

Assessment of animal welfare and environmental impact

C. Leeb
Scientific Workshop on Organic Pig Production
Hovborg
June 12th-13th 2013

Organic pigs outdoors

Organic pigs indoors with concrete outside run

Overview

- Introduction to ProPIG
- How to assess animal welfare and environmental impact?
 - Examples
- How to/how do they relate to each other?
- Conclusions

CORE Organic

CORE Organic

CORE Organic

ERA-net CORE Organic II ProPIG (2011-2014)

Farm specific strategies to reduce environmental impact by improving health, welfare and nutrition of organic

pigs

Aim of this project,

- to investigate the interaction of animal health and welfare, with nutrition and environmental impact
- to create and disseminate a tool to improve both aspects of organic pig production.

Partners

- 9 Partners in 8 Countries (AT, CH, CZ, DE, DK, FR, IT, UK)
- Coordination: C. Leeb , Austria

Austria: C. Winckler, G. Rudolph and C. Leeb (BOKU)

Czechia: J. Urban (Bio-I), G. Illman (IAS, Prague)

Denmark: T. Rousing, J.T. Soerensen (Aarhus Univ.)

France: A. Prunier, J.Y. Dourmand, F. Vertes (INRA)

Germany: S. Dippel (FLI) and C. Simatke (BAT)

Italy: **D. Bochicchio** (CRA-SUI)

Switzerland: B. Früh, M. Meier, A. Berner (FIBL)

UK: S. Edwards, G. Butler (Univ. Newcastle)

(Sweden: E. Salomon, K. Lindgren, A.K. Lind (JTI))

ProPIG "Three Systems"

75 farms in 8 countries

To identify

- animal environment interactions
- in three systems:

Hypothesis

All systems are able to ensure good welfare and low environmental impact when well managed

ProPIG

Farm specific strategies for improvement

To develop and implement

- Farm specific strategies to:
 - reduce environmental impacts
 - by improving health, welfare, nutrition and management
- To disseminate knowledge to national advisory bodies and farmers

Assessment

WP1: Definition of systems and development of assessment protocols of animal health, welfare and environmental impacts

WP leader: UK, Sandra Edwards/Gillian Butler)

- Definition of Systems (indoor/partly indoor/outdoor)
- Development of Assessment protocols
- Animal health and Welfare: e.g. Clinical scoring, medicine records
- Environmental impact: LCA, nutrient balances
- Farmer: qualitative interviews, basic economical data
- Automatic recording and feedback: PigSUrfer
- "Decision Support Tool" for environmental impact

WP 2: On-farm assessment and application of improvement strategies of animal health, welfare and environmental impacts WP leader: Denmark, Tine Rousing

Prospective cohort observational study 75 farms (3 systems of 25 farms each) Training and Interobserver Repeatability 3 Farm visits

Assessment

WP 3: Analysis, evaluation and dissemination

WP leader: Germany, Sabine Dippel

- Comparison of three systems regarding animal health, welfare and environmental impact
- 2. Detailed analysis of effect of farming type on health and welfare and productivity
- 3. Evaluation of improvement strategies
- 4. Dissemination:
 - Website, articles (farmer journals/scientific)
 - Handbooks and training material for advisors
 - National and international stakeholder meetings

Welfare

Clinical/ Physical

e.g. Fraser & Broom, 1990

Feelings/ Mental

e.g. Duncan, 1993

"Naturalness"
Normal behaviour
Integrity

e.g. Rollin, 1993 Examples

First resultsTwo Austrian farms

farrow to finish farms, approx. 25 sows, F1 (LRxES), mainly home grown feeds

Indoor

First results-Animal welfare

Thin sows

20% best farms				20% worst farms	Ihr Betrieb am 18.07.2012 (Mittelwert basiert
					auf: 19 Werte)
0.0 - 5.3 %	5.3 - 10.5 %	10.5 - 14.3 %	14.3 - 22.2 %	22.2 - 54.5 %	5.3 %

prominent and no fat cover

over hips and backbone.

Condition Score 2: The hip bones and backbone are easily felt without any pressure on the palms.

Condition Score 3: It takes firm pressure with the palm to feel the hip bones and backbone.

Condition Score 4: It is impossible to feel the bones at all even with pressure on the palm of the hands.

Condition Score 5: The sow is carrying so much far that it is impossible to feel the hip bones and backbone even by pushing down with a single finger.

