# The impact of nitrogen in red clover and lucerne swards on the subsequent spring wheat

#### Žydrė Kadžiulienė Lina Šarūnaitė Leonas Kadžiulis







Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry

# Introduction

In practise, organic farmers and producers use national standards or regulations for organic farming; however, to choose the right technologies or their elements adapted to local conditions is not so easy. They need to keep agriculture profitable and make it sustainable for the future.

In organic farming or low input farming systems, legumes are very important as N suppliers for cereals, in especial in organic crop farming.

Legumes also are substantial because they in crop rotations could be an effective tool for a replacement of use a new expensive nitrogen fertilisers, although they are developed and offered in the market as an organic. Also as tool for improvement of subsequent crop grain quality and even soil fertility.

#### **Materials and methods**

Field experiments were conducted on a loamy *Endocalcari-Epihypogleyic Cambisol* in Dotnuva, Lithuania and were aimed to assess the impact of legumes on the subsequent spring wheat in a crop rotation.

**Experimental design** 

Red clover + perennial ryegrass

Red clover + perennial ryegrass+ Barley for grain (Bgr)

Red clover + perennial ryegrass+ Barley for whole crop (Bwc)

Red clover + perennial ryegrass+ Pea for whole crop (Pwc)

Lucerne + perennial ryegrass

Lucerne + perennial ryegrass+ Barley for whole crop (Bwc)

Lucerne + perennial ryegrass+ Pea for whole crop (Pwc)

Perennial ryegrass

#### The weather conditions during the 2004-2006



Impact of sward composition and sowing method on yield of swards over two years, kg DM ha<sup>-1</sup>

| Treatment         | DM yield(1 exp),<br>kg ha <sup>-1</sup> | DM yield (2 exp),<br>kg ha <sup>-1</sup> |
|-------------------|-----------------------------------------|------------------------------------------|
| Rcl+Pr            | 8916                                    | 10334                                    |
| Rcl+Pr+Bgr        | 11064                                   | 9530                                     |
| Rcl+Pr+Bwc        | 11866                                   | 10887                                    |
| Rcl+Pr+Pwc        | 10499                                   | 10388                                    |
| Lc+Pr             | 13236                                   | 9803                                     |
| Lc+Pr+Bwc         | 12179                                   | 7848                                     |
| Lc+Pr+Pwc         | 14408                                   | 8810                                     |
| Pr                | 4872                                    | 4207                                     |
| LSD <sub>05</sub> | 1257.0                                  | 771.0                                    |

#### Dry matter (DM) of swards roots (soil depth 0-25 cm) and above ground biomass, t ha-1

|            | Roots   |         |       | Above ground biomass |         |                   | Total |
|------------|---------|---------|-------|----------------------|---------|-------------------|-------|
| Treatment  | Legumes | Grasses | Forbs | Legumes              | Grasses | Forbs             |       |
| RcI+Pr     | 2.38    | 0.64    | 0.12  | 1.26                 | 0.37    | 0.00              | 4.77  |
| RcI+Pr+Bgr | 3.08    | 1.21    | 0.02  | 1.46                 | 0.86    | 0.01              | 6.63  |
| RcI+Pr+Bwc | 2.92    | 0.60    | 0.02  | 1.31                 | 0.59    | 0.00              | 5.45  |
| Rcl+Pr+Pwc | 2.58    | 1.31    | 0.00  | 1.28                 | 1.10    | 0.00              | 6.26  |
| Lc+Pr      | 2.87    | 1.73    | 0.00  | 0.97                 | 1.09    | 0.00              | 6.66  |
| Lc+Pr+Bwc  | 2.38    | 1.33    | 0.20  | 0.71                 | 1.00    | 0.04              | 5.64  |
| Lc+Pr+Pwc  | 2.50    | 1.90    | 0.20  | 0.81                 | 1.77    | 0.01              | 7.02  |
| Pr         | -       | 2.07    | 0.03  | -                    | 2.11    | 0.01              | 2.80  |
|            |         |         |       |                      |         | LSD <sub>05</sub> | 2.325 |

