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Summary 
Perennial weed infestations are putting severe constraints on organic and conventional 

farming. Cirsium arvense (L.) Scop. and Tussilago farfara L. have high vegetative 

regeneration capacity from underground organs. These organs can reach deep soil layers, 

which prevent them from being easily uprooted. In our research, we primarily addressed 

the importance of the source-sink dynamics of carbohydrates at different phenological 

stages and related results to eventual management strategies.  

Experimental work was carried out under greenhouse and/or growth chamber 

conditions. The first study spanned from roots/rhizomes planting to shoot establishment. 

The second study began after establishment and included the rosette to the flowering 

stages. The third study was about the storage of carbohydrates in the underground parts. 

And finally, a fourth study aimed at unraveling the effect of drought on new shoots of 

these perennials.  

To determine the depletion of carbohydrate storage associated with shoot 

development, we destructively sampled roots of C. arvense and rhizomes of T. farfara 

from which nonstructural carbohydrates were measured using HPLC. We found that 

fructan was highest at the planting time, but it decreased by releasing fructose as shooting 

growth progressed. However, before the released fructose was depleted, carbohydrates 

were reloaded by photo-assimilates. This was demonstrated by 14C labelling to track the 

commencement of the basipetal translocation of photo-assimilates. The conclusion was 

that appreciable basipetal translocation starts at 6 and 8 fully developed leaves for T. 

farfara and C. arvense, respectively. This falls between 500 and 600 degree days or 

around 21 to 23 days after emergence under our experimental conditions.  

After shoot establishment we measured the maximum net photosynthesis of 

disturbed and undisturbed clones over a period of 3 weeks, from the rosette stage to the 

flowering stage. Maximum net photosynthesis decreased over time, but there were no 

differences between disturbed and undisturbed clones. Our conclusion was that the 

physiological integration found in other clonal species seems to be absent in C. arvense 

and T. farfara, suggesting that shoots are autonomous. 

To understand carbohydrate storage, juvenile and mature plants were grown at 

different temperatures. The results showed that the polymerization of fructans was 
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associated with low temperatures for C. arvense but not for T. farfara. Polymerization of 

fructans in roots/rhizomes was not significantly different between juvenile and mature 

plants. Only the dry weight of shoots from juvenile plants reflected the differences found 

in carbohydrate content. The conclusion is that the continuous growth of underground 

propagules facilitates the survival of these two perennials and thus complicates their 

control.  

Gradient soil water content during the establishment period of shoots of C. 

arvense, T. farfara and Elytrigia repens showed that E. repens is more tolerant to water 

stress than broadleaf T. farfara and C. arvense. T. farfara is more prone to water stress 

compared to C. arvense if we consider the relationship between the soil water content and 

shoot biomass. This susceptibility might give an opportunity window for managing 

broadleaf perennial weeds. 
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Sammendrag 
Flerårige ukrudt medfører alvorlige begrænsninger for planteproduktionen i økologisk og 

konventionelt landbrug. Cirsium arvense (L.) Scop og Tussilago farfara L. har høj 

vegetative regenereringsevne fra de underjordiske organer. Disse organer kan nå dybe 

jordlag, der forhindrer dem i at blive trukket op og udtørret på jordoverfladen. I vores 

forskning undersøgte vi primært betydningen af ”source-sink” dynamik for kulhydrater i 

forskellige fænologiske faser og relaterede resultaterne til mulige bekæmpelsesstrategier. 

Det eksperimentelle arbejde blev udført i drivhus, og / eller i vækstkammer. 

Den første undersøgelse spændte fra plantning af rødder/rhizomer til 

skudetablering. Den anden undersøgelse blev indledt efter etableringen af rosetstadiet og 

indtil blomstring. Den tredje undersøgelse drejede sig om oplagring af kulhydrater i de 

underjordiske dele, og den fjerde undersøgelse studerede virkningen af tørke på nye skud 

af disse flerårige arter. 

For at bestemme nedbrydningen af kulhydrat i forbindelse med dannelse af nye 

skud, brugte vi en destruktiv prøveudtagning af rødder fra C. arvense og jordstængler fra 

T. farfara og målte opløselige kulhydrater ved hjælp af HPLC. Fruktaner var højest ved 

plantningen, men faldt ved at frigive fruktose under skuddannelsen. Men før den frigivne 

fruktose var udtømt, begyndte oplagringen igen af fotosyntesens kulhydrater. Dette blev 

påvist med 14C mærkning. Konklusionen var, at basipetal transport begynder ved 6 og 8 

fuldt udviklet blade for henholdsvis T. farfara og C. arvense. Dette falder mellem 500 og 

600 graddage eller omkring 21 til 23 dage efter ny skuddannelse. 

Efter etablering målte vi den maksimale nettofotosyntese af forstyrret og 

uforstyrret kloner over en periode på 3 uger, fra roset- til blomstringsstadiet. 

Fotosyntesens nettoeffekt faldt over tid, men der var ingen forskel mellem forstyrret og 

uforstyrret kloner. Med andre ord den fysiologiske integration som findes i andre 

flerårige arter med underjordiske vegetative organer synes at være fraværende i C. 

arvense og T. farfara, og det tyder på, at skuddene er autonome. 

 Unge og ældre vegetative planter dyrket ved forskellige temperaturer viste, at 

størrelsen af fruktanreserven var forbundet med lave temperaturer for C. arvense, men 

ikke for T. farfara. Størrelserne af fruktankoncentrationen i rødder/rhizomer var ikke 

signifikant forskellig mellem unge og ældre planter. Kun tørvægten af unge planter 
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afspejlede forskelle i kulhydratindholdet. Konklusionen er, at den fortsatte vækst af 

rødder og/eller rhizomer letter overlevelse af disse to flerårige arter og dermed 

komplicerer deres bekæmpelse. 

Gradienter i jordens vandindhold under etableringsperioden af  C. arvense, 

T. farfara og Elytrigia repens viste, at E. repens er mere tolerant overfor vandstress end 

de bredbladede T. farfara og C. arvense. T. farfara er mere tilbøjelige til at lide af 

vandstress i forhold til C. arvense, hvis vi ser på forholdet mellem jordens vandindhold 

og biomasseproduktion. Denne følsomhed kan give en mulighed for at rammer ukrudtet 

når det er mest tørkestresset. 
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Résumé 
Les adventices pérennes posent des sérieux problèmes à l’agriculture biologique des pays 

Nordiques mais aussi des autres régions. Parmi les espèces les plus rencontrées, nous 

reconnaissons Cirsium arvense (L.) Scop and Tussilago farfara L. Ces deux espèces sont 

connues pour leur capacité de régénération végétative élevée émanant de leur organs 

souterrains, racines et rhizomes, qui peuvent pénétrer jusqu’à plus d’un mètre de 

profondeur. Au cours de notre travail, nôtre attention s’est focalisé sur la compréhension 

des allocations des hydrates de carbone au cours de la phénologie des deux espèces afin 

de  contribuer à l’amélioration des méthodes de contrôle.  

Pour ce faire, nous avons échelonné notre expérimentation sur trois principales 

phases phénologiques avec quatre études. La première phase expérimentale avait comme 

objectif de suivre la dégradation des réserves associée à l’émergence des pousses ainsi 

que la translocation des photo-assimilâts vers les parties souterraines. Cette phase 

commençait avec la date de la plantation des fragments de racines pour C. arvense et de 

rhizomes pour T. farfara jusqu’à peu prêt quatre semaines après l’émergence des pousses. 

L’étude de la seconde phase examinait si le raccordement des pousses d’un clone a un 

effet sur pouvoir photosynthétique. L’expérimentation était faite à partir de 5 semaines 

après l’émergence de pousses pour se terminer à la floraison. La troisième étude 

concernait tout le cycle végétatif et l’importance était centrée sur le stockage des hydrates 

de carbones à des températures et âges variés. Enfin, nous nous sommes intéressés aussi 

sur l’impact que le déficit en eau du sol pourrait occasionner pendant la période 

d’émergence des pousses. 

