CHOOSING AND MANAGING COVER CROPS IN ORGANIC AGRICULTURAL

This document contains descriptions of 40 fallow-period cover crop species that are used in organic cropping systems. It is a complementary resource associated with the technical guide *Choosing and managing cover crops in organic agricultural systems*, which was published in July 2012. The guide is available for download on the ITAB website: http://www.itab.asso.fr/publications/Cahier%20Couverts_ENG_2018.pdf.

These species descriptions are the result of literature reviews and discussions among the members of a national working group

focused on cover crops in organic cropping systems. The working group was managed by ITAB and the national network of chambers of agriculture, which comprises agricultural advisors, coordinators, and other experts in organic agriculture.

SECTIONS:

Method for choosing cover crops (a reminder) Composing a mixture and some examples (a reminder) List of species descriptions and legend Species descriptions Additional references

CHOOSING A COVER CROP SPECIES

STEP 1: DEFINING CONSTRAINTS

- I. Crop rotation/sequence
- II. Sowing period
- III. Fallow-period duration
- IV. Soil type

STEP 2: RANKING THE OBJECTIVES (defining one or more management goals)

- Maintenance of soil organic matter
- Nitrogen release to the following cash crop
- Weed control
- Forage production
- Improvement of soil structure
- Pest control

STEP 3: DEFINING SOWING/TERMINATION DATES AND METHODS

Mustard (S. Minette)

FINAL CHOICE

REMINDER

This process will lead to a selection of species that are suited to a given situation. The farmer can then choose whether to utilise a single cover crop species or a species mixture. When making the final choice, other factors to consider include seed cost and seed availability (on the commercial market or as farm-saved seeds).

COMPOSING A MIXTURE

(approach recommended by the Meurthe and Moselle Chamber of Agriculture)

properly, it is necessary to choose planting depths and once to sow seeds species whose characteristics match with shallower planting depths. This with planned sowing and termination approach is used to plant mixtures of dates and methods. Second, it is also important to keep in mind the identity of the following cash crop and potential threats to plant health, even if risks are lower when mixtures are used instead of single species. Third, even if it is theoretically possible to mix seeds of all sizes, different seeds may have different sowing requirements. For example, planting depth may vary. Consequently, farmers may have to make two passes with the seed drill:

First, for cover crops to develop once to sow seeds with deeper - Combine plants with different faba bean and mustard, for example.

> All mixture types can lead to successful cover establishment and biomass production. However, following a few guidelines can ensure that farmers obtain optimal results:

> Combine plants with different, complementary development strategies that share space and do not compete for resources

morphologies (e.g., slender, bushy, low-lying, climbing)

REMINDER

- Use species with diverse root systems

- Use species that flower rapidly in the autumn to provide pollen and nectar to beneficial insects at a time of year when such resources are rare

 Adjust the sowing density of each species to limit overrepresentation by any one plant or excessive competition, both of which could prevent optimal, balanced cover crop growth

MANAGEMENT GOALS

If the goal is to improve soil structure, it can be passed along to the following and thus weed suppression, can be it is important to combine species with cash crop, it is helpful to use mixtures maximised. different root systems. If the goal is to of legumes and grasses or of legumes retain nitrogen over the winter so that and brassicas. In both cases, cover,

CALCULATING SOWING DENSITY

To calculate sowing rates for species mixtures, you must multiply the monoculture sowing rate for each species by the proportion desired in the mixture. In some cases, the sowing rate can be increased by 20% to ensure proper cover development.

Here is an sample calculation for a mixture of spring faba bean (50%),

blue tansy (25%), and radish (25%):

faba bean = $100 \text{ kg} * 0.5 = 50 \text{ kg/ha}$
blue tansy = $12 \text{ kg} * 0.25 = 3 \text{ kg/ha}$
radish = 15 kg * 0.25 = 3.8 kg/ha

There are no established types of mixtures; many combinations are possible. The ultimate goal is to maximise the complementary benefits

of different species.

When calculating sowing rates, it is crucial to take regulatory standards into account. The proportion of legumes allowed in mixtures varies by department. Farmers must check departmental regulations to verify maximum allowable proportions.

A FEW EXAMPLES

- buckwheat (40 kg/ha) + blue tansy (8 kg/ha) or mustard \Rightarrow (8 kg/ha)
- \Rightarrow blue tansy (3 kg/ha) + rye (22 kg/ha)
- winter oat (60 kg/ha) + crimson clover (10 kg) or forage \Rightarrow pea (100 –120 kg/ha)
- spring oat (60 kg/ha) + forage pea (50 kg/ha), black \Rightarrow medic (8 kg/ha), or white clover (5 kg/ha)
- Italian ryegrass (8–10 kg/ha) + rye (15 kg/ha) or \Rightarrow crimson clover (12–18 kg/ha)
- vetch (15 kg/ha) + rye (10 kg/ha) \Rightarrow

EXPERIENCE OF A FARMER THE. IN AQUITAINE (DEPARTMENT OF LOT AND **GARONNE**)

To cover the soil and maintain soil organic matter after a faba bean/wheat sequence, Philippe Guichard stubble ploughed his field using a disc harrow and then broadcast sowed the following mixture:

faba bean (200 kg/ha) + daikon (15 kg/ha) + sunflower (35 kg/ha)

SPECIES DESCRIPTIONS

The following pages provide descriptions of the major fallow-period cover crop species used in organic cropping systems. The species are organised by taxonomic family, and their general characteristics are described (e.g., ability to capture and release nitrogen, biomass production, placement in the rotation). Recommendations related to species establishment and termination are provided, making easier to select and grow the cover crop of choice, whether alone or as part of a mixture.

Legumes		Grasses			Composites	
Faba bean	p. 4/5	Spring oat	p. 35		Nyger	p. 64/65
Fenugreek	p. 6	Winter oat	p. 36/37		Sunflower	p. 66/67
Grass pea	p. 7	Black oat	p. 38/39			
Forage lentil	p. 8/9	Foxtail millet	p. 40/41			
Bird's-foot trefoil	p. 10	Proso millet	p. 42		waterleafs	
Yellow lupin	p. 11	Italian ryegrass	p. 43/44		Wateriea	
Lucerne	p. 12	Italian ryegrass	p. 45	Ī	Blue tansy	p. 68/69
Water medic	p. 13/14	(alternative)				
Sweet clover	p. 15/16	Rye	p. 46/47			
Black medic	p. 17/18	Sudan grass	p. 48/49		phavbeat	family
Field pea	p. 21/20				BUCKWIICG	
Forage pea	p. 21/22	Pueccicas		Ī	Buckwheat	p. 70/71
Sweetvetch	p. 23	Brassicae				
White clover	p. 24/25	Camelina	p. 51/52			
Berseem clover	p. 26/27	Winter rapeseed	p. 53		Lincoeds	
Crimson clover	p. 28	Winter forage rapesee	ed p. 54/55		LINSECUS	
Red clover	p. 29/30	White mustard	p. 56/57		Linseed	p. 72/73
Persian clover	p. 31	Brown mustard	p. 58/59			
Vetch	p. 32/33	Winter turnip rape	p. 60/61			
Hairy vetch	p. 34	Forage radish	p. 62/63			

Use care with winter crops (e.g., rapeseed, radish, turnip rape, wheat, barley): they display varying degrees of cold tolerance.

LEGEND:

This image indicates that the species produces **NECTAR/POLLEN** and thus attracts both domesticated bees and wild pollinators.

Seed costs^{*} are calculated in €/ha, which are indicated using the following scale:

- ●●○○○ 30–60 €/ha
- ●●●○○ 60-90 €/ha
- ●●●●○ 90-120 €/ha

> 120 €/ha

- ◆ NITROGEN CAPTURE AND RELEASE: low (0-20 u), intermediate (20-40 u), high (40-60 u)
- ◆ FALLOW-PERIOD DURATION: short (< 80 days), intermediate (80 < days < 120), long (> 120 days)

*cost of purchased seeds. Seed costs can be reduced by employing farm-saved seeds.

TRY OUT SOME OTHER SPECIES THAT CAN BE USED AS COVER CROPS:

soybean, serradella, spinach, hemp, corn spurry, orchard grass, lupin, bromegrass, meadow fescue, mouse-ear hawkweed, English ryegrass, comfrey, rattlepod, tansies, quinoa, and many others...

Faba bean

Vicia faba

Legumes

GENERAL CHARACTERISTICS

Advantages	DISADVA
Strong growth	Cannot s
No risk of bolting	cover)
Easy to terminate	Successf
Fixes large amounts of atmospheric nitrogen	(suscept developr

DISADVANTAGES

annot serve as forage (except as part of immature mixed over)

Successful seedling growth requires high sowing rate (susceptible to weed competition during early development)

Large seeds-tricky to sow and compose mixtures

WEED CONTROL: limited (erect plants provide little cover)

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: slow to intermediate	intermediate	intermediate	high
GROWTH RATE: intermediate to high	to high		
Fallow-period duration: intermediate to long (2–6 r	To obtain proper co	over development	

SOIL

TYPE: silty, clayey calcareous soils

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: very positive (intermediate system—taproot and fibrous roots)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Any	Row sowing highly recommended; narrow spacing Broadcast sowing— cover ground well	3–6 cm	180 kg/ha TKW = 300–600 g	•••••

MIXTURES: can be used with grains (e.g., sorghum, oat), other legumes (e.g., vetch), or brassicas (e.g., rapeseed)

TERMINATION

Freeze tolerance: Hardy (winter variety) < -15°C Sensitive (spring variety) ≤ -5°C MOST EFFECTIVE METHODS

- **1.** Winter killing + crushing/shredding, stubble ploughing
- 2. Ploughing/tilling

Sensitivity depends on cover development stage

PLACEMENT IN ROTATION

Grains, sunflower Avoid legumes

```
FABA BEAN
```

Nitrogen-demanding crops (e.g., maize)

Avoid legumes, protein crops, and other species susceptible to Sclerotinia diseases Written by: Adeline Cadillon (ITAB) With assistance

from: L. Prieur (CREAB), G. Salitot (Picardie Chamber of Agriculture), M. Mangin (ARVALIS), P. Guichard (farmer), M. Pottier (CORAB), S. Minette (Poitou-**Charentes Chamber** of Agriculture), J. Champion (Drôme Chamber of Agriculture), J. Bayle (Meurthe and Moselle Chamber of Agriculture), J. Arino (Gers Chamber of

SEPTEMBER 2013

Faba bean

Vicia faba

Legumes

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

If you use faba bean, your sowing rate needs to be high enough. Establishment can fail if there are too few seeds on the ground. You also need to make sure the seed is buried deep enough. It is easy to incorporate faba bean into mixtures. It is better to use varieties with low TKW values, such as FEVITA[®].

PHILIPPE GUICHARD, FARMER IN AQUITAINE, LOT AND GARONNE

" It is important to use the roller before sowing. This cover crop is easy to terminate via crushing. You can then sow your maize directly, without preparing the soil.

