The influence of farm and herd factors on the health status of organic dairy cattle under low concentrate feeding considering an assessment-tool for site-related breeding

M. Selle^{1*}, S. Ivemeyer², C. Reiber¹, A. Spengler², A. Valle Zárate¹

¹ Institute of Animal Production in the Tropics and Subtropics, University of Hohenheim, Germany, www.uni-hohenheim.de ² Animal Division, Research Institute of Organic Agriculture (FiBL), Switzerland, www.fibl.org

* Email: margret@selle-jena.de

Introduction

- Utilizing grass for ruminant production is vital in the context of food security.
- Re-linking ruminant production to grassland resources can improve animal health and is a basic component of organic farming.

Results

Table 1: Regressions of influences on the risks of acidosis and ketosis

Indicator	Risk of ac	cidosis*	Risk of I	ketosis†
Factor	Estimate	р	Estimate	р
Spring and autumn grazing quantity	3.438	0.075	-2.495	0.011
Minimum BCS of 4 values within 1 year	31.971	0.011		
Lightness of housing	6.633	0.023		
Summer grazing system (intensity)	2.803	0.094		
Percentage of cows of all roughage feeders			0.130	0.008

- Several dairy genotypes may not be well suited to organic systems.
- Site-relatedness criteria are needed to define breeding goals and management tools for farm and cow types in organic farming.

Methods

Data collection:

- 67 Swiss and 5 German organic dairy farms (0% to 10% concentrates of total yearly DMI).
 Farm and herd factors:
- Farm and herd assessment by means of an estimation tool (see Spengler et al., 2007).
- Body condition score (BCS).
- Farm statistics and milk recording data. *Site-relatedness:*
- Difference between farm and herd score calculated by the estimation tool.

* $adj.R^2 = 0.155; F = 4.206; p = 0.004; + adj.R^2 = 0.141; F = 6.671; p = 0.002; empty cells (--): p > 0,1$

Table 2: Regressions of influences on udder treatments (categorized) and all treatments (logarithmized)

Indicator	Udder trea	Udder treatments* All treatments [†]		
Factor	Estimate	р	Estimate	р
Summer grazing system (intensity)	-0.805	0.007	-0.032	0.034
Concentrate per kg energy-corrected milk	0.017	0.005		
Breed: Braunvieh (reference: Fleckvieh)	1.179	0.009		
Feeding management	-0.596	0.037		
Precipitation	0.411	0.043		
Feed purchase			0.037	0.003
Farm labour per 25 livestock units			0.030	0.032
Additional energy based roughage			0.024	0.032
Protein based roughage in winter			-0.032	0.041
Dimensions of housing			-0.024	0.064

Health and reproduction indicators:

 Herd means of calving interval (CI), risk of acidosis (fat-to-protein ratio [FPR] < 1.1) and risk of ketosis (FPR > 1.5), somatic cell score (SCS), veterinary treatments (udder treatments and all treatments), and herd average of number of lactations.

Data analysis:

After factor pre-selection multivariate linear regression with stepwise backwards elimination.

Discussion

- Dairy cattle characterized by stable BCS values might be better suited for grazing systems with low to zero concentrate feeding.
- Breed impact only on udder treatments; suitability of individuals for zero concentrate supplementation varies within breeds.

* $adj.R^2 = 0.338$; F = 7.938; p < 0.001; † $adj.R^2 = 0.298$; F = 5.800; p < 0.001; empty cells (--): p > 0,1

Table 3: Regressions of influences on the somatic cell score*

Factor	Estimate	р
Difference between minimum and maximum BCS	0.907	0.042
Lightness of housing	0.261	0.077
Farm labour's interest in dairy cows	-0.287	0.086

* adj.R² = 0.087; F = 3.251; p = 0.027

Table 4: Regressions of influences on the calving interval*

Factor	Estimate	р
Difference between minimum and maximum BCS	73.580	0.002
Difference between farm and herd score	-0.919	0.009
Age at first calving	1.875	0.084

* adj.R² = 0.154; F = 5.315; p = 0.002

Table 5: Regressions of influences on number of lactations*

Factor	Estimate	р
Spring and autumn grazing system (intensity)	0.337	0.003
Concentrate per kg energy-corrected milk	-0.004	0.030
Minimum BCS of 4 values within 1 year	1.320	0.031
Height at withers	-0.172	0.088

- Major influence of feeding and feeding management.
- Site-relatedness strongly associated with fertility.
- Estimation tool is a useful tool for improving the compatibility between cow and system.

* adj.R² = 0.237; F = 6.507; p < 0.001

Conclusion

Site-relatedness can be achieved by two measures: (1) The adjustment of the cow type or (2) the adjustment of the environment.

→ Since changing the environment in organic systems is limited farmers, breeders, farm advisors and veterinary surgeons may use site-relatedness parameters to improve and maintain health and reproduction in organic dairy cows.

Reference: Spengler Neff A, Klocke P, Ivemeyer S & Bapst B (2007): Einführung eines Hilfsmittels zur Einschätzung der Standortgerechtheit der Milchviehzucht und -haltung auf ökologischen Betrieben. Paper presented at: 9. Wissenschaftstagung zum ökologischen Landbau: Zwischen Tradition und Globalisierung, March 20-23, Stuttgart, Germany.