Afin de déterminer la dégradation des réserves des hydrates de carbone dans les 

racines et rhizomes au cours de l’émergence des pousses,  le saccharose, le glucose, le 

fructose, l’amidon et les fructanes des racines et rhizomes reprises quelques temps après 

la plantation étaient mesurés. Les fructanes se trouvent être les plus importantes réserves 

et leur dégradation résulte en une augmentation du fructose. Néanmoins, avant que le 

fructose ne soit complètement utilisé, le transport des photo-assimilâts récents vers les 

racines et les rhizomes était déjà constaté. Ceci était montré par la technique d’isotope 

carbone 14 utilisé pour suivre la translocation des photo-assimilâts. De nouvelles réserves 

sont alors de nouveau constituées donnant ainsi la possibilité d’émergence des nouvelles 
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pousses pour constituer un clone. A 6 feuilles pour T. farfara  et 8  feuilles pour C. 

arvense, soit 500 à 600 degrés-jours, la reconstitution de l’énergie dans les rhizomes et 

racines était déjà constaté. 

Le fait de couper une ou plusieurs pousses dans un clone n’a pas d’effet sur les 

autres pousses restées intactes. Ceci a été démontré par une étude sur la photosynthèse 

mesurée sur les clones sur lesquelles soit un certain nombre de pousses est coupé ou alors 

laissé complètement intacts. Ces mesures faites sur trois semaines ont démontré que 

chacune des pousses d’une clone de C. arvense et T. farfara est autonome contrairement 

à ce qui est connu chez d’autres espèces.  

La température a affecté le stockage des fructanes pour le cas de C. arvense mais 

pas T. farfara. Les basses températures favorisent le métabolisme des longues chaînes des 

fructanes. Quatre semaines après l’émergence, si les pousses sont exposées à des basses 

températures, la longueur des chaînes des fructanes est la même que celle des plants 

majeures. La capacité générative des fragments de racines et rhizomes replantés, après 

des températures variées, ont montré que les biomasses des pousses obtenues des racines 

ou rhizomes des jeunes plantes diffèrent. Ceci se refléte aussi dans le rythme 

d’émergence des pousses. En conclusion, les racines et rhizomes connaissent une 

croissance continue et accumule des réserves tout au long de la saison végétative. Ceci 

constitue pour les deux espèces étudiées un bon moyen de survie et constitue une 

difficulté quant aux possibilités de les contrôler. 

L’étude sur l’effet de la teneur en eau du sol pendant l’émergence et la croissance 

des pousses de  C. arvense, T. farfara and Elytrigia repens aura montré qu’il pourrait y 

avoir une marge de manœuvre quant aux stratégies utilisées pour contrôler les mauvaises 

herbes vivaces avec des feuilles larges, dicotylédones. E. repens était la seule espèce à 

pouvoir tolérer les faibles teneurs en eau dans le sol. T. farfara est plus susceptible à une 

faible teneur en eau du sol que C. arvense. 
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1. Introduction 

1.1. Background 

The seasons are astronomical, meteorological, biological, and agricultural (Battey 2000). 

Seasonal and climatic changes are some of the non-living or abiotic components of the 

environment that influence the living or biotic components. Seasonal changes can include 

variations in day length, temperature, precipitation, etc. Biologically, research on 

seasonality and phenology has received substantial attention (Lieth 1974) because the 

success of an ecosystem or a food chain depends on the timing of phenological events.  

Phenology, the timing of life cycle events in plants, has been used as a predictive 

strategy for weed and crop competition (Huang et al. 2001) but most predictive models in 

weed science deal with annual weed species, thus seed to seed development. Perennial 

weeds that involve asexual reproduction present interesting aspects that need more 

investigation. As with seeds, vegetative buds undergo unfavorable conditions as resistant 

structures to abiotic and biotic stresses (water deficit, extreme temperatures, salinity, 

herbivores, pests, etc.) in a dormant state that is an important characteristic of 

perenniality (Kamenetsky 2009; Rohde & Bhalerao 2007). For example, vegetative bud 

tissues can survive - 40 C or below (Jones 1992). Even though the dormancy or the 

capacity of vegetative propagules to survive stress conditions are not fully understood 

(Anderson & Choa 2001; Borchert 1991, Klimesova & Klimes 2006), it can be 

considered as a stepping-stone for species survival and spread. Horvath (2009) described 

how flowering and dormancy of perennials are regulated by common mechanisms.  

Carbohydrates form the main energy storage in regenerative propagules and they act 

not only as a fuel for growth but also as sensing and signaling compounds (Gibson 2004; 

Gibson 2005; Gupta & Kaur 2005; Lei et al. 2007; Rolland et al. 2000; Rolland et al. 

2002; Rolland & Sheen 2005; Rolland et al. 2006; Rook et al. 1998; Sheen et al. 2007) in 

synergy with other metabolites. The alternations of carbohydrate metabolism and 

allocation associated with phenological events have been demonstrated in several 

perennial species in conjunction with environmental cues and phenological time 

(Anderson et al. 2005; Asano et al. 2006; Bansal & Germino 2009; Becker & Fawcett 
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1998; Cyr et al. 1990; Eshghi et al. 2007; Gesch et al. 2007; Horvath 2009; Wilson et al. 

2001; Wilson et al. 2006).  It stems from these studies that the sources and sinks are 

interesting in order to harness the management of perennial weeds. So far, sources and 

sinks of carbohydrates have been described more fully in woody plants (Kozlowski 1992; 

Bansal & Germino 2009; Shepherd 1985) than in herbaceous perennials despite the fact 

that the latter constitute a plant group with great economical importance in agro-

ecosystems and rangelands.  

Bearing in mind the importance of carbohydrates as mediating compounds in 

endogenous rhythms responsible for phenology, we think that their quantification in 

response to environmental stimuli could give added value to the knowledge on the 

biology and the ecology of perennial weeds. For example, the understanding of the 

carbohydrate source-sink relations associated with the phenology of perennial weeds will 

allow researchers and farmers to know when the weeds are most susceptible to control 

strategies.  

The use of the source-sink relations might be the current need for control of some 

species like creeping thistle (Cirsium arvense (L.) Scop.) and coltsfoot (Tussilago farfara 

L.), which are considered as big challenges for both conventional and organic farming. 

Research on C. arvense has been conducted for more than one hundred years but its 

effective control has not yet been reached. In the same manner, T. farfara has been 

known in agriculture as a weed for over than 50 years (Bakker 1960). The use of 

herbicides has a relatively large impact on lowering infestation by these perennial weeds. 

However, the concern associated with side-effects of herbicides on environmental and 

human health has been increasing the last few decades and has led to a search for new 

farming strategies. The introduction of organic farming and the restrictions on herbicides 

has led to an increase of perennial weeds (Andreasen & Stryhn 2008; Thomas et al. 2004; 

Zanin et al. 1997). These changes in farming systems require new and efficient methods 

to manage noxious perennial weeds like C. arvense and T. farfara.  

1.2. Problem statement and research questions  

Perennial weeds, mostly Elymus repens (L.) Gould, C. arvense, Rumex crispus L., and T. 

farfara are putting severe constraints on organic production in Denmark and other 
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temperate regions (Andreasen & Stryhn 2008; Rydberg & Milberg 2000; Salonen & 

Hyvonen 2002). Their high reproduction and dispersal capacity resulting from the 

fragmentation of their vegetative propagules by soil tillage are their major sources of 

success.  

 Direct and indirect control methods of perennial weeds are not satisfactory in 

organic farming. The attempts to improve both direct and cultural control strategies 

(Graglia et al. 2006; Koch & Rademacher 1966; Lauringson et al. 2001; Seibutis & Feiza 

2008) remained unsatisfactory because organic growers could not accept high treatment 

intensities. Among cultural control methods, perennials are traditionally controlled by 

repeated and prolonged stubble cultivation in late summer and autumn. But this method 

conflicts with one of the objectives of organic farming; i.e., to retain nutrients in the 

upper soil layer by keeping the soil covered with plants during the autumn and winter. 

