

HIGH ROOT BIOMASS FOR CEREAL CROPS INCREASES CARBON SEQUESTRATION IN ORGANIC ARABLE SYSTEMS

Chirinda, N., Olesen, J.E. and Porter J.R.

Faculty of Science and Techonology, Department of Agroecology, Aarhus University, Denmark

STRUCTURE OF PRESENTATION

- > Introduction
- > Hypothesis
- > Experimental layout and management
- > Methodology
- > Results
- > Conclusions
- > Acknowledgements

CARBON SOURCES FOR ARABLE

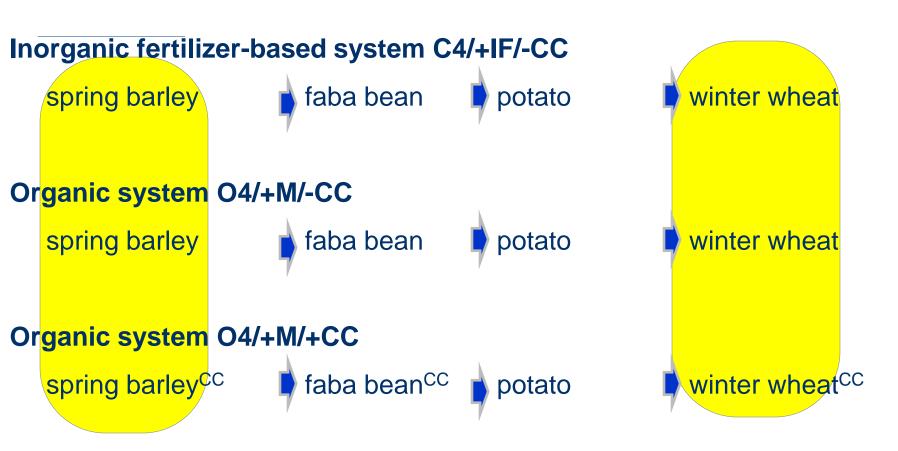
> Shoot residues

> Manure

> Root residues?

ROOT C INPUT

- > Literature on root C input in agroecosystems limited.
- > Root derived C has long residence time in soil
- Knowledge gap leads to increased uncertainity of C sequestration in arable systems
- > Root C input estimated using fixed shoot-to-root ratio
- > The question is; does root root C input in organic and inorganic fertilizer-based systems differ?



HYPOTHESIS

Limited nutrient availability leads to higher macro-root C input in low-input organic compared to high-input inorganic fertilizer-based systems

CROPPING SYSTEMS (2005-2008)

2007 and 2008:Internal and external N sources (kg N ha⁻¹)

2008 crop	system	Catch crops & weeds	Fertilization	Total N input
S. barley	C4/+IF/-CC	14	130	144
	O4/+M/-CC	(12)	57	69
	O4/+M/+CC	56	57	113
W. wheat				
	C4/+IF/-CC	0	165	165
	O4/+M/-CC	0	108	108
	O4/+M/+CC	0	108	108

METHODOLOGY

- > At anthesis (2008), soil cores (ca. 5 cm diam.) from 0-30 cm depth
- > Three seperate soil cores taken from both within and between crop rows
- Soil seperated from roots and washed with tap water and collected on a seive (mesh size 0.425 mm)
- Shoot DM biomass and ash-free root DM biomass determined

> Shoot-to-root ratio

O4/+M/+CC

565ª

236°

Crop & crop system	Shoot	Root	Shoot-to-ro ratio	oot Grain yield
Winter wheat	g D	M m ⁻²		\frown
C4/+IF/-CC	1121	206	5.4	947ª
O4/+M/-CC	870	292	3.0	503 ^b
O4/+M/+CC	976	250	3.9	631 ^b
Spring barley	\frown	\frown		\frown
C4/+IF/-CC	576ª	154 ^a	3.7 ^a	548 ^a
O4/+M/-CC	375 ^b	201 ^b	1.9 ^b	329 ^b

2.4^b

9

518^a

SCENARIO 1

By using the spring barley S/R ratio obtained in the inorganic fertilizerbased system (3.7) to calculate root DM biomass in organic systems, we <u>underestimate</u> root DM biomass

System Modelled		Measured difference			
g DM m ⁻²					
O4/+M/-CC	101	201	-100 (50%)		
O4/+M/+CC	153	236	-83 (35%)		

SCENARIO 2

By using the spring barley S/R ratio in the organic O4/+M/-CC system (1.9) to calculate root DM biomass in the inorganic and the organic fertilizer-based system with catch crops we <u>overestimate</u> root DM biomass

System	Modelled	Measured	difference		
g DM m ⁻²					
C4/+IF/-CC	303	154	+149 (97%)		
O4/+M/+CC	297	236	+61 (26%)		

CONCLUSIONS

- Cereals in low-input organic systems have higher root DM biomass than those in high-input inorganic fertilizer-based systems
- The high root DM biomass may enhance C sequestration in organic arable systems
- > Catch crops led to both high C sequestration and grain yield
- Use of shoot biomass and fixed S/R ratios to estimate root biomass leads to erroneous estimates of root C inputs in organic and inorganic fertilizer-based arable systems

ACKNOWLEDGEMENTS

- Staff at AU who contributed to this work
- Danish Ministry of Food, Agriculture and Fisheries, COST, ICROFS, NEU, KU and AU for co-financing this work

