About the use of antagonistic bacteria and fungi

Untersuchungen zur Anwendung von antagonistischen Bakterien und Pilzen

R. Tilcher ${ }^{1}$, C. Schmidt ${ }^{2}$, D. Lorenz** and G. A. Wolf ${ }^{3}$, (GERMANY):

Abstract

Microorganisms isolated from the phylloplane of vine and cereal plants inhibiting different phytopathogenic fungi were tested as biological control agents against Plasmopara viticola (downy mildew of grapevine). Based on screening in vitro against Phytophthora infestans, P parasitica, Pythium ultimum, Botrytis cinerea 62 bacterial isolates were selected for tests with Plasmopara viticola.. Antifungal bacterial strains were assayed for antagonistic activity towards the grapevine dieback fungus Eutypa lata in vitro and on grape wood.

Keywords

Plasmopara viticola, downy mildew of grapevine, Eutypa lata, grapevine dieback, antagonistic microorganisms

Plasmopara viticola ...

A suspension of organisms in liquid medium, diluted cultural filtrate and a suspension of washed bacterial cells were sprayed prophylactically onto the lower surface of leaf discs (variety Müller-Thurgau). A susperision of P. viticola sporangia were sprayed 24 hours after application. The relevance of the investigations performed with the help of leaf discs was confirmed by tests with detached leaves and potted vines.
Infestation with downy mildew was reduced from $80-100 \%$ by 42 isolates. Application of organisms in liquid medium and suspensions of washed cells were always more effective than spraying the diluted cultural filtrate only.
Curative spraying of six antagonists (inoculation with the pathogen 24 hours before the application of antagonists) resulted in smaller effects compared with prophylactic treatments. Combined application of 2 antagonists could increase reduction rates compared with the organisms separately applied.
42 bacterial isolates were characterised and could be classified taxonomically (69%). Most of the identified bacteria, both soil-borne organisms (77%) and epiphytes (75%), were assigned to the family Pseudomonadaceae. Within this family the species Stenotrophomonas (Xanthomonas) maltophilia and Pseudomonas fluorescens were identified most often. 31% of the isolates were identified ambigousiy because of conflicting classifications.

[^0]In further experiments Pantoea (Enwinia) herbicola and isolate B 2 were used to investigate the influence of formulation additives (cellulose, alginate, xanthane, detergens) on antagonists applied to potted vines. Mixing two or three additives caused an increased amount of antagonist suspension sticked to the leaf surface (up to 200%). The survival rate of the bacteria was increased by mixing alginate, xanthane or a combination of alginate, xanthane and cellulose with the sprayed antagonist.
When the leaf surface remained wet for 24 hours the survival rate of the antagonists was higher than when the leaves were dried up after application.
Field experiments (two vineyards in the Rheingau region) were performed in order to test six of the most effective organisms (bacteria: Pantoea herbicola, two isolates of Stenotrophomonas maltophilia, isolate B 2, actinomycetes: isolate A 76, A 132) when prophylactically coated onto grape vine.
Isolates applied without formulation additives, reduced leaf infestation significantly in all cases. The highest reduction rates (> 90%) were obtained with Pantoea herbicola and actinomycete A 76. By mixing additives (cellulose, alginate, xanthane) reduction rates in the field were even higher (up to 95%).
In order to determine whether the combined application of antagonists and chemical pesticides holds promise, the influence of 34 pesticides used in viticulture on the growth of three antagonists (two bacteria, one actinomycete) was investigated in vitro. The growth of all tested organisms was clearly inhibited by the fungicides Dithane Ultra (active substance Mancozeb), Wacker 83v (active substances copper and sulfur) and Ulmasud (releases aluminium ions). Also some of the insecticides tested (eg Thiodan 35 fl., active substance Endosulfan) had an inhibitory effect.
Microvinification was carried out to determine the effects of four antagonists applied to grapes on the process of wine making. Fermentation course of grapes sprayed 21 days before vintage with original liquid culture of the antagonists was negatively influenced (premature cessation). With a waiting period of 28 days there were no or only some minor irregularities, whereas fermentation course of grapes sprayed 35 days before vintage showed no deviation from the control at all. Parallel to this, wine analysis showed the wines of the shortest waiting period to have an increased sugar content and a decreased alcohol content compared with the control. Both the wines of the other experimental variants (with longer waiting periods) showed no differences.
Investigations using scanning electron microscopy (SEM) indicated that application of the antagonist Pantoea herbicola radically changed the morphology of the vine leaf phylloplane. Bacterial rods occupied internal parts of the stomata. The components of the liquid medium were adsorbed onto the formulation additives.

Eutypa lata.

Antifungal bacterial strains were assayed for antagonistic activity towards the grapevine dieback fungus Eutypa lata in vitro and on grape wood. Hundred-twen-ty-one of 188 isolates (64\%) exhibited antagonistic activity towards Eutypa lata in vitro $(\geq 83 \%$ of the tested actinomycetes, Bacillus and Pantoea herbicola strains

II Influence of Formulation Additives and Transposon Mutagenesis on the Antagonistie Activity of Bacillus subtilis and Erwinia herbicola, J. Phytopathology 149, 437-445 (2001)
TILCHER, R., WOLF, G.A. and BRENDEL, G. 1994 : Effects of microbial antagonists on leaf infestation, sporangia, germination and zoospore behavior of Plasmopara viticola (BERK. \& CURTIS) BERL. \& de toni Med. Fac. Landbouww. Univ. Gent, 59, 919-929

[^0]: ' Forschungsanstalt Geisenheim, Fachgebiet Phytomedin, Geisenheim, Germany
 ${ }^{2}$ Staattiche Lehr- und Forschungsanstalt für Landwirtschaft, Wein- und Gartenbau, Neustadt an der WeinGermany
 ${ }^{3}$ Institut für Pflanzenpathologie der Georg-August-Universität, Grisebachstr. 637077 Goettingen, Germany

