

Opportunities and limitations in use of clovers as N-source in organic farming systems in Norway

Ievina Sturite

Norwegian Institute for Agricultural and Environmental Research, Norway

Presentation overview

- Nitrogen (N) a key nutrient for plant growth
- Clovers contribution to plant-soil system during the growing season
- Off season losses
- What is a fate of lost nitrogen?
- Conclusions

N-fixing plants

N-fixing plants

 N_2 fixation is the second most important biological process on earth

~ 175 MT N_2 is fixed globally each year, accounting for almost 50% of all the N used in agriculture

White and red clover are main legumes^{ioforsk} used in organic farming in Norway

Clovers in forage production increase protein content and quality generally

accumulate much atmospheric N during the growing season

30% clover in seed mixture

100-130 kgN/ha

Tjøtta Research Centre in Northern Norway

N-content in clover

clovers accumulates much atmospheric N during the growing season. N concentration in herbage ranging from 2.4 to 4.6% of dry matter

Much of this is returned to the soil via ✓rhizodeposition ✓decomposition of leaves, stolons, roots and nodules ✓grazing animals

Stockless organic crop rotations in Norway

Green manure – main N-source

Clovers contribution to plant-soil system during the growing season

Apelsvoll Research Centre in Southeast Norway

www.bioforsk.no

CV "Snowy"

Clovers contribution to plant-soil system

during the growing season Longevity of white clover plant organs

For non-harvested plants

Calculated

60% of the leaves turned over within the growing season

30% of total stolon length was died at the end of the second growing season

9% and 54% of tagged root sections turned over during the first and second growing seasons

Clovers contribution to plant-soil system during the growing season The gross input to the soil-plant system

If taking the turnover of all plant organs into account, then undidected N from plant tissue would amount

Bio/orsk Plant available N measured with PRSTM probes

Northern climate

- Relatively short growing season (may- september)
- Low temperatures during the growing season
- Long winter

What happens with clover and nitrogen during the winter?

Off-season losses

This represents a loss of production resources that affects the following main crop yield

on the average

35%

Fate of lost N Bioforsk

• The amounts of inorganic N in soil just after snowmelt were small

•N uptake in PRSTM (plant root simulator probes) was minimal

suggesting that N from degraded tissue may have been lost

Fate of lost NRecovery in seepage water

01.Oct 01.Nov 01.Dec 01.Jan 01.Feb 01.Mar 01.Apr

 Between 19-42 % of foliage N losses

 Pulses of N and P occured primarily during snowmelt

The water quality in early spring 52% NH_4 -N 83% PO_4 -P 45% organic N 3% NO_3 -N

> eutrophication of fresh waters and shallow seas

reduction in biological diversity of natural ecosystems

and global warming

Fate of lost N N:P ratio in leaf biomass and in seepage water

As P can not be lost as a gas, this suggest that gaseous N losses were moderate

Fate of lost N Carbon (C) content in seepage water

Biological consumsion of plant derived C ?

Modelling showed that microbial immobilisation also could explain the relatively low recovery rates of N and P in seepage water until the spring

N2O emissions during the winter

(and

Off season N₂O emissions

Winter 2012-2013, Tjøtta

Conclusions

- •Dying and dead clover tissue, particularly leaves, are an important source of readily available N for new plant growth, but
- •A high portion of clover N residing in the leaves in late autumn might be lost during the winter while N stored in stolons and roots are much better conserved
- Winter losses vary considerably from year to year, dependent on the prevailing climatic conditions
- Lost N might be at risk of further transport out of the soil-plant system , however,

•Only one-third of the winter losses are found in melt water in spring

- •Gaseous N losses are moderate
- •There are some indications that N that was unrecovered could have been immobilised by a cold-adapted microbial community

• There is need for more knowledge on how microorganisms affect and control biogeochemical cycles during the winter in northern climate

Thank yoy for your attention