	
Geric gr									
Gibbsic gi									
Glacic gc								≤1.5	
Gleyic gl						 			
Glossalbic gb						 			
Glossic gs									
Greyic gz									
Grumic gm									
Gypsic gy									
Gypsiric gp									
Haplic ha									
Hemic hm									
Histic hi									
Thaptohistic hib		 				 			

Hortic ht												
Humic hu												
Hyperhumic												
huh												
Hydragric hg							<1.5					
Hydric hy												
Hydrophobic hf												
Hyperalbic ha												
Hyperalic hl												
Hypercalcic hc				<15								
Hyperdystric hd			<15	_1.5								
Hypereutric he												
Hypergypsic hp				<15								
Hypergypsic lip				<u></u>								
Hyperocline no	<15											
Hypersalic lis	21.3									0		
Hyperskeletic lik										U		
Hypocalcic wc												
Hypogypsic wg												
Hypoluvic wi												
Hyposalic ws												
Hyposodic wn												
Irragric ir												
Lamellic II												
Laxic la												
Leptic le												
Lignic lg												
Limnic lm												
Linic lc					≤1.5							
Lithic li					0							
Lixic lx												
Luvic lv												
Magnesic mg												
Manganiferric												
mf												
Mazic mz												
Melanic ml												
Mesotrophic ms												
Mollic mo												
Molliglossic mi												
Natric na		≤1.5										
Nitic ni												
Novic nv												
Areninovic anv												
Nudilithic nt					0				0			
Ombric om					-				-			
Ornithic oc												
Ortsteinic os												
Oxyaquic oa		L		L	L		L					L
Pachic ph					>1	>0.5	>1	>1	>1	1	1	
Pellic pe		<u> </u>		<u> </u>				*				<u> </u>
Petric nt					<1 5							
Endonetric ntn					<1 5							
Eninetric ntn					<1							
Detrocalaia na					<u>_1</u>							
i cuocalcie pe					21.3							

Petroduric pd				≤1.5					
Petrogleyic py									
Petrogypsic pg				≤1.5					
Petroplinthic pp				≤1.5					
Petrosalic ps				≤1.5					
Pisoplinthic px									
Placic pi									
Plaggic pa									
Plinthic pl									
Posic po									
Profondic pf									
Protic pr									
Puffic pu	≤1.5								
Reductaquic ra				≤1					
Reductic rd									
Regic rg									
Rendzic rz				≤1.5					
Rheic rh									
Rhodic ro							 		
Rubic ru							 		
Ruptic rp									
Rustic rs									
Salic sz									
Sapric sa									
Silandic sn									
Thaptosilandic									
Siltic sl									
Endosiltic sln									
Episiltic slp									
Skeletic sk								≤1	
Endoskeletic								≤1.5	
Episkeletic								≤1	
Sodic so		≤1.5							
Endosodic		≤1.5							
Solodic sc									
Sombric sm									
Spodic sd									
Spolic sp									
Stagnic st									
Endostagnic stn									
Epistagnic stc									
Subaquatic sq						0			
Sulphatic su									
Takyric ty					≤1	≤1			
Technic te									
Tephric tf									
Terric tr									
Thaptandic ba									
Thaptovitric by									
Thionic ti			≤1.5						
Hyperthionic tih			≤1.5						
Orthothionic tio									
Protothionic tip									
Thixotropic tp									

Tidalic td					≤0.5			
Toxic tx	≤0.5							
Transportic tn								
Turbic tu								
Umbric um								
Umbriglossic ug								
Urbic ub								
Vermic vm								
Vertic vr								
Vetic vt								
Vitric vi								
Voronic vo								
Xanthic xa								
Yermic ye						0		

Appendix 3: Orientation guides of indicator scoring based on vegetation in Central Europe (Indicators of salinity, alkalinity, acidity, drought and wetness, vegetation data adopted from Ellenberg et al, 2001).

Note: In some regions, specific plant lists of Ellenberg values are available, shey should be used. (For example: Australia: Victorian Resources online. 2007, England: ELLENBERG.S INDICATOR VALUES FOR BRITISH PLANTS, 2007).

Score	Characteristic	Orientation, check species of S >= 3 in list below
2	No salinisation	Most/dominant plants of S numbers =0 (not in list below), a few sub- dominant species may have S of 1-3
1.5	Low salinisation	Most/dominant plants of S numbers of 1 or higher, $S > 4$ largely missing
1	Moderate salinisation	Most/dominant plants of S numbers > 3, some plants of S numbers of 3, species having S=0 largely missing
0.5	Strong salinisation	Most/dominant plants of S numbers > 5, some plants of S numbers of 3, species having S<=1 largely missing
0	Extreme salinisation	Most/dominant plants of S numbers > 8, some plants of S numbers of 3-8, species having $S \le 3$ largely missing

Table A3-1: Hazard indicator 2, Salinisation

Table A3-1.1: Plant list of S numbers > 0

The S number is listed along with F and R numbers to check the possible combination of salinity with drought (F ≤ 3), waterlogging (F ≥ 9), alkalinity (R ≤ 9) or acidity (R ≤ 3).

GENUS	Species	S number	F number	R number
A chillea	millefolium	1	4	
Agropyron	junceiforme	7	6 =	7
Agropyron	pungens	6	5 ~	7
Alnus	glutinosa	1	9 =	6
Alopecurus	bulbosus	3	7 =	7
Alopecurus	geniculatus	2	8 =	7
Alopecurus	utriculatus	2	6~	8
Althaea	officinalis	2	7 =	8
Amaranthus	albus	1	2	
Amaranthus	hybridus agg.	1	4	7
Amaranthus	powellii	1	4	8
Amaranthus	retroflexus	1	4	7
Ammocalamagrost	baltica	1	4	
Ammophila	arenaria	1	4	7
Androsace	maxima	1	4	7
Angelica	archangelica	1	9 =	•

GENUS	Species	S number	F number	R number	
	1	-		_	
Anthoxanthum	odoratum	1	•	5	
Apium	graveolens	4	8	./	
Apium	nodiflorum	1	10	•	
Apium	repens	1	7 =	7	
Armeria	maritima	6	6 =	5	
Artemisia	maritima	5	5 =	•	
Artemisia	rupestris	3	7	8	
Aster	tripolium	8	. =	7	
Atriplex	calotheca	1	6 =	7	
Atriplex	glabriuscula	3	7 =	7	
Atriplex	littoralis	7	. =		
Atriplex	longipes	5	6~		
Atriplex	oblongifolia	1	4	6	
Atriplex	rosea	1	5	7	
Baldellia	ranunculoides	1	10		
Bassia	hirsuta	7	8 =	7	
Berula	erecta	1	10	8	
Beta	vulgaris	5	6 =	7	
Blackstonia	acuminata	1	7 ~	6	
Blvsmus	compressus	1	8	8	
Blysmus	rufus	5	7 =	7	
Bolboschoenus	maritimus	2	10	8	
Brassica	oleracea	3	- 0	0	
Bromus	hordeaceus ago	1	2~	•	
Bromus	hordeaceus ssp	. 1	. 4	• 4	
Bioleurum	tenuiggimum	· 1			
Cakile	maritima	4	6 -	0	
Calopina	irrogularig	1	2	•	
Callitricho	hrutia	1	10	0	
Callitriche	obtucia	1	10	• 7	
Callitriche	obcusaliguia	1	10	r c	
Callicite	stagnalis	1	10	6	
Carex	arenaria	1	3	2	
Carex	aistans	5	6 ~	8	
Carex	extensa	6	/ =	•	
Carex	Ilacca	Ţ	6~	8	
Carex	hordeistichos	2	7 =	7	
Carex	nigra	1	8 ~	3	
Carex	oederi	2	9	•	
Carex	otrubae	1	8	7	
Carex	panicea	1	8 ~	•	
Carex	punctata	1	7 =	7	
Carex	scandinavica	1	7 ~	7	
Carex	secalina	2	7		
Carum	carvi	1	5	•	
Catabrosa	aquatica	1	9 =	7	
Centaurium	littorale	2	7	8	
Centaurium	pulchellum	1	. ~	9	
Cerastium	dubium	2	8 =	7	
Cerastium	holosteoides	1	5		
Chenopodium	botryodes	1	7	7	
Chenopodium	glaucum	3	6		
Chenopodium	rubrum	1	7	7	
Chenopodium	rubrum agg.	1			
Cicendia	filiformis	1	8 =	3	

GENUS	Species	S number	F number	R number	
	-				
Cirsium	arvense	1			
Cochlearia	anglica	8	8 =	7	
Cochlearia	danica	4	8 =	8	
Cochlearia	officinalis aq	iq 2	7 =	7	
Coronopus	squamatus	1	6~	7	
Cotula	coronopifolia	5	7	7	
Crambe	maritima	3	6 =	7	
Crepis	nicaeensis	1	4	7	
Datura	stramonium	1	4	7	
Deschampsia	wibeliana	2	9 =	8	
Eleocharis	multicaulis	1	10		
Eleocharis	parvula	1	10	7	
Eleocharis	guingueflora	1	9	7	
Eleocharis	uniglumis	5	9 =	7	
Elvmus	arenarius	1	6 =	7	
Epilobium	hirsutum	1	8 =	8	
Ervsimum	repandum	2	4	8	
Euphorbia	nalustris	1	- 8 ~	8	
Festuca	arundinacea	2	7~	7	
Glaucium	flavum	2	6	8	
Claux	maritima	7	7 –	7	
Gratiola	officinalie	, 1	9 = 8	7	
Halimione	nedunculata	1 7	8 -	7	
	peduncurata	0	0 =	,	
	lanatug	1	7 <u>–</u>	•	
Honcus	ronloidog	L E	0 C	• 7	
Honkenya	jubatum	5	6	7	
Hordeum	Jubaculli marinum agg	2	ю 0 _	7	
Hordeum	marinum agg.	6	8 = C		
Hordeum	secarinum	4	6	6	
Hydrocotyle	vulgaris	1	9 ~ F	3	
Trula	radicala		5	4	
	britannica	2	/ =	8	
Inula	sallcina	1	6 ~ T	9	
Iris -	spuria	2	7	8	
Juncus	ambiguus	4	8	4	
Juncus	anceps	3	7	1	
Juncus	articulatus	1	9	•	
Juncus	balticus	1	8	2	
Juncus	compressus	1	8 =	.7	
Juncus	gerardıı	7	. =	7	
Juncus	inflexus	1	·/ ~	8	
Juncus	maritimus	6	7 =	7	
Juncus	subnodulosus	2	8	9	
Lactuca	saligna	1	4	8	
Lactuca	tatarica	2	6 ~	8	
Lathyrus	maritimus	1	4	7	
Lavatera	thuringiaca	1	5	•	
Lemna	gibba	1	11	8	
Lemna	minor	1	11	•	
Lemna	trisulca	1	12	7	
Leontodon	saxatilis	1	6 ~	6	
Lepidium	perfoliatum	2	6	6	
Lepidium	latifolium	4	5 ~	7	
Limonium	vulgare	8	7 =	7	

GENUS	Species	S number	F number	R number	
T.inum	catharticum	1		7	
Littorella	uniflora	1	10	7	
Lotus	tenuis	4	- °	8	
Lyconus	exaltatus	1	9 =	8	
Lythrum	hyggonifolia	2	5 – 7 –	3	
Lythrum	aligaria	1	7 <u> </u>	S C	
	nugilla	1	0 ~ 1	5	
Molilotuc	pusiria	2	7	7	
Melilotus	dontata	2	~ ~	7	
Melilotus	indian	2	о ~ г	7	
Merilocus		2	⊃ ~ ⊓	7	
Mentha		1	/ =	7	
Mentha	suaveolens	1	8 =	6	
Najas	marina	Ţ	12	9	
Odontites	litoralis	4	7 =	7	
Odontites	rubra	1	5	7	
Oenanthe	conioides	2	10	7	
Oenanthe	lachenalii	3	8 =	8	
Oenanthe	silaifolia	2	8 ~	7	
Oenothera	parviflora agg	. 1	3	7	
Oenothera	ammophila	1	3	8	
Ononis	spinosa	1	4 ~	7	
Ophioglossum	vulgatum	1	7	7	
Orchis	palustris	1	9 ~	8	
P arapholis	strigosa	5	7 =	7	
Phleum	arenarium	1	3	7	
Plantago	coronopus	4	7 =	7	
Plantago	maritima	7	7 =	8	
Poa	annua	1	6	·	
Poa	subcoerulea	3	5	6	
Poa	trivialis	1	7		
Podospermum	laciniatum	1	3 ~	8	
Polygonum	aviculare agg.	1	4		
Polygonum	oxyspermum	1	7 =	7	
Potamogeton	berchtoldii	1	12	7	
Potamogeton	crispus	1	12	7	
Potamogeton	pectinatus	1	12	8	
Potamogeton	perfoliatus	1	12	7	
Potamogeton	pusillus	- 1	12	6	
Potamogeton	pusillus agg.	1	12	6	
Potentilla	anserina	- 1	 6 ~		
Potentilla	supina	2	8 =	• 6	
Puccinellia	capillaris	7	8 =	7	
Duccipellia	digtang	7	6	7	
Puccinellia	limoga	6	5~ 7	, 7	
Puccipellia	maritima	8	, 8 –	, 7	
Dulicario	marria	1	0 – 0 –	6	
	varyar ro haudot i i	± 6	10	Q	
Panunculus	airainatua	1	10	2 7	
Ranunculus	flommulo	⊥ 1	12	<i>i</i>	
Ranunculus	repord	1	א א ר	3	
RAHUHCULUS	терепа	T	/ ~	•	