SÉBASTIEN MINETTE, POITOU-CHARENTES, CHAMBER OF AGRICULTURE

((Faba bean is a hardy plant that produces lots of biomass and generates large amounts of nitrogen. Its sowing rate is rather high (90–100 kg/ha). The cover becomes thick at around 3 weeks to 1 month. Faba bean has a significant impact on soil structure. It is often mixed with either oat or mustard. Because of the large seed size, the logistics of mixtures may be tricky. However, the seeds can be planted separately (e.g., using slug pellet applicators and a centrifugal fertiliser spreader [DP12] on the front and back of the tractor, respectively, and then burying the seeds with a roller or a tine harrow). Faba bean is easy to eliminate: just shred it or crush winter-killed plants.

Fenugreek

Trigonella faenum-graecum

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

Intermediate biomass production

Transmits root rot (Aphanomyces)

Bolts rapidly

Can be used as forage (harvest before it bolts) or to produce seeds Grown namely in southern France (hot, dry conditions)

Fixes large amounts of atmospheric nitrogen

Companion crop

WEED CONTROL: intermediate to good

PEST CONTROL: poor to intermediate (pungent seeds repel insects)

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	low to intermediate	intermediate	intermediate to
GROWTH RATE: intermediate			nign
Fallow-period duration: intermediate (3 months)		To obtain proper cov	ver development

SOIL

TYPE: clayey calcareous soils; does poorly on compacted and anoxic soils

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (taproot)

Sowing

Period	Method	Depth	Rate	Cost (€/ha)
February to October	Well suited to sowing during harvest Broadcast sowing — cover ground well	2–4 cm	40 kg/ha TKW = 25 g	●●●○○

MIXTURES: good fit with grains (e.g., black oat, sorghum) or other legumes (e.g., vetch, clover)

TERMINATION

Freeze tolerance: Sensitive

MOST EFFECTIVE METHODS

- **1.** Shredding/crushing (necessary if cover is allowed to develop)
- 2. Ploughing/tilling

Sensitivity depends on cover development stage

≤ -2 to -8°C

PLACEMENT IN ROTATION

Small-grain crops

FENUGREEK

Nitrogen-demanding crops (e.g., maize, wheat, barley) *Avoid legumes and protein crops* Written by: Adeline Cadillon (ITAB)

With assistance from: S. Minette (Poitou-Charentes Chamber of Agriculture), L. Prieur (CREAB), J. Arino (Gers Chamber of Agriculture)

Grass pea

Lathyrus sativus L.

Legumes

Nitrogen

release

intermediate

GENERAL CHARACTERISTICS

S. Minette

ADVANTAGES

Excellent forage for sheep Drought tolerant Grows to a height of 60 cm Fixes large amounts of atmospheric nitrogen

DISADVANTAGES

Seeds are toxic if consumed in large quantities Large seeds-tricky to sow and compose mixtures Transmits root rot (Aphanomyces)

Biomass

intermediate

Soil nitrogen

capture

intermediate

To obtain proper cover development

WEED CONTROL: intermediate

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: intermediate

GROWTH RATE: intermediate over an extended period

FALLOW-PERIOD DURATION: short to long

SOIL

TYPE: does best on somewhat clayey soils; tolerates sandy or calcareous soils

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (taproot)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Until mid- September	Broadcast sowing during stubble ploughing—cover ground well	3–4 cm	40–60 kg/ha TKW = 200 g	

MIXTURES: can be used with grains (e.g., oat, sorghum, barley)

Written by: **Adeline Cadillon** (ITAB)

With assistance from: M. Mangin (ARVALIS), P. Guichard (farmer), L. Prieur (CREAB), S. Minette (Poitou-**Charentes Chamber** of Agriculture)

Forage lentil

Lens nigricans

Legumes

Nitrogen

release

intermediate

GENERAL CHARACTERISTICS

ADVANTAGES

Easy addition to mixtures (small seeds) Generates good soil cover—bushy growth form Produces large amounts of biomass Drought tolerant Fixes large amounts of atmospheric nitrogen

DISADVANTAGES

Biomass

low to

intermediate

Afflicted by/transmits root rot (*Aphanomyces*) Generates very low-lying cover

Soil nitrogen

capture

low to intermediate

To obtain proper cover development

WEED CONTROL: good

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: high

FALLOW-PERIOD DURATION: long (4–5 months)

SOIL

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (taproot)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
September/ October	Can be sown during harvesting Broadcast sowing—cover ground well	2–3 cm	40 kg/ha TKW = 20–30 g	●●●○○

MIXTURES: can be used with grains (e.g., oat, barley, rye)

FORAGE

LENTIL

TERMINATION

Freeze tolerance: Sensitive ≤ -6°C

MOST EFFECTIVE METHODS

- **1.** Shredding/crushing (if cover is allowed to develop)
- 2. Tilling/stubble ploughing

Sensitivity depends on cover development stage

PLACEMENT IN ROTATION

Avoid legumes

Nitrogen-demanding crops (e.g., maize, wheat, barley, beet, potato) Avoid legumes, protein crops, and species that host

Written by: Adeline Cadillon (ITAB) With assistance from: M. Mangin (ARVALIS), P. Guichard (farmer), S. Minette (Poitou-**Charentes Chamber** of Agriculture), J. Champion (Drôme Chamber of Agriculture), J. Bayle (Meurthe and Moselle Chamber of Agriculture), J. Arino (Gers Chamber of Agriculture)

, complementary resource to the technical guide: "Choosing and managing cover crops in organic crop

Lens nigricans

Legumes

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

~ Forage lentil produces a rather large amount of biomass. It grows close to the ground. This can cause problems when it comes to weed removal. The lentil is therefore commonly used in mixtures with complementary species, such as mustard or oat, which grow tall and remain erect.))

PHILIPPE GUICHARD, FARMER IN AQUITAINE, LOT AND GARONNE

" Freezing temperatures do not always kill the lentil. They need to hit -7 or -8°C and stay there for 3-4 days. As a result, I often have to plough it under. However, I do not plough too deeply because I then plant maize.

Bird's-foot trefoil

Lotus corniculatus

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES

Tolerant of extreme climatic conditions (cold, drought) No risk of bolting Can serve as forage (bloat safe) Fixes large amounts of atmospheric nitrogen WEED CONTROL: poor (short plants) PEST CONTROL: DU

DISADVANTAGES

Slow arowth

Low level of soil cover (height: 10-40 cm) Sensitive to high levels of winter precipitation Transmits root rot (Aphanomyces)

Biomass	Soil nitrogen capture	Nitrogen release
low to intermediate	low	intermediate
	To obtain proper co	ver development

TYPE: all except waterlogged soils **PREPARATION:** fine seedbed

GROWTH FEATURES

GROWTH RATE: low

GERMINATION: slow (2–3 weeks)

FALLOW-PERIOD DURATION: long

SOWING

SOIL

Period	Method	Depth	Rate	Cost (€/ha)
Spring, autumn	Row sowing Broadcast sowing possible if seeds are buried, pass with roller	1–2 cm	10–15 kg/ha TKW = 1–1.5 g	•••••

MIXTURES: can be used with grains (e.g., oat, barley, tall fescue, bromegrass)

Written by: **Adeline Cadillon** (ITAB)

With assistance from: L. Prieur (CREAB), M. Mangin (ARVALIS), A. Lecat (Nord-Pas de Calais Chamber of Agriculture), P. Gayraud (plant breeder), S. Minette (Poitou-Charentes Chamber of Agriculture), J. Arino (Gers Chamber of

DISADVANTAGES

Seeds can be toxic

sorrels or thistles)

Higher temperature requirements

Biomass

intermediate

to high

Susceptible to weed competition (e.g., docks and

Soil nitrogen

capture

low

Lupinus luteus

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES

Hardy and resistant

Can serve as forage (high protein content)

Improves low-fertility soils

Roots release an acid enzyme that facilitates mineral assimilation (e.g., phosphorus)

Does not transmit Aphanomyces

Fixes large amounts of atmospheric nitrogen

WEED CONTROL: poor

PEST CONTROL: vulnerable to anthracnose

GROWTH FEATURES

GERMINATION: slow

GROWTH RATE: high

FALLOW-PERIOD DURATION: intermediate to long (100–180 days)

SOIL

TYPE: shallow, sandy soils; best used in acidic soils

PREPARATION: one or two methods—loosen upper soil layer

EFFECT ON STRUCTURE: positive (extensive root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
September/October	Broadcast or row sowing	3–5 cm	100–150 kg/ha TKW = 120–450 g	•••••

MIXTURES: can be used with spring oat

TERMINATION **MOST EFFECTIVE METHODS** Freeze tolerance: Sensitive (spring variety) to 1. Winter killing + crushing/shredding/stubble very hardy (winter variety) < -15°C ploughing 2. Ploughing/tilling Sensitivity depends on cover development stage **PLACEMENT IN ROTATION** Nitrogen-demanding crops (e.g., wheat, Italian Avoid legumes **YELLOW LUPIN** ryegrass, rye)

To obtain proper cover development

Nitrogen

release

intermediate to

high

Written by: Adeline Cadillon

(ITAB) With assistance from: M. Mangin (ARVALIS), S. Minette (Poitou-Charentes Chamber

of Agriculture), J. Bayle (Meurthe and Moselle Chamber of Agriculture), J. Arino (Gers Chamber of Agriculture)

DU: data unavailable

Lucerne

Medicago sativa

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES

Can serve as forage Vigorous growth and dense cover Can interrupt cyclical disease transmission in grains Fixes large amounts of atmospheric nitrogen Mediterranean variety: drought tolerant but frost sensitive (suited to south) Flemish variety: frost sensitive (suited to north)

DISADVANTAGES

Termination is complicated

Self toxic (do not plant lucerne as the following cash crop or undersow a lucerne in a lucerne) and causes bloat in livestock

Exerts strong competitive pressure on other species in mixtures

Sensitive to soil compaction, saturation, and trampling Afflicted by/transmits root rot (Aphanomyces) Seeds must be inoculated (southern France)

WEED CONTROL: intermediate

PEST CONTROL: intermediate, increases risk of Sitona weevils

GROWTH FEATURES

GERMINATION: fast	Biomass	Soil nitrogen capture	Nitrogen release
GROWTH RATE: low to intermediate	low to		low to
FALLOW-PERIOD DURATION: long	intermediate	intermediate	intermediate
Soil		To obtain proper cover	 : development

To obtain proper cover development

DU: data unavailable

TYPE: all except waterlogged, acidic soils (can apply lime)

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (strong fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Spring, early autumn	Can be undersown in the spring Broadcast sowing, pass with a roller/harrow Row sowing	1 cm max	20–25 kg/ha TKW = 2–2.5 g	

MIXTURES: small quantities can be mixed with grains (e.g., sorghum, oat)

