Archived at http://orgprints.org/19313

Bibliografische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de abrufbar.
Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists the publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the internet at: http://dnb.ddb.de.

Diese Veröffentlichung kann kostenfrei im Internet unter <www.iamo.de/dok/sr_vol52.pdf> heruntergeladen werden.
This publication can be downloaded free from the website <www.iamo.de/dok/sr_vol52.pdf>.

Studies on the Agricultural and Food Sector in Central and Eastern Europe

Edited by
Leibniz Institute of Agricultural Development in Central and Eastern Europe

IAMO
Volume 52

[^0]In der Schriftenreihe Studies on the Agricultural and Food Sector in Central and Eastern Europe werden durch das IAMO Monographien und Tagungsberichte herausgegeben, die sich mit agrarökonomischen Fragestellungen zu Mittel- und Osteuropa beschäftigen. Wissenschaftlern, die in diesem Bereich forschen, steht die Schriftenreihe als Diskussionsforum offen.

In its series Studies on the Agricultural and Food Sector in Central and Eastern Europe IAMO publishes monographs and proceedings focusing on agricultural economic issues specific to Central and Eastern Europe. This series offers a forum to researchers studying this area.

LANDSCAPE AGROECOLOGY: MANAGING INTERACTIONS BETWEEN AGRICULTURE, NATURE AND SOCIO-ECONOMY

TOMMY DALGAARD*

Abstract

State of the art GIS and database technologies for landscape scale analysis and the modelling of land use and environmental impacts are presented. These methods have been developed at the University of Aarhus in multidisciplinary collaboration with other research institutions throughout Europe, e.g. during the EU research projects www.mea-scope.org and www.sensor-ip.eu. In the years to come, these land-scape-scale research methods will be further developed and integrated with similar frameworks in other EU countries, and used for scenario studies. Scenario studies, visualised in geographical information systems, are useful for evaluating possible fiture landscape developments, and for identifying potentials for and limitations to combining multiple landscape functions. Here we focus on scenario systems that explore interactions between landscape functions - e.g. the interactions between farm management, economy, nutrient losses, fauna population dynamics, plant community development, etc. Among others, scenarios for drinking water protection via increased set-aside grassland or afforestation are presented; they show that benefits from subsidies targeted to areas with special interests in the protection of drinking waters from nitrogen pollution differ from non-targeted subsidies. Experience has shown that working with scenarios and involving potential users at an early stage of development are important ways of focussing the work effort and ensuring that relevant tools are developed. Developments in data collection and collation at the EU level will allow similar systems to be developed elsewhere. Keywords: Landscape, agroecology, scenarios, multidisciplinarity, Geographical Information Systems (GIS), multifunctionality.

1 Introduction

This paper and the presentation for the Berlin Green week conference on "Multilevel processes of integration and disintegration (Humboldt-Universität Zu Berlin, 2009) are synthesized from research carried out in relation to three European landscape research projects; MEA-scope (www.mea-scope.org), SENSOR (www.sensor-ip.eu) and Nitro-Europe (http://www.nitroeurope.eu), as well as a number of Danish research projects (for example, ICROFS, 2009 or DALGAARD et al., 2003a, 2007, 2009).
At the conference, examples from this work were presented together with some additional examples on research carried out within The Department of Agroecology and Environment, Aarhus University, Denmark. This also includes methods for upscaling (DalgaARD et al., 2003b). In this paper, selected examples are described in further detail, with an emphasis on the need for further research developments within the discipline of Landscape Ecology (WoJTKowski, 2004; DALGAARD, 2005).

2 New needs for landscape research

Today's demand for sustainability is not limited to agricultural production and profit, but includes other aspects of rural life such as the environment and landscape. Proper utilisation of future landscape requires a holistic approach where consequences of various land uses are assessed and management adjusted. At the same time, regulatory authorities in EU Member States must implement a range of EU directives that target specific policy areas, e.g. the Nitrates Directive, National Emissions Ceilings Directive, Habitat Directive and the Water Framework Directive. If policy initiatives directed towards implementation are developed in isolation, there is a tendency for the resulting regulations to be at odds. For example, as part of the implementation of the Nitrates Directive in Denmark, farmers were obliged to plant more winter cereal crops. This has resulted in an increase in the frequency of pesticide applications, a development that threatens wildlife and conflicts with the objectives of the Habitat Directive.