GENUS	Species	S number	F number	R number	
	-				
Ranunculus	sardous	1	8 =	•	
Ranunculus	sceleratus	2	9 =	7	
Rumex	maritimus	2	9 =	8	
Rumex	stenophyllus	2	7 =	8	
Ruppia	cirrhosa	9	12	8	
Ruppia	maritima	9	10 =	8	
S agina	maritima	4	7 =	8	
Sagina	nodosa	2	8 ~	8	
Sagina	procumbens	2	5 ~	7	
Salicornia	dolichostachya	8	9 =	7	
Salicornia	europaea	9	8 =	8	
Salicornia	fragilis	7	7 =	7	
Salicornia	ramosissima	9	8 =	8	
Salsola	kali	6	. =	7	
Salsola	kali ssp.	2	4	8	
Samolus	valerandi	4	8 =	7	
Schoenoplectus	americanus	1	10	7	
Schoenoplectus	carinatus	2	11	7	
Schoenoplectus	lacustris	1	11	7	
Schoenoplectus	tabernaemontan	i 3	10	9	
Schoenoplectus	triqueter	2	10	7	
Schoenus	nigricans	1	9 =	9	
Sclerochloa	dura	1	4 ~	8	
Scorzonera	parviflora	5	7	8	
Sedum	acre	1	2		
Senecio	vernalis	1	4	7	
Sisymbrium	supinum	1	7 =	7	
Sonchus	arvensis	1	5~	7	
Sonchus	asper	1	6	7	
Sonchus	palustris	1	8~	7	
Spartina	townsendii agg	. 8	9 =	8	
Spergularia	media	8	7 =	7	
Spergularia	salina	9	7 =	9	
Spirodela	polvrhiza	1	11	6	
Suaeda	maritima	8	8 =	7	
Taraxacum	officinale agg	1	5	,	
Tarayacum	nalustre agg	• <u> </u>	8	• 8	
Tetragonolohus	maritimus	1	0	9	
Teucrium	acordium aco	1	8 –	8	
Trifolium	fragiforum	1	0 =	0	
Trifolium	ropong	1	7 =	6	
Trifolium	reguninatum	1	5	0 7	
Trifolium	ctriatum	2 1	0~ 2	7	
Triglochin	scriatum	1 0		2	
Triglochin	maliuatro	0 2	7 =	•	
	paiustre	3	9 =	•	
		6	6 =	/	
Typha	angustitolla	1	10	/	
Typha	latiiolia	1	10	/	
Verbascum	blattaria	T	3	1	
vicia	cracca	1	5	•	
Vicia	Lutea	1	4	7	
	tricolor ssp.	1	3	6	
X anthium	strumarium	1	5	7	
Z annichellia	palustris	5	12	8	
Zostera	marina	3	12	7	
Zostera	noltii	3	12	7	

Value	Description	Explanation
1	Salt tolerant	Plant mainly on soils free of salts or low-salt soils, partly on
	Salt toleralle	slightly salty soils (0-0.1% Cl ⁻)
2	oligohyalin (I)	Mainly on soils of very low chloride content (0,05-0,3% Cl ⁻)
3	β-mesohyalin (II)	Mainly on soils of low chloride content (0.3-0.5% Cl ⁻)
1	α/β-mesohyalin	Mainly on soils of low to moderate chloride content (0.5-0.7%
4	(II/III)	CI ⁻)
5	α-mesohyalin (III)	Mainly on soils of moderate chloride content (0.7-0.9% Cl ⁻)
6	α-meso-/polyhyalin	On soils of moderate to high chloride content $(0.9-1.2\% \text{ Cl}^-)$
U	(III/IV)	
7	polyhyalin (IV)	On soils of high chloride content (1.2-1.6% Cl ⁻)
8	euhalin (IV/V und V)	On soils of very high chloride content (1.6-2.3% Cl ⁻)
0	euhalin bis hypersalin	On soils of very high, in dry periods extremely high chloride
9	(V/VI)	content (>2.3% Cl ⁻)

Table A3-1.2: Legend S number acc. to Ellenberg:

Table A3-2: Hazard indicator 3, Sodification ¹⁾

Score	Characteristic	Extremely rought orientation, check species of R=9 in list below ¹⁾
2	No to slight sodification	Most/dominant plants of R numbers < 9 (not in list below)
1.5	Low to moderate sodification	
1	Moderate to high sodification	Many species of R numbers of 9
0.5	High to very high sodification	
0	Extreme sodification	Most/dominant plants of R numbers of 9

¹⁾ Plants in the list below characterize either the presence of lime than of sodium. They are thus no indicators of sodification, but give a hint for a possible high pH which could be associated with sodification

Table A3-2.1: Plant list of R numbers of 9

GENUS	Species	R number	GENUS	Species	R number
A chillea	clusiana	9	Himantoglossum	hircinum	9
Acinos	alpinus	9	Horminum	pyrenaicum	9
Adonis	flammea	9	Hornungia	petraea	9
Aethionema	saxatile	9	Hutchinsia	alpina	9
Aethusa	cynapium ss	p. 9	Hydrilla	verticillata	a 9
Ajuga	chamaepitys	9	Hypericum	elegans	9

GENUS	Species R nu	ımber	GENUS	Species R nu	umber
Alchemilla	hoppeana	9	Iberis	intermedia	9
Allium	suaveolens	9	Inula	salicina	9
Amaranthus	graecizans	9	Inula	spiraeifolia	9
Anacamptis	pyramidalis	9	Iris	sambucina	9
Anagallis	foemina	9	Juncus	subnodulosus	9
Androsace	chamaeiasme	9	Kernera	saxatilis	9
Androsace	hausmannii	9	Koeleria	vallesiana	9
Androsace	lactea	9	Laser	trilobum	9
Anthemis	austriaca	9	Laserpitium	latifolium	9
Aguilegia	einseliana	9	Laserpitium	siler	9
Arabis	alpina	9	Lathvrus	bauhinii	9
Arabis	caerulea	9	Lathyrus	latifolius	9
Arabis	ciliata	9	Lathyrus	pannonicus	9
Arabis	pumila	9	Leontodon	incanus	9
Arabis	soveri	9	Leontodon	montanus	9
Asperula	arvensis	9	Leucanthemum	halleri	9
Asperula	tinctoria	9	Linum	leonii	9
Asplenium	seelosii	9	Linum	perenne ssp.	9
Aster	amellus	9	Linum	tenuifolium	9
Astragalus	cicer	9	Liparis	loeselii	9
Astragalus	frigidus	9	Medicago	falcata	9
Astragalus	danicus	9	Mentha	longifolia	9
Astragalus	exscapus	9	Micropus	erectus	9
Astragalus	onobrychis	9	Minuartia	austriaca	9
Athamantha	cretensis	9	Moehringia	muscosa	9
B ifora	radians	9	Myagrum	perfoliatum	9
Blackstonia	perfoliata	9	Myosotis	alpestris	9
Bunium	bulbocastanum	9	Myosotis	rehsteineri	9
Bupleurum	falcatum	9	Myriophyllum	spicatum	9
Bupleurum	longifolium	9	Najas	intermedia	9
Bupleurum	ranunculoides	9	Najas	marina	9
Bupleurum	rotundifolium	9	Nigella	arvensis	9
C alamagrostis	pseudophragmite	9	Nigritella	miniata	9
Calamintha	nepeta agg.	9	Nonea	pulla	9
Carduus	crassifolius	9	O dontites	lutea	9
Carex	appropinquata	9	Onobrychis	arenaria	9
Carex	brachystachys	9	Onobrychis	montana	9
Carex	firma	9	Ophrys	apifera	9
Carex	lepidocarpa	9	Ophrys	holoserica	9
Carex	mucronata	9	Ophrys	insectifera	9
Carex	ornithopoda	9	Ophrys	sphecodes agg.	9
Carex	ornithopoides	9	Orchis	militaris	9
Carex	tomentosa	9	Orchis	tridentata	9
Caucalis	platycarpos	9	Orlaya	grandiflora	9
Centaurium	pulchellum	9	Orobanche	alba	9
Cerastium	latifolium	9	Orobanche	caryophyllacea	9
Chaerophyllum	aureum	9	Orobanche	flava	9
Chamorchis	alpina	9	Orobanche	teucrii	9
Chondrilla	chondrilloides	9	Oxytropis	jacquinii	9
Cirsium	eriophorum	9	Papaver	sendtneri	9
Cladium	mariscus	9	Pedicularis	oederi	9
Conringia	orientalis	9	Pedicularis	rostrato-capita	9
Coronilla	coronata	9	Pedicularis	rostrato-spicat	9
Coronilla	emerus	9	Petrocallis	pyrenaica	9

