EFFECT OF PERSISTENT SUBSOIL COMPACTION ON N₂O EMISSIONS FROM ARABLE SOILS Kristiina Regina (Agrifood Research Finland) Asko Simojoki, Laura Alakukku (University of Helsinki) Hanna Silvennoinen, Peter Dörsch (Norwegian University of Life Sciences) Thomas Keller (Swedish University of Agricultural Sciences) ### The sites - Treatments: control and compacted - Kävlinge: Sandy clay loam, compacted in 1995, cereal-sugar beet-rapeseed rotation - Jokioinen: Clay soil, compacted in 1981, cereal cultivation - Compaction was done using heavy machines; effect still seen as higher penetrometer resistance, lower air permeability and lower gas diffusivity in the layer 30-50 cm - N₂O flux and soil air sampling Oct 2009-Sep 2010 ## Set up - 8 (SE) or 4 (FI) replicate chambers and 16 sets of soil air samplers at 15, 30, 50 and 70 cm depth in each treatment. - Soil moisture and temperature loggers were installed in some plots. - Sampling was carried out at 2-4 wk intervals - No soil air sampling in winter ### Regulation of N₂O fluxes Soil compaction can affect N₂O flux by - Increasing soil moisture → more denitrification → more N₂O - 2) Decreasing aeration \rightarrow less N_2O than N_2 in the end products - 3) Reducing diffusion from the soil \rightarrow less N₂O flux - → Positive or negative net effect? #### Soil moisture green: 15 cm blue: 30 cm (thick line: compacted) #### O₂ and CO₂ in soil air - Sweden #### N₂O in soil air - Sweden N₂O emissions and concentrations in soil at 15 cm - Sweden # N₂O flux, precipitation, air temperature - Sweden #### O₂ and CO₂ in soil air - Finland #### N₂O in soil air - Finland N₂O emissions and concentrations at 15 cm - Finland #### N₂O flux, precipitation, air temperature - Finland # Correlation of N₂O flux with soil concentrations of N₂O or O₂ | | Sweden | Finland | |---------------|---------|----------| | soilN2O_15 cm | 0.51433 | 0.67173 | | | <.0001 | <.0001 | | soilN2O_30cm | 0.37505 | 0.70759 | | | <.0001 | <.0001 | | soilN2O_50cm | 0.52394 | 0.60144 | | | <.0001 | <.0001 | | soilN2O_70cm | 0.42777 | 0.49448 | | | <.0001 | <.0001 | | soilO2_15 cm | 0.05764 | -0.18579 | | | 0.4117 | 0.0531 | | soilO2_30cm | 0.13658 | -0.19226 | | | 0.0532 | 0.0462 | | soilO2_50cm | 0.06406 | -0.41546 | | | 0.3638 | <.0001 | | soilO2_70cm | 0.07765 | -0.52309 | | | 0.2781 | <.0001 | ### Annual fluxes #### **Conclusions** - Compaction occasionally increased N₂O in soil air. - No large differences in soil air composition, N₂O emissions or moisture content were found between the treatments. - The N_2O concentrations at 15, 30, 50 and 70 cm depths correlated positively with the emission of N_2O from the soil in both fields $(r = 0.4-0.7^{***})$. - The subsoil O₂ concentrations correlated negatively with N₂O emission, but only at the Finnish site. - The results suggest that subsoil compaction does not significantly increase N₂O emissions from these soils 15-30 years after compaction. This may indicate a minor role of subsoil in the production of N₂O compared with topsoil. # More information on the results of the Nordic project "Persistent effects of subsoil compaction on soil ecological services and functions" (POSEIDON) available in the NJF seminar 'Soil compaction – effects on soil functions and strategies for prevention' 6.-8.3.2012 in Helsinki #### Welcome!