2.1 The development of interdisciplinary landscape scenario systems

One example of an interdisciplinary landscape scenario system was developed in the project titled "Land use and landscape development, illustrated by scenarios Interactions between nature, agriculture, environment and land management", which was initiated under the Danish research programme titled "Land use - The farmer as landscape manager" (HANSEN et al., 2002). This multi-disciplinary project involved collaboration between the Danish Institute of Agricultural Sciences, The

The main data sources for this scenario system are the national databases for cropping (GLR), livestock holdings (CHR), soil types and climate. The main function of these databases is to support Denmark's compliance with EU support schemes and directives; they are also used for agro-environmental analysis purposes.
The test site for the scenarios is an area of $100 \mathrm{~km}^{2}$ in Viborg County, Denmark, (see Figure 2). Since the early 1990s, this area has been the focus of an intensive data collection campaign, including a detailed mapping of the soil, geology, biotopes and even of small landscape features such as ditches and field boundaries. The detailed data were collected to enable the importance of the scale of available data on scenario outcomes to be investigated. Data are digitised and stored in a GIS, which is the basis for the subsequent analyses. Presently, this landscape is used for scenario building in relation to the effects of revisions in the EU agricultural and rural development policy (DaLGAARD et al., 2009), effects of mitigation options for the reduction of greenhouse gas emissions from agriculture (http://www.nitroeurope.eu), and potentials for bioenergy production and nature conservation (ICROFS, 2009).
Figure 2: Land use in the $10 \times 10 \mathrm{~km}^{2}$ study area, situated around the city of Bjerringbro in the Midwest of Denmark. The ESA's are environmentally sensitive areas with respect to groundwater quality

[^1]
2.2 Example: A scenario for drinking water protection

As an example, Figure 1 illustrates how a scenario system was used to investigate measures for drinking water protection. Investigations have shown that spreading lwestock manure is closely related to N-losses (Dalgaird et al., 2002a), and the distribution of livestock manure and fertilisers is the main driving factor for tirogen (N) leaching to ground and surface waters. A model for the geographical Zistribution of N between fields within each farm and between farms within the etudy area was developed (DaLGAARD et al., 2001c).
Ifgure 3: Example of simulated distribution of nitrogen (N) in manure and fertiliser on agricultural land inside and outside ground water protection areas (ESAs) in the project area. Especially manure \mathbf{N} is a good indicator for N -losses, and drives the models for N -leaching to ground and surface waters

Warce: Dalgatrd et al., 2001c.
Th this model, the N -distribution within and between farms is simulated from : mimber and types of animals on each farm, crop rotation and the choice of cash .d roughage crops for feeding livestock, soil types, distances to neighbouring farms
and the N -need for fertilising the crops on these farms. Figure 3 shows an example of simulated distribution of N in manure and fertilisers on agricultural land within the study area.
In one scenario, the effect of drinking water protection via extensification in the form of grassland set-aside in the groundwater protection area (ESA) situated in the watershed of the Tyrebækken stream is investigated (Figure 4). This scenario is especially relevant in the context of the EU Nitrate and Water Framework Directives.
Figure 4: Case study site for the groundwater protection scenario, with the Tyrebæk stream watershed in green and the catchment area for the drinking water borehole in blue. The "before" and "after" maps show the results from the crop rotation, manure, farm and hydrogeological models, before and after extensifying the borehole catchment
Tyrebæk watershed

- Drinking water borehole catchment
m Tyrebæk stream watershed

Crop type
Fodder
Cereal
Extensive set aside
Grazing

Fertilisation (kg total-N)
$-1 \mathrm{dot}=200 \mathrm{~kg}$ manure
$\times 1$ cross $=200 \mathrm{~kg}$ fertiliser

Nitrate leaching ($\mathbf{~} \mathrm{lg} \mathrm{N} / \mathrm{ha}$)$\square 0-25$
-51-75
76-100
$101-$

Nitrate in groundwater (mg/l)

\square	$0-10$
$10-25$	
$25-50$	
$50-75$	
$75-100$	
$100-200$	
$200-$	

Source: After HuTCHings et al., 2004.