Coronillavaginalis9Peucedanumalsaticum9Coronillavaria9Pinusnigra9Coronillalutea9Poacompressa9Coronillaburnen9Polygalaamarella9Crepispraemorsa9Potentillabrauneana9Crepisterginopupurascens9Potentillaheinita9Cystopterisdickieana9Primulafarinosa9Cystopterismotana9Pulsatillagrandis9Cystopterissudefica9Raunculushybrids9Doronicumgrandiflorum9Raunculushybrids9Dorycniumgermanicum9Raunculusparassifolius9Drabaladina9Rhamuspullus9Drabasatteri9Raunculusparassifolius9Drabasatteri9Rhamussaxtilis9Drabasatteri9Rhamussaxtilis9Drabasatteri9Salixserpilisficia9Erigeronneglectus9Salixserpilisficia9Erigeronneglectus9Salixserpilificia9Erigeronneglectus9Saxifragamutata9Erigeronneglectus9Saxifragamutata9Erigeronneglectus9Saxifragamutata	GENUS	Species R nur	nber	GENUS	Species R num	ıber
Coronillavaria9Pinsnigra9Corvalislutea9Poacompressa9Cotonesstertomentosus9Polygalacalcarea9Crepispramorsa9Potentillabraueana9Crepisterglouensis9Potentillabraueana9Cyclamenpurprascens9Primulafarinosa9Cystopterisdickieana9Prunellalaciniata9Cystopterismontana9Pulastillagrandis9Doronicumgermanicum9Ranunculusparassifolius9Dorycniumgermanicum9Ranunculusparassifolius9Drabaladina9Ramuspullus9Drabaladina9Rorippaanceps9Dryoterisvillarii9Salixretivalatis9Pipataladina9Salixretivalatis9Dryoterisvillarii9Salixretivalatis9Pipactisleptochila9Salixretivalatis9Pipactisleptochila9Salixretivalatis9Prigeronneglectus9Savifragaaphylla9Prysimmcheiri9Savifragapulla9Prysimmcheiri9Savifragapulla9Prysimmcheiri9Savifraganemorosa9<	Coronilla	vaginalis	9	Peucedanum	alsaticum	9
Corydalislutea9Foacompressa9Cotoneastertomentosus9Folygalaamarella9Crepispraemorsa9Potentillabrauneana9Crepisterglouensis9Potentillahotaneana9Cystopteristerglouensis9Potentillahotaneana9Cystopterismontana9Primellalacinita9Cystopterismontana9Punselialgrandis9Cystopterissuddica9Ranunculusbaudotii9Dorynciumgermanicum9Rapistrumperene9Drabaaizoides9Resedaluteola9Drabasauteri9Ranunculuspanassifolius9Drabasauteri9Ranuexpalustris9Bripobliumdodonael9Salixreticulata9Bripiactisleptochila9Salixsextilia9Erigeronneglectus9Savifragaaneesia9Erigeronpolymorphus9Saxifragaburserana9Fraganneglosperum9Saxifragamutata9Erysimumcheiri9Saxifragamutata9Erysimumcheiri9Saxifragamutata9Festucaalpina9Schoenoplectustabernaemontani9Festucaalpina9Schoenoplectus	Coronilla	varia	9	Pinus	nigra	9
Cotoneastertomentosus9Polygalaamarella9Crepiskerneri9Polygalacalcarea9Crepispramorsa9Potentillaheptaphylla9Cyclamenpurpurascens9Primulafarinosa9Cystopterisdickieana9Prunellalaciniata9Cystopterissudetica9Ranunculusbaudoti9Doronicumgradiflorum9Ranunculusbaudoti9Dorycniumgermanicum9Ranunculusparnassifolius9Drychiumhebaceum9Ranunculusparnassifolius9Drybaalzoides9Resedaluteola9Drabaladina9Rolippaanceps9Dryoptrisvillarii9Rainxreticulata9Bridgeronacris ssp.9Salixreticulata9Erigeronneglescus9Salvianemorosa9Erigeronneglescus9Salvianemorosa9Erysimucheiri9Saxifragaapusla9Pestucanorica9Sachenusnigricans9Pestucanorica9Seelinunum9Pestucanorica9Seeliannuum9Pestucanorica9Seeliannuum9Galiumrucosa9Seeliannuum9Galium	Corvdalis	lutea	9	Poa	compressa	9
Crepiskerneri9Polygalacalcarea9Crepispraemorsa9Potentillabrauneana9Crepistrepistrepisfarinosa9Cystopterisdikieana9Prinullafarinosa9Cystopterismontana9Pulastillagrandis9Cystopterismontana9Pulastillagrandis9Dorycniumgrandiflorum9Ranunculusbaudotii9Dorycniumgermanicum9Ranunculusbaudotii9Drabaladina9Rhamuspumilus9Drabasauteri9Rastrumperenne9Drabasauteri9Ranuculusbaudotii9Drabasauteri9Rhamussautilis9Drabasauteri9Rumexpalustris9Drabasauteri9Rumexpalustris9Drabasauteri9Salixreticulata9Spilobiumdodaei9Salixserpillifolia9Erigeronneglectus9Saviaragaburyla9Erophilaspathulata9Saxifragaautata9Schoenoplectustabernaemontani9Satifragamutata9Festucanorica9Seseliannuum9Festucastenantha9Seseliannuum9Galiumglacum	Cotoneaster	tomentosus	9	Polvgala	amarella	9
Crepispraemorsa9Potentillabrauneana9Crepisterglouensis9Potentillaheptaphylla9Cyclamenpurpurascens9Primulafarinosa9Cystopterisdickieana9Prunellalaciniata9Cystopterismontana9Pulsatillagrandis9Doronicumgrandiflorum9Ranunculusbaudoti9Dorycniumgermanicum9Ranunculusparnassifolius9Dorycniumherbaceum9Ranunculusparnassifolius9Drabaaladina9Rhamussaxtilis9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Raixreticulta9Pripataitomentosa9Salixreticulta9Dryopterisvillarii9Salixreticulta9Pripatcisleptochila9Salixreticulta9Erigeronneglectus9Savifragamutata9Erysimumcheiri9Saxifragamutata9Erysimumheraciifolium9Secheonplectustabernaemotani9Festucanorica9Secheiriavaria9Festucanorica9Secleriavaria9Festucanorica9Secleriavaria9Galiumglaocum9Stachysa	Crepis	kerneri	9	Polvgala	calcarea	9
Crepisterglouensis9Potentillaheptaphylla9Cystopterispurpurascens9Primulafarinosa9Cystopterismontana9Prumellalaciniata9Cystopterismontana9Pulsatillagrandis9Oystopterissudtica9Ranunculusbaudotii9Doronicumgrandiflorum9Ranunculusbaudotii9Doryoniumherbaceum9Ranunculusparassifolius9Drabaaizoides9Resedaluteola9Drabasauteri9Ranunculusparassifolius9Drabasauteri9Ranunculusparassifolius9Drabasauteri9Ranunculusparassifolius9Drabasauteri9Rainexpalustris9Dryopterisvillarii9Salixreticulata9Erigeronneglectus9Salixserpillolia9Erigeronneglectus9Saxifragamutata9Erysimucheiri9Saxifragamutata9Perstucanorica9Seseliannuum9Pestucanorica9Seseliannuum9Pestucastanta9Seseliannuum9Galiumglauoum9Seseliannuum9Galiumglauoum9Stachysalina9	Crepis	praemorsa	9	Potentilla	brauneana	9
Cyclamenpurpurasens9Primulafainoa9Cystopterisdickieana9Prunellalaciniata9Cystopterismontana9Pulsatillagrandis9Cystopterissudetica9Ranunculusbaudotii9Doronicumgrandiflorum9Ranunculusbaudotii9Dorycniumgermanicum9Ranunculusparnasifolius9Dorycniumherbaceum9Rapitotius9Drabaaizoides9Resedaluteola9Drabasatteri9Rhamussattilis9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Rumexpalustris9Epipactisleptochila9Salixserpilifolia9Erigeronneglectus9Saponariaocymoides9Erysimumcheiri9Saxifragaaphylla9Farcariavulgaris9Seselihippomarathrum9Festucanorica9Seselihippomarathrum9Festucanorica9Spiranthesaestival9Galiumglacum9Spiranthesaestival9Galiumglacum9Spiranthesaestival9Galiumglacum9Spiranthesaestival9Galiumcordicila9Teerana9Spiranthes <td< td=""><td>Crepis</td><td>teralouensis</td><td>9</td><td>Potentilla</td><td>heptaphvlla</td><td>9</td></td<>	Crepis	teralouensis	9	Potentilla	heptaphvlla	9
Cystopterisdickieana9Prumellalaciniza9Cystopterismontana9Pulsatillagrandis9Cystopterissudetica9Ranunculusbaudotii9Doronicumgrandiflorum9Ranunculushybridus9Dorycniumherbaceum9Ranunculushybridus9Drabaladina9Ranunculusparnassifolius9Drabaladina9Rhamuspumilus9Drabasauteri9Rhamussautris9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Salixreticulata9Epipactisleptochila9Salixserpillifolia9Erigeronneglectus9Salixserpillifolia9Erigeronpolymorphus9Saxifragaaphylla9Erysimumcheiri9Saxifragacaesia9Erysimumcheiri9Saxifragamutata9Pestucaalpina9Seseliannuum9Pestucanorica9Seseliannuum9Galiumglaocum9Seselialpina9Galiumglaocum9Seselialpina9Galiumglaocum9Stachysrecta9Galiummegalospermum9Stachysalpina9Galiumc	Cyclamen	purpurascens	9	Primula	farinosa	9
Cystopterismontana9Pulsatillagrandis9Cystopterissudetica9Ranunculusbaudotii9Doronicumgrandiflorum9Ranunculushybridus9Dorycniumgermanicum9Rapistrumperenne9Dataaizoides9Resedalutcola9Drabaladina9Rhamnussaxatilis9Drabasauteri9Rhamnussaxatilis9Drabatomentosa9Rorippaanceps9Bpipatisleptochla9Salixreticulata9Erigeronneglectus9Saxifragaaphylla9Errigeronneglectus9Saxifragaburserana9Erysimumcheiri9Saxifragaburserana9Erysimumcheiri9Saxifragacaesia9Perysinumcheiri9Saxifragamutata9Perysinumcheiri9Saxifragamutata9Perysinumcheiri9Saxifragamutata9Perysinumcheiri9Saxifragamutata9Perysinumcheiri9Saxifragamutata9Perysinumcheiri9Sechoenusnigricans9Perysinumcheiri9Sechoenusnigricans9Setucaalpina9Sechoenusnigricans9Setu	Cystopteris	dickieana	9	Prunella	laciniata	9
Cystopterissudetica9Ranunculusbaudotii9Doronicumgrandiflorum9Ranunculushybridus9Dorycniumherbaceum9Ranunculusparnassifolius9Drabaaicoides9Resedaluteola9Drabaladina9Rhamuspumlus9Drabaladina9Rhamussaatilis9Drabatomentosa9Rorippaanceps9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Salixreticulata9Epilobiumdodonaei9Salixreticulata9Erigeronneglectus9Salvianemorosa9Erigeronneglectus9Saxifragaaphylla9Erysinumcheiri9Saxifragamutata9Erysinumcheiri9Saxifragamutata9Pestucaalpina9Schoenusnigricans9Festucaalpina9Seseliannum9Festucaalpina9Silenepusila9Galiummegalospermum9Silenepusila9Galiumcorriculatum9Spergulariasalina9Galiumcorriculatum9Stachysrecta9Galiumcorriculatum9Stachysrecta9Galiumcorriculatum	Cystopteris	montana	9	Pulsatilla	grandis	9
Doronicumgrandiflorum9Ranunculushypridus9Dorycniumgermanicum9Ranunculusparnassifolius9Dorycniumherbaceum9Rapistrumperenne9Drabaaizoides9Resedalutcola9Drabasauteri9Rhamussaxatilis9Drabasauteri9Rhamussaxatilis9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Salixreticulata9Epilobiumdodonaei9Salixserpillifolia9Erigeronneglectus9Saliraaphylla9Erigeronneglectus9Saxifragamutata9Erysimumcheiri9Saxifragamutata9Suphrabiavuspidata9Schoenolectustamaenotani9Festucaalpina9Seseliannum9Festucanorica9Seselihippomarathrum9Galiumglacum9Silenepusilla9Galiumcordifolia9Stachysrecta9Galiumcordifolia9Stachysapina9Galiumrunicus9Stachysapina9Galiumcordifolia9Tetragonolobusmaritimus9Galiumcordifolia9Tetragonolobusaritimus9G	Cystopteris	sudetica	9	Ranunculus	baudotii	9
Dorycniumgermanicum9Ranunculusparasifolius9Dorycniumherbaceum9Rapistrumperenne9Drabaladina9Resedaluteola9Drabaladina9Rhamnussaxatilis9Drabatomentosa9Rorippaanceps9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Salixreticulata9Epilobiumdodonaei9Salixseticulata9Erigeronneglectus9Salvianemorosa9Erigeronneglectus9Saxifragaaphylla9Erysinumcheiri9Saxifragamumu9Euphrasiacuspidata9Schoenusnigricans9Festucaalpina9Seseliannum9Festucaalpina9Seseliaalpina9Galiumglacum9Spiranthesasilina9Galiumcordifolia9Stachysrecta9Galuumcordifolia9Stachysrecta9Galuumcordifolia9Stachysalpina9Galuumcordifolia9Stachysrecta9Galuumcordifolia9Thesiumrotundifoliu9Galuumcordifolia9Thesiumrotundifoliu9Guluumcordifolia <t< td=""><td>Doronicum</td><td>grandiflorum</td><td>9</td><td>Ranunculus</td><td>hybridus</td><td>9</td></t<>	Doronicum	grandiflorum	9	Ranunculus	hybridus	9
Dorycniumherbaceum9Rapistrumperne9Drabaaizoides9Resedaluteola9Drabaladina9Rhamnusyumilus9Drabasauteri9Rhamnussaxtlis9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Salixreticulata9Epilobiumdodonaci9Salixserpillifolia9Epigenonacris sgp.9Salvianemorosa9Erigeronneglectus9Saxifragaaphylla9Errysimucheiri9Saxifragacaesia9Erysimumhieracifolium9Saxifragamutata9Euphrbiacuspidata9Schoenusnigricans9Festucaalpina9Seselianuum9Festucaalpina9Seseliawaria9Galiumglaucum9Stachysrecta9Galiumtrindicus9Stachysalpina9Galuumcorriculatum9Stachysalpina9Galuumcorriculatum9Tetsgonolobusmotanum9Galuumcorriculatum9Tetsgonolobusalpina9Galuumcorriculatum9Tetsgonolobusalpina9Galuumcorriculatum9Tetsgonolobusalpina9Galuum	Dorycnium	germanicum	9	Ranunculus	parnassifolius	9