(farmer), L. Prieu

of Agriculture

SEPTEMBER 2013

Water medic

Medicago littoralis

Legumes

Nitrogen

release

high

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

Self toxic (do not plant water medic as the following Can serve as forage Very vigorous growth, dense cover, competitive and aggressive plant Rapid production (60–75 days) Fixes large amounts of atmospheric nitrogen

complementary resource to the technical guide: "Choosing and managing cover crops in organic cropping systems" cash crop or undersow a water medic in a water medic) In mixtures, exerts strong competitive pressure on other species Just after sowing, vulnerable to drought and competitive pressure from grains (wheat, bluegrass, ryegrass) Responds negatively to soil compaction and trampling

Soil nitrogen

capture

intermediate

To obtain proper cover development

Afflicted by/transmits root rot (Aphanomyces)

Biomass

intermediate

WEED CONTROL: good (suppressive effect)

PEST CONTROL: intermediate

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: intermediate (if undersown) to high

FALLOW-PERIOD DURATION: intermediate to long

SOIL

Type: all except waterlogged, acidic soils

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (strong taproot system; can extend as far down as 2 m)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Spring, early autumn	Can be undersown in the spring Broadcast sowing, pass with roller/ harrow	1 cm max	20–25 kg/ha TKW = 2–2.5 g	••••

MIXTURES: small quantities can be mixed with grains (e.g., millet, oat)

DU: data unavailable

(ITAB)

Water medic

Medicago littoralis

Legumes

PERSPECTIVES FROM THE FIELD

GILLE SALITOT, PICARDIE CHAMBER OF AGRICULTURE

It is best to undersow water medic in spring barley or plant it immediately after the harvest. It is not very useful when the fallow period is long because of its annual life cycle and its establishment costs. In Picardie, you often get disappointing results if you undersow water medic in a winter grain during the spring.

ALAIN LECAT, NORD-PAS DE CALAIS CHAMBER OF AGRICULTURE

It is a difficult cover crop to terminate. It must be cut at the very base of the stem during an efficient tillage operation.

Melilotus alba/arvensis

Legumes

GENERAL CHARACTERISTICS

C. Glachant

Advantages	DISAD	VANTAGES			65		
Can serve as forage	Biennia	Biennial					
Produces large amounts of biomass (grows as	Termin	Termination is complicated					
tall as 2 m)	If terr	ninated improp	perly, can produc	e thick cover	and		
Can grow on soils that are poor in organic matter	becom	e invasive (busl	hy growth form)				
Fixes large amounts of atmospheric nitrogen	Transn	nits root rot (Ar	nhanomvces)				
	i i anon						
WEED CONTROL: Intermediate			Soil nitrogen	Nitroge	n		
Pest control: DU		Biomass	capture	release	3		
GROWTH FEATURES		high	high	high			
GERMINATION: DU			To obtain prop	er cover developmei	ıt		
GROWTH RATE: high							
FALLOW-PERIOD DURATION: intermediate to	lona (80	-100			· - .		
Soul		Yello	w sweet clover m	ay provide better			
SOIL		quality g	reen manure. It is s	horter and bushie	er;		
TYPE: deals well with calcareous soils			so provides more e	xtensive cover.	;		
PREPARATION: no specific requirements							
EFFECT ON STRUCTURE: very positive (extremel	y strong,	deep root syste	em)		1		
Sowing							
Period Method		Depth	Rate	Cost (€/ha)	aloke e		
					Sui		
Can be undersown in the sp	oring		20 kg/ba				
Spring, late summer	oring er/harrow	/ 1−3 cm	20 kg/ha TKW = 1–2 g	●●● 00	(ww		
Spring, late summer Spring, late Summer Summer Summer Summer Summer Summer Summer Summer Summer	oring er/harrow	/ 1–3 cm	20 kg/ha TKW = 1–2 g	●●● 00	(www.ita		
Spring, late summer Can be undersown in the sp Broadcast sowing, pass with rolle Row sowing MIXTURES: can be used with grains (e.g., sorg	oring er/harrow Jhum, oa	t, millet, rye)	20 kg/ha TKW = 1–2 g	●●●○○	(www.itab.ass		

Con	Yellow sweet clover may provide better
SOIL	quality green manure. It is shorter and bushier;
TYPE: deals well with calcareous soils	it also provides more extensive cover.
PREPARATION: no specific requirements	~

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Spring, late summer	Can be undersown in the spring Broadcast sowing, pass with roller/harrow Row sowing	1–3 cm	20 kg/ha TKW = 1–2 g	●●●○○

With assistance

Salitot (Picardie Chamber of

Chamber of

Agriculture)

from:

SEPTEMBER 2013

White/yellow sweet clover

Melilotus alba/arvensis

Legumes

PERSPECTIVES FROM THE FIELD

GILLE SALITOT, PICARDIE CHAMBER OF AGRICULTURE

((_____ Depending on the conditions the year the cover is established, biomass levels may be rather modest going into the winter. If you plant sweet clover, be careful to properly manage it. Because it is a biennial plant, the following year's regrowth can end up competing with the cash crop. **>>**

ALAIN LECAT, NORD-PAS DE CALAIS CHAMBER OF AGRICULTURE

Κ It is a great cover crop if you want to increase soil nitrogen content. However, it is hard to terminate unless you are not going to farm the field or you are planting roots and tubers in the late spring. >>

Black medic

Legumes

complementary resource to the technical guide:

Written by:

Adeline Cadillon

GENERAL CHARACTERISTICS

Salito

ADVANTAGES

Drought tolerant

Can be undersown in grains Deals well with light competition

Hardy

- DISADVANTAGES
- **Biennial** Transmits root rot (Aphanomyces)

0	•	0

Fixes large amounts of atmospheric nitrogen

WEED CONTROL: go PEST CONTROL: DU	od (creates extensive cover)	Biomass	Soil nitrogen capture	Nitrogen release
GROWTH FEATU	RES	intermediate	e intermediate	intermediate
GERMINATION: fas	t		To obtain proper	cover development
GROWTH RATE: int	ermediate (during fallow perio	od, summer) to high	(in mixtures)	
FALLOW-PERIOD D	URATION: intermediate to long	9		
SOIL				
Type: all, especial	ly calcareous soils			
Preparation: no	specific requirements			
EFFECT ON STRUCT	URE: positive (small taproot w	vith fibrous branches;	can extend as far dow	vn as 50 cm)
Period	Method	Depth	Rate Cost (€/ha)
	Broadcast sowing			tem

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Spring to autumn	Broadcast sowing Use of roller or harrow recommended	3 cm	10–15 kg/ha TKW = 1.8 g	

MIXTURES: can be used with grains (oat, rye, maize), composites (sunflower, nyger), or

Black medic

Medicago lupulina

Legumes

PERSPECTIVES FROM THE FIELD

GILLE SALITOT, PICARDIE CHAMBER OF AGRICULTURE

Compared to Haifa white clover, Virgo black medic displays more limited development. The sowing rate is higher, which means establishment costs are higher as well. It generates low-lying cover.

ALAIN LECAT, NORD-PAS DE CALAIS CHAMBER OF AGRICULTURE

It is a cover you can use on calcareous soils. It can easily be reproduced year after year. Black medic can grow on poor-quality soils and tolerates drought conditions. However, it is more expensive than other cover crops. It can do a good job suppressing weeds after grain crops are harvested.

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

I am a big fan of black medic, when it is sown in April or May, because it yields lots of biomass, and a bit more nitrogen than white clover. If it is undersown in a grain crop, there are not any issues at harvest time because it produces low-lying cover.

Field pea

Pisum arvense

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES
Easy to terminate
Can serve as forage
Fixes large amounts of atmospheric nitrogen

DISADVANTAGES

Large seeds—some mixtures may be complicated Low level of growth Afflicted by/transmits root rot (*Aphanomyces*) Drought intolerant

WEED CONTROL: poor

PEST CONTROL: vulnerable to parasites and anthracnose

GROWTH FEATURES	Biomage	Soil nitrogen	Nitrogen release	
GERMINATION: fast	BIOMASS	capture		
GROWTH RATE: intermediate	low to	low	low to	
Fallow-period duration: intermediate	intermediate		intermediate	

To obtain proper cover development

TYPE: all except waterlogged soils

PREPARATION: no specific requirements, but performs poorly if ploughpans are present

EFFECT ON STRUCTURE: positive (fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Before early October	Broadcast sowing while stubble ploughing Use of roller or harrow recommended	2–3 cm	100–250 kg/ha TKW = 220–280 g	

MIXTURES: can be used with grains (e.g., oat) or brassicas (mustard)

FIELD

PEA

TERMINATION

Freeze tolerance:

Extremely sensitive (spring variety) to hardy (winter variety) ≤ -10°C

Most effective methods

- **1.** Winter killing + crushing
- 2. Ploughing/tilling

Sensitivity depends on cover development stage

PLACEMENT IN ROTATION

Avoid legumes	Avoid	legumes
---------------	-------	---------

DU: data unavailable

Nitrogen-demanding crops (e.g., wheat, rye, sorghum, maize, sunflower)

Avoid using peas as cover crops in rotations with peas

Written by: Adeline Cadillon

With assistance from: P. Guichard (farmer),

Loïc Prieur (CREAB), S.

Charentes Chamber

Moselle Chamber of Agriculture), J. Arino

(Gers Chamber of Agriculture)

of Agriculture), J. Bayle (Meurthe and

Minette (Poitou-

(ITAB)

Field pea

Pisum arvense

Legumes

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

The field pea stands tall thanks to its erect form and tendrils. It works extremely well in cover crop mixtures.

A complementary resource to the technical guide: "Choosing and managing cover crops in organic cropping systems" (www.itab.asso.fr)

Forage pea

Pisum sativum

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

Fairly easy to establish Produces large amounts of biomass in the autumn Fixes large amounts of atmospheric nitrogen

Not easily winter killed Seedlings are drought intolerant Afflicted by/transmits root rot (Aphanomyces) Very vulnerable to eyespot

WEED CONTROL: poor

PEST CONTROL: DU

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	intermediate	intermediate	intermediate
GROWTH RATE: intermediate to high	to high		
FALLOW-PERIOD DURATION: intermediate to long		To obtain proper co	over development

SOIL

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: intermediate (somewhat deep fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Before early October	Broadcast sowing while stubble ploughing Use of roller or harrow recommended	1–2 cm	40–60 kg/ha TKW = 100–300 g	

MIXTURES: can be used with grains (e.g., sorghum, spring oat, millet, rye)

Written by: **Adeline Cadillon** (ITAB)

With assistance from: S. Minette (Poitou-**Charentes Chamber** of Agriculture), J. Bayle (Meurthe and Moselle Chamber of Agriculture), A. Lecat (Nord-Pas de Calais Chamber of Agriculture), J. Arino (Gers Chamber of Agriculture)

Forage pea

Pisum sativum

Legumes

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

((On the forage pea, leaves are found lower down than on the field pea. When the forage pea is used as a cover crop, weeds may be more prevalent. The species also needs to be grown with a companion crop because it can grow tall but lacks tendrils.