According to EU legislation, necessary measures should be implemented in order 3 protect drinking water quality in designated areas; i.e., the ESA in Figures 2, 3and 4. When fields in the ESAs are turned into permanent grassland set-aside, bee areas are taken out of agricultural production. In the scenario system, each Ermer's reaction to these measures, in the form of changed animal and crop proEction, is decided from a set of rules, and the resulting change in fertilisation zetice is decided from the model described above. In this way, the effect on Heaching is estimated and interactions with other economic and ecological funcuns in the landscape assessed. As will be described in the following, these interacins are often non-linear and crucial to include when analysing the possibilities rcreating multifunctional landscapes.

INTERACTIONS BETWEEN MULTIPLE FUNCTIONS

section provides an example of the interactions between landscape functions the interdisciplinary scenario systems can help disentangle. The two functions eded in the example are the economic benefit from farm production, given by verage farm level gross margin, and the reduction of nitrogen losses resulting nthe introduction of afforestation on former agricultural land (see the drinking er protection scenario described above, and RyGNESTAD et. al., 2001, 2002). policy measures investigated were two different auction-based measures, an equal, total afforestation subsidy of 2.7 mio . DKK used (Figure 5).
re 5: Example of interactions between farm income and drinking water protection via auction-based afforestation
targeted measure is equal to that of the uniform measure, because the targeted measure affects more of the animal farms that have a higher impact on N -pollution than the mainly arable farms affected by the uniform measure. In the targeted measure, only farms within ground water protection areas (i.e., farms with most of their fields within the ESAs in Figure 2 and Figure 3) are invited to tender. In the uniform measure all farms in the study area are invited to tender, and in both the uniform and the targeted situation, it is assumed that farmers choose afforestation if the aforestation subsidy per ha is higher than the average farm level gross margin per ha.
As illustrated in Figure 5, the uniform measure leads to the largest area afforested (the hatched area). This is because the marginal subsidy needed to make farmers plant woodland increases faster in the targeted than in the uniform measure. However, the farms with low average farm level gross margins which plant woodland as a result of the uniform measure are primarily arable. In contrast, the targeted measure results in more animal farms, which typically have higher gross margins than arable farms, also planting woodland. Because N-losses are closely related to high livestock density, the groundwater protection effect of the targeted measure will be as high as the effect of the uniform measure, even though the area included by the targeted measure is much smaller (DalGaARD, 2001).

4 CONCLUSIONS AND PERSPECTIVES

The interdisciplinary landscape scenario systems illustrated are applicable at a range of scales, from small areas in which each individual farm is considered as a separate entity, to larger scales in which standard farm types are used.
Denmark has been at the forefront of collecting digital farm data in national databases and in the development of methods to combine these data with other data types (DALGAARD et al., 2002b). In recent years, similar data have become available in most EU countries, e.g. from national censuses, the EUROSTAT Farm Accountancy Data Network (FADN), landscape study site inventory campaigns like those initiated in the NitroEurope and the MEA-scope EU research projects, or in less detailed data available from national area support scheme databases (Petit et al., 2008). Therefore it is interesting to explore the opportunities to develop methods to combine these data in scenarios for landscape development in Europe's various regions.
The ecological, economic, wildlife and visual functions of landscapes within a modern society are determined by processes that operate over a range of scales in space and time. Integrating the knowledge behind these processes into tools that can be used by people who have stewardship over the land, e.g. farmers and regulators, will require an interdisciplinary approach. Such an approach demands significant effort as it must work against the trend of specialisation and fragmentation of knowledge that has occurred over recent centuries. It also requires substantial

Thion, data management and integration of information about multiple landether (users at an early stage of development are important ways of focuscesrences
fird, T., Kjeldsen, C., JøRgensen, M.S., Hutchings, N., Mogensen, L., Osuch, A., wand, M., HAPPE, K., PIORR, A. (2009): Scaling from Farm to Landscape - A Bottom-up wodology for the Modelling and Mapping of Farm Nitrogen Surpluses, in: PIorr, A., and (eds.). Rural Landscapes and Agricultural Policies in Europe. Springer Verlag, Berlin.
yrd, T., Kjeldsen, C., Hutchings, N., Happe, K., Osuch, A., Damgaard, M., 3. ${ }^{3}$. Fing Future Demands for Landscape Goods and Services, Berlin, pp. 168-183.