Drabaaizoides9Resedalucola9Drabaladina9Rhamuuspumilus9Drabasauteri9Rhamuussaxatilis9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Rumexpalustris9Epilobiumdodonaei9Salixreticulata9Epipartisleptochila9Salixserpillifolia9Erigeronncglectus9Salixserpillifolia9Erophilaspathulata9Saxifragaaburserana9Erysimumcheiri9Saxifragamutata9Euphorbiaverucosa9Schoenoplectustabernaemontani9Euphorbiaverucosa9Schoenoplectustabernaemontani9Festucaalpina9Seseliannuum9Festucanorica9Spergulariasalina9Galiumglaucum9Spiranthesaslivalis9Galiumcordifolia9Tetragonolobusmotanum9Galiumcordifolia9Thesiumrotudifoliu9Globulariacordifolia9TrisetumdistichophyllumGotianacordifolia9TrisetumdistichophyllumGlobulariapuncta9TrisetumdistichophyllumGyspophilarepens9Trifoliumscabrum <t< td=""><td>Dorycnium</td><td>herbaceum</td><td>9</td><td>Rapistrum</td><td>perenne</td><td>9</td></t<>	Dorycnium	herbaceum	9	Rapistrum	perenne	9
Drabaladina9Rhamuspunlus9Drabasauteri9Rhamussaxatilis9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Rumexpalustris9Epilobiumdodonaei9Salixreticulata9Epipactisleptochila9Salixserpillifolia9Erigeronacris sp.9Saponariaocymoides9Erigeronneglectus9Saxifragaaphylla9Erysimumcheiri9Saxifragacaesia9Erysimumhieraciifolium9Saxifragamutata9Euphrasiacuspidata9Schoenusnigricans9Festucaalpina9Seseliinpomarathrum9Festucanorica9Schoenusalpina9Galiumglacum9Spiranthesaestivalis9Galiumglacum9Stachysrecta9Gentianautriculosa9Trisolumsortarum9Glabulariaodoratisima9Trisolumsortarum9Glabulariapunctata9Trisolumsortarum9Galiumcornicultum9Trisolumsortarum9Gentianalutriculosa9Trisolumsortarum9Globulariapunctata9Trisolumsortarum9	Draba	aizoides	9	Reseda	luteola	9
Drabasauteri9Rhamnussaxtilis9Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Rumexpalustris9Epilobiumdodonaei9Salixretriculata9Epipactisleptochila9Salixretriculata9Erigeronneglectus9Salixnemorosa9Erigeronneglectus9Saxifragaaphylla9Erysimumcheiri9Saxifragamutata9Erysimumcheiri9Saxifragamutata9Euphorbiaverrucosa9Schoenoplectustabernaemontani9Festucaalpina9Seseliannum9Festucanorica9Silenepusila9Galiumglacum9Stachysrecta9Galiumglacum9Stachysapina9Gentianautriculosa9Tetragonolobusmaritmus9Gentianacordifolia9Tetragonolobusmaritmus9Glabulariacordifolia9Trisetumfotalidolum9Gentianellaaspera9Trisetumfotalidolum9Galiumtrunculosa9Trisetumfotalidolum9Gentianautriculosa9Trisetumfotalidolum9Gentianellaaspera9Trisetumfotalidolum9<	Draba	ladina	9	Rhamnus	pumilus	9
Drabatomentosa9Rorippaanceps9Dryopterisvillarii9Rumexpalustris9Epilobiumdodonaei9Salixreticulata9Epipactisleptochila9Salixserpillifolia9Erigeronacris ssp.9Salixserpillifolia9Erigeronneglectus9Saviragaaphylla9Erryiperonpolymorphus9Saxifragapurserana9Erysimumcheiri9Saxifragacaesia9Erysimumcheiri9Saxifragamutata9Euphorbiaverucosa9Schoenoplectustabernaemontani9Falcariavulgaris9Seseliannum9Festucaalpina9Seseliannum9Festucanorica9Seseliavaria9Galiumglaucum9Spiranthesaestivalis9Galiumtruniacum9Stachysrecta9Gentianaclusi9Tetragonolobusmaritimus9Glauciumcorniculatum9Thesiumnotanum9Glauciumcorniculatum9Thesiumnotanum9Glauciumcorniculatum9Thesium99Glauciumcorniculatum9Thesium99Glauciumcorniculatum9Thesium99Gl	Draba	sauteri	9	Rhamnus	saxatilis	9
Dryopterisvillarii9Rumexpalustris9Epilobiumdodonaei9Salixreticulata9Epipactisleptochila9Salixserpillifolia9Erigeronacris ssp.9Salvianemorosa9Erigeronneglectus9Sayonariaocymoides9Erophilaspathulata9Saxifragaaphylla9Erysimumcheiri9Saxifragamutata9Enysimumcheiri9Saxifragamutata9Euphorbiaverucosa9Schoenoplectustabernaemontani9Eupharsiacuspidata9Seseliannuum9Festucanorica9Seselihippomarathrum9Festucanorica9Spergulariasalina9Galiumglacum9Spiranthesaestivalis9Galiumglacum9Stachysreta9Gentianacordifolia9Tetragonolobusmaritimus9Globulariacordifolia9Thesiumrotundifolium9Globulariacordifolia9Trisetumdistichophyllu9Guiumcordifolia9Trisetumdistichophyllu9Galiumcordifolia9Trisetumdistichophyllu9Globulariacordifolia9Trisetumdistichophyllu9Gymadeniaodoratissima<	Draba	tomentosa	9	Rorippa	anceps	9
Epilobiumdodonaei9Salixreticulata9Epipactisleptochila9Salixserpillifolia9Erigeronacris ssp.9Salvianemorosa9Erigeronpolymorphus9Saxifragaaphylla9Erophilaspathulata9Saxifragaaphylla9Erysimumcheiri9Saxifragacaesia9Euphorbiaverucosa9Schoenoplectustabernaemontani9Euphorbiaverucosa9Schoenoplectustabernaemontani9Festucaalpina9Seselinnuum9Festucanorica9Seseliannuum9Festucanorica9Spiranthesaestivalis9Galiumglaucum9Spiranthesaestivalis9Galiumruniacum9Spiranthesaestivalis9Gentianaclusii9Tetragonolobusmaritimus9Gentianacordifolia9Thesiumrotundifolium9Globulariapunctata9Trifoliumscabrum9Gymadeniaodoratissima9Trifoliumscabrum9Gyppophilarepes9Trifoliumscabrum9Helianthemumgrange9Trifoliumscabrum9Galuumcordifolia9Trifoliumscabrum9Gentianaodoratissima9 <td< td=""><td>Dryopteris</td><td>villarii</td><td>9</td><td>Rumex</td><td>palustris</td><td>9</td></td<>	Dryopteris	villarii	9	Rumex	palustris	9
Epipactisleptochila9Salixserpillifolia9Erigeronacris ssp.9Salvianemorosa9Erigeronpolymorphus9Sayonariaocymoides9Erryeinonpolymorphus9Saxifragaaphylla9Erryeinumcheiri9Saxifragacaesia9Erysimumhieraciifolium9Saxifragamutata9Euphrasiacuspidata9Schoenoplectustabernaemontani9Falcariavulgaris9Seseliannuum9Festucaalpina9Seselihippomarathrum9Festucanorica9Seselivaria9Galiumglaucum9Spiranthesaestivalis9Galiumglaucum9Stachysalpina9Galiumcurticlosa9Tetragonolobus9Gentianacurticlosa9Thesiumrostratum9Glauciumcordifolia9Thiaspimontanum9Globulariapunctata9Trisetumdistichophyllum9Helianthemumalpestre agg.9Trifoliumscabrum9Helianthemumgrandiflorum9Valerianamontana9Gibulariapunctata9Trisetumdistichophyllum9Helianthemumgrandiflorum9Trisetumdistichophyllum9Helianthemumgrandiflorum	E pilobium	dodonaei	9	S alix	reticulata	9
Erigeronacris ssp.9Salvianemorosa9Erigeronneglectus9Saponariaocymoides9Erigeronpolymorphus9Saxifragaaphylla9Erophilaspathulata9Saxifragaaphylla9Erysimumcheiri9Saxifragamutata9Erysimumhieraciifolium9Saxifragamutata9Euphorbiaverrucosa9Schoenoplectustabernaemontani9Falcariavulgaris9Seseliannum9Festucaalpina9Seselihippomarathrum9Festucanorica9Seseliavaria9Galiumglaucum9Spergulariasalina9Galiumglaucum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianacursii9Tetragonolobusmaritimus9Gentianacordifolia9Thesiumrostratum9Globulariacordifolia9Trifoliumscarum9Gymadeniaodoatissima9Trifoliumscarum9Gymadeniaodoatissima9Trifolium9scarumGubulariagrand9Valerianamontanu9Globulariacordifolia9Trifoliumscarum9Helianthemumapeste9Trifolium9 <t< td=""><td>Epipactis</td><td>leptochila</td><td>9</td><td>Salix</td><td>serpillifolia</td><td>9</td></t<>	Epipactis	leptochila	9	Salix	serpillifolia	9
Erigeronneglectus9Saponariaocymoides9Brigeronpolymorphus9Saxifragaaphylla9Erophilaspathulata9Saxifragaburserana9Erysimumcheiri9Saxifragamutserana9Euphorbiaverucosa9Schoenoplectustabernaemontani9Euphrasiacuspidata9Schoenoplectustabernaemontani9Falcariavulgaris9Seseliannuum9Festucanorica9Seselivaria9Festucastenantha9Silenepusilla9Fumanaprocumbens9Stachysalpina9Galiumglaucum9Stachysalpina9Galiumtruniacum9Stachysreta9Gentianaclusii9Tetorgonolobusmaritimus9Glauciumcorniculatum9Thesiumrostratum9Globulariacordifolia9Trifoliumscabrum9Gymadeniaodoratissima9Trifoliumscabrum9Gymadeniaodoratissima9Trifoliumscabrum9Helianthemumapeste agg.9Turgenialatifolia9Helianthemumgradiflorumss9Valerianamotana9Helianthemumodoratissima9Valerianapretensis9Helianthemumgradiflorum	Erigeron	acris ssp.	9	Salvia	nemorosa	9
Erigeronpolymorphus9Saxifragaaphylla9Brophilaspathulata9Saxifragaburserana9Erysimumcheiri9Saxifragacaesia9Enysimumhieraciifolium9Saxifragamutata9Euphorbiaverucosa9Schoenoplectustabernaemontani9Euphrasiacuspidata9Schoenoplectustabernaemontani9Falcariavulgaris9Seseliannuum9Festucaalpina9Seseliannuum9Festucastenantha9Seseliaannua9Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Stachysrecta9Galiumtruniculosa9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Glabulariacordifolia9Thiaspirotundifolium9Globulariacordifolia9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumgradiflorumss9Valerianasaxifia9Helianthemumgradiflorumss9Valerianasopina9Helianthemumgradiflorumss9Valerianasopina9Helianthemumgradiflorumss9Valerianasopina9Helianthemum <t< td=""><td>Erigeron</td><td>neglectus</td><td>9</td><td>Saponaria</td><td>ocymoides</td><td>9</td></t<>	Erigeron	neglectus	9	Saponaria	ocymoides	9
Erophilaspathulata9Saxifragaburserana9Erysimumcheiri9Saxifragacaesia9Erysimumhieraciifolium9Saxifragamutata9Euphorbiaverucosa9Saxifragamutata9Euphrasiacuspidata9Schoenoplectustabernaemontani9Falcariavulgaris9Scseliannuum9Festucaalpina9Seselihippomarathrum9Festucanorica9Silenepusilla9Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianacursit9Tetragonolobus99Gentianautriculosa9Thesiumrostratum9Glauciumcordifolia9Thiaspimontanum9Globulariapunctata9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumgrandiflorum ss9Valerianasaveina9Helianthemumgrandiflorum ss9Valerianasaveina9Heiraciumwortum9Valerianasaveina9Heiraciumgrandiflorum ss9Valerianasaveina9Heiraciumgrandiflorum9V	Erigeron	polymorphus	9	Saxifraga	aphylla	9
Erysimumcheiri9Saxifragacaesia9Enysimumhieraciifolium9Saxifragamutata9Euphorbiaverucosa9Schoenoplectustabernaemontani9Fulariavulgaris9Schoenusnigricans9Falcariavulgaris9Seseliannuum9Festucaalpina9Seselihippomarathrum9Festucanorica9Seseliavaria9Festucastenantha9Silenepusilla9Galiumglaucum9Stachysalpina9Galiummegalospermum9Stachysalpina9Gentianaclusii9Tetragonolobusmaritimus9Gentianalutriculosa9Thesiumrostratum9Glauciumcorniculatum9Thiaspirotundifolium9Globulariapunctata9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumgrandiflorum ss9Valerianasuparia9Helianthemumgrandiflorum9Valerianasaxatilis9Helianthemumglaucum9Valerianasayina9Helianthemumgrandiflorum9Valerianasuparia9Helianthemumgrandiflorum9Valerianasuparia9Helianthemumgrandifl	Erophila	spathulata	9	Saxifraga	burserana	9
Erysimumhieraciifolium9Saxifragamutata9Euphorbiaverrucosa9Schoenoplectustabernaemontani9Euphrasiacuspidata9Schoenoplectustabernaemontani9Falcariavulgaris9Seseliannuum9Festucaalpina9Seselihippomarathrum9Festucastenantha9Seselisalina9Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Stachysalpina9Galiumtruniacum9Stachysalpina9Gentianaclusii9Tetragonolobusmaritimus9Gloulariacordifolia9Thesiumrostratum9Globulariacordifolia9Thispimotanum9Gymadeniaodoratissima9Trifoliumscabrum9Gypophilarepens9Trisetumdistichophyllum9Helianthemumgrandiflorum ss9Valerianamotana9Helianthemumgrandiflorum ss9Valerianasaxifis9Heliarthemumgrandiflorum ss9Valerianasaxifis9Helianthemumgrandiflorum9Valerianasaxifis9Helianthemumgrandiflorum9Valerianasaxifis9Helianthemumgrandiflorum9Valerianasaxifis9 <tr< td=""><td>Erysimum</td><td>cheiri</td><td>9</td><td>Saxifraga</td><td>caesia</td><td>9</td></tr<>	Erysimum	cheiri	9	Saxifraga	caesia	9
Euphorbiaverrucosa9Schoenoplectustabernaemontani9Euphrasiacuspidata9Schoenusnigricans9Falcariavulgaris9Schoenusnigricans9Festucaalpina9Seseliannuum9Festucanorica9Seselikippomarathrum9Festucastenantha9Seselisalina9Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianellaaspera9Thesiumrostratum9Glauciumcorniculatum9Thiaspimontanum9Globulariaodoratissima9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumgrandiflorum ss9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumglaucum9Valerianasazatilis9Helianthemumgrandiflorum ss9Valerianasazatilis9Helianthemumgrandiflorum9Valerianasazatilis9Helianthemumgrandiflorum9Valerianasazatilis9Hieraciu	Erysimum	hieraciifolium	9	Saxifraga	mutata	9