Hedysarum species

Legumes

Nitrogen

release

intermediate to high

GENERAL CHARACTERISTICS

ADVANTAGES

Provides good cover and grows rapidly Can serve as forage (palatable and bloat safe) Drought tolerant (hardy) Fixes large amounts of atmospheric nitrogen

DISADVANTAGES

Biomass

intermediate

Exerts only intermediate competitive pressure on weeds during early growth Perennial Performs poorly under wet conditions Availability of organic seeds is limited in France Transmits root rot (Aphanomyces)

Soil nitrogen

capture

low

In southern France, common sainfoin (Onobrychis vicii-

folia; an annual) can be used as a potential replacement.

To obtain proper cover development

WEED CONTROL: good PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: intermediate

GROWTH RATE: intermediate

FALLOW-PERIOD DURATION: intermediate to long

SOIL

TYPE: nutrient-poor, dry calcareous soils

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: very positive (deep taproot)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Late summer Early autumn	Can be undersown in the spring Broadcast sowing Use of roller recommended	2–3 cm	40–45 kg/ha* TKW = 20–22 g	●●●○○

MIXTURES: can be used with grains (e.g., sorghum, oat, millet, rye) or lucerne

White clover

Trifolum repens (*intermediate variety*)

Legumes

Nitrogen

release

intermediate

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

More persistent and robust than other clovers Tolerates drought once established Can serve as forage Provides good soil cover (propagates using stolons) Fixes large amounts of atmospheric nitrogen

Perennial Slow, potentially difficult establishment (water stress) Transmits root rot (*Aphanomyces*) Attracts mice and other rodents

Causes bloat in livestock

Biomass

intermediate

Susceptible to competitive pressures when undersown

Soil nitrogen

capture

intermediate

To obtain proper cover development

WEED CONTROL: intermediate

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: slow

GROWTH RATE: intermediate

FALLOW-PERIOD DURATION: long

SOIL

TYPE: all

PREPARATION: very fine seedbed

EFFECT ON STRUCTURE: positive (well-developed fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
February to October	Can be undersown Broadcast sowing Use of roller recommended	1 cm	4–5 kg/ha TKW = 0.60–0.70 g	●●●○○

MIXTURES: can be used with mustard or rye

the technical guide: "Choosing

and managing

With assistance from: F. Celette (ISARA-Lyon), P. Guichard (farmer), G. Salitot (Picardie Chamber of Agriculture), L. Prieur (CREAB), S.

Minette (Poitou-Charentes Chamber of Agriculture), F. Arnaud (Meurthe and Moselle Chamber of Agriculture), A. Lecat (Nord-Pas de Calais Chamber of Agriculture), J. Bayle (Meurthe and Moselle Chamber of Agriculture), J. Arino (Gers Chamber of Agriculture)

White clover

Trifolum repens

PERSPECTIVES FROM THE FIELD

GILLE SALITOT, PICARDIE CHAMBER OF AGRICULTURE

K If used over several years, Haifa white clover displays a similar degree of development to that of red clover. There are differences between varieties. If the cover crop is undersown, white clover causes fewer problems than red clover because it does not grow up through the following cash crop. Furthermore, white clover propagates via stolons, which helps fill in post-harvest gaps in the cover.

ALAIN LECAT, NORD-PAS DE CALAIS CHAMBER OF AGRICULTURE

K It is a cover you can use everywhere, and it can easily be reproduced year after year. Although white clover can be sown at any time of year, it is best done in early spring (undersown in grain crops in the full tillering stage).

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

" This cover crop produces significant biomass and has a rather low-lying growth form. It is a good compromise species for undersowing in a pre-existing cash crop. However, it tends to attract field mice.))

PHILIPPE GUICHARD, FARMER IN AQUITAINE, LOT AND GARONNE

It is a good cover crop to use when employing direct drilling. While it works well, it must be properly established because it will allow weeds to grow if it is too sparse.

ADVANTAGES

Berseem clover

Transmits root rot (Aphanomyces)

Susceptible to competitive pressures when undersown

Trifolium alexandrinum

Legumes

GENERAL CHARACTERISTICS

DISADVANTAGES

Appeals to slugs

Difficult to establish

246	
-97 X	400

Drought tolerance and frost sensitivity vary for different varieties Provides good cover

Can serve as forage (palatable and bloat safe)

WEED CONTROL: intermediate to good PEST CONTROL: DU

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: rather fast GROWTH RATE: high	intermediate to high	low to intermediate	intermediate
FALLOW-PERIOD DURATION: short to intermediate		To obtain proper co	over development
SOIL	The	Egyptian variety of t stops growing after it ha	berseem clover as been cut.

TYPE: all; can be grown in acidic soils

PREPARATION: stubble ploughing, establishment of a fine seedbed

EFFECT ON STRUCTURE: positive (intermediate system—taproot and fibrous roots)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Spring, summer, autumn	Can be undersown in the spring Broadcast sowing, pass with roller	1–2 cm	20–25 kg/ha TKW = 2–3 g	●●000

MIXTURES: can be used with grasses (e.g., ryegrass) or spring brassicas

cover crops

Written by: Adeline Cadillon

(ITAB)

Berseem clover

Trifolium alexandrinum

Legumes

PERSPECTIVES FROM THE FIELD

GILLE SALITOT, PICARDIE CHAMBER OF AGRICULTURE

In Picardie, you get disappointing results if you undersow berseem clover in a winter grain during the spring. Some varieties are not capable of repeat flowering. After the harvest, they do not grow back at all or only a little. In the summer, berseem clover must be planted early (before the end of July) to have any hope of heading into the winter with significant amounts of biomass.

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

Berseem clover should be undersown later in the season because of its long, slender growth form and its ability to grow tall very quickly (can compete with grain crop in place).

SEPTEMBER 2013

Crimson clover

Trifolium incarnatum

Legumes

GENERAL CHARACTERISTICS

Advantages	DISADVANTAGES
Very hardy	Hard to terminate
Provides good cover	Tricky to establish
Easy to put into place	Susceptible to competitive pressures when undersown
Can serve as forage	Develops poorly if temperatures are very cold
Fixes large amounts of atmospheric nitrogen	Transmits root rot (Aphanomyces)
WEED CONTROL: intermediate	

PEST CONTROL: DU

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast GROWTH RATE: low to intermediate	high	intermediate to high	intermediate to high
FALLOW-PERIOD DURATION: intermediate to long		To obtain proper co	over development

TYPE: all

PREPARATION: stubble ploughing, establishment of a fine seedbed

EFFECT ON STRUCTURE: positive (fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
February to October	Can be undersown in the spring Broadcast sowing, pass with roller	1–2 cm	20–25 kg/ha TKW = 2–3 g	●●000

MIXTURES: can be used with grains (e.g., sorghum, oat, millet, rye)

Red clover

Trifolium pratense

Legumes

Nitrogen

release

high

GENERAL CHARACTERISTICS

ADVANTAGES

Good-quality establishment Can serve as forage Produces large amounts of biomass in mixtures and during the fallow period Fixes large amounts of atmospheric nitrogen

DISADVANTAGES

Biomass

intermediate

to high

Tricky to establish Causes bloat in livestock Susceptible to competitive pressures when undersown Transmits root rot (Aphanomyces)

Soil nitrogen

capture

intermediate

To obtain proper cover development

Weed control: excellent

Pest control: DU

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: good to high

FALLOW-PERIOD DURATION: long

SOIL

TYPE: all

PREPARATION: somewhat fine seedbed

EFFECT ON STRUCTURE: positive (fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
February to October	Can be undersown in the spring Broadcast sowing, pass with roller/harrow	1–2 cm	20–25 kg/ha TKW = 1.8 g	●●000

MIXTURES: can be used with grains (e.g., sorghum, oat, barley, millet, ryegrass)

PERSPECTIVES FROM THE FIELD

GILLE SALITOT, PICARDIE CHAMBER OF AGRICULTURE

Red clover

Trifolium pratense

Legumes

K Red clover generally produces large amounts of biomass. Varieties differ in their vulnerability to powdery mildew, limiting potential changes in autumn cover crops. After a period of freezing temperatures, this cover crop is easy to terminate via ploughing.

ALAIN LECAT, NORD-PAS DE CALAIS CHAMBER OF AGRICULTURE

If undersown, red clover displays an intermediate level of aggressiveness and provides an average amount of cover. The sowing date can be used as a tool for limiting its degree of aggressiveness.

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

Red clover gets first place for its biomass and nitrogen production! It provides excellent cover and grows sufficiently high. However, be careful because it can be a rather intense competitor when it has been undersown.

PHILIPPE GUICHARD, FARMER IN AQUITAINE, LOT AND GARONNE

Red clover has a greater seedling density and provides more extensive cover than white clover. My red clover cover crop is followed by maize or sunflower. However, it must be shredded before the sunflower is planted.

ARNAUD SCHMITT, FARMER IN MEUSE, LORRAINE

Planted between wheat and spring barley, red clover can be used to break up the crop rotation and suppress weeds. Either I undersow it, or I sow it directly in the autumn. However, when it is undersown, it grows through the cash crop in place! The advantage that red clover has over other cover crops is that it produces a lot of biomass and nitrogen for the following cash crop.