Fewer and timelier treatments therefore are required for efficient control of perennials.  

In addition to the reluctance of intense interventions by growers and the violation 

of organic farming objectives, C. arvense and T. farfara have a special biology that 

renders them even more difficult to control. For example, C. arvense remains a 

problematic weed under conventional and organic farming because of its selective 

pressure preserved by its dual regenerative capacity and high genetic variation as 

increased by dioecy in sexual reproduction (Hettwer & Gerowitt 2004; Slotta et al. 2006; 

Tiley 2010). Another important characteristic of this weed is its deep root system 

(Reintam et al. 2008; Niederstrasser & Gerowitt 2008). This attribute is also found in T. 

farfara and renders them ill-suited to organic farming control strategies. We think that 

knowledge of sources and sinks of carbohydrate dynamics can improve perennial weed 

management strategies by reducing infestations arising from asexual regeneration.  

The overall objective of this work was to relate sources and sinks of 

carbohydrates to phenological events and elaborate on eventual control strategies for C. 

arvense and T. farfara. We emphasized two main periods in their life cycle when they 

might be more vulnerable because they have either little or no photosynthetic activity to 

assist them to recover: before and after dormancy. Management of perennial weeds 

before dormancy would correspond to disturbance of carbohydrate storage whereas their 

management after dormancy would mean disturbance of the early growth that uses 
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carbohydrate reserves. Water is also regarded as a major player in the phenological 

changes and carbohydrate allocations (Jones 1992; Lundmark et al. 2006; Tworkoski 

1992). Therefore, in one study, we aimed at investigating the effects of water stress on 

the early growth of the two perennial weeds in comparison with E. repens 

In the three first studies (papers I, II and III), C. arvense and T. farfara were used. 

In the fourth study (paper IV), E. repens was included for comparison. The first study 

spanned the planting of roots/rhizomes to shoot establishment. The second study started 

after weed establishment, and included the rosette and the flowering stages. The third 

study dealt with the accumulation of carbohydrates in the underground parts for both 

juvenile and mature plants. The last study addressed again the period of sprouting and 

establishment under soil water deficit. 

The following four research questions were addressed:  

1. Can we use carbohydrate dynamics to predict when the storage is depleted and when 

the photo-assimilates start the basipetal translocation during the early growth? ,  

Hypothesis: Photo-assimilates start the basipetal translocation after 

carbohydrate storage in underground organs is depleted.  

2. Does the interconnectedness of newly established shoots present benefits for perennial 

weeds in terms of competitiveness and fitness?  

Hypothesis: Net photosynthesis of shoots connected via roots/rhizomes is 

affected by cutting adjacent interconnected shoots. 

3. To what extent does carbohydrate storage differ at different temperature conditions and 

various developmental stages?  

Hypothesis: Less carbohydrate storage is found in juvenile clones and at high 

temperatures. 

4. Can soil water management affect the sprouting and establishment of perennial weeds? 

Hypothesis: Deeply rooted and broadleaf perennial weeds, C. arvense and T. 

farfara, are more susceptible to water stress than shallowly rooted E. repens. 
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2. Literature review 

2.1. Arable land perennial weeds: Biology and ecology 

2.1.1. Herbaceous perennial weeds 

Taxonomically, perennial weeds are distinguished from annual weeds in that they 

continue their lifecycle for three or more years. Further classifications put individual 

species into terrestrial or aquatic perennials, woody or herbaceous, simple herbaceous or 

creeping herbaceous perennials. Herbaceous perennials are the most troublesome weeds 

in agriculture, and their biology and ecology have been compared for selected species 

(Anderson 1999; Håkansson 2003a; Håkansson 2003c; Zimdahl 1993). In Table 1, we 

summarized characteristics of selected important species of herbaceous perennial weeds. 

It appears that most perennial species have both sexual and asexual reproduction means. 

The types and location of reproductive buds, which are responsible for asexual 

reproduction, differentiate them. According to Anderson (1999), herbaceous perennials 

have succulent, non-woody, aboveground vegetation that is killed by severe drought, 

frost, and freezing temperatures. Stems of herbaceous perennials generally undergo little 

or no secondary growth. In this part of the literature review, we only emphasize the 

biology and the ecology of two very deep-rooted creeping perennial weeds: C. arvense 

and T. farfara. 

2.1.2. Cirsium arvense and Tussilago farfara  

C. arvense has been more researched than T. farfara. In addition to individual 

experimental studies on C. arvense, several reviews on it have been published, and the 

most extensive ones are Donald (1994) and Tiley (2010). T. farfara has not yet received 

that much attention even though it has always been an important weed (Bakker 1960, 

Myerscough & Whitehead 1966, Myerscough & Whitehead 1967). The most recent 

publication addressing the biology and ecology of T. farfara is from Pfeiffer (2008). 

Other recent studies exploring the flora of northern countries revealed that T. farfara, 

along with other perennial weeds, is on the list of troublesome weeds in organic farming 

(Andreasen & Stryhn 2008; Rydberg & Milberg 2000; Salonen & Hyvonen 2002).
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Table 1: Characteristics of selected herbaceous perennial weeds in cultivated crops 
Group: location of reproductive 
buds (Bud bearing overwintering 
organs) 

Species Depth of vegetative 
reproductive parts 

Importance of 
reproduction by 
seeds 

Grass: Creeping rhizomes Sorghum halepense 
Elytrigia repens 
Poa spp. 

Shallow 
Shallow 
Aboveground 

Very 
Moderately 
 

Grass: Creeping rhizomes and 
stolons 

Cynodon dactylon 
Agrostis spp. 

Shallow 
Shallow and 
aboveground 

Very sparse 
Very sparse 

Grasslike: creeping tubers 
 
                 Noncreeping bulbs 

Cyperus rotondus 
Cyperus esculentus 
Allium spp. 

Shallow 
Shallow 
Shallow 

Little 
Little 
No seed 

Simple perennial (broadleaved): 
taproot and/or root crowns 

Taraxacum spp. 
Rumex crispus 
Plantago spp. 

Shallow 
Very shallow 
- 

Important 
Very 

Creeping perennial (broadleaved): 
Horizontal roots 

Cirsium arvense 
Asclepias syriaca 
Convolvulus arvensis 
Apocynum cannabinum 
Cardaria spp. 
Solanum spp. 
Euphorbia esula 
Rumex acetocella 
Sonchus arvensis 

Very deep 
Very deep 
Deep  
- 
Deep 
Deep 
Deep 
Very shallow 
Very deep 

Important 
Important 
Important 
Important 
Important 
Important 
Very  
Very 
Important 

Creeping perennial (broadleaved): 
horizontal rhizomes 

Urtica dioica 
Vernonia baldwinii 
Tussilgo farfara 
Calystegia sepium 
Pteridium aquilinum 

Very shallow 
- 
Very deep 
Deep 
Deep 

Very 
Very 
Important 
Rarely 
No seed 

Other perennial broadleaved: 
Aerial runners, stolons or creeping 
stems 

Oxalis spp. 
 