Euphrasiacuspidata9Schoenusnigricans9Falcariavulgaris9Seseliannum9Festucaalpina9Seselihippomarathrum9Festucanorica9Seseliuria9Festucastenantha9Silenepusilla9Galiumglaucum9Spiranthesaestivalis9Galiummegalospermum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Thesiumrostratum9Globulariacordifolia9Thiaspirotundifolium9Globulariapunctata9Trifoliumscabrum9Gymadeniaodoratissima9Trifoliumscabrum9Helianthemumgrandiflorum ss9Trigenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumgrandiflorum ss9Valerianapunctai9Heiraciumbuleuroides9Valerianasaxatilis9Hieraciummorisianum9Valerianasaxatilis9Hieraciumscorzonerifoliu9Valerianasaxatilis9Hieraciumvillosum9Villacenisia9	Euphorbia	verrucosa	9	Schoenoplectus	tabernaemontani	9
Falcariavulgaris9Seseliannum9Festucaalpina9Seselihippomarathrum9Festucanorica9Seseliavaria9Festucastenantha9Silenepusilla9Galiumglaucum9Spergulariasalina9Galiummegalospermum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariapunctata9Trifoliumscabrum9Gypsophilarepens9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumgrandiflorum ss9Valerianasaxatilis9Heiraciumglaucum9Valerianasaxatilis9Heiraciumglaucum9Valerianasaxatilis9Hieraciumglaucum9Valerianasaxatilis9Hieraciumscorzonerifoliu9Valerianasaxatilis9Hieraciumyuleurides9Valerianasaxatilis9Hieraciumyuleurides9Valerianasaxatilis9Hieraciumglaucum9 <td< td=""><td>Euphrasia</td><td>cuspidata</td><td>9</td><td>Schoenus</td><td>nigricans</td><td>9</td></td<>	Euphrasia	cuspidata	9	Schoenus	nigricans	9
Festucaalpina9Seselihippomarathrum9Festucanorica9Sesleriavaria9Festucastenantha9Sellenepusilla9Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Thiaspimontanum9Gymadeniaodoratissima9Trifoliumscabrum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumgrandiflorum ss9Valerianasaxatilis9Heiraciumglaucum9Valerianasaxatilis9Heiraciumglaucum9Valerianasaxatilis9Hieraciumscorzonerifoliu9Valerianasaxatilis9Hieraciumscorzonerifoliu9Valerianasaxatilis9Hieraciumscorzonerifoliu9Valerianasaxatilis9Hieraciumscorzonerifoliu9Valerianasaxatilis9Hierac	Falcaria	vulgaris	9	Seseli	annuum	9
Festucanorica9Sesteriavaria9Festucastenantha9Silenepusilla9Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Spiranthesaestivalis9Galiummegalospermum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Thesiumrostratum9Glauciumcorniculatum9Thaspimontanum9Globulariacordifolia9Thiaspimontanum9Globulariaodoratissima9Trifoliumscabrum9Gypsophilarepens9Turigenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumgrandiflorum ss9Valerianasaxatilis9Heiraciumbupleuroides9Valerianasaxatilis9Hieraciumglaucum9Valerianasaxatilis9Hieraciumscozonerifoliu9Verbascumpulverulentum9Hieraciumscozonerifoliu9Veronicafurticulosa9	Festuca	alpina	9	Seseli	hippomarathrum	9
Festucastenantna9Silenepusilla9Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Spiranthesaestivalis9Galiummegalospermum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Tetragonolobusmaritimus9Glauciumcorniculatum9Thesiumrostratum9Globulariacordifolia9Thlaspimontanum9Globulariaodoratissima9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumgrandiflorum s9Valerianapratensis9Helianthemumgrandiflorum9Valerianasaxatilis9Helictotrichonparlatorei9Valerianasaxatilis9Hieraciumglaucum9Valerianasaxatilis9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumscorzonerifoliu9Veronicafuticulosa9	Festuca	norica	9	Sesleria	varia	9
Fumanaprocumbens9Spergulariasalina9Galiumglaucum9Spiranthesaestivalis9Galiummegalospermum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Teucriummontanum9Gentianallaaspera9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Thiaspimontanum9Gymandeniaodoratissima9Trifoliumscabrum9Gypsophilarepens9Trigenialatifolia9Helianthemumgrandiflorum9Valerianamontana9Helianthemumgrandiflorum9Valerianasaxtilis9Heliactorichonparlatorei9Valerianasaxtilis9Hieraciumglaucum9Valerianasaxtilis9Hieraciumglaucum9Valerianasaxtilis9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Festuca	stenantha	9	Silene	pusilla	9
GallumglaucumgSpirantnesaestivalisgGaliummegalospermum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Teucriummontanum9Gentianellaaspera9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Trifoliumscabrum9Gypsophilarepens9Trifoliumscabrum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumgrandiflorum ss9Valerianasaxatilis9Hieraciumglaucum9Valerianasaxatilis9Hieraciumglaucum9Veronicaaustriaca9Hieraciumscorzonerifoliu9Veronicafuticulosa9	Fumana	procumpens	9	Spergularia	salina	9
Gallummegalospermum9Stachysalpina9Galiumtruniacum9Stachysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianautriculosa9Teucriummontanum9Gentianellaaspera9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Thlaspimontanum9Globulariapunctata9Torilisarvensis9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianamontana9Helicotrichonparlatorei9Valerianasaxatilis9Hieraciumglaucum9Valerianasupina9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Veronicafuticulosa9	Galium	glaucum	9	Spiranthes	aestivalis	9
Gallumtrunlacum9stacnysrecta9Gentianaclusii9Tetragonolobusmaritimus9Gentianalaaspera9Teucriummontanum9Gentianellaaspera9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Thlaspimontanum9Gymadeniaodoratissima9Trifoliumscabrum9Gymsophilarepens9Trisetumdistichophyllum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Heliathemumovatum9Valerianascastilis9Heiraciumbupleuroides9Valerianasupina9Hieraciumglaucum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Galium	megalospermum	9	Stacnys	alpina	9
GentianaClusifi9Tetragonolobusmaritimus9Gentianalutriculosa9Teucriummontanum9Gentianellaaspera9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Thlaspimontanum9Globulariapunctata9Torilisarvensis9Gymadeniaodoratissima9Trifoliumscabrum9Gypsophilarepens9Turgenialatifolia9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianasaxatilis9Heiraciumbupleuroides9Valerianasupina9Hieraciumglaucum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Gallum	truniacum	9	Stacnys	recta	9
Gentianautriculosa9Teucriummontanum9Gentianellaaspera9Thesiumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Thlaspimontanum9Globulariapunctata9Torilisarvensis9Gymnadeniaodoratissima9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianamontana9Helianthemumgrandiflorum ss9Valerianasaxatilis9Hieraciumglaucum9Valerianasaxatilis9Hieraciumglaucum9Veronicaaustriaca9Hieraciumvillosum9Veronicafuticulosa9	Gentiana	Clusii	9	Tetragonolobus	maritimus	9
Generationaspera9Thestumrostratum9Glauciumcorniculatum9Thlaspirotundifolium9Globulariacordifolia9Thlaspimontanum9Globulariapunctata9Torilisarvensis9Gymnadeniaodoratissima9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianamontana9Helianthemumovatum9Valerianasaxatilis9Heiraciumbupleuroides9Valerianasaxatilis9Hieraciumglaucum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Gentiana	utriculosa	9	Teucrium	montanum	9
Gladelumconficulatumgfillaspifoculation formulationGlobulariapunctata9Thlaspimontanum9Globulariapunctata9Torilisarvensis9Gymnadeniaodoratissima9Trifoliumscabrum9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianamontana9Helictotrichonparlatorei9Valerianasaxatilis9Hieraciumglaucum9Verbascumpulverulentum9Hieraciummorisianum9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Gentianella	aspera	9	Thestum	rostratum	9
GlobulariapunctatapfinaspimontanumpGlobulariapunctatapTorilisarvensispGymnadeniaodoratissimapTrifoliumscabrumpGypsophilarepenspTrisetumdistichophyllumpHelianthemumalpestre agg.pTurgenialatifoliapHelianthemumcanumpVaccariahispanicapHelianthemumgrandiflorum sspValerianamontanapHelianthemumovatumpValerianasupinapHelictotrichonparlatoreipValerianasupinapHieraciumglaucumpVerbascumpulverulentumpHieraciumscorzonerifoliupVeronicaaustriacapHieraciumvillosumpViolacenisiap	Glaucium	corniculatum	9	Thiaspi	montanum	9
Gymnadeniaodoratissima9Toirrisarvensis9Gypsophilarepens9Trifoliumscabrum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumcanum9Vaccariahispanica9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianapratensis9Helictotrichonparlatorei9Valerianasupina9Hieraciumglaucum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Clobularia	nunctata	9	Torilia	arvongig	9
GymnadeniaSodofactissima9InfibitumScabium9Gypsophilarepens9Trisetumdistichophyllum9Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumcanum9Vaccariahispanica9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianapratensis9Helictotrichonparlatorei9Valerianasupina9Hieraciumglaucum9Valerianasaxatilis9Hieraciummorisianum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Giobulalia	odoratiggima	9	Trifolium	arvensis	9
Helianthemumalpestre agg.9Turgenialatifolia9Helianthemumcanum9Vaccariahispanica9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianapratensis9Helictotrichonparlatorei9Valerianasupina9Hieraciumglaucum9Valerianasaxatilis9Hieraciummorisianum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Gymmadella	reneng	9	Tricotum	digtichophyllum	g
Helianthemumcanum9Vaccariahispanica9Helianthemumgrandiflorum ss9Valerianamontana9Helianthemumovatum9Valerianamontana9Helictotrichonparlatorei9Valerianasupina9Hieraciumbupleuroides9Valerianasaxatilis9Hieraciumglaucum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Gypsophila Helianthemum	alpestre add	9	Turgenia	latifolia	g
Helianthemumgrandiflorum ss 9Valerianamontana9Helianthemumovatum9Valerianamontana9Helianthemumovatum9Valerianapratensis9Helictotrichonparlatorei9Valerianasupina9Hieraciumbupleuroides9Valerianasaxatilis9Hieraciumglaucum9Verbascumpulverulentum9Hieraciumscorzonerifoliu9Veronicaaustriaca9Hieraciumvillosum9Violacenisia9	Helianthemum	canum	9	Vaccaria	hignanica	g
Helianthemumovatum9Valerianamontuna9Helianthemumovatum9Valerianapratensis9Helictotrichonparlatorei9Valerianasupina9Hieraciumbupleuroides9Valerianasaxatilis9Hieraciumglaucum9Verbascumpulverulentum9Hieraciummorisianum9Veronicaaustriaca9Hieraciumscorzonerifoliu9Veronicafruticulosa9Hieraciumvillosum9Violacenisia9	Helianthemum	grandiflorum ee	9	Valeriana	montana	9
Helictotrichonparlatorei9Valerianasupina9Hieraciumbupleuroides9Valerianasaxatilis9Hieraciumglaucum9Verbascumpulverulentum9Hieraciummorisianum9Veronicaaustriaca9Hieraciumscorzonerifoliu9Veronicafruticulosa9Hieraciumvillosum9Violacenisia9	Helianthemum	ovatum	9	Valeriana	pratensis	9
Hieraciumbupleuroides9Valerianasaxatilis9Hieraciumglaucum9Verbascumpulverulentum9Hieraciummorisianum9Veronicaaustriaca9Hieraciumscorzonerifoliu9Veronicafruticulosa9Hieraciumvillosum9Violacenisia9	Helictotrichon	parlatorei	9	Valeriana	supina	9
Hieraciumglaucum9Verbascumpulverulentum9Hieraciummorisianum9Veronicaaustriaca9Hieraciumscorzonerifoliu9Veronicafruticulosa9Hieraciumvillosum9Violacenisia9	Hieracium	bupleuroides	9	Valeriana	saxatilis	9
Hieraciummorisianum9Veronicaaustriaca9Hieraciumscorzonerifoliu9Veronicafruticulosa9Hieraciumvillosum9Violacenisia9	Hieracium	alaucum	9	Verbascum	pulverulentum	9
Hieraciumscorzonerifoliu9Veronicafruticulosa9Hieraciumvillosum9Violacenisia9	Hieracium	morisianum	- 9	Veronica	austriaca	9
Hieracium villosum 9 Viola cenisia 9	Hieracium	scorzonerifoliu	9	Veronica	fruticulosa	9
	Hieracium	villosum	9	Viola	cenisia	9