SEPTEMBER 2013

Persian clover

Trifolium resupinatum

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES

Grows more quickly than crimson clover in the summer Can be used as a relay crop Rather drought tolerant Fixes large amounts of atmospheric nitrogen

DISADVANTAGES

resource to the technical guide:

Tricky to establish Provides average level of cover Transmits root rot (Aphanomyces) Susceptible to competitive pressures when undersown

WEED CONTROL: intermediate

PEST CONTROL: DU

GROWTH FEATURES

GERMINATI	ON:	interme	ediate

GROWTH RATE: intermediate

FALLOW-PERIOD DURATION: intermediate to long

Biomass	5	oil nitrog capture	jen	Nitr rele	ogen ease		"Choosin
ntermedia to high	te	low		interme h	ediate to igh		g and mana
		To obtain p	proper co	over develo	pment	Build of	
vils (pH>6)							
proot and	fibrous	roots; can	extend	down 25	cm)	in organic cronni	
epth	R	ate	Cost	(€/ha)	ng syst		
.2 cm	10–1	.5 kg/ha		000	ems"		

Type: all, including heavy, waterlogged, and non-acidic soils (pH>6)

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (intermediate system—taproot and fibrous roots; can extend down 25 cm)

SOWING

SOIL

Period	Method	Depth	Rate	Cost (€/ha)
February to October	Can be undersown in the spring Broadcast sowing, pass with roller	1–2 cm	10–15 kg/ha TKW = 2–3 g	●●000

MIXTURES: can be used with grains (e.g., sorghum, oat, millet)

Legumes

GENERAL CHARACTERISTICS

Advantages			DISA	DVANTAGES			
Eas	sy to establish		Trans	smits root rot (<i>A</i>	phanomyces)		
Pro	duces large amo	ounts of biomass	Droug	ght intolerant			
Sh	ould be used as p	part of a mixture	Has t	rouble growing i	n nutrient-poor soi	ls	
Fix	es large amounts	s of atmospheric nitrogen	Slow	growth rate			
W	ED CONTROL: int	ermediate	Droop crop	ps if grown as a	single cover crop;	needs a compa	nion
Pe	st control : DU						
G	ROWTH FEATU	RES			Soil nitrogen	Nitrog	en
G	ERMINATION: fas	t		BIOMASS	capture	releas	e
GROWTH RATE: low to intermediate			intermediate		intermedia	ate to	
Fallow-period duration: intermediate			to high	intermediate	high		
So	IL				To obtain prop	er cover developme	ent
T	(PE: all						
P	REPARATION: NO	specific requirements					
E	FECT ON STRUCT	URE: positive (intermediate sy	vstem-	-taproot and fibr	ous roots)		
Sc	WING						
	Period	Method		Depth	Rate	Cost (€/ha)	ping syst
	Before early October	Can be sown as part of a mix Broadcast sowing, pass with	cture roller	2 cm	30–50 kg/ha TKW = 45–75 g	●●●○○	ems" (w
	MIXTURES: can	be grown with grains (e.g.,	sorgh	um, oat, barley,	, rye, wheat, tritic	ale)	ww.itab.asso.f
T	RMINATION						3

GROWTH FEATURES

GERMINATION: fast	Biomass	Soil nitrogen capture	Nitrogen release	
GROWTH RATE: low to intermediate	intermediate		intermediate to	
Fallow-period duration: intermediate	to high	intermediate	high	

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Before early October	Can be sown as part of a mixture Broadcast sowing, pass with roller	2 cm	30–50 kg/ha TKW = 45–75 g	●●●○○

Legumes

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

Vetch cannot really be used during the summer fallow period in Lorraine because its timing is a bit late. However, it does produce abundant biomass if it is properly established. It can be mixed with oat, for example.

DAVID HYPOLITE, FARMER IN MEURTHE AND MOSELLE

It is helpful to use vetch as part of a mixture. For example, before a grain cash crop (spring wheat), I employ a cover crop mixture of oat, vetch, and sunflower. It functions like a nitrogen factory if planted early, before August 1 in northeastern France. It allows serves as an alternative legume because organic crop rotations tend to be legume heavy.

Vicia villosa

Legumes

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

Transmits root rot (Aphanomyces)

Very cold tolerant Pest resistant (allelopathic activity) Semi-erect growth form; less vulnerable to eyespot than common vetch Fixes large amounts of atmospheric nitrogen **WEED CONTROL:** good **PEST CONTROL:** DU

GROWTH FEATURES

		Soil nitrogen	Nitrogen	
GERMINATION: fast	Biomass	capture	release	
GROWTH RATE: intermediate	intermediate	intermediate	intermediate to	
FALLOW-PERIOD DURATION: intermediate	to high	internetiate	high	

To obtain proper cover development

TYPE: all

SOIL

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (fibrous root system)

Sowing

Period	Method	Depth	Rate	Cost (€/ha)
Before early October	Can be sown as part of a mixture Broadcast sowing, pass with roller	2–3 cm	30–50 kg/ha TKW = 32 g	●●●○○

MIXTURES: can be used with grains (e.g., sorghum, oat, barley, millet)

Spring oat

DISADVANTAGES

Biomass

intermediate

(more resistant than winter oat)

Somewhat susceptible to crown rust in nitrogen-poor soils

Host plant for aphids that vector barley yellow dwarf (BYD)

Soil nitrogen

capture

intermediate

Oat regrowth can be used as a

cover crop.

To obtain proper cover development

_ . _ . _ . _ . _

Avena sativa

Grasses

Nitrogen

release

low

GENERAL CHARACTERISTICS

J. Arino

ADVANTAGES

Rapid growth

Tolerant of warm, dry conditions

Strong allelopathic activity Positive effect on soil structure (0–25 cm)

Can serve as forage

More frost sensitive than winter oat

WEED CONTROL: intermediate to good

PEST CONTROL: susceptible to crown rust and BYD

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: high

FALLOW-PERIOD DURATION: intermediate to long

SOIL

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (deep fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to early October	Row sowing Broadcast sowing, pass with roller	2–3 cm	100–120 kg/ha TKW = 35–50 g	●●000

MIXTURES: can be used with vetch, forage lentil, forage pea, or faba bean, etc.

SEPTEMBER 2013

cover crops

Winter oat

Avena sativa

Grasses

plementary resource to the technical guide: "Choosing and managing cover crops in organic

GENERAL CHARACTERISTICS

ADVANTAGES

Rapid growth Strong allelopathic activity Positive effect on soil structure (0-15 cm) Can serve as forage

DISADVANTAGES

Very susceptible to crown rust in nitrogen-poor soils Host plant for aphids vectoring barley yellow dwarf (BYD)

WEED CONTROL: intermediate to good

PEST CONTROL: susceptible to crown rust and BYD

GROWTH FEATURES

GERMINATION: fast	Biomass	Soil nitrogen capture	Nitrogen release
GROWTH RATE: nign	intermediate	intermediate	low
Fallow-period duration: long	to high		

To obtain proper cover development

SOIL

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to October	Row sowing Broadcast sowing, pass with roller	2–3 cm	100–120 kg/ha TKW = 35–50 g	●●000

MIXTURES: can be used with vetch, forage lentil, etc.

Winter oat

Avena sativa

Grasses

PERSPECTIVES FROM THE FIELD

DAVID HYPOLITE, FARMER IN MEURTHE AND MOSELLE

Winter oat does a good job of catching nitrogen left in the soil by the preceding cash crop. I plant it before wheat or spring barley, and do so rather late, because there is a significant risk of crown rust otherwise. Oat is also the companion crop in my vetch-oat-sunflower mixture.

managing

cropping systems" (www.itab.asso.fr)

Black oat

Avena strigosa

Grasses

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

Resistant to crown rust and barley yellow dwarf (BYD) Tolerates dry conditions in the late summer Displays significant allelopathic activity Can serve as forage

Development	is	slow	ìf	seedlings	experience	hot
temperatures						
Host plant for	aphi	ids				

WEED CONTROL: DU

PEST CONTROL: intermediate

GROWTH FEATURES

	Piempee	Soil nitrogen	Nitrogen
GERMINATION: fast	DIOIIIdSS	capture	release
GROWTH RATE: high	intermediate	intermediate to high	low to
Fallow-period duration: long	to high	Internetiate to high	intermediate

To obtain proper cover development

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to early October	Row sowing recommended, then pass with roller Broadcast sowing— covers ground well	2 cm	30–40 kg/ha TKW = 35–50 g	●●○○○

MIXTURES: can be used with vetch, clover, faba bean, etc.

TERMINATION

Freeze tolerance: Sensitive ≤ -2 to -3°C

MOST EFFECTIVE METHODS

- **1.** Winter killing + crushing
- 2. Ploughing/light tilling

Sensitivity depends on cover development stage

PLACEMENT IN ROTATION

Avoid	grasses

BLACK OAT

Spring legumes (e.g., pea, lentil, vetch), maize, sunflower, etc. *Avoid grains* Cover crops in organic

(www.itab.asso

Written by: Adeline Cadillon (ITAB)

With assistance from: S. Minette (Poitou-Charentes Chamber of Agriculture), M. Pottier (CORAB), J. Arino (Gers Chamber of Agriculture)

Black oat

Avena strigosa

Grasses

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

Black oat is much more resistant to crown rust than spring white oat is. However, the cover crop can fail if planted in nitrogen-poor soil. This species, which has a low TKW, is recommended for use in mixtures. Black oat seeds display a high level of dormancy, so watch out for the re-emergence of previously planted seeds.

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

Black oat comes from Europe. However, it was bred in South America to produce more biomass and forage. It goes under different names, including diploid oat, Brazilian oat, forage oat, and Avena strigosa. It grows more rapidly than our spring oats. It is often still growing in the winter, and its stems freeze easily. However, growth can take off again in the spring from new tillers that sprout at the plant's base. It is more resistant than common oat is to viral diseases and crown rust. It has a low TKW.

in organic cro

(www.itab.asso

Foxtail millet

Panicum germanicum

Grasses

GENERAL CHARACTERISTICS

ADVANTAGES

Tolerates heat No regrowth Positive effect on soil structure

DISADVANTAGES

Susceptible to water stress during early development Seedling growth will be complicated if weeds or regrowth present

WEED CONTROL: good

PEST CONTROL: DU

GROWTH FEATURES

GROWTH FEATURES	Piomoco	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	BIOIIIdSS		
GROWTH RATE: high	low	low to intermediate	low
FALLOW-PERIOD DURATION: intermediate		To obtain proper co	over development

SOIL

TYPE: all; grows well on nutrient-poor calcareous soils

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (deep fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July-August	Row sowing recommended, then pass with roller Broadcast sowing— covers ground well	1 cm	20–30 kg/ha TKW = 2–3 g	●●000

MIXTURES: can be used with legumes (e.g., berseem clover, Persian clover, forage lentil) **TERMINATION**

> Freeze tolerance: Very sensitive ≤ 0°C

MOST EFFECTIVE METHODS

- 1. Winter killing + crushing
- 2. Ploughing/tilling

Sensitivity depends on cover development stage

PLACEMENT IN ROTATION

Avoid grasses

FOXTAIL MILLET

Spring legumes (e.g., pea, lentil, vetch), sunflower, etc.

cover crops in organic

(www.itab.asso.

Written by: Adeline Cadillon (ITAB)

With assistance from: S. Minette (Poitou-**Charentes Chamber** of Agriculture), M. Pottier (CORAB), J. Arino (Gers Chamber of Agriculture)

Foxtail millet

Panicum germanicum

Grasses

PERSPECTIVES FROM THE FIELD

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

K This summer grass can be sown in late spring or early summer to obtain a second harvest of forage. It is cold intolerant and frost sensitive.