Examples

First results-Animal welfare

Skin lesions

20% best farms					Ihr Betrieb am 18.07.2012 (Mittelwert basiert auf: 19 Werte)
0.0 - 0.0 %	0.0 - 11.1 %	11.1 - 19.0 %	19.0 - 27.3 %	27.3 - 51.4 %	17.4 %

Environmental impact

Global warming Potential

e.g. Basset-Mens & van der Werf, 2005; Olea et al., 2009; Halberg et al, 2010, Rigolot et al, 2010

Nutrient flow (N and P)

e.g. Schröder et al., 2003

Soil characteristics

e.g. Gee and Bauer, 1986

Global warming potential Modell (Rigolot et al., 2010)

Examples

First results-

CO₂-eq Emissions of Austrian organic pig farms CORE organic II

in kg CO₂-eq/1000kg finishing pig

(live weight at slaughter)

Brandhofer 2013

N and P balances of Austrian organic pig farms

Betrieb	N-Bilanz (kg N/ha/a) P-Bil	anz (kg P/ha/a)
AT001	17	-6
AT002	-30	-6
AT004+AT006	-10	-3
AT007	7	-4*
AT008	-10	-7*
AT009	3	1*
AT011+AT015	15	-3
AT013	12	4
AT016	5	-2*
AT003	-12	3
AT005+AT012	-11	2*
AT014	42	28*
Durchschnitt indoor	1,0	-2,9
Durchschnitt partly outdoor	6,3	11,0

Brandhofer, 2013

How to relate?

- 1. Individual parameters?
 - Mange eradication:
 - prevalence of ectoparasites vs.
 Treatment incidence

 rooting behaviour vs. vegetation cover

How to relate?

- 2. Combination of few, selected parameters "Cluster"?
 - E.g. Physical welfare: treatment incidences plus lesions, lameness
 - E.g. Direct animal impact on environment:
 Medicinal input, Vegetation cover,

How to relate?

3. Compare e.g. WQ[®] Score of farm with e.g. CO₂-eq Emissions?

Relation

How do they relate?

			COVE OF SOLICE
	Environment	Environment	Environment
	+	0	-
Animal health, welfare & nutrition	Mange eradication Optimised ration Regular removal of manure in outside run Health management	Adequate amount of bedding	Access to forest Access to natural water sources
Animal health, welfare & nutrition	Origin of food stuff Manure storage Food conversion rate		Protein surplus in Ration Feed losses High spacial variability in N and P load
Animal health, welfare & nutrition	Nose rings of sows	Respiratory problems	High density of pigs outdoors Rotation interval inadequate

Examples

First results-Ectoparasites

Treatment incidence Parasites sows

20% best farms				20% worst farms	Ihr Betrieb am 18.07.2012 (Mittelwert basiert
					auf: 20 Werte)
0.0 - 0.0 %	0.0 - 100.0 %	100.0 - 100.0 %	100.0 - 187.5 %	187.5 - 200.0 %	190.0 %

Treatment incidence Parasites weaners

Examples

First results-

Ectoparasites- Mange eradication

Treatment incidence Parasites sows

					18.07.2012 (Mittelwert basiert auf: 20 Werte)
0.0 - 0.0 %	0.0 - 100.0 %	100.0 - 100.0 %	100.0 - 187.5 %	187.5 - 200.0 %	190.0 %

Treatment incidence Parasites weaners

33% best farms		33% worst farms	Ihr Betrieb am 18.07.2012 (Mittelwert basiert auf: 262 Werte)
0.0 - 0.0 %	0.0 - 0.0 %	0.0 - 100.0 %	87.4 %

When well managed!

Conclusions

- CORE organic II
- Selected aspects of animal welfare and environmental impact can be assessed on farm
- Still to be discussed how to relate them to each other
 - Concrete hypothesis
 - Specific measureable outcomes
- High influence of management variation within systems larger than across systems
- Allowing to identify solutions

Thank you! Questions?

Further information: http://www.coreorganic2.org/propig

References

- Basset-Mens, C., van der Werf HMG. (2005): Scenario-based environmental assessment of farming systems: the case of pig production in France Agriculture., Ecosystem and Environment, 105, 127-144.
- Brandhofer, R. (2013): Umweltwirkungen biologischer Schweinehaltung: Vergleich zweier Haltungssysteme auf Basis des THG-Potentials sowie einer N- und P- Bilanz. Master thesis, University of Natural Resources and Applied Life Sciences Vienna, unpublished.
- Duncan, IJD (1993): Welfare is to do with what animals feel. J Agric Environ Ethics (Special Suppl 2): 8-14.
- Fraser, AF Broom, DM. (1990): Farm Animal Behaviour and Welfare, 3rd edition. Bailliere Tindall, London, England
- Gee, G.W., Bauder, J.W. (1986): Particle size analysis. p. 383-412. *In* A. Klute (ed.) Methods of soil analysis; Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
- Halberg, N., Hermansen, JE., Kristensen, IS., Eriksen, J., Tvedegaard, N. and Petersen, BM. (2010): Impactof organic pig production systems on CO2 emission, C sequestration and nitrate pollution. Agronomy forSustainable Development, 30: 721-731.
- Olea, R., Guy, J., Edge, H., Stockdale, EA. and Edwards, SA. (2009): Pigmeat supply chain: Life Cycle Analysis of contrasting pig farming scenarios, Aspects of Applied Biology, 95, 91-96.
- Rollin, B.E. (1993): Animal welfare, science and value. J. agric. environ. Ethics, 6 (Suppl. 2), 44-50.
- Schröder, JJ., Aarts, HFM., ten Berge, HFM., van Keulen, H. and Neeteson, JJ. (2003): An evaluation ofwhole-farm nitrogen balances and related indices for efficient nitrogen use. European Journal of Agronomy, 20, 33-44.