Table A3-2.2: Legend R number acc. to Ellenberg

Value	Description	Explanation
9	Indicator of alkalinity and lime	Only on soils rich in lime (or high pH)

Table A3-3: Hazard indicator 4, Acidification

Score	Characteristic	Orientation, check species of R <= 3 in list below
2	No significant acidification	Most/dominant plants of R numbers > 3 (not in list below), a few sub- dominant species may have R of 1-3
1.5	Low to moderate acidification	
1	Moderate to high acidification	Most/dominant plants of R numbers of 1-3, a few sub- dominant species may have $R > 3$
0.5	High to very high acidification	
0	Extreme acidification	Most/dominant plants of R numbers of 1, some plants of R numbers of 2-3, species having $R > 3$ largely missing

Table A3-3.1: Plant list of R numbers <=3

GENUS	Species F	R number	GENUS	Species	R number
		2			
Achillea	moschata	3	Juncus	bufonius agg	. 3
Agrostis	canina	3	Juncus	effusus	3
Agrostis	rupestris	2	Juncus	jacquinii	2
Agrostis	stricta	2	Juncus	squarrosus	1
Aira	praecox	2	K almia	angustifolia	1
Ajuga	pyramidalis	1	Koeleria	hirsuta	3
Alchemilla	alpina	2	Laserpitium	halleri	3
Alchemilla	pentaphyllea	3	Lathyrus	linifolius	3
Amelanchier	lamarckii	3	Ledum	palustre	2
Andromeda	polifolia	1	Leontodon	helveticus	3
Androsace	alpina	2	Ligusticum	mutellinoide	s 3
Androsace	obtusifolia	1	Linnaea	borealis	2
Antennaria	dioica	3	Listera	cordata	2
Anthoxanthum	alpinum	2	Loiseleuria	procumbens	3
Anthoxanthum	puelii	2	Lonicera	caerulea	2
Armeria	alpina	2	Lonicera	periclymenum	3
Arnica	montana	3	Luzula	campestris	3
Arnoseris	minima	3	Luzula	luzuloides	3
Asplenium	adiantum-nigi	cum 2	Luzula	nivea	3
Asplenium	alternifolium	n 3	Luzula	pallescens	3

GENUS	Species R n	umber	GENUS	Species R n	umber
Asplenium	septentrionale	2	Luzula	sudetica	3
Avenella	flexuosa	2	Luzula	svlvatica ssp.	2
Avenochloa	versicolor	3	Lvcopodiella	inundata	3
B etula	carpatica	1	Lycopodium	annotinum	3
Betula	nana	1	Lycopodium	clavatum	2
Betula	pubescens	3	Lythrum	hyssopifolia	3
Blechnum	spicant	2	Maianthemum	bifolium	3
Botrychium	matricariifoliu	3	Melampyrum	pratense	3
Botrychium	simplex	1	Melampyrum	pratense ssn	3
Bupleurum	gtellatum	1 2	Melampyrum	gylvaticum	2
C alamagrostis	villoga	2	Мент	athamanticum	2
Calluna	wilderig	1	Minuartia	recurve	3
Campanula	harbata	1	Minuartia	gtricta	5
Cardamino	matthioli	2	Monotrona	hypopitya aga	2
Cardamine	regodifolio	5	Montia	fortana gan	2 2
Cardaminongia	hallori	5	Murrico	colo	2 2
Carox	aroparia	2	Myrica	gale	ວ ດ
Carex	arenaria	2	Naruus	SUICLA	2
Carex		1	Nartheclum	ossiiragum	∠ 1
Carex	binervis		Oreochioa	aisticha	1
Carex	brunnescens	3	Ornithopus	perpusilius	2
Carex	curvula	2	Orobanche	rapum-genistae	3
Carex	echinata	3	Oxyria	digyna	3
Carex	fuliginosa	2	Pedicularis	sylvatica	1
Carex	leporina	3	Peplis	portula	3
Carex	ligerica	2	Phyteuma	betonicifolium	2
Carex	limosa	2	Phyteuma	hemisphaericum	3
Carex	nigra	3	Pinus	rotundata	2
Carex	pauciflora	1	Plantago	alpina	3
Carex	paupercula	3	Poa	chaixii	3
Carex	pilulifera	3	Poa	laxa	3
Carex	pseudobrizoides	2	Polygala	serpyllifolia	2
Carex	rostrata	3	Polygala	vulgaris	3
Carex	trinervis	3	Polypodium	vulgare agg.	2
Carlina	acaulis ssp.	3	Potamogeton	polygonifolius	3
Centaurea	nigra	3	Potentilla	argentea agg.	3
Cerastium	pedunculatum	3	Potentilla	aurea	3
Chamaedaphne	calyculata	3	Potentilla	collina	2
Cicendia	filiformis	3	Potentilla	frigida	2
Clematis	alpina	3	Potentilla	palustris	3
Coleanthus	subtilis	3	Potentilla	rhenana	2
Corallorhiza	trifida	3	Primula	glutinosa	2
Cornus	suecica	2	Primula	hirsuta	3
Corydalis	claviculata	3	Primula	integrifolia	3
Corynephorus	canescens	3	Primula	minima	1
Crepis	conyzifolia	2	Pseudorchis	albida	2
Cryptogramma	crispa	3	Pteridium	aquilinum	3
Cytisus	scoparius	3	Pulsatilla	alba	2
D actylorhiza	maculata ssp.	2	Pulsatilla	apiifolia	3
Dactylorhiza	majalis ssp.	3	Pyrola	minor	3
Dactylorhiza	sphagnicola	3	Radiola	linoides	3
Danthonia	decumbens	3	Ranunculus	flammula	3
Deschampsia	setacea	2	Ranunculus	glacialis	3

GENUS	Species R	number	GENUS	Species R n	umber
	-			-	
Dianthus	deltoides	3	Ranunculus	grenieranus	2
Dianthus	seguieri	3	Ranunculus	hederaceus	3
Digitalis	purpurea	3	Ranunculus	pygmaeus	3
Digitaria	ischaemum	2	Rhododendron	ferrugineum	2
Diphasium	alpinum	2	Rhynchospora	alba	3
Diphasium	complanatum	1	Rhynchospora	fusca	1
Diphasium	issleri	1	Rubus	chamaemorus	2
Diphasium	tristachyum	1	Rumex	acetosella	2
Diphasium	zeilleri	1	Rumex	acetosella agg.	2
Drosera	anglica	3	Rumex	tenuifolius	2
Drosera	intermedia	2	S alix	herbacea	3
Drosera	obovata	2	Saxifraga	aspera	3
Drosera	rotundifolia	1	Saxifraga	bryoides	3
Dryopteris	expansa	2	Saxifraga	cotyledon	3
Elatine	hexandra	3	Saxifraga	cuneifolia	3
Elatine	hydropiper	2	Saxifraga	exarata agg.	2
Epilobium	collinum	2	Saxifraga	seguieri	3
Epilobium	lanceolatum	3	Scheuchzeria	palustris	3
Epilobium	nutans	3	Scleranthus	annuus	2
Epilobium	palustre	3	Scleranthus	polycarpos	3
Erica	cinerea	2	Scutellaria	minor	2
Erica	tetralix	1	Sempervivum	arachnoideum	2
Eriophorum	vaginatum	2	Sempervivum	montanum	2
Eritrichum	nanum	2	Senecio	incanus	1
Euphrasia	drosocalix	2	Sibbaldia	procumbens	2
Euphrasia	frigida	3	Silene	exscapa	2
Euphrasia	micrantha	2	Silene	rupestris	3
Euphrasia	minima	2	Soldanella	montana	2
Festuca	halleri	1	Soldanella	pusilla	2
Festuca	nigrescens	3	Solidago	virgaurea ssp.	2
Festuca	ovina	3	Sparganium	angustifolium	3
Festuca	supina	2	Spergula	arvensis	3
Festuca	tenuifolia	3	Spergularia	rubra	3
Festuca	varia	3	Stachys	arvensis	3
G aleopsis	segetum	3	Stellaria	longifolia	2
Galium	harcynicum	2	Subularia	aquatica	2
Genista	anglica	2	Tanacetum	alpinum	2
Genista	germanica	2	Teesdalia	nudicaulis	1
Genista	pilosa	2	Teucrium	scorodonia	2
Gentiana	acaulis	2	Thelypteris	limbosperma	3
Gentiana	pannonica	1	Thesium	ebracteatum	2
Gentiana	punctata	2	Trichophorum	alpinum	2
Gentiana	purpurea	3	Trichophorum	cespitosum	1
Geum	montanum	2	Trichophorum	cespitosum agg.	1
Geum	reptans	2	Trichophorum	germanicum	1
Gnaphalium	supinum	3	Trientalis	europaea	3
Gypsophila	muralis	3	Trifolium	alpinum	2
H ammarbya	paludosa	2	Trifolium	arvense	2
Hieracium	alpinum	1	Trifolium	spadiceum	3
Hieracium	fuscum	3	Trifolium	striatum	2
Hieracium	glaciale	1	Ulex	europaeus	3
Hieracium	glanduliferum	1	Utricularia	bremii	3
Hieracium	glaucinum	3	Utricularia	ochroleuca	3

GENUS	Species H	R number	GENUS	Species R r	number
	- • .	2	· ·		2
Hieracium	laevigatum	2	Vaccinium	gaultherioides	3
Hieracium	pallidum	2	Vaccinium	macrocarpon	1
Holcus	mollis	2	Vaccinium	microcarpum	1
Huperzia	selago	3	Vaccinium	myrtillus	2
Hydrocotyle	vulgaris	3	Vaccinium	uliginosum	1
Hymenophyllum	tunbrigense	3	Vaccinium	vitis-idaea	2
Hypericum	elodes	2	Veronica	bellidioides	1
Hypericum	maculatum	3	Veronica	officinalis	3
Hypericum	pulchrum	3	Veronica	scutellata	3
Hypochoeris	glabra	3	Vicia	lathyroides	3
Illecebrum	verticillatu	m 3	Viola	canina	3
Isolepis	fluitans	3	Viola	epipsila	3
Jasione	laevis	3	Viola	palustris	2
Jasione	montana	3	Woodsia	ilvensis	3
Juncus	balticus	2			

Table A3-3.2: Legend R number acc. to Ellenberg

Value	Description	Explanation
1	Strong acidity	Plant ever on acid soils, never on weak acid to alkaline soils
2		
3	Acidity	Plant mainly on acid soils, only exceptional on neutral soils

Table A3-4: Hazard indicator 7, Drought

Score	Characteristic	Orientation, check species of F <= 3 in list below
2	No risk of drought	All plants of F numbers > 3 (not in list below), a few sub- dominant species may have 3
1.5	Low risk of drought	
1	Medium risk of drought	Most plants of F numbers > 3 (not in list below), some plants of F numbers of 3, species having 2 and 1 are missing
0.5	High risk of drought	
0	Extreme high risk of drought	Most plants of F numbers 2 or 1, some have 3, some sub- dominant species have 4 or higher

GENUS	SPECIES F	number	GENUS	SPECIES F	number
Acer	mongneggularum	З	Lepidium	neglectum	э
Acei	aollino	2		negrectum	2
Achillea	corriga	2		loonii	2
Achillea	parimonitea	2		reconno	с С
Achiliea	selacea	2		perenne	2
Achnacherum	calamagrostis	3			2
ACINOS	arvensis	2	Lonicera	etrusca	3
Adonis	flormon	3	Lychnis	VISCALIA	3
Adonis		3	Medicago	laicala	3
Adonis	vernalis	3	Medicago		3
Agropyron		3~	Medicago	nigra	3
Agrostis	stricta	2	Melampyrum	Cristatum	
Aira	caryopnyllea	2	Melica	transsilvanic	a 3
Aira	praecox .	2	Melica	Ciliata	2
Ajuga	genevensıs	3	Melilotus	alba	3
Allium	carinatum	3~	Melilotus	officinalis	3
Allium	montanum	2	Mibora	mınıma	3
Allium	oleraceum	3	Micropus	erectus	2
Allium	pulchellum	2	Minuartia	cherlerioides	3
Allium	sphaerocephalo	n 3	Minuartia	fastigiata	2
Allium	strictum	2	Minuartia	hybrida	3
Alyssum	alyssoides	3	Minuartia	rupestris	3
Alyssum	montanum	2	Minuartia	setacea	2
Amaranthus	albus	2	Minuartia	verna	3
Amaranthus	blitoides	3	Minuartia	viscosa	3
Amaranthus	graecizans	3	Moenchia	erecta	2
Ambrosia	psilostachya	3	Muscari	comosum	3
Amelanchier	ovalis	3	Muscari	neglectum	3
Anacamptis	pyramidalis	3	Muscari	racemosum	3
Anchusa	officinalis	3	Muscari	tenuiflorum	3
Androsace	elongata	2	Myosotis	ramosissima	2
Androsace	hausmannii	3 ~	Myosotis	stricta	3
Androsace	septentrionali	s 2	N ardurus	halleri	2
Anemone	sylvestris	3	Nepeta	pannonica	2
Anthemis	austriaca	3	Nigella	arvensis	3
Anthemis	ruthenica	3	Nonea	pulla	3
Anthemis	tinctoria	3	O dontites	lutea	3
Anthericum	liliago	3	Odontites	viscosa	3
Anthericum	ramosum	3	Oenothera	ammophila	3
Anthyllis	vulneraria	3	Oenothera	parviflora ag	g. 3
Apera	interrupta	2	Onobrychis	arenaria	2
Arabis	auriculata	3	Onobrychis	viciifolia	3
Arabis	brassica	3	Ononis	natrix	3
Arabis	glabra	3	Onosma	arenarium	3
Arabis	turrita	3	Orchis	militaris	3
Arctostaphylos	uva-ursi	3	Orchis	simia	3
Armeria	alliacea	3	Orchis	tridentata	3
Armeria	elongata	3	Origanum	vulgare	3
Armeria	elongata ssp	3	Orlaya	grandiflora	3
Armeria	halleri	3	Ornithogalum	kochii	2
Artemisia	campestris	2	Ornithopus	perpusillus	3
Artemisia	mutellina	3	Orobanche	alba	3