Proso millet

Panicum miliaceum

Grasses

Nitrogen

release

low

resource to the technical guide:

"Choosing and managing

cover crops

in organic

GENERAL CHARACTERISTICS

ADVANTAGES

Can serve as forage Rapid growth Tolerates drought and heat Quickly adds soil organic matter

DISADVANTAGES

Biomass

low

Frost sensitive Seedlings are susceptible to slug herbivory

Soil nitrogen

capture

intermediate

To obtain proper cover development

WEED CONTROL: good

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION:	fast
--------------	------

GROWTH RATE: high

FALLOW-PERIOD DURATION: short to intermediate

SOIL

TYPE: all

PREPARATION: fine, packed seedbed

EFFECT ON STRUCTURE: positive (extremely strong root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Late April to	Broadcast sowing pass with roller	1_2 cm	10 kg/ha*	
late July	broadcast sowing, pass with roller	1-2 Cm	TKW = 5 g	

MIXTURES: can be used with legumes (e.g., forage lentil, berseem clover, Persian clover)

Italian ryegrass

Lolium multiforum

Grasses

GENERAL CHARACTERISTICS

ADVANTAGES
Can serve as forage
Excellent, early growth

DISADVANTAGES

biennial Host plant for aphids Can reduce water availability in soil if left in place too long Can flower or bolt if not terminated quickly enough

WEED CONTROL: intermediate

PEST CONTROL: encourages presence of the corn ground beetle

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	intermediate to high	intermediate to high	Very low to low
GROWTH RATE: high	-	To obtain proper o	ı over development
FALLOW-PERIOD DURATION: short to intermediate			

SOIL

TYPE: all

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (dense fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
August to mid-October	Row sowing Broadcast sowing, pass with roller	1 cm max	12–20 kg/ha TKW = 3.5 g	●●000

MIXTURES: can be used with legumes (e.g., vetch, forage lentil)

cover crops in organic

Lolium multiforum

Grasses

PERSPECTIVES FROM THE FIELD

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

It is easy to establish but more complicated to terminate. Italian ryegrass is very risky to grain growers (has negative effects on the following cash crop, can enhance presence of weeds). Alternative varieties, with short life spans, establish themselves quickly but last no longer than 6 months.

Systems" (www.itab.asso.fr)

Italian ryegrass

(alternative variety) I olium multiforum

Grasses

GENERAL CHARACTERISTICS

Advantages
Rapid growth
Can be grown as a relay crop to produce forage

DISADVANTAGES Host plant for aphids

WEED CONTROL: intermediate (good soil cover)

PEST CONTROL: host plant for aphids

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	intermediate	intermediate to high	low
GROWTH RATE: intermediate to high		To obtain proper co	over development
FALLOW-PERIOD DURATION: short to intermediate			

SOIL

TYPE: all

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (dense fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
August to mid-October	Row sowing Broadcast sowing, pass with roller	2 cm	20 kg/ha TKW = 1.8 g	●●000

MIXTURES: can be used with legumes (e.g., vetch, forage lentil)

SEPTEMBER 2013

Grasses

omplementary resource to the technical guide:

"Choosing and managing cover crops in organic cro

GENERAL CHARACTERISTICS

Advantages
Good soil cover
No risk of flowering or bolting
Positive effect on soil structure (0–25 cm)
More disease resistant than barley or common oat

DISADVANTAGES

Host plant for aphids Late sowing date

WEED CONTROL: good

PEST CONTROL: DU

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	low to intermediate	intermediate	low
GROWTH RATE: low to intermediate			
Fallow-period duration: long		To obtain proper co	over development

SOIL

TYPE: all; prefers acidic soils **PREPARATION:** fine seedbed **EFFECT ON STRUCTURE**: positive (rather deep fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to September	Row sowing Broadcast sowing, pass with roller	1–2 cm	25–80 kg/ha TKW = 40–50 g	●●●○○

MIXTURES: can be used with legumes (e.g., pea, vetch, faba bean)

PERSPECTIVES FROM THE FIELD

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

Kye is a cold-tolerant grain that yields long-lasting cover. It is also relatively easy to establish. It is a little bit harder to terminate than other grains though. Slugs can cause damage to young plants.

Grasses

Sudan arass

DISADVANTAGES

Biomass

intermediate

Seedlings need long, warm days to grow

and cannot be consumed if freezes

Must be mature when used as forage (height > 70 cm;

otherwise potential for cyanogenic glycoside poisoning)

Soil nitrogen

capture

high

To obtain proper cover development

Grasses

GENERAL CHARACTERISTICS

ADVANTAGES

Produces large amounts of biomass No risk of bolting Tolerates drought and heat Can serve as forage Very cold sensitive

WEED CONTROL: intermediate to good PEST CONTROL: poor, susceptible to wireworms

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: high

FALLOW-PERIOD DURATION: intermediate

SOIL

TYPE: all

PREPARATION: fine seedbed

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to September	Row sowing Broadcast sowing, pass with roller	2 cm	15–25 kg/ha TKW = 25–35 g	●●000

MIXTURES: can be used with legumes (e.g., pea, vetch, berseem clover, Persian clover)

Written by: Adeline Cadillon (ITAB)

_{comp}lementary resource to the technical guide: "Choosing and managing cover crops in organic

SEPTEMBER 2013

Nitrogen

release

low

Sudan grass

Sorghum sudanense

Grasses

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

K In Lorraine, it is best to sow Sudan grass before July 10 if it is being used in the summer fallow period. Otherwise, it will not build enough biomass to provide effective cover. >>

Winter barley

Hordeum vulgare

Grasses

resource to the technical guide:

"Choosing and managing cover crops in organic

GENERAL CHARACTERISTICS

ADVANTAGES
Rather rapid seedling growth
Susceptible to spring diseases

DISADVANTAGES

Deals poorly with waterlogged and anoxic soils Susceptible to barley yellow dwarf virus Appeals to grey field slugs

Weed control: intermediate

Pest control: poor, encourages presence of the corn ground beetle

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	intermediate	intermediate to high	low
GROWTH RATE: intermediate to high		To obtain proper c	over development
Fallow-period duration: intermediate			

SOIL

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (fibrous root system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to early September	Row sowing Broadcast sowing, pass with roller	2–3 cm	80–100 kg/ha TKW = 40 to 50 g	●0000

MIXTURES: can be used with legumes (e.g., pea, vetch, clover)

Camelina

Cameline sativa

Brassicas

A complementa- resource to the technical guide: "Choosing and managing cover crops in organic agricultural sys-

GENERAL CHARACTERISTICS

ADVANTAGES

Hardy Strong allelopathic activity (suppressive effect) Positive effect on soil structure Strong growth

DISADVANTAGES

Drought intolerant during early development Risk of bolting if sown too early

WEED CONTROL: intermediate to good

PEST CONTROL: DU

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	low to		low to
GROWTH RATE: high	intermediate	intermediate to high	intermediate
FALLOW-PERIOD DURATION: long		To obtain proper o	ı over development
Com			

Soil

TYPE: all

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (taproot)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to late Sentember	Broadcast sowing, pass	1 cm max	2–5 kg/ha	
sury to fate september	with roller	I CHI III AX	TKW = 1.5–2 g	-0000

MIXTURES: can be used with spring grains or other spring crops (pea, buckwheat)

Camelina

Cameline sativa

PERSPECTIVES FROM THE FIELD

SÉBASTIEN MINETTE, PROJECT LEADER, POITOU-CHARENTES CHAMBER OF AGRICULTURE

K It provides excellent cover, similar to that of mustard, but produces less biomass. Sowing is simple, and the plant germinates easily. Camelina displays strong allelopathic activity towards other plants, which means it does not work well in mixtures. Watch out for bolting! Do not sow too early, and be sure to terminate quickly, in mid-November or mid-December by the latest. >>

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

K This brassica is one of the latest intermediate crops to be commercialised. It produces less biomass than other brassicas (e.g., mustard, radish). Its growth cycle is very short. Consequently, if it is sown early, it is important to terminate it before it bolts.

Winter rapeseed

Brassica napus

Brassicas

A complementa- resource to the technical guide: "Choosing and managing cover crops in organic agricultural sys-

GENERAL CHARACTERISTICS

ADVANTAGES

Provides good cover Produces large quantities of biomass Late flowering

EFFECT ON STRUCTURE: positive (taproot)

DISADVANTAGES

Intolerant of water stress At significant risk of parasitism and disease Difficult to terminate and fully prevent regrowth

WEED CONTROL: good

PEST CONTROL: DU

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
Germination: fast	intermediate to high	high	intermediate
GROWTH RATE: good	To obtain proper cover development		
Fallow-period duration: intermediate			
Soil	Rapes	eed regrowth can be intermediate crop	used as an
Type: all	! 		
PREPARATION: fine seedbed			

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
August to September	Broadcast sowing, pass with roller	1 cm	8 kg/ha TKW = 6 g	●0000

MIXTURES: can be used with legumes (e.g., vetch, pea, faba bean) or grasses (ryegrass)

Forage rapeseed

Brassica napus

Brassicas

Nitrogen

release

intermediate

complementa-

resource to the technical guide: "Choosing and managing cover crops in organic agricultural sys-

GENERAL CHARACTERISTICS

ADVANTAGES

Strong growth Good soil cover Can serve as forage Late flowering

DISADVANTAGES

Biomass

high to very

high

At significant risk of parasitism and disease Difficult to terminate and fully prevent regrowth

Soil nitrogen

capture

very high

Rapeseed regrowth can be used as a cover crop.

To obtain proper cover development

WEED CONTROL: good

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: high

FALLOW-PERIOD DURATION: short

|--|

TYPE: all

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (strong taproot system)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
before late August or early September	Row sowing Broadcast sowing, pass with roller	1 cm	5–8 kg/ha TKW = 3.5–7 g	●0000

MIXTURES: can be used with legumes (e.g., vetch, pea, faba bean) or grasses (ryegrass)

Forage rapeseed (winter)

Brassica napus

PERSPECTIVES FROM THE FIELD

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

Rapeseed regrowth serves as a good catch crop. Rapeseed varieties, whether for oilseed or forage production, can be used as intermediate crops or as relay forage crops.

Sinapsis alba

Brassicas

A complementa-

GENERAL CHARACTERISTICS

ADVANTAGES

Easy and fast to establish Positive effect on soil structure Highly tolerant of warm, dry conditions Mobilises phosphorus

DISADVANTAGES

Flowers rapidly (50–60 days) and thus risk of bolting Intolerant of water stress (and nitrogen scarcity); speeds up time to bolting

WEED CONTROL: good

Ighly tolerant of warm, dry conditions Iobilises phosphorus	up time to bolting	er stress (and nitro	gen scarcity); spe
EED CONTROL: good			
T CONTROL : susceptible to pests such a	is sawflies (larvae), grain	weevils, and flea be	eetles.
ROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release
GERMINATION: fast	intermediate	high	intermediat
GROWTH RATE: high	to high	¹ Te obtain prov	
ALLOW-PERIOD DURATION: short		TO ODUAIT PLOP	
OIL	· - · - · - · - · - · - · - · · · · · ·	oet nematode var	iety of white
'YPE: all	Anti-	mustard: €2.50	/kg
REPARATION: stubble ploughing	!		
FFECT ON STRUCTURE: positive (taproot)			
DWING			
Period Method	Depth	Rate C	ost (€/ha)
Lulu to Droadcast couring a		8–10 kg/ha	

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to	Broadcast sowing, pass with roller 1 cm	8–10 kg/ha		
September		1 cm	TKW = 6–8 g	•0000

MIXTURES: can be used with legumes (e.g., crimson clover, lentil, vetch) or grasses

White mustard

Sinapsis alba

Brassicas

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

White mustard cover can either have amazing benefits or catastrophic effects! It can be sown until late in the year. Vegetative growth is extremely rapid. It is a good indicator of soil function because it is sensitive to compaction and nitrogen levels.

