

Development of integrated livestock breeding and management strategies to improve animal health, product quality and performance in European organic and 'low input' milk, meat and egg production

Ethical Problems and Breeding Goals

Subproject 3: Pigs

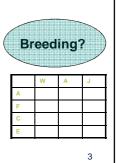
Sandra Edwards Newcastle University

Stakeholder Congress on Ethical Concerns Wageningen, March 15 2011

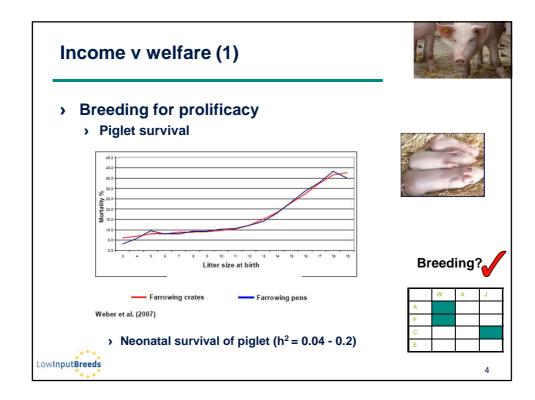
An Ethical Overview

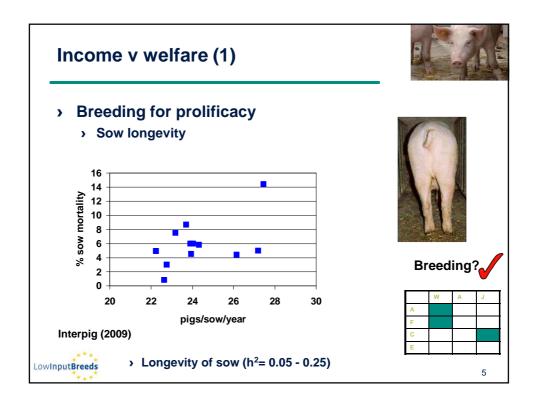
RESPECT FOR	WELLBEING	AUTONOMY (choice)	JUSTICE (fairness)
Animals	Animal welfare	Behavioural choice	Intrinsic value (integrity)
Farmers	Satisfactory income and workplace	Managerial freedom (independence)	Fair trade rules
Consumers	Food quality and safety	Choice and democracy (public wishes)	Affordability
Environment	Conservation	Biodiversity	Sustainability

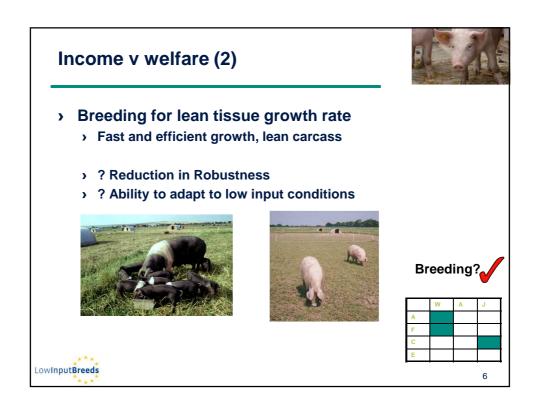
LowInputBreeds

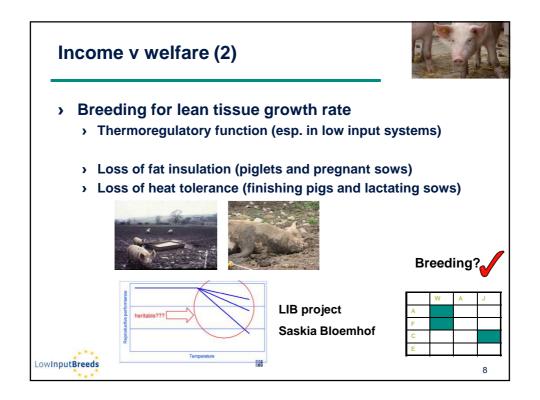

Mepham & Millar (2001)

2


Ethical conflicts




- > Animal welfare v farmer income & affordable food
- > Animal welfare v management choices
- > Animal integrity v product quality
- > Environmental impact v "naturalness"
- > Animal integrity v technological advance



Income v welfare (2) > Breeding for lean tissue growth rate > Metabolic function (ability to function with low quality diets) > Immunological function (natural ability to resist disease) > Skeletal function (predisposition to OCD and leg weakness) Breeding?

"Naturalness" v environmental impact

- > Feed conversion efficiency
 - Low input systems use feed less efficiently so give greater environmental impact
 - > Traditional breeds slower growth, greater fatness
 - > More natural environments greater waste, climatic penalty

> N.b. Correlates of breeding for efficiency

Low**InputBreeds**

Management v welfare (1)

- Modified social organisation
 - > Modified group size and composition
 - > Lack of group stability
 - > Breeding for reduced social problems?
 - > Aggression in pigs (h² = 0.2 0.4)
 - > Tail biting in pigs ($h^2 = 0 0.3$)

Management v welfare (2)

- > Restriction of natural behaviour
 - > Early weaning age
 - > Barren housing conditions
- > Important Ethical issues but not solved by breeding

Product quality v integrity

- Castration
 - > Mutilation to reduce boar taint in meat
 - > Problem greater in low input systems
 - > traditional, early maturing breeds
 - > slower growth and imbalanced dietary protein

Breeding?

> Boar taint compounds (h² = 0.25 - 0.75)

LowInput**Breeds**

Product quality v Genetic diversity

- Fat composition and human health
 - > Fatter animals (traditional breeds) have more saturated fat
 - > Saturated fat increases human health risks
 - > ? Can we breed for unsaturated fatty acids , esp omega-3

Technology v integrity

- > Genomic selection
 - > Use of genetic markers, SNP information
 - Not biological (phenotypic) information as used in traditional selection
- > GM animals
 - > Possibility of enhanced traits for low input systems

Low**InputBreeds**