Table A3-4.1: Plant list of F numbers <=3

GENUS	SPECIES F	number	GENUS	SPECIES F	number
Artemisia	pontica	З	Orobanche	alsatica	3
Asparagus	officinalis	، م	Orobanche	amethystea	1
Asperula	cvnanchica	3	Orobanche	arenaria	- 3
Asplenium	ruta-muraria	3	Orobanche	bartlingii	3
Asplenium	seelosii	3	Orobanche	carvophyllace	a 3
Asplenium	septentrionale	2 2	Orobanche	coerulescens	2
Aster	linosvris	2	Orobanche	gracilis	3
Astragalus	arenarius	2	Orobanche	lutea	3
Astragalus	danicus	- ۲ ~	Orobanche	maveri	3
Astragalus	exscapus	3	Orobanche	teucrii	2
Astragalus	onobrvchis	2	Oxvtropis	pilosa	1
Atriplex	tatarica	3	Petrorhagia	prolifera	3
Aurinia	saxatilis	2	Petrorhagia	saxifraqa	2
Avenochloa	pratensis	3~	Peucedanum	cervaria	3
B erteroa	incana	3	Peucedanum	oreoselinum	3
Bifora	radians	3	Phleum	arenarium	3
Bothriochloa	ischaemum	3	Phleum	phleoides	3
Bromus	erectus	3	Phyteuma	tenerum	2
Bromus	squarrosus	3	Pimpinella	nigra	2
Bromus	tectorum	3	Pimpinella	saxifraga	3
Bupleurum	falcatum	3	Pinus	nigra	3
Bupleurum	rotundifolium	3	Poa	badensis	3
C alamintha	nepeta agg.	3	Poa	bulbosa	3
Calepina	irregularis	3	Poa	compressa	3
Campanula	bononiensis	3	Podospermum	laciniatum	3 ~
Cardaminopsis	petraea	3	Polycarpon	tetraphyllum	3
Cardaria	draba	3	Polycnemum	arvense	3
Carex	arenaria	3	Polycnemum	verrucosum	2
Carex	hallerana	3	Polygala	calcarea	3
Carex	humilis	2	Polygala	chamaebuxus	3 ~
Carex	ligerica	3	Polygala	comosa	3
Carex	michelii	3	Polygonatum	odoratum	3
Carex	mucronata	3	Potentilla	arenaria	1
Carex	ornithopoda	3	Potentilla	argentea agg.	2
Carex	praecox agg.	3 ~	Potentilla	caulescens	3
Carex	supina	2	Potentilla	clusiana	3
Catapodium	rigidum	2	Potentilla	collina	2
Centaurea	diffusa	3	Potentilla	grandiflora	3
Centaurea	jacea ssp.	3	Potentilla	heptaphylla	3
Centaurea	paniculata ago	g. 2	Potentilla	inclinata	2
Centaurea	scabiosa	3	Potentilla	intermedia	3
Cephalanthera	rubra	3	Potentilla	neumanniana	3
Cerastium	arvense ssp.	3	Potentilla	pusilla	2
Cerastium	brachypetalum	a 3	Potentilla	recta	3
Cerastium	pumilum agg.	2	Potentilla	rnenana	2
Cerastium	semidecandrum	3	Prunella	grandiilora	3
Ceterach	officinarum	3	Prunella	frutiaca	3
Chamaecytisus	suprnus	3	Prunus	LIULICOSa mahalah	3
Circium	Juncea	3		arandia	3
	acaule	3	Pulsacilla Dulcotillo	granuis	3
	recua	~ د ۲	Pulcatilla	pracensis	2
Conringia	arborescens	3 2	Ouerque	vurgaris ilev	2
Conignormum	byggonifolium	3	Quercus	TTEX	с С
corrspermum	myssopilolium	a 3	Quercus	pupescens	3

GENUS	SPECIES F n	umber	GENUS	SPECIES F	number
Coronillo	aoronata	С	Panungulug	hulboquq	2
Coronilla	coronaca	2~ 2	Ranuncurus	Duidosus	2
Coronilla		3	Rapiscium	perenne	3
Corumonhorug	Vagillatis	3	Reseua	rucea	3
Cotinua	callescells	2	Rhamnug	pumiius	3
Cotonoagtor	intogorrimug	2 2	Ritallitus	Saxacilis	2
Cotoneaster	tomontoqua	2 2	ROSa	agrestis	с С
Cocolleaster		3	ROSa	coriiioiia	3
Danthonia	praemorsa	3~ 2	ROSa	ellipulca	3
Dianthug	aipina	2 2	ROSA	Juliaziiiii migrantha	3
Dianthua	doltoidog	2 2	ROSa	mittiaineae	с С
Dianthug	gratianonolitan	3 2	ROSa	rubiginosa	2
Diatompua	albug	2	ROSA	scapriuscula	3
Diclamius	topuifolio	2 2	ROSa		2
Dipiotaxis	centriorra	3 2	RUSa	viliosa	2
Dorychium	berhageum	∠ 2	Ruillex	pulcher	
Dorychium	nerbaceum	3	Ruillex	tenuiioiius	3
Draba	dubia	3	Rullex Coluio	nratongia	3~ 2
Draba	tomontogo	3	Salvia	placensis	с С
Diaba Eninactia	atrorubong	2	Saliguisorba	muricata	3
Epipactis	actorubens	2 2	Saliguisoiba	nuricata	2
Epipacuis	muerrerr	3	Saponaria	ocymoraes	3~
Eragrostis	minegastachya	3	Saxiiraga	caesia	3
Eragrostis		3	Saxiiraga	paniculata	3
Eragrostis	pilosa	3	Saxiiraya	tridactyrites	2
Erica	nerbacea	3	Scabiosa	callescens	3
Erodium		3	Scabiosa	columbaria	3
Erophila	praecox	2	Scabiosa	gramuntia	2
Erophila	spachulata	3	Scabiosa	ochroreuca	
Erophila	verna	3	Scanuix	peccen-veneris	5 3
Eryngrum	campestre	3	Scleranthus	perennis	2
Erysimum		2	Scleranthus	porycarpos	2
Erysimum	abamaaguga	2	Scieranciius	verticiliatus	2
Euphorbia	chamaesyce	2 2	Scorgonora	austilata	~ د ۲
Euphorbia	cyparissias	2	Scolum	pulpulea	2
Euphorbia	porychronia	3 2	Sedum	acre	2
Euphorbia	Vorrugoga	2	Sedum	albuill	2
Folgorio	veriucosa	2	Sedum	da gyrabyd lym	2
Faitalla	alpipa	2	Sedum	forstoranum	2
Festuca	aipina	2	Sedum	novimum	2
Festuca	ciperes	ງ~ ເ	Sedum	rubeng	2
Festuca	duvalii	2 1	Sedum	rupedtre agg	2
Festuca	hervieri	3	Sedum	sevenculare	2
Festuca	heteropachyc	2 2	Sedum	courium	2
Festuca	nallong	2	Sedum	spurrum	2
Festuca		2	Sedulli	vulgale	2
Festuca	poresica	2	Sempervivum	montanum	2
Festuca	rupicola	2	Sempervivum	togtorum	2
Festuca	atopantha	2	Sempervivum	orugifoliug	2
Festuca	trachumbulla	с С	Senecto	inconsidence	~ د ۲
Festuca	valegiaga	с С	Senecio	THACATAGE	כ כ
Festuca	varcoraca	2	Sellecto	VISCOSUS	د د
Filago	varra	с С	Seserr	aiiiuuill	د م
Filago	arvensis	3 2	Seseri	libanctic	ι ∠ ⊃
rilayu	Yallica	2	SERETT	IIDAHOLIS	3

GENUS	SPECIES	F number	GENUS	SPECIES F n	umber
D 1 1	7 .	2	a.'.1		0
Filago	Lutescens	3	Silene	chiorantha	2
Filago	minima	2	Silene	conica	2
Filago	pyramidata	2	Silene	noctifiora	3~
Filago	vulgaris	3	Silene	nutans	3
Filipendula	vulgaris	3~	Silene	otites	2
Fragaria	viridis	3	Silene	rupestris	3
Fraxinus	ornus	3	Sisymbrium	irio	3
Fumana	procumbens	2	Sisymbrium	volgense	3
Gagea	bonemica	2	Solanum	sarrachoides	3
Galeopsis	angustitolia	2	Sorbus	danubialis	3
Galium	glaucum	2	Sorbus	mougeotii	3
Galium	lucidum	3	Spergula	morisonii	3
Galium	parisiense	3	Spergula	pentandra	2
Galium	tricornutum	3	Stachys	annua	3
Gentiana	cruciata	3	Stachys	germanica	3
Gentianella	ciliata	3	Stachys	recta	3
Geranium	sanguineum	3	Stipa	bavarica	1
Globularia	punctata	2	Stipa	capillata	2
Gypsophila	fastigiata	2	Stipa	eriocaulis	2
Helianthemum	apenninum	2	Stipa	eriocaulis ssp.	2
Helianthemum	canum	2	Stipa	joannis	2
Helianthemum	nummularium	3	Stipa	tirsa	3
Helianthemum	ovatum	3	Stipa	pulcherrima	1
Helichrysum	arenarium	2	Taraxacum	laevigatum agg.	3
Herniaria	glabra	3	Taraxacum	obliquum agg.	3
Herniaria	hirsuta	3	Teesdalia	nudicaulis	3
Hieracium	ambiguum	3	Teucrium	botrys	2
Hieracium	amplexicaule	3	Teucrium	chamaedrys	2
Hieracium	auriculoides	3	Teucrium	montanum	1
Hieracium	bauhinii	3	Thalictrum	minus	3
Hieracium	bifurcum	2	Thesium	bavarum	3 ~
Hieracium	calodon	3	Thesium	linophyllon	2
Hieracium	cymosum	3	Thesium	rostratum	3 ~
Hieracium	echioides	2	Thymus	praecox	3
Hieracium	fallax	2	Thymus	pulegioides ssp	2
Hieracium	franconicum	2	Thymus	serpyllum	2
Hieracium	peleterianum	3	Trifolium	alpestre	3 ~
Hieracium	rothianum	2	Trifolium	arvense	3
Hieracium	wiesbaurianu	m 3	Trifolium	montanum	3 ~
Hierochloe	australis	3 ~	Trifolium	ornithopoides	3
Himantoglossum	hircinum	3	Trifolium	retusum	3
Hippocrepis	comosa	3	Trifolium	rubens	3
Hirschfeldia	incana	3	Trifolium	scabrum	2
Holosteum	umbellatum	3	Trifolium	striatum	3
Hornungia	petraea	2	Tordylium	maximum	3
Hypericum	elegans	3 ~	Trinia	glauca	1
Hypochoeris	glabra	3	Tuberaria	guttata	2
Hyssopus	officinalis	2	Turgenia	latifolia	3
I nula	germanica	3	V accaria	hispanica	2
Inula	hirta	3	Ventenata	dubia	3
Inula	spiraeifolia	3	Verbascum	blattaria	3
Iris	aphylla	3	Verbascum	lychnitis	3
Iris	germanica	3	Verbascum	phoeniceum	3
Iris	sambucina	3	Verbascum	pulverulentum	3

GENUS	SPECIES	F number	GENUS	SPECIES	F number
Iris	variegata	3	Veronica	austriaca	3
Isatis	tinctoria	3	Veronica	dillenii	2
J asione	montana	3	Veronica	praecox	2
Jovibarba	sobolifera	2	Veronica	prostrata	2
Juniperus	sabina	3	Veronica	spicata	3
Jurinea	cyanoides	2	Veronica	teucrium	3
Kernera	saxatilis	3	Veronica	verna	2
Kochia	laniflora	2	Veronica	verna agg.	2
Koeleria	qlauca	3	Veronica	vindobonensi	s 3
Koeleria	macrantha	3	Vicia	lathyroides	2
Koeleria	vallesiana	1	Vicia	tenuifolia	3
Laburnum	anagyroides	3	Vincetoxicum	hirundinaria	3
Lactuca	perennis	2	Viola	collina	3
Lactuca	viminea	3	Viola	hirta	3
Lappula	sguarrosa	3	Viola	rupestris	3
Lathyrus	aphaca	3	Viola	tricolor ssp	. 3
Lathyrus	niger	3	Vulpia	bromoides	3
Lathyrus	pannonicus	3 ~	Vulpia	myurus	2
Leontodon	incanus	3	Woodsia	ilvensis	3
Lepidium	graminifoli	um 3			

Table A3-4. 2: Legend F number acc. to Ellenberg

Value	Description	Explanation
1	Severe drought indicator	Plant ever on dry soils, viable on drying up soils
2		
3	Drought indicator	Plant mainly on dry soils, partly on moderate dry soils, missing on moist soils
~		Periodically dry and wet

Score	Characteristic	Orientation, check species of F >= 9 in list below
2	No or low risk of flooding, low or moderate level of waterlogging	All plants of F numbers < 9 (not in list below), a few sub- dominant species may have 9 or 10, species having F =>11 missing
1.5	Low risk of flooding, longer ponding and wetness	Some species of F=9 or higher, some flooding indicators (=), species having F =>11 missing
1	Medium risk of flooding, very long period of wetness	Many plants of $F = 9$ or higher, some plants of F less than 9, species having $F = 12$ largely missing, some flooding indicators (=)
0.5	High probability of flooding, very long period of wetness	Many plants of $F = >9$, many flooding indicators, some species of F less than 9
0	Extreme high probability of flooding, extreme waterlogging	Most plants of $F > 9$ or many flooding indicators, some sub- dominant species may have 9 or less, drought indicators $F \le 3$ missing