SÉBASTIEN MINETTE, PROJECT LEADER, POITOU-CHARENTES CHAMBER OF AGRICULTURE

K It is easy to sow and comes up without a problem. It is the simplest cover crop species to use! It produces large amounts of biomass. It suppresses weeds and has a positive effect on soil structure. If white mustard is sown too early (August 15 to September 15), there is a risk of bolting. The cover must be terminated when it flowers. When it is included in mixtures, it competes with legumes, unless the sowing rate has been adapted.

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

White mustard has trouble with water stress and heat when it is sown too early. It is easy to establish and terminate. If the cover is well developed, it will be difficult to plough under. It must be shredded, or first flattened by replacing the jointer with a taut chain. Its ease of establishment is an advantage. It is a good cover crop for breaking up grain-based rotations. It is not recommended for use in rapeseed-heavy rotations.

A complementa- resource to the technical guide: "Choosing and managing cover crops in organic agricultural sys-

(www.itab.asso.fr)

Brown mustard

Flowers rapidly (50–60 days) and thus risk of bolting

Brassica juncea

Brassicas

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

Few varieties available

Strong allelopathic activity targeting certain fungi and parasites

Helps control certain grain diseases

Better growth and nitrogen uptake than white mustard

WEED CONTROL: good (suppressive effect)

PEST CONTROL: good (e.g., take-all disease, root rot [*Rhizoctonia solani*], Fusarium wilt)

GROWTH FEATURES	Biomass	Soil nitrogen	Nitrogen release
GERMINATION: fast		capture	
GROWTH RATE: high	intermediate	intermediate to high	low to
Fallow-period duration: short	to high	Internetiate to high	intermediate
Sou		To obtain proper co	over development

OIL

TYPE: all

PREPARATION: stubble ploughing

EFFECT ON STRUCTURE: positive (taproot)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July to early September	Broadcast sowing, pass with roller	1 cm	3–4 kg/ha TKW = 3 g	●●000

MIXTURES: can be used with legumes (e.g., crimson clover, lentil, vetch) or grasses

A complementa-

resource to the technical guide: "Choosing and managing cover crops in organic agricultural sys-

Adeline Cadillon

from: P. Ménétrier (Indre and Loire Chamber of Agriculture), J. Bayle (Meurthe and Moselle Chamber of Agriculture), J. Champion (Drôme Chamber of Agriculture), J. Arino (Gers Chamber of Agriculture)

Brown mustard

Brassica juncea

Brassicas

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

The TKW of brown mustard is much lower than that of white mustard. The species can be sown until late in the year. Vegetative growth is extremely rapid. It is a good indicator of soil function because it is sensitive to compaction and nitrogen levels.

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

Because brown mustard has higher glucosinolate levels than other brassicas, it may have stronger allelopathic effects on certain fungi, such as take-all disease in wheat on wheat rotations or *Rhizoctonia solani*. It produces a bit more biomass than white mustard.

Brassica rapa oleifera

Brassicas

Nitrogen

release

intermediate

GENERAL CHARACTERISTICS

ADVANTAGES

Does not flower in winter Helps control certain grain diseases Can be used to produce forage Very similar to forage rapeseed

DISADVANTAGES

Biomass

intermediate

to high

Tricky to terminate if taproot is well developed Sensitive to water stress, which provokes flowering Risk of bolting after a freeze

Soil nitrogen

capture

high

To obtain proper cover development

WEED CONTROL: good (suppressive effect)

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: high

FALLOW-PERIOD DURATION: short

SOIL

TYPE: all

PREPARATION: stubble ploughing and establishment of fine seedbed

EFFECT ON STRUCTURE: positive (taproot)

Sowing

Period	Method	Depth	Rate	Cost (€/ha)
August- September	Broadcast sowing, pass with roller	2 cm	5–8 kg/ha TKW = 4–6 g	●0000

MIXTURES: Plant as single-species cover crop or with a legume (e.g., vetch, pea)

SEPTEMBER 2013

Winter turnip rape

Brassica rapa oleifera

Brassicas

PERSPECTIVES FROM THE FIELD

SÉBASTIEN MINETTE, PROJECT LEADER, POITOU-CHARENTES CHAMBER OF AGRICULTURE

Curvit Turnip rape starts as a rosette of leaves close to the ground. It can be tricky to terminate, especially via shredding, but its cover is among the most extensive. This species is often used as part of a mixture, sown after a grain-legume crop. Compared to mustard, it has a greater impact on soil structure.

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

This species has the benefit of rarely flowering before the winter (if the winter variety is used), even when it is sown early. This brassica is easy to establish but more difficult to terminate.

Forage radish

Raphanus sativus

Brassicas

GENERAL CHARACTERISTICS

ADVANTAGES	
Rapid growth	

DISADVANTAGES

AD	VANTAGES		DISADVANTAGES				
Rap	oid growth		Termination is	s very t	ricky if the	e taproot is	well developed
Car	n serve as forage	2	(the vestige o	f the roc	ot can reinil	tiate growth	1)
			Requires high	levels o	f nitrogen		
-			very cold tole	ranı			
/EE	D CONTROL: goo	d (suppressive effect)					
EST	CONTROL: anti-	nematode varieties exist	Biom	ass	Soil ni cap	trogen ture	Nitrogen release
GROWTH FEATURES		high to ve	ry high	hi	gh	intermediate	
G	ERMINATION: fas				To obtain	proper cover	development
6	DOWTH DATE: bic	ah an					
GROWTH RATE: high							
FA	LLOW-PERIOD D	URATION: Intermediate	diches and i	t flowers	ater. How	ever, its see	
30			. UISHCO,				
۲ı	YPE: all						
Pi	REPARATION: stu	bble ploughing and establish	ment of fine see	edbed			
E	FECT ON STRUCT	TURE: positive (taproot)					
50	WING						
50	WING						
	Period	Method	Depth	R	late	Cost (€/	ha)
-		Row sowing		<u>8–1</u>) ka/ha		0
	July-August	Broadcast sowing, pass	1–2 cm	0-1	- Ng/11a		
		with roller		TKW	= 8–10 g		
M	IXTURES: radisl	h growth (cover and bioma	iss) can be enf	nanced I	by either a	a legume o	ra a
		vetch	(e.g., provide	nitroger	ı)	-	sso.fr
Τe							<u> </u>

TYPE: all

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July-August	Row sowing Broadcast sowing, pass with roller	1–2 cm	8–12 kg/ha TKW = 8–10 g	●●000

Written by: Adeline Cadillon

With assistance from: M. Mangin (ARVALIS), J. Arino (Gers Agriculture)

Forage radish

Raphanus sativus

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

K This cover crop needs lots of nitrogen and grows very rapidly. It is one of a few species to strongly restructure the soil.

SÉBASTIEN MINETTE, PROJECT LEADER, POITOU-CHARENTES CHAMBER OF AGRICULTURE

K The forage radish is a brassica and thus shares certain characteristics with mustard. However, it produces a bit less biomass. It is often used as part of a mixture, sown after a grain-legume crop.

Brassicas

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE K

Forage radish is less sensitive to water stress than mustard is. It is also better suited to early sowing. Farmers like this species because it is easy to establish and it grows fast. It is rather hard to terminate mechanically, but the process can be facilitated by winter killing, notably when plants are well-developed.))

DISADVANTAGES

other than its own)

Biomass

low to

intermediate

Strongly appeals to slugs

Allelopathic activity directed towards other plants (produces compound that inhibits germination of seeds

Soil nitrogen

capture

low

To obtain proper cover development

Provides limited soil cover (erect growth form)

Requires high accumulated temperatures

Composites

Nitrogen

release

low

GENERAL CHARACTERISTICS

ADVANTAGES

Heat and drought tolerant Very cold sensitive Flowers relatively late Strong growth Positive effect on soil structure

WEED CONTROL: intermediate

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: fast

GROWTH RATE: intermediate

FALLOW-PERIOD DURATION: short

SOIL

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (taproot)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July-August	Broadcast sowing, pass with roller Should ideally occur just after harvest of preceding crop	1 cm	8–10 kg/ha TKW = 2.9–3.2 g	●●000

MIXTURES: not recommended for use in mixtures (allelopathic activity)

SEPTEMBER 2013

Written by:

cover crops in organic

((

Nyger Guizota abyssinica

Composites

Nyger is difficult to establish. It is also susceptible to slug damage.

SÉBASTIEN MINETTE, PROJECT LEADER, POITOU-CHARENTES CHAMBER OF AGRICULTURE

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

K It is drought resistant but very frost sensitive. It has small seeds that are easy to plant. Cover development varies greatly from year to year. However, it can be useful in mixtures. 33

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

PERSPECTIVES FROM THE FIELD

K Nyger shows strong growth if established early. However, getting it going can be complicated. Its temperature needs and extreme frost sensitivity-it should be terminated after the first freeze-are the reasons why nyger frequently fails when sown late. Its high degree of frost sensitivity is an advantage, even if its regrowth shows limited competitive ability. Nyger also seems to appeal to slugs.

Sunflower

Helianthus annuus

Composites

Nitrogen

release

intermediate

GENERAL CHARACTERISTICS

ADVANTAGES

Heat and drought tolerant Hardy Good soil cover Helpful in mixtures (good companion crop) Late flowering (depending on variety) WEED CONTROL: poor to intermediate

DISADVANTAGES

Biomass

high

Strongly appeals to slugs Cold sensitive Strict temperature requirements

Soil nitrogen

capture

intermediate to high

To obtain proper cover development

PEST CONTROL: DU

GROWTH FEATURES

GERMINATION: intermediate

GROWTH RATE: high

FALLOW-PERIOD DURATION: short

SOIL

TYPE: all

PREPARATION: no specific requirements

EFFECT ON STRUCTURE: positive (deep taproot)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
August	Broadcast sowing, pass	2–3 cm	40 kg/ha	00000
, lagust	with roller		TKW = 40–55 g	

MIXTURES: can be used with oat, pea, lentil, etc.

SEPTEMBER 2013

Cover crops in organic

Sunflower

Helianthus annuus

Composites

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

Sunflower can be very useful in mixtures. It will be the tallest plant of the group. It has a taproot, which improves soil structure. It can also be used as a single-species cover crop and will produce abundant biomass. However, it should not be planted before a grain.