Incorporated swards residues (DM, t ha<sup>-1</sup>) in soil and nitrogen amount (kg ha<sup>-1</sup>) in dry matter of roots (soil depth 0-25 cm) and above ground biomass, 2005

|                                     |                           | N in roots |         |       | N in above ground biomass |         |       | Total N |
|-------------------------------------|---------------------------|------------|---------|-------|---------------------------|---------|-------|---------|
| Treatment DM,<br>t ha <sup>-1</sup> | DM,<br>t ha <sup>-1</sup> | Legumes    | Grasses | Total | Legumes                   | Grasses | Total | amount  |
| RcI+Pr                              | 4.77                      | 66         | 6.3     | 72    | 28                        | 5.3     | 33    | 105     |
| RcI+Pr+Bgr                          | 6.63                      | 75         | 12      | 87    | 31                        | 9.6     | 41    | 128     |
| RcI+Pr+Bwc                          | 5.45                      | 68         | 7.4     | 75    | 31                        | 8.3     | 39    | 114     |
| RcI+Pr+Pwc                          | 6.26                      | 61         | 15      | 76    | 29                        | 14      | 43    | 119     |
| Lc+Pr                               | 6.66                      | 76         | 19      | 95    | 23                        | 16      | 39    | 134     |
| Lc+Pr+Bwc                           | 5.64                      | 65         | 12      | 77    | 16                        | 12      | 28    | 105     |
| Lc+Pr+Pwc                           | 7.02                      | 62         | 17      | 79    | 20                        | 22      | 42    | 121     |
| Pr                                  | 2.80                      | 0          | 28      | 28    | 0                         | 14      | 14    | 42      |
| LSD <sub>05</sub>                   | 2.325                     | 34.4       | 13.3    | 36.3  | 12.6                      | 6.5     | 14.4  | 48.1    |

#### Spring wheat yield, nitrogen and crude protein concentration after different pre-crops, 2006

| Treatment         | Grain yield,<br>kg ha <sup>-1</sup> | N in spring wheat,<br>kg ha <sup>-1</sup> | Protein in grain g kg <sup>-1</sup> |
|-------------------|-------------------------------------|-------------------------------------------|-------------------------------------|
| RcI+Pr            | 2274                                | 63.1                                      | 131                                 |
| RcI+Pr+Bgr        | 2342                                | 84.0                                      | 145                                 |
| RcI+Pr+Bwc        | 2121                                | 69.3                                      | 142                                 |
| RcI+Pr+Pwc        | 2128                                | 74.0                                      | 145                                 |
| Lc+Pr             | 2183                                | 78.1                                      | 146                                 |
| Lc+Pr+Bwc         | 1866                                | 72.8                                      | 148                                 |
| Lc+Pr+Pwc         | 2022                                | 73.9                                      | 147                                 |
| Pr                | 1776                                | 64.9                                      | 136                                 |
| LSD <sub>05</sub> | 185.4                               | 7.46                                      |                                     |





#### Impact of pre-crops (legume species) on spring wheat yield, kg ha

#### N input and accumulation in spring wheat yield after different pre-crops, 2006

| Treatment         | N input,<br>kg ha <sup>-1</sup> | N in spring wheat,<br>kg ha <sup>-1</sup> | N difference (risk),<br>kg ha <sup>-1</sup> |
|-------------------|---------------------------------|-------------------------------------------|---------------------------------------------|
| RcI+Pr            | 105                             | 63.1                                      | 43                                          |
| RcI+Pr+Bgr        | 128                             | 84.0                                      | 43                                          |
| RcI+Pr+Bwc        | 114                             | 69.3                                      | 46                                          |
| RcI+Pr+Pwc        | 119                             | 74.0                                      | 45                                          |
| Lc+Pr             | 134                             | 78.1                                      | 55                                          |
| Lc+Pr+Bwc         | 105                             | 72.8                                      | 32                                          |
| Lc+Pr+Pwc         | 121                             | 73.9                                      | 48                                          |
| Pr                | 42                              | 64.9                                      | - 23                                        |
| LSD <sub>05</sub> | 48.1                            | 7.46                                      | 50.6                                        |

# Conclusions

Nitrogen content incorporated with the aboveground biomass and roots of legumes was 2.5-3 times higher than that of grasses. There was no significant difference in the amount of N incorporated with red clover /ryegrass and lucerne/ ryegrass swards, however the highest total amount of nitrogen was left by lucerne/ryegrass that grew without a cover crop.

The effect of red clover/ryegrass and lucerne/ryegrass swards on the grain yield of spring wheat and on N accumulation in grain fluctuated depending on different DM yield and different amount of N incorporation and at the same time this effects could have been resulting by different accumulation of N in the soil and also weather conditions.

# Thank you for your attention

