Automatiske redskaber til ukrudtsbekæmpelse

Automatiske redskaber til fysisk ukrudtsbekæmpelse, som fjerner ukrudt meget tæt på afgrødeplanten, er under udvikling. Forskere ved Århus Universitet har nu vurderet en række forskellige teknologier med henblik på at finde de mest lovende redskabsløsninger.

I økologisk planteproduktion bekæmpes ukrudt i området tæt ved afgrødeplanten ved hjælp af tidskrevende og monoton manuel lugning for at sikre et højt høstudbytte. Derfor er der et behov for nye teknologier, der kan udføre effektiv fysisk ukrudtsbekæmpelse i umiddelbar nærhed af de enkelte afgrødeplanter for at sikre økonomien i $ө k 0 l o g i s k$ planteproduktion.

Sammenlignet med traditionelle traktortrukne redskaber til ukrudtsbekæmpelse giver autonome
køretøjer med lav vægt og hastighed, og som er udstyrede med avancerede sensor- og styresystemer, muligheder for at bekæmpe ukrudtet tæt ved afgrødeplanten. Derfor er der behov for at fă identificeret og vurderet nye redskaber til ukrudtsbekæmpelse til sådanne førerløse køretøjer.

Krav til

fremtidens
teknologier
De første kommercialiserede redskaber til automatiseret ukrudtsbrænding og mekanisk ukrudtsbekæmpelse i afgrøderækker blev markedsført i 2008. Fremtidens teknologi skal dog kunne bekæmpe ukrudt meget tættere på afgrødeplanterne for at opnà markante udbyttestigninger. I en undersøgelse ved Det Jordbrugsvidenskabelige

Fakultet, Århus Universitet, er 30 teknologier til ukrudtsbekæmpelse i området trt ved afgrødeplanten blevet vurderet ud fra forskellige kriterier. Formålet med undersøgelsen var at identificere potentielle redskabsløsninger til ukrudtsbekæmpelse, som skal kunne fungere i et scenario med tæt afstand mellem afgrodeplanter i rækken, og som kan kombineres med et autonomt køretøj - HortiBot (www. hortibot.dk).

Teknologier til

 ukrudtsbekæmpelse tæt ved afgrødeplantenDe 30 identificerede konceptuelle redskabslosninger varierede fra styrede fingerrensere og harvetænder over jorddækning med biologisk materiale til laserapparater og højtrykspneumatik med en slags slibepulver.
Teoretisk set ville alle

Nyt fra
Internationalt Center for forskning i Økologisk Jordbrug og Fødevaresystemer

Af: Michael Nørremark, Institut for
Jordbrugsteknik og Bo Melander, Institut for Plantebeskyttelse og Skadedyr, begge Aarhus Universitet.
teknologier opnå høj selektivitet, det vil sige, at teknologierne gør det muligt at opnå høje effekter af ukrudtsbekæmpelsen uden samtidig at skade afgrøden.

Meget nøjagtighed i positionering af individuelle afgrodeplanter er en forudsætning for, at alle redskaber kan fungere tæt på afgrødeplanterne. I det valgte scenario genkendes afgrødeplanter først og positioneres derefter, hvor begge procedurer udføres af et computervision-system. Forskningen på dette
område er i gang i 2009 og udføres parallelt med udviklingen af redskaberne.

Undersøgelsen har vist, at der findes teknologier, som tydeligt viser potentiale for anvendelse til automatiske redskaber til fysisk ukrudtsbekæmpelse. Redskabsløsninger til precis jordbehandling og termisk ukrudtsbekæmpelse ved hjælp af pulserede laserapparater til beskadigelse af stænglen eller hovedskud var de mest lovende teknologier.

Læs mere på www.weeds.elr.dk