SÉBASTIEN MINETTE, PROJECT LEADER, POITOU-CHARENTES CHAMBER OF AGRICULTURE

Sunflower seeds need to be planted deep into the soil to ensure rapid growth and to limit bird predation. It is a drought tolerant species, and its taproot can come in handy. It should not be used in rotations with sunflower.

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

In the summer, sunflower develops well when sown early. It is very frost sensitive, which makes it easier to terminate. However, that same trait makes late sowing problematic. It should not be used as a fallow-period cover crop in fields in which sunflower is farmed for commercial purposes because of disease risks (Phoma black stem, mildew, Phomopsis stem canker).

DAVID HYPOLITE, FARMER IN MEURTHE AND MOSELLE

The sunflower's root system extends down deep, and I use the species as a companion crop in the oat-vetch-sunflower mixture that I plant before my grass cash crops.

Systems" (www.itab.asso

Blue tansy

Phacelia tanacetifolia

Waterleafs

GENERAL CHARACTERISTICS

S. Minette

ADVANTAGES

DISADVANTAGES

Sowing can be tricky

Rapid development (flowering after two months; Necessary to prevent bolting; can lead to resowing bolting after three months) Comes from a rarely cultivated taxonomic family;

provides a true break in the rotation

Positive effect on soil structure

WEED CONTROL: good (suppressive effect)

PEST CONTROL: repels flea beetles and aphids

GROWTH FEATURES

GERMINATION: slow	Biomass	Soil nitrogen capture	Nitrogen release
GROWTH RATE: high	intermediate	high	intermediate
FALLOW-PERIOD DURATION: intermediate		To obtain proper c	over development

SOIL

TYPE: all

PREPARATION: fine seedbed

EFFECT ON STRUCTURE: positive (intermediate system—taproot and fibrous roots)

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
July-August	Row sowing Broadcast sowing possible— covers ground well	2–3 cm	8–12 kg/ha TKW = 1.8 g	●●000

MIXTURES: can be used with buckwheat, for example

Blue tansy

Phacelia tanacetifolia

Waterleafs

PERSPECTIVES FROM THE FIELD

S. Minette

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

Blue tansy is a great cover crop for breaking up the rotation. If you sow carefully, biomass levels should be good. It should also have a highly suppressive effect on weeds. Additionally, blue tansy appeals to bees.

SÉBASTIEN MINETTE, PROJECT LEADER, POITOU-CHARENTES CHAMBER OF AGRICULTURE

K Blue tansy has an intermediate root system, with both a taproot and fibrous roots, which really improves soil structure. Make sure that the seeds are well covered during the sowing process. You want to ensure that seedling emergence is homogeneous and maximised. It provides great cover and attracts pollinators. It can be used to break the cycle of certain diseases and insects because it comes from a family of non-crops and is not very susceptible to pests. One disadvantage is the cost of its seeds, but it is a helpful addition to mixtures. Watch out for bolting if it is sown too early.

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

This plant is tricky to establish. It needs fine soils to maximise the level of seed-soil contact. It is a useful species because it grows fast and provides good soil cover. Blue tansy is a member of the waterleaf family. Generally, it can fit in any type of rotation, although it should not be used before vegetable crops destined for commercial canning (industry concerns over Sclerotinia risk).

Buckwheat

Fagopyrum esculentum

Buckwheat family

GENERAL CHARACTERISTICS

ADVANTAGES

DISADVANTAGES

WEED CONTROL: intermediate

GENERAL CHARA	CTERISTICS				
ADVANTAGES	D	ISADVANTAGES			
Rapid development	Av	verage level of soil	cover		
Tolerant of late-sum	mer drought Ri	sk of (rapid) flowe	ring and bolting		
Allelopathic activity					
Comes from a ra	rely cultivated taxonomic				
family; provides a tru	ue break in the rotation				
WEED CONTROL: Inte	mediale				
Pest control: DU					
GROWTH FEATUR	RES	Biomass	Soil nitroge	n Nitrogen	release
Construction in the			capture		
GERMINATION: Inte	rmediate	intermediate	intermediate	low to inte	rmediate
GROWTH RATE: goo	d		To of	otain proper cover de	evelopment
FALLOW-PERIOD DU	RATION: short to intermediate				
SOIL					
Type: all					
		t of fine coodlead			
PREPARATION: Stud	bie piougning and establishmer	it of fine seeaded			
EFFECT ON STRUCTU	RE : positive (taproot)				
Sowing					ä
					cropp
Period	Method	Depth	Rate	Cost (€/ha)	ing sys
Right after harvest	Broadcast sowing, pass with roller	2–3 cm	30–40 kg/ha		items"

SOIL

SOWING

Period	Method	Depth	Rate	Cost (€/ha)
Right after harvest until mid-September	Broadcast sowing, pass with roller Row sowing possible	2–3 cm	30–40 kg/ha TKW = 20–30 g	●●●○○

MIXTURES: can be used with mustard, blue tansy, and legumes

Buckwheat

Fagopyrum esculentum

PERSPECTIVES FROM THE FIELD

FRÉDÉRIC ARNAUD, MEURTHE AND MOSELLE CHAMBER OF AGRICULTURE

Buckwheat is a good cover crop that allows a break in the rotation. However, it is a sensitive plant, " and weeds can emerge when buckwheat is planted on its own. It is easy to terminate because it is very frost sensitive. It should always be used as part of a mixture.

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

K This species absolutely needs to be established in early summer to allow time for proper development. Buckwheat is sometimes planted to produce a second harvest. It bolts rather easily and can become a weed in the following cash crop (it is a knotweed). >>

Linseed

Linum usitatissimum

Linseeds

GENERAL CHARACTERISTICS

ADVANTAGES
Tolerant of late-summer drought
Easy to terminate
From a rarely cultivated taxonomic family

DISADVANTAGES

Woody stems will be difficult to shred and take time to decompose if plant is well developed Limited soil cover

WEED CONTROL: poor

PEST CONTROL: effects on rapeseed broomrape and the Colorado potato beetle remain to be quantified

GROWTH FEATURES	Biomass	Soil nitrogen capture	Nitrogen release	
GERMINATION: fast GROWTH RATE: intermediate	low to intermediate	low to intermediate	low to intermediate	
FALLOW-PERIOD DURATION: intermediate		To obtain proper co	over development	

SOIL

TYPE: all

PREPARATION: fine, packed seedbed

EFFECT ON STRUCTURE: positive (deep taproot)

Sowing

Period	Technique	Depth	Rate	Cost (€/ha)
mid-July to	Broadcast sowing, pass with	1 cm	20–50 kg/ha	●●000
mid-August	roller		TKW = 4–7 g	

MIXTURES: can be used with legumes, grasses, brassicas, etc.

TERMINATION

Freeze tolerance: Hardy (winter variety) ≤ -7 to -13°C Sensitive (spring variety) < 0°C

MOST EFFECTIVE METHODS

- **1.** Winter killing + crushing
- 2. Shredding/ploughing

Sensitivity depends on cover development stage

PLACEMENT IN ROTATION

Anything Avoid linseed

WINTER AND SPRING Anything Avoid linseed Written by: Adeline Cadillon (ITAB)

With assistance from:

(www.itab.asso.fr)

J. Champion (Drôme Chamber of Agriculture), J. Arino (Gers Chamber of Agriculture)

DU: data unavailable

Linseed

Linum usitatissimum

Linseeds

PERSPECTIVES FROM THE FIELD

JÉRÔME LABREUCHE, ARVALIS PLANT INSTITUTE

«

Linseed is sometimes included in certain cover crop mixtures. Its use as a stand-alone intermediate crop is less common, but it appears to develop just fine in such situations. However, if linseed is allowed to grow for too long, its stems become woody. They can interfere with the use of certain farm machinery and have trouble decomposing.

FINAL THOUGHTS FROM THE EXPERTS

- **Legumes** should not be used when nitrogen availability is high (e.g., significant organic amendment). However, they are indispensable when nitrogen is lacking.
- **Sowing techniques** vary and should be chosen based on the farming equipment available. Although any technique can be used, efficacy will vary. The most common and straightforward technique for sowing cover crops is broadcast sowing.

ADDITIONAL REFERENCES

- Pousset J. (2002). Engrais verts et fertilité. Agridécisions.
- Labreuche J. et al. (2011). Cultures intérmédiaires : impacts et conduite. Editions Arvalis. 236 pgs.
- Agr'eau 26 Objectifs, no. 61 (2010). 100 % de couverture du sol en hiver, une obligation en zone vulnérable.
- Minette S. (2010). Caractéristiques des principales cultures intermédiaires. Poitou-Charente Chamber of Agriculture.
- Courrier de l'environnement de l'INRA, no. 54, pg. 42 (2007). Espèces autorisés [...] et présentant des intérêts pour les insectes pollinisateurs.
- Delaunois A. (2009). Eléments pour le choix des couverts végétaux. Tarn Chamber of Agriculture.
- TCS no. 33. (2005). Dossier couverts végétaux.
- Salitot G., Fontaine L. (2009). Implanter en agriculture biologique une légumineuse sous couvert de céréales : un piège à nitrates à double effet. www.devab.org
- Labreuche J. (2008). Choisir les espèces de couverts végétaux en fonction du mode de destruction envisagé. Perspectives agricoles no. 350, pgs. 30–45.
- Fustec J., et al. (2008). Intérêt des mélanges et des associations en agricultures biologique. 175 pgs.
- Claes D., et al. (2010–2011). Fiche technique—Semis de légumineuses sous couvert : Une technique qui permet de répondre aux besoins en azote en système grandes cultures biologiques. Groupement Régional des Agriculteurs Biologiques Haute Normandie.
- Arino J. (2009). Test d'engrais verts en AB dans le département du Gers.
- Arino J. (2007–2008). Compte rendu des tests d'engrais verts en viticulture biologique.

Content and layout: Adeline Cadillon (ITAB)

Organisation and editing: Laurence Fontaine and Laetitia Fourrié (ITAB) Translation: Jessica Pearce-Duvet

With assistance from the national working group on cover crops, managed by ITAB and the technical network for organic agriculture, composed of experts from various regional chambers of agriculture.

Contributions and editing by: Michel Mangin (ARVALIS Plant Institute), Sébastien Minette (Poitou-Charentes Chamber of Agriculture), Loïc Prieur (CREAB), Philippe Guichard (farmer), Florian Célette (ISARA-Lyon), Vincent Lefèvre (ISARA-Lyon), Marc Pottier (CORAB), Justin Bayle (Meurthe and Moselle Chamber of Agriculture), Gilles Salitot (Picardie Chamber of Agriculture), Jean Champion (Drôme Chamber of Agriculture), Pierre Gayraud (plant breeder), Patrice Ménétrier (Indre and Loire Chamber of Agriculture), Charlotte Glachant (Seine and Marne Chamber of Agriculture), Alain Lecat (Nord Chamber of Agriculture), Fréderic Arnaud (Meurthe and Moselle Chamber of Agriculture), Jean Arino (Gers Chamber of Agriculture)