Achillea millefolium 
Equisetum arvense 
Veronica filiformis 

Shallow 
 
Very shallow 
Deep 
Aboveground 

Important in 
some 
Very 
No seed 
No seed 

Very shallow: 15-25; Shallow: 26-45 cm; Deep: down to 1m, Very deep: Greater than 3m                

Source: Anderson (1999) and Zimdhal (1993) 

  

C. arvense and T. farfara, both in the Asteraceae, are creeping types of 

herbaceous weeds (see Table 1), and they have several characteristics in common. In the 

1960s, Bakker (1960) published a comparative study on the two species due to their rapid 

establishment and spread that took place from 1947 in newly reclaimed polders of the 

Zuiderzee, the Netherlands. Findings summarized in this comparative study were similar 

to those of Korsmo (1954). From a biological point of view, C. arvense and T. farfara 

reproduce sexually and vegetatively.  
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Seed dissemination is mainly facilitated by wind and seeds can travel 2 km and 4 

km for C. arvense and T. farfara, respectively. The viability of seeds is higher in C. 

arvense (up to 30 months) than T. farfara (4 months), and seed dormancy is not proven 

yet in either of the species. Temperature, depth at which the seeds are found, water 

content and aeration of the soil have been other factors reported to influence the rate of 

emergence in both C. arvense and T. farfara (Bakker, 1960). The morphology of 

seedlings is described in Korsmo (1954). Seedlings are characterized by a tap root for the 

first 6 weeks after which horizontal roots/rhizomes arise from the tap root.  

Before seedlings acquire the ability to propagate vegetatively, they are susceptible 

to adverse environmental conditions and agricultural practices that cause mortality 

(Bakker, 1960). Soil water content, soil aeration and light intensity influence seedling 

growth. C. arvense form an erect plant (Fig 1b) whereas T. farfara has a compacted stem 

(Fig 1a). The flowering in C. arvense occurs during late vegetative growth whilst for T. 

farfara it takes place early in the vegetative growth at the start of the second year after 

seedling emergence. Seed outputs are in the range of 3,500 – 40,000 and 1,000 – 8,000 

per plant for C. arvense and T. farfara, respectively (Bakker, 1960). 

Vegetative propagules of C. arvense are horizontal roots bearing adventitious 

buds, whereas T. farfara has horizontal rhizomes with axillary buds covered by scaly 

leaves, which serve the purpose of regeneration. Established from seeds, the primary root 

of T. farfara dies three to four months after germination. The radial extension of the 

seedlings of both species can be as much as 0.75 – 1.25 m in the first year (Bakker, 

1960). In the absence of control, it develops into an extensive, spreading root/rhizome 

system that becomes the major reproduction means during the subsequent years. Two 

sources of propagation are then observed. The functioning of the seed and bud banks is 

represented in Fig 2.  Roots of C. arvense have been traced to a depth of 6 meters, and 

small pieces of root have produced 20 meters of new roots in 2 years (Persons & 

Cuthbertson 2001). After only one year a small piece of root of C. arvense can produce 

plants covering 25 m2 and it is not uncommon to see patches with 130 shoots per m2 

(Persons & Cuthbertson 2001). Within 40 days after emergence, a 5 cm long rhizome of 

T. farfara was able to produce many and thickened horizontal rhizomes (Fig. 1a). Fig 1 c 

& d illustrate the shoot development from horizontal roots or rhizomes. 
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C. arvense originated from Euro-Asia and it is geographically distributed in 

Europe, Asia, North America, Australia and North Africa (Tiley 2010). Its habitat is the 

subhumid cool-temperate regions where it occurs in open, moderately warm situations up 

to subalpine levels, usually on the more nitrogenous, deep loam soils (Persons & 

Cuthbertson 2001). T. farfara is distributed throughout the whole of Europe, to beyond 

latitude 70o N., North America, Central and Northern Asia (Korsmo 1956) on various 

types of soils. 

Among numerous reasons why C. arvense remains a troublesome weed, the most 

striking reasons given in a recent review are: 

i) “the success and persistence derives from an extensive, far-creeping and 

deep rooting system which ensures survival and rapid vegetative spread 

under a wide range of soil and management conditions, and a means of 

escape from sub-aerial control treatments. New adventitious buds capable 

of shoot development can arise at any point along horizontal roots, even 

when these are cut into pieces or damaged. Roots buds remain dormant 

until released from dormancy through damage and decay of the aerial 

shoots. Carbohydrate root reserves, stored in swollen cortical tissue, fall 

to a minimum just before flowering and are then replenished for 

perennation during the subsequent winter. Strategies for control aim to 

treat the plant when the root carbohydrates are at the minimum, to 

exhaust these reserves and to prevent replenishment for further 

perennation”  (Tiley 2010) 

ii) “A combination of dioecy and vegetative reproduction has resulted in the 

maintenance of genetic diversities within populations allowing efficient 

colonization and persistence, contributing greatly to success in the 

species.”  (Tiley 2010) 

These two conclusions have also been reached in other findings on C. arvense (Hettwer 

& Gerowitt 2004, Slotta et al. 2006, Reintam et al. 2008, Niederstrasser & Gerowitt 

2008). 
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In the following chapters, our attention will be focused mainly on phenological 

changes based on vegetative reproduction from bud banks rather than seeds.  

.  

 

Figure 1: Selected illustrations of C. arvense and T. farfara. (a) Picture showing the amount of 
thickened rhizomes developed 40 days after emergence of T. farfara from a rhizome fragment of 
5 cm. (b) Picture of C. arvense stem with an inflorescence. (c) Illustration showing the root 
system of C. arvense with new shoots from the horizontal roots. (d) Illustration of rhizomes of T. 
farfara, inflorescence from the previous year flowers and new shoots developed from horizontal 
rhizomes. (c) & (d) are adapted from Korsmo et al. (1981). 

 

(a) 
(b) 

(d) 

(c) 
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Figure 2: Functioning of the seed and bud banks. Boxes denote emerged vegetation and stored 
propagules, ellipses indicate processes. Solid arrows describe the most frequent pathways; dotted 
arrows less frequent pathways. Box arrows directed into and out of the system are inputs (import 
of diaspores) and outputs (export of diaspores). Adapted from Simpson et al (1989) 

2.2. Phenology and carbohydrate dynamics 

2. 2.1. From sprouting to the compensation point 

Sprouting forms and their driving forces in clonal plants have been studied for vascular 

plants in general (Groff & Kaplan 1988), stoloniferous and rhizomatous plants  (Sachs 

2001) and root-sprouters (Klimesova & Martinkova 2004). Despite the differences in 

terminology, the information obtained from these studies has shown three types of 

sprouting: additive, necessary and regenerative sprouting. For example, using the 

sprouting from roots (Klimesova & Martinkova 2004), additive sprouting means that 

root-shoots arise during normal ontogeny but they are not necessary to complete the 

plant’s life cycle. For necessary sprouting, root-shoots are necessary for flowering or 

over-wintering of the plant. Finally, for regenerative sprouting, root-shoots arise only 

after injury to a plant.  Sprouting factors are known to be both external and internal to the 

plant. External factors include the cessation of abiotic stress (e.g., water deficit, extreme 
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temperature and photoperiod, inadequate nutrient level) and disturbances (e.g., removal 

or injury) of the aboveground plant parts. Internal factors triggering the sprouting are, for 

example, the plant age, life-history mode and stage. 

Morphological changes accompanying dormancy and its break have not been 

elucidated for herbaceous perennials, but referring to research on trees, vegetative bud 

sprouting after dormancy break is a result of the release of cell to cell communication via 

plasmodesmata (Rinne et al. 2001). This enables remobilization of water and 

carbohydrate reserves. This is comparable to the water imbibition of seed for the 

embryonic axis to elongate and remobilize stored reserves during germination (Bewley et 

al. 2000).  

Table 2 shows the importance of carbohydrates in major storage organs of some 

important seed crops. These carbohydrate storages are involved in early growth. In the 

same way, the importance of nonstructural carbohydrates is highlighted in perennial 

weeds (Fig. 3), and their depletion coincide with the period of sprouting and early growth 

(Fig. 4). In spite of continuous sprouting of new shoots in herbaceous perennials, the 

figures show also the source and sink of carbohydrates. Carbohydrates serve as a source 

of energy during the early growth before the plant can produce its own energy through 

photosynthesis. From that time, they are also involved in multiple and functional roles in 

mediating a wide range of plant growth and environmental responses (Rolland et al. 