ARO, T. (2005): Landscape Agroecology. Book Review, Agricultural Systems, 85 203-204. http://www.sciencedirect.com/science/journal/0308521X.
wo. I., HUTCHINGS, N.J., HANSEN, J.F., MIKKELSEN, H.E. (2003a): Scenarios for multihetmig, K., Wiggering, H. (eds.): Sustainable Development of Multifunctional Land--5, Berlin, pp. 247-256.
*RD, T., Hutchings, N.J., Porter, Jr. (2003b): Agroecology, scaling and interdiscipli..ggiculture Ecosystems and Environment, 100, pp. 39-51. Review paper
vido. T., Heidman, T., Mogensen, L. (2002a): Potential N-losses in three scenarios for TP: 207-21.
wad. T., Rygnestad, H., Jensen, J.D., Larsen, P.E. (2002b): Methods to map and simueqricultural activity at the landscape scale, Danish Journal of Geography, 3, pp. 29-39.
2., T. (2001): Simulation and Generalisation of Agricultural Resource Use. PhD -thesis
tid, T., KJeldsen, C., Hutchings, N.J., Hansen, J.F. (2001): N-losses and Energy Use 3h Inst. of Agricultural Sciences 2002, pp. 40-41.

- mt-Universität Zu Berlin (2009): Marie Curie Network on Modern Agriculture in 2al and Eastern Europe. Berlin Green Week Scientific Conference on "Multi-level processes 7.egration and disintegration". International Congress Centre, Berlin, Jan 14-15 2009,
emcs, N., Dalgaard, T., Rasmussen, B.M., Hansen, J.F., Dahl, M., Jørgensen, L.F. in: Hatch, D.J. et al. (eds.): Controlling nitrogen flows and losses, Wageningen, pp. 47-53.

ICROFS (2009): Research projects on organic farming, landscape biodiversity and bioenergy production: http://www.darcof.dk/research/darcofiii/refugia.html) and http://www.darcof.dk/ research/darcofiii/bioconcens.html. International Centre for Research in Organic Farming Systems, Foulum, Denmark.

Rygnestad, H., Jensen, J.D., Dalgaard, T., Schou, J.S. (2002a): Cross-achievements between policies for drinking water protection, Journal of Environmental Management, 64, pp. 77-83.
Rygnestad, H., Jensen, J.D., Dalgaard, T. (2002b): Integrated economic and spatial analyses of afforestation strategies in Denmark, Danish Journal of Geography, 3, pp. 41-48.
Petit, S., Vinther, F.P., Verkerk, P.J., Firbank, L.G., Halberg, N., Dalgaard, T., Kjeldsen, C., Kohleb, N., Lindner, M., Zudin, S. (2008): Indicators for environmental impacts of land use changes, in Helming, K., Pérez-Soba, M., Tabbush, P. (eds): Sustainability Impact Assessment of Land Use Changes, Berlin, pp. 305-324.
Vejre, H., Abildtrup, J., Andersen, E., Andersen, P.S., Brandt, J., Busck, A., Dalgaard, T., Hasler, B., Huusom, H., Kristensen, L.S., Kristensen, S.P., Prestholm, S. et al. (2007): Multifunctional agriculture and multifunctional landscapes - Land use as interface, in: Mander, Ü., Wiggering, H., Helming, K.: Multifunctional Land Use. Meeting Future Demands for Landscape Goods and Services, Berlin, pp. 93-104.
Wojtkowski, P. (2004): Landscape Agroecology. Food products press. Haworth Press, New York.

[^0]: © 2009
 Leibniz-Institut für Agrarentwicklung in Mittel- und Osteuropa (IAMO)
 Theodor-Lieser-Straße 2
 06120 Halle (Saale)
 Tel. 49 (345) 2928-0
 Fax 49 (345) 2928-199
 e-mail: iamo@iamo.de
 http://www.iamo.de
 ISSN 1436-221X
 ISBN 978-3-938584-42-2

[^1]: Source: DALGAARD et al., 2001 c .