Table A3-5: Hazard indicator 8, Flooding and extreme waterlogging

Table A3-5.1: Plant list of F numbers => 9

GENUS	SPECIES	F number	GENUS	SPECIES 1	F number
Acorus	calamus	10	Ludwigia	palustris	9 =
Agrostis	canina	9	Luronium	natans	11
Alchemilla	coriacea	9	Lycopodiella	inundata	9 =
Alchemilla	effusa	9	Lycopus	europaeus	9 =
Alchemilla	straminea	9	Lycopus	exaltatus	9 =
Aldrovanda	vesiculosa	12	Lysimachia	thyrsiflora	9 =
Alisma	gramineum	11	Marsilea	quadrifolia	10
Alisma	lanceolatum	10	Mentha	aquatica	9 =
Alisma	plantago-aqu	atica10	Menyanthes	trifoliata	9 =
Alnus	glutinosa	9 =	Mimulus	guttatus	9 =
Alopecurus	aequalis	9 =	Minuartia	stricta	9
Anagallis	tenella	9	Montia	fontana	9
Andromeda	polifolia	9	Myosotis	laxa	9 =
Angelica	archangelica	a 9 =	Myosotis	rehsteineri	10
Apium	inundatum	10	Myrica	gale	9
Apium	nodiflorum	10	Myriophyllum	alternifolium	12 12
Arabis	soyeri	9 =	Myriophyllum	spicatum	12
Armeria	purpurea	10	Myriophyllum	verticillatum	12 12
Azolla	caroliniana	11	N ajas	flexilis	12
Azolla	filiculoides	s 11	Najas	intermedia	12
Baldellia	ranunculoide	es 10	Najas	marina	12
Berula	erecta	10	Najas	minor	12
Betula	humilis	9	Narthecium	ossifragum	9
Betula	nana	9	Nasturtium	officinale ag	yg. 10

GENUS	SPECIES F nu	umber	GENUS	SPECIES F	number
Bidens	cernua	9 =	Nuphar	lutea	11
Bidens	connata	9 =	Nuphar	pumila	11
Bidens	radiata	9 =	Nymphaea	alba	11
Bidens	tripartita	9 =	Nymphaea	candida	11
Bolboschoenus	maritimus	10	Nymphoides	peltata	11
Butomus	umbellatus	10	O enanthe	aquatica	10
Butomus	umbellatus var.	11	Oenanthe	conioides	10
C alamagrostis	canescens	9 =	Oenanthe	fistulosa	9 =
Calamagrostis	stricta	9 ~	Oenanthe	fluviatilis	11
Caldesia	parnassifolia	10	Oenanthe	peucedanifolia	9 ~
Calla	palustris	9 =	Orchis	palustris	9 ~
Callitriche	brutia	10	P edicularis	palustris	9 =
Callitriche	cophocarpa	10	Peucedanum	palustre	9 =
Callitriche	hamulata	10	Phalaris	arundinacea	9 =
Callitriche	hermaphroditica	12	Phragmites	australis	10
Callitriche	obtusangula	11	Pilularia	globulifera	9 =
Callitriche	palustris	11	Pinguicula	leptoceras	9
Callitriche	platycarpa	11	Poa	palustris	9 =
Callitriche	stagnalis	10	Polygala	amarella	9
Caltha	palustris	9 =	Polygonum	amphibium	11
Calycocorsus	stipitatus	9	Potamogeton	acutifolius	11
Cardamine	amara	9 =	Potamogeton	alpinus	12
Cardamine	matthioli	9 ~	Potamogeton	angustifolius	12
Cardamine	palustris	9	Potamogeton	berchtoldii	12
Cardamine	rivularis	9 ~	Potamogeton	coloratus	11
Carex	acutiformis	9 ~	Potamogeton	compressus	12
Carex	appropinquata	9 =	Potamogeton	crispus	12
Carex	aquatilis	9 =	Potamogeton	filiformis	12
Carex	atherodes	9 =	Potamogeton	friesii	11
Carex	brunnescens	9 ~	Potamogeton	gramineus	12
Carex	canescens	9	Potamogeton	helveticus	12
Carex	cespitosa	9 =	Potamogeton	lucens	12
Carex	chordorrhiza	9 =	Potamogeton	natans	11
Carex	davalliana	9	Potamogeton	nitens	12
Carex	diandra	9 =	Potamogeton	nodosus	12
Carex	dioica	9	Potamogeton	obtusifolius	12
Carex	disticha	9 =	Potamogeton	pectinatus	12
Carex	elata	10	Potamogeton	pectinatus agg	. 12
Carex	elongata	9~	Potamogeton	perfoliatus	12
Carex	flava	9	Potamogeton	polygonifolius	10
Carex	gracilis	9 =	Potamogeton	praelongus	12
Carex	heleonastes	9 =	Potamogeton	pusillus	12
Carex	hostiana	9	Potamogeton	pusillus agg.	12
Carex	juncifolia	9 =	Potamogeton	rutilus	12
Carex	laevigata	9 =	Potamogeton	trichoides	11
Carex	lasiocarpa	9 =	Potentilla	palustris	9 =
Carex	lepidocarpa	9	Ranunculus	aquatilis	11
Carex	limosa	9 =	Ranunculus	baudotii	10
Carex	microglochin	9	Ranunculus	circinatus	12
Carex	norvegica	9~	Ranunculus	flammula	9~
Carex	oederi	9	Ranunculus	fluitans	12
Carex	paniculata	9	Ranunculus	hederaceus	9 =
Carex	pauciflora	9	Ranunculus	lingua	10

GENUS	SPECIES F	number	GENUS	SPECIES F n	umber
Carex	paupercula	9	Ranunculus	ololeucos	10
Carex	pseudocvperus	9 =	Ranunculus	peltatus	12
Carex	pulicaris	9	Ranunculus	penicillatus	11
Carex	riparia	9 =	Ranunculus	reptans	10
Carex	rostrata	10	Ranunculus	sceleratus	9 =
Carex	trinervis	9	Ranunculus	trichophvllus	12
Carex	tumidicarpa	9	Ranunculus	tripartitus	10
Carex	vaqinata	9	Rhynchospora	alba	9 =
Carex	vesicaria	9 =	Rhynchospora	fusca	9 =
Catabrosa	aquatica	9 =	Ribes	nigrum	9 =
Ceratophyllum	demersum	12	Rorippa	amphibia	10
Ceratophyllum	submersum	12	Rorippa	anceps	9 =
Chrysosplenium	oppositifoliu	m 9 =	Rumex	hydrolapathum	10
Cicuta	virosa	9 =	Rumex	maritimus	9 =
Cladium	mariscus	10	Rumex	palustris	9 =
Cochlearia	pyrenaica	9 =	Ruppia	cirrhosa	12
Cucubalus	baccifer	9 =	Ruppia	maritima	10
Cyperus	longus	9 =	S agittaria	sagittifolia	10
Dactylorhiza	majalis ssp.	9	Salicornia	dolichostachya	9 =
Dactylorhiza	praetermissa	9	Salix	cinerea	9~
Dactylorhiza	traunsteineri	9 =	Salix	myrtilloides	9
Deschampsia	litoralis	10	Salvinia	natans	11
Deschampsia	setacea	9 =	Saxifraga	aizoides	9 =
Deschampsia	wibeliana	9 =	Saxifraga	hirculus	9 =
Drosera	anglica	9 =	Saxifraga	oppositifolia s	9 =
Drosera	intermedia	9 =	Saxifraga	stellaris	9 =
Drosera	obovata	9	Scheuchzeria	palustris	9 =
Drosera	rotundifolia	9	Schoenoplectus	americanus	10
Dryopteris	cristata	9	Schoenoplectus	carinatus	11
Echinocystisus	lobata	9 =	Schoenoplectus	lacustris	11
Elatine	alsinastrum	9 =	Schoenoplectus	mucronatus	10
Elatine	hexandra	9 =	Schoenoplectus	tabernaemontani	10
Elatine	triandra	9 =	Schoenoplectus	triqueter	10
Eleocharis	acicularis	10	Schoenus	nigricans	9 =
Eleocharis	mamillata	10	Scirpus	radicans	9 =
Eleocharis	multicaulis	10	Scolochloa	festucacea	10
Eleocharis	palustris	10	Scrophularia	auriculata	9 =
Eleocharis	parvula	10	Scrophularia	umbrosa	9 =
Eleocharis	quinqueflora	9	Scutellaria	galericulata	9 =
Eleocharis	uniglumis	9 =	Scutellaria	minor	9
Elodea	canadensis	12	Sedum	villosum	9
Elodea	nuttallii	12	Senecio	congestus	9 =
Epilobium	alsinifolium	9	Senecio	fluviatilis	9 =
Epilobium	nutans	9	Senecio	paludosus	9 =
Epilobium	palustre	9	Silene	pusilla	9 =
Epilobium	parviflorum	9 =	Sium	latifolium	10
Epilobium	roseum	9 =	Sparganium	angustifolium	11
Epipactis	palustris	9~	Sparganium	emersum	10
Equisetum	tluviatile	10	Sparganium	erectum	10
Equisetum	variegatum	9	Sparganium	minimum	11
Eriophorum	angustifolium	9 =	Spartina	townsendii agg.	9 =
Eriophorum	gracile	9 =	Spiranthes	aestivalis	9
Eriophorum	latifolium	9	Spirodela	polyrhiza	11

GENUS	SPECIES		GENUS	SPECIES	
F number			F number		
Eriophorum	scheuchzeri	9 =	Stellaria	crassifolia	9
Eriophorum	vaginatum	9~	Stellaria	palustris	9~
G alium	elongatum	9	Stratiotes	aloides	11
Galium	palustre	9 =	Subularia	aquatica	10
Galium	palustre agg.	9	Swertia	perennis	9
Gentiana	utriculosa	9~	Taraxacum	fontanum agg.	9
Glyceria	fluitans	9 =	Trapa	natans	11
Glyceria	nemoralis	9 =	Trichophorum	alpinum	10
Glyceria	maxima	10	Trichophorum	cespitosum	9
Glyceria	plicata	10	Trichophorum	cespitosum agg.	9
Groenlandia	densa	12	Trichophorum	germanicum	9
H ammarbya	paludosa	9 =	Triglochin	palustre	9 =
Hierochloe	odorata agg.	9	Typha	angustifolia	10
Hippuris	vulgaris	10	Typha	latifolia	10
Hottonia	palustris	12	Typha	minima agg.	9 =
Hydrilla	verticillata	12	Typha	shuttleworthii	10
Hydrocharis	morsus-ranae	11	U rtica	kioviensis	10
Hydrocotyle	vulgaris	9~	Utricularia	australis	12
Hypericum	elodes	9 =	Utricularia	bremii	12
Iris	pseudacorus	9 =	Utricularia	intermedia	12
Isolepis	fluitans	10	Utricularia	intermedia agg.	12
Isolepis	setacea	9	Utricularia	minor agg.	10
Isotes	echinospora	12	Utricularia	ochroleuca	12
Isotes	lacustris	12	Utricularia	vulgaris	12
J uncus	alpino-articula	9	Utricularia	vulgaris agg.	12
Juncus	articulatus	9	Vaccinium	microcarpum	9
Juncus	atratus	9~	Vaccinium	oxycoccos	9
Juncus	bulbosus	10	Vaccinium	oxycoccus agg.	9
Juncus	filiformis	9	Vallisneria	spiralis	12
Juncus	stygius	9 =	Veronica	anagallis-aquati	lca9 =
Juncus	triglumis	9	Veronica	anagalloides	9 =
K obresia	simpliciuscula	9	Veronica	beccabunga	10
Ledum	palustre	9	Veronica	catenata	9 =
Leersia	oryzoides	10	Veronica	scutellata	9 =
Lemna	gibba	11	Viola	epipsila	9 =
Lemna	minor	11	Viola	palustris	9
Lemna	trisulca	12	W ahlenbergia	hederacea	9
Leucojum	aestivum	9 =	Wolffia	arrhiza	11
Liparis	loeselii	9 =	Z annichellia	palustris	12
Littorella	uniflora	10	Zostera	marina	12
Lobelia	dortmanna	10	Zostera	noltii	12

Table A3-5.2: Legend F number acc. to Ellenberg

Value	Description	Explanation
9	Wetness indicator	Mainly on very wet soils
10		Water plant, viable without inundation for a longer period
11	Water plant	Roots in water, periodically above water
12	Submerged plant	Mainly below water
=		Flooding, inundation
~		Periodically dry and wet

To maintain soil quality for feeding coming generations with healthy agricultural products and ensuring prospering agricultural regions, soils should be used wisely. This requires knowledge of their health in terms of comparable indicators of soil quality. In this paper an empirical approach of Soil Quality Rating is presented. It is based on the interpretation of a soil profile by simple scoring tables. Soil deficiencies for cropping or grazing become apparent.

Finally, an empirical rating score ranging from 100 (prime farmland) to 0 (no farming possible) will allow to compare the quality of the soil in front of our eye with other soils on our planet.

Authors would be grateful for response to this proposal, Emailing: Imueller@zalf.de