2002; Sheen et al. 2007). For example, they have a role in the resumption of protein 

synthesis in early growth (Bewley et al. 2000) and they also give rise to enzymes and 

hormones involved in the further metabolic signaling for plant growth (Halford & Paul 

2003). 

From a weed management perspective, before photo-assimilates exceed 

carbohydrate amounts used for respiration and growth of shoots (time referred to as 

compensation point), shoots only depend on stored carbohydrates. Compensation point is 

a pivotal time because it determines the start of increased weed-crop competition. A few 

studies on the determination of the compensation point have been conducted (Gustavsson 

1997; Håkansson 2003b; Kvist & Håkansson 1985), but the genetic variation of species, 

populations and environmental conditions dictate more studies and new methods of 

evaluation.  
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Table 2: Storage reserves of some important crop species 
 Average percent composition 

 Protein Oil Carbohydrate Major storage organs 

Cereals 

Barley 

Maize 

Oats 

Wheat 

 

12 

10 

13 

12 

 

3 

5 

8 

2 

 

76 

80 

66 

75 

 

Endosperm 

Endosperm 

Endosperm 

Endosperm 

Legumes 

Broad bean 

Garden pea 

Peanut 

Soybean 

 

23 

25 

31 

37 

 

1 

6 

48 

22 

 

56 

52 

12 

12 

 

Cotyledons 

Cotyledons 

Cotyledons 

Cotyledons 

Other 

Castor 

Oil palm 

Pine 

Rapeseed 

 

18 

9 

35 

21 

 

64 

49 

48 

48 

 

Negligible 

28 

6 

19 

 

Endosperm 

Endosperm 

Megagametophyte 

Cotyledons 

Source: (Bewley et al. 2000) 

 
Figure 3: Seasonal variation of root dry weight and total nonstructural carbohydrates (TNC) of 
Cirsium arvense. Single samples for each collection date were analyzed (McAllister & Haderlie 
1985) 
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Phenological stages 

 

 

Figure 4: Changes in 
Total Nonstructural 
Carbohydrates (TNC) of 
Solanum elaeagnifolium 
from olive plantations. In 
the phenological stages, 
RV: dormancy, RG: 
regeneration, SV: 
vegetative stage, IF Floral 
initiation, F: flowering, 
FR: seed filling and M: 
maturation. Vertical bars 
are standard deviation.  
Modified from Bouhache 
et al. (1993) 

 

 

 

 

2.2.2. Shoot establishment and elongation 

Once the compensation point has been reached, shoots are established and can sustain 

their growth by autotrophy. If the required resources for growth are present, then 

elongation commences. Tworkoski (1992) and Gesch et al. (2007) have shown that shoot 

elongation corresponds to more photo-assimilates moving to roots than what occurs at the 

aerial bud, flower or post-flower stages. Studies on the partitioning of carbohydrates in 

relation to environmental effects in herbaceous species also have proven this increased 

photo-assimilate allocation (Ogden 1974;  McAllister & Haderlie 1985; Wilson et al. 

2001; Orthen & Wehrmeyer 2004; Wilson et al. 2006). This may suggest that 

carbohydrate allocations leading to growth of vegetative parts (horizontal roots, 

rhizomes, etc.) starts just after the establishment of shoots as observed by Zimdahl (1993) 

for some species.  

 

Root 

Crown

Stem

Months 
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As a consequence of this high basipetal translocation of photo-assimilates that 

elongates and thickens horizontal roots and rhizomes, new shoots emerge to form clonal 

plants. This additional reproductive ability shows physiological integration, i.e., allowing 

clones to share resources (Alpert 1996; Nilsson & D'Hertefeldt 2008; Peterson & 

Chesson 2002; Wooldridge et al. 1997), including defense compounds and thus systemic 

resistance (Gómez & Stuefer 2006; Gómez et al. 2007; Gómez et al. 2008). These studies 

were done in heterogeneous environments but knowledge on whether young clones in 

agricultural ecosystems could be affected by disturbances so that intact shoots can 

regulate the growth in the whole clone is still scarce.  

2.2.3. Development of reproductive organs  

Perennial weeds reproduce by both sexual and asexual means. Sexual reproduction is 

typical for most flowering plants (Batygina 2005; Bewley et al. 2000; Geber et al. 1997; 

Gibson 2004; Gibson 2005). The type of vegetative and carbohydrate storing organs 

differentiate perennial weeds (Anderson 1999) and their means for survival and spread. 

There is an evident lack of research on the asexual reproduction of perennial weeds 

(Heide 2001) even though several studies on Eurphorbia esula (Anderson et al. 2005; 

Choa et al. 2006; Gesch et al.  2007; Horvath 1999; Horvath et al. 2002; Horvath et al. 

2006) have addressed mechanisms behind carbohydrate storage associated with asexual 

reproduction. Unfortunately, most of the work has focused only on sucrose and starch 

while studying cold acclimation. It is true that starch is a main carbohydrate reserve in 

plants, but Hendry (1987) estimated that 12% of angiosperms use fructans as main 

storage compounds. Fructans are most common in plants in temperate areas with seasonal 

drought or frost (Hendry 1993) and are mostly found in the Asteraceae (Appezzato et al. 

2008).  

According to the Raunkiær system (Mikkelsen 1968), weedy perennials with 

underground storage organs are classified as geophytes. The understanding of 

carbohydrate storage in underground organs (root, rhizome, tuber, etc.) could improve the 

efficacy of autumn soil cultivation because exhaustion of stored carbohydrates would 

weaken vegetative propagules at the sprouting period in spring. However, this would be 

ineffective if performed at the wrong time. If cultivation occurs a long time before 
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dormancy, shoots will establish and store new energy for spring sprouting. During the 

dormancy period, fragmentation of the underground organs (roots, rhizomes or tubers) 

cannot result in any shoot growth thus keeping dormant buds with enough carbohydrate 

reserves to allow them to sprout in spring time. Therefore, it is crucial to know and fully 

understand the dormancy period and its mechanisms for troublesome perennial weeds. 

2.2.4. Dormancy of bud banks on vegetative propagules 

Vegetative buds of geophytes are hidden in the soil (Mikkelsen 1968). As opposed to 

woody perennials (e.g., phanerophytes) that have buds on aerial parts, this is an 

avoidance mechanism to biotic or abiotic disturbances (herbivores, extreme temperatures, 

water deficit, etc.). Klimesova & Klimes (2006) give more details on bud bank 

definitions, their role and mechanisms in vegetative regeneration of herbaceous perennial 

plants.  

Dormancy of buds of vegetative propagules depends on both external and internal 

factors and has been categorized into three main types: ecodormancy, paradormancy and 

endodormancy (Lang 1987; Anderson & Choa 2001; Rohde & Bhalerao 2007). 

Ecodormancy is regulated by environmental conditions such as temperature and drought 

(Kamenetsky 2009). Paradormancy or the correlative inhibition is controlled by the apical 

dominance (Choa et al. 2006). Endodormancy results from internal physiological factors. 

Although the involvement of phytohormones is known for all the types of dormancy 

(Choa et al 2006), absciscic acid (ABA) and gibberellic acid (GA) are associated with 

endodormancy. It is worth emphasizing that for perennials the regenerative bud set is not 

necessarily within a given growth stage.  

Morphological and physiological characteristics of bud dormancy are still to be 

explored. For example, the balance of carbohydrate and other metabolites, osmotic 

adjustment associated with the changes of water freezing or drought or the presence of 

other solutes, and tissue maintenance are so far not fully understood.  

2.3. Water relations and fructan 

Keeping water homeostasis is invaluable for all living organisms. In contrast to abundant 

literature about water relations in trees and shrubs relatively few studies have addressed 
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herbaceous perennial plants. Munne-Bosch (2007) has published a review in which the 

literature on age-related water relations and photosynthesis was explored. Most of the 

literature currently found is limited to water relations in ornamental species (Starman & 

Lombardini 2006; Zollinger et al. 2006) of arid zones.  

There is useful information from these studies that can probably be used for other 

herbaceous perennials. For example, the changes of the stomatal closure in relation to 

ABA and water status, the size of the plant, the age and the leaf area, etc. are some of the 

factors that affect plant physiology and morphology through water loss by transpiration. 

Water deficit has an effect on increased C/N ratio that increases sucrose concentration 

and this leads to a feedback inhibition of photosynthesis. Limiting water is also followed 

by drought avoidance mechanisms with the reduction of the area of high transpiration.. 

New growth will only be possible when water is not limiting. The involvement of water 

in germination, as for the sprouting has been discussed in 2.2.1. Cell to cell 

communication allows water and solute flow and a renewal of growth (Rinne et al. 2001).  

Fructans, known as underground carbohydrate storage in numerous plants species, 

are thought to be involved in drought and freezing-tolerance (Cyr et al. 1990; Thomas 

1991; Tworkoski 1992; Turtuliano & Figueiredo-Ribeiro 1993; Wilson et al. 2001; 

Orthen 2001; Pavis et al. 2001; Van Laere & Van Den Ende 2002; Wilson & Michiels 

2003; Van Den Ende et al. 2006, Itaya et al. 2007). Fructans are formed by elongating 

sucrose with many molecules of fructose. The polymers formed can be linear (inulin) 

branched (levan) or both depending on the species (Vijn & Smeekens 1999, Ritsema & 

Smeekens 2003). In Fig. 5, the smallest inulin and levan types of fructan are illustrated. 

Inulin type of fructan is the best known in the Asteraceae whereas levan is known in 

cereals. Fructans accounted for 73% of total carbohydrates in C. arvense roots in 

October, while free sugars consisted of sucrose (87%), fructose and glucose (Wilson et 

al. 2006). 
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Figure 5: The structure of 1-kestose (A), the smallest inulin, and 6-kestose (B), the 

smallest levan-type fructan (Valluru & Van den Ende 2008). 
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3. Experimental work on Cirsium arvense and Tussilago 

farfara 
In this chapter, we summarize our four experimental studies which are detailed in the 

attached appendices. We give a brief summary of the material and methods, present the 

results and discuss the main findings in light of the phenology and the source-sink 

dynamics of carbohydrates in relation to management of perennial weeds.  

3.1. Material and methods  

3.1.1. Species and planting material 

In all experiments, only asexual reproduction was considered and roots of C. arvense and 

rhizomes of T. farfara were planted and analyzed. In paper IV, we also included Elytrigia 

repens for a comparison purpose.  We used either 5 cm or 10 cm long fragments. 

Fragments were planted at a depth of 5 cm for all the experiments. The media used was a 

sphagnum sand mixture (GB-Pindstrup substrates No. 1, pH 6.0) except for the drought 

experiment (Paper IV) where a sandy-loam soil was used. 

3.1.2. Summary of the experimental methods 

Experiments were conducted in greenhouse and/or growth chambers. In the first and third 

studies, Papers I and III, destructive sampling was used to measure nonstructural 

carbohydrates. In Paper I, we also used the labeling of juvenile plants with carbon isotope 

(14C) to track the start of the downward translocation of photo-assimilates during early 

growth. In the second study and the fourth studies, Papers II and IV, we used repeated 

measurements to evaluate photosynthesis activity (Paper II) and the soil water content 

(Paper IV) to evaluate their effect on weed biomass. 

3.1.2.1. Determination of carbohydrate concentrations 

Concentrations of starch, sucrose, glucose and fructose from roots and rhizomes were 

measured by HPLC based on Liu et al. (2004). To quantify fructan reserves, we used the 

degree of polymerisation (DP) as an indirect measurement obtained after acid hydrolysis 
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of the samples (Chatterton & Harrison 2003; Steegmans et al. 2004). For more details on 

fructan determination, see Paper I. 

3.1.2.2. 14C labeling and translocation measurements 

Using NaH14CO3, enclosed potted-plant canopies were labelled (Carvalho et al. 2006; 

Hansen 1967).  The exposure of the canopy 14CO2 lasted for four hours between 9:00 and 

16:00. We quantified translocation of 14C in the root/rhizome system with a liquid 

scintillation counter (WALLAC WinSpectral 1414) after sample combustion in a sample 

oxidizer (Model 307 sample oxidizer, Packard). 

3.1.2.3. Net photosynthesis  

We used CIRAS-2 (CIRAS-2 Portable Photosynthesis System, PP SYSTEMS, 2007, 

Amesbury, MS, USA) to measure leaf gas exchange. To ensure that the measurements on 

different days were comparable, the measurements were done at 380 ppm CO2, 20°C air 

temperature, 8.5 mbar of vapour pressure deficit and a light level that approached light 

saturation. To determine the light level, some preliminary light response curves were 

made on the two species at the start of each experiment (Paper II). 

Before cutting the shoots, we chose a healthy leaf and baseline measurement was 

taken. The same leaf was used for all the measurements. Two days after disturbance, a 

second measurement was performed and then followed by several measurements on a 

weekly basis over three weeks. All measurements were done between 9:30 and 14:30  

3.1.2.4. Biomasses at different soil water contents  

A gradient of soil water contents was created by a cover crop, barley (Hordeum vulgare 

L., SIMBA 08T5 Øko) at different densities, in pots where roots of C. arvense and 

rhizomes of T. farfara and E. repens were planted. After 30% of the root/rhizome 

fragments had emerged, the drip irrigation was stopped and five measurements of soil 

water content were done for two weeks. Biomass of harvested shoots was taken at the end 

of the experiments. In addition, relative water content (RWC) in leaves was measured. 



 20

3.1.2.5. Phenotypic characteristics 

Two phenological characteristics were recorded at different sampling times of the early 

growth experiment: the number of leaves per shoot and the total leaf area per box. Total 

leaf area was measured with a leaf area meter (LI-3100 Area meter, LI-COR, Lincoln, 

Nesbraska, USA).  

3.2. Results and discussion  

3.2.1. Carbohydrate dynamics during early growth  

Among all the measured carbohydrates, fructose and fructan varied significantly during 

the course of the experiments (Table 3). At the planting time of C. arvense and T. farfara, 

fructose content was nearly zero mg g-1 (Fig. 6). But after emergence, its concentration 

was the highest and it decreased thereafter. While fructose increased, fructan 

continuously decreased for C. arvense to reach the minimum at the same time as fructose 

concentrations. However, a slight increase of fructan was observed in T. farfara after the 

planting time. Detailed results can be found in Paper I. 

 
Table 3: Analysis of variance of free hexoses (fructose and glucose), sucrose and the 
degree of polymerization (DP) of fructan in planted roots/rhizomes at different sampling 
times during the early growth of C. arvense and T. farfara.  
 
Species Experiment Carbohydrates p- value and Significance  

I Fructose 
Glucose 
Sucrose 
DP of fructan 

0.012 * 
0.48 NS 
0.43 NS 
0.009 ** 

 Cirsium 
arvense 

II Fructose 
Glucose 
Sucrose 
DP of fructan 

< 0.0001 *** 
0.94 NS 
0.004 ** 
< 0.0001 *** 

 

I Fructose 
Glucose 
Sucrose 
DP of fructan 

< 0.0001 *** 
0.002 ** 
0.61 NS 
0.012* 

 Tussilago 
farfara 

II Fructose 
Glucose 
Sucrose 
DP of fructan 

< 0.0001 *** 
0.33 NS 
0.26 NS 
0.038* 
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Figure 6: Variations of fructose (mg g-1 of dry weight) and fructan (degree of 
polymerization) from the planting time of root of C. arvense and rhizomes of T. farfara 
to four weeks after emergence. Only results from the second experiment are shown. The 
upper graphs illustrate the concentrations of fructose at different sampling times. The 
lower ones illustrate the decrease of the degree of polymerization of fructan as they 
release fructose (from Paper I). Vertical lines give 95 % confidence interval of the mean 
for each sampling time. 
  

The labeling experiment showed that only three weeks after emergence (between 

500 and 550 degree days) 14C applied on leaf canopy was already translocated to the 

root/rhizome systems (Fig. 7). That time corresponds to eight leaves for C. arvense and 

six leaves for T. farfara. 
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Figure 7: 14C content of planted roots of C. arvense and rhizomes of T. farfara after 
labelling the shoot canopy from one week to four weeks after emergence (upper graphs). 
The number of leaves during the labelling period (lower graphs). Only data from the first 
experiments are shown (from Paper I). 
 

The depletion of fructose-based reserves during early growth has been  reported in 

earlier studies (Alexopoulos et al. 2009; Benkeblia 2003; Ovono et al. 2009; Shin et al. 

2002; Spencer et al. 2001; Yasin & Bufler 2007) but the investigation on the start of 

basipetal translocation of photo-assimilates to depletion is new. This allowed us to be 

more precise on previous findings that used dry weight minimum (Gustavsson 1997) for 

C. arvense. It was revealed that basipetal translocation of photo-assimilates started before 

the minimum content level of carbohydrates in underground parts was reached (Fig. 6). 

At the planting time, the fructan amount for T. farfara was lower compared to that of C. 

arvense. This was in agreement with previous findings on dry matter measurements 

(Bakker 1960). The reason behind this could be due to the occurrence of flowering in T. 

farfara. Flowering in C. arvense occurs only after a period of  the vegetative growth with 
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impact on carbohydrate partitioning (Tworkoski 1992), but this energy for flowering 

might come from the stored carbohydrates for T. farfara.  

3.2.2. Photosynthetic activity of established shoots 

After shoot establishment, disturbed and undisturbed clones did not show any differences 

in terms of photosynthetic activity (Fig. 8). 

 
 

There was no physiological integration for the two species as opposed to some 

rhizomatous and stoloniferous perennial species such as Trifolium repens L. and 

strawberries of the genus Fragaria (Alpert 1996;Wooldridge et al. 1997; Gómez & 

Stuefer 2006; Gómez et al. 2007; Gómez et al. 2008).   

3.2.3. Carbohydrate accumulation 

Before four weeks after planting, shoots could not store carbohydrates in the underground 

organs. But after four weeks fructan did not differ between underground organs of 

juvenile shoots and mature shoots regardless the temperature of treatment (Fig. 9). This 

Figure 8: Maximum net 
photosynthesis, Max Pn, 
plotted against day of 
measurement in 2008: 
Day 0 represents the 
baseline measurement 
(rosette growth stage) 
followed by measurements 
taken on disturbed clones 
(to the right) and on 
undisturbed ones (to the 
left). The experiment end 
corresponds to the bolting 
growth stage. The light 
level in the cuvette was 
500 and 450 µmol m-2 s-1 
for Cirsium arvense and 
Tussilago farfara, 
respectively (from Paper 
II). 
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might suggest that establishment of shoots is expected after four weeks, on average. In 

both juvenile and mature shoots of C. arvense, the DP of fructan was related to 

temperature, but not for T. farfara (Fig. 9). With lower temperature, the accumulation 

becomes higher in roots of C. arvense. Starch was not important in carbohydrate storage 

(see Paper III).  

 
Figure 9: Degree of polymerization (DP) of fructan of mature and juvenile plants in roots 
of Cirsium arvense and rhizomes of Tussilago farfara treated at different temperatures 
(Paper III)  

 

The different levels of carbohydrate storage highlighted in the early growth 

between C. arvense and T. farfara were found here. These differences in fructan 

concentrations may lie in the flowering initiation in T. farfara as already mentioned 

above. Part of the energy is used to promote the flowering when plants are exposed to 

low temperatures: vernalization. Common mechanisms that regulate flowering and 

dormancy have been reviewed (Horvath 2009), and low temperature impact on flowering 

competence was shown in crown buds of Euphorbia esula (Dogramaci et al. 2010).  

 The lack of differences in biomasses of shoots emerged from fragments taken on 

root systems after temperature treatment, for T. farfara in Table 3, is not surprising 
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because the carbohydrates contents were not different. However, for C. arvense, the 

biomasses did not correlate with carbohydrate storage differences. Mature plants of the 

first experiments did not differ in terms of shoot biomasses harvest either 15 or 28 DAE 

(Table 4). Roots taken from juvenile donor plants responded to the differences in 

carbohydrate content.  

 

Table 4: Mean dry weight (mg) of shoots regenerated from roots of Cirsium arvense and 
rhizomes of Tussilago farfara and harvested 15 and 28 days after emergence (DAE). 
Roots and rhizomes were collected from plants grown under different temperature 
conditions: Low, medium and high equivalent to day/night temperatures of 7C/5C, 
10C/7C and 18C/12C, respectively. Plants were of different age at the time of transfer to 
respective temperatures: 4 weeks old plants (juvenile) and 11-17 weeks old plants 
(mature). (from Paper III) 

Estimates of dry weight (mg)  Year 
 
 

Harvesting 
time 
(DAE) 

Plant age at 
the treatment 
start  

Treatment 
temperature 

Cirsium arvense Tussilago farfara 

Juvenile Low 
Medium 
High 

93.4    a 
45.9    ab 
21.7     b 

88.2    a 
115.9  a  
30.3     a 

15 

Mature Low 
Medium 
High 

69.7     a 
51.5     a 
16.3     a 

132.8  ab 
189.9   a 
38.0      b 

Juvenile Low 
Medium 
High 

381.0   a 
605.3   a 
23.1      b 

264.3    a 
353.5    a 
37.5      b 

2008 

28 

Mature Low 
Medium 
High 

414.0   a 
298.4   a 
188.2   a 

503.0   a 
239.3    a 
178.2    a 

2009 28 Mature Low 
High 

204.6 a 
133.9   b 

226.8    a 
264.3    a 

 

The rate of emergence was estimated 6, 15, 22 and 28 days after the first 

emergence. The differences in the emergence rates of roots taken from juvenile plants 

either treated with lower or higher temperatures reflect the importance of carbohydrate 

reserves (Fig 10 & 11), fructan concentration being different at different temperatures 

(Fig. 9).  
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Figure 10: The emergence 
proportions from roots of C. 
arvense against physiological 
time (degree days) after the first 
emergence. Different symbols 
represent temperatures from 
where root fragments were 
obtained. The emergence rates 
from roots of juvenile and 
mature plants are illustrated by 
upper graph and lower graph, 
respectively (Paper III).  
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All roots with higher fructan content, from lower temperatures, had already 

emerged shoot six days after the first emergence (DAFE). The emergence of all shoots 

Figure 11: The emergence 
proportions from roots of T. farfara 
against physiological time (degree 
days) after the first emergence. 
Different symbols represent 
temperatures from where rhizome 
fragments were obtained. The 
emergence rates from rhizomes of 
juvenile and mature plants are 
illustrated by upper graph and lower 
graph, respectively (Paper III). 
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lasted until 22 DAE for medium temperatures for C. arvense while the roots at high 

temperatures lasted until 28 DAE. Rhizomes of T. farfara taken from high temperature 

did not give visible shoots at a rate of hundred percent 28 DAE.  

3.4.4. Drought effect on early growth of perennials 

In broadleaf perennial weeds, C. arvense and T. farfara, it appeared that there was a 

relationship between the soil water content and the shoot biomass (Fig 12). The analysis 

of the relationships is summarized in Table 5. There was a relation between soil water 

content and shoot biomass for T. farfara in both years whereas only the first experiment 

showed significant correlation for C. arvense. No relationship was seen for Elymus 

repens. 

Table 5: Analysis of the linear relationship between soil water content and the shoot 
biomass after 14 days of growth from roots of Cirsium arvense and rhizomes of 
Tussilago farfara and Elymus repens. ***: Very highly significant, **: Highly 
significant, *: Significant and NS: Non significant 

Relationship analysis Experiment 
year 

Species 

Intercept slope P-value 

2009 T. farfara 
C. arvense 
E. repens 

-5.90 (1.56) 
-2.31 (1.42) 
0.02 (0.31) 

0.46 (0.09) 
0.18 (0.06) 
0.02(0.01) 

< 0.0001 *** 
0.013       * 
0.22          NS 

2010 T. farfara 
C. arvense 
E. repens 

-1.43 (1.60) 
0.018 (0.39) 
0.72 (0.2) 

0.26 (0.09) 
0.04 (0.01) 
-0.01 (0.01)  

0.006      ** 
0.058       NS 
0.08         NS 

 

The relative water content in broadleaf weeds confirmed that T. farfara is less 

tolerant to the soil drought (Fig 13). The slope of the linear regression is steeper for T. 

farfara (0.025) than C. arvense (0.012) and their respective p-values are 0.008 and 0.024. 

The susceptibility to low soil water content of broadleaf perennial weeds can give 

an opportunity window for their control. This will depend on the crop and cropping 

systems. It was shown that high density of barley means high competition for water 

resources. This is supporting the theory of high crop density to reduce weed infestation 

(Weiner 2001, Kristensen 2008). It might be challenging for humid temperate regions, 

but if justified economically, drought can be used to reduce weed infestation in vegetable 

cropping. In arid zones, water management can also be an opportunity to control 

perennial weeds in dry-seasons. 
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Figure 12: Relationship between soil water contents and biomass of shoots of three 
perennial weeds: Tussilago farfara, Cirsium arvense and Elymus repens. The upper 
graphs represent the first experiment whereas the lower ones are for the second 
experiment (Paper IV) 
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Figure 13: Relationship between soil water contents and the relative water content 
(RWC) in leaves of Tussilago farfara and Cirsium arvense (Paper IV)  

4. Conclusions  
Carbohydrate reserves in roots of C. arvense and rhizomes of T. farfara are subjected to 

their depletion in association with the sprouting and the early growth. This was 

highlighted by the release of fructose from fructan that constitutes the energy stock of 

geophytes at the time of reduced or absent visible growth. The stored energy is then used 

to give rise to new shoots from buds when external or internal conditions allow. Before 

the depletion of carbohydrate reserves is complete, photo-assimilates from new shoots are 

already being translocated to the underground organs. Subsequently, new roots and 
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rhizomes start to form from the original root or rhizomes strengthened by photo-

assimilates through basipetal translocation. We think, therefore, that the control of these 

two species would be effective if operations are planned before a large amount of photo-

assimilates is translocated into the underground parts. Our experiments show that this 

was from late in the third week to the fourth week after emergence. 

 In absence of control measures for C. arvense and T. farfara, until 37 days after 

emergence, it was shown that two to four new shoots emerged and a clone was formed. In 

other clonal species, the interconnectedness of shoots leads to a physiological integration 

as a means to sustain the whole clone. But the newly established shoots of C. arvense and 

T. farfara were shown to be autonomous. Therefore, clonality does not confer any benefit 

to these two perennial weeds as compared to annual weeds.   

 The main carbohydrate storage in C. arvense and T. farfara in the underground 

parts was fructan. Fructan accumulation starts immediately after the shoots are 

established and become autotrophic. Photosynthesis leads to thicker new roots and 

rhizomes, which give rise to new shoots. Carbohydrate storage in roots/rhizomes of 

juvenile plants exposed to a gradient of temperatures did not differ from those of mature 

plants in similar conditions. Low temperatures were associated with high storage of 

fructan in C. arvense. This is an indication that environmental conditions influence the 

storage of carbohydrates. Beside the fact that T. farfara had lower amount of fructan, its 

amount was constant for the temperatures to which the plants were exposed. This is 

probably connected to flower bud initiation under cold conditions. A part of the energy 

might be used for flowering. This suggests that cultural control methods that aim at 

depleting the underground parts of perennials as a preventive measure against infestation 

during the subsequent year need to be scheduled in a way that takes local temperatures 

into consideration. For example, low temperatures depend on the latitudes and control 

measures need to be scheduled in a way that takes low temperature occurrence into 

account.  

As for the emergence of shoots from roots/rhizomes with different fructan 

concentrations, a timely soil cultivation to deplete carbohydrate storages is a requirement. 

Soil cultivation would be more effective if done three to four weeks before the expected 

arrival of seasonally low temperatures, which would prevent the accumulation of fructan. 
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In such case, new shoots might not be able to become autotrophic and develop thickness 

needed for the subsequent season. In the case of temperate regions, low temperatures are 

normally associated with dormancy and that means that studies on dormancy time of 

perennial weed species need to be taken into account. 

 Another conclusion from this study was that stored carbohydrates are not equally 

used during the early growth to promote the shoot development when root/rhizome 

fragments are exposed to different soil water contents. Dry soils have greater adverse 

impacts on the early growth of broadleaf rather than grass weeds. There is potential in 

using water relations to control perennial weeds, but this is very much dependent on the 

type of crop and production system.  

 The overall conclusion is that during the phenology of Cirsium arvense and 

Tussilago farfara, the earlier growth is characterized more by depletion of carbohydrates 

and then followed by a basipetal translocation of photo-assimilates. Minimum 

carbohydrate reserves are found four weeks after emergence, but the basipetal 

translocation begins at three weeks after emergence. The best time of control is suggested 

to be between 500 to 600 degree days corresponding to 6 and 8 fully developed leaves for 

T. farfara and C. arvense, respectively. The shoot biomass production in broadleaf 

perennials is lower with dry soils. The basipetal translocation starts from three weeks and 

continues throughout the vegetative season, and lower temperatures are favorable to 

carbohydrate storage in form of fructan.  

5. Challenges and perspectives 
The main challenge in studying the asexual reproduction of perennial weeds is the 

continuous development of vegetative propagules under the seasonal changes of the year. 

In contrast to sexual reproduction, seeds are distinct units with almost similar amounts of 

carbohydrates or other compounds for a given ecotype of a particular species. The storage 

in seeds occurs at the same time and germination occurs at the same period depending on 

the soil layer where the seeds are located and the environmental conditions.  

Nevertheless, in the case of asexual reproduction of perennial weeds, in addition 

to inter- and intra-specific differences for ecotypes, bud bearing organs contain different 

amount of resources depending on the environmental conditions, the time of life cycle 
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and biotic or abiotic stress, etc. Bud bearing organs are located at different soil layers and 

age of fragments is different. Unexpected bud sprouting occurs when the apical meristem 

is disturbed: paradormancy. All these reasons contribute to the complexity of the asexual 

reproduction, thus perennial weeds become more difficult to study than annual weeds. 

This variability associated with vegetative propagules leads to a huge variation in 

collected data. Inherently, variability makes control strategies more difficult.   

 It seems to be very difficult to unravel the variations in collected data even when 

a single ecotype is used. Although studies in controlled environments remain important to 

know from where to start, large scale on-farm studies would probably address the 

question in a more straightforward way. Considering populations instead of selected 

ecotypes may portray a general picture on the regeneration of perennial weeds of 

economic importance. For example, in this thesis, simulating the carbohydrate dynamics 

have generated thoughts on some relevant questions to be addressed in the future:  

- How big is the variation of carbohydrate storage under field conditions? Here 

consideration would be to initiate comparisons of many ecotypes of both species 

from different environmental conditions; 

- The understanding on the regulations (e.g., enzymes) responsible for fructan 

synthesis and depolymerization in C. arvense and T. farfara is needed. This 

knowledge can be used to trigger the depletion carbohydrate storage before the 

unfavorable conditions and to prevent their synthesis.  

- What are the relationships between dormancy of vegetative propagules, biotic or 

abiotic factors and carbohydrate reserves?  

- It is also be important to find out if the control times here suggested correspond to 

the crop calendar. This matters because weed control can not be done at any 

developmental stage of the crop. More experiments where crops and weeds 

coexist are needed. 
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