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Abstract.12

Complex relationships exist between different components of the organic farm and13

the quantity and quality of the end products depend on the functioning of the whole14

system. As such, it is very difficult to isolate soil fertility from production and15

environmental aspects of the system. Crop rotation is the central tool that integrates16

the maintenance and development of soil fertility with different aspects of crop and17

livestock production in organic systems. Nutrient supply to crops depends on the use18

of legumes to add nitrogen to the system and limited inputs of supplementary19

nutrients, added in acceptable forms.  Manures and crop residues are carefully20

managed to recycle nutrients around the farm. Management of soil organic matter,21

primarily through the use of short-term leys, helps ensure good soil structure and22

biological activity, important for nutrient supply, health and productivity of both23

crops and livestock. Carefully planned diverse rotations help reduce the incidence of24

pests and diseases and allow for cultural methods of weed control. As a result of the25
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complex interactions between different system components, fertility management in1

organic farming relies on a long-term integrated approach rather than the more short-2

term very targeted solutions common in conventional agriculture.3

4
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INTRODUCTION 8

Soil fertility is fundamental in determining the productivity of all farming systems.9

Soil fertility is most commonly defined in terms of the ability of a soil to supply10

nutrients to crops. Swift  & Palm (2000) however suggest that it is more helpful to11

view soil fertility as an ecosystem concept integrating the diverse soil functions,12

including nutrient supply, which promote plant production. This broader definition is13

appropriate to organic farming, as organic farming recognises the complex14

relationships that exist between different system components and that the15

sustainability of the system is dependent upon the functioning of a whole integrated16

and inter-related system (Atkinson & Watson 2000). 17

18

Organic farming systems rely on the management of soil organic matter to enhance19

the chemical, biological, and physical properties of the soil, in order to optimise crop20

production. Soil management controls the supply of nutrients to crops, and21

subsequently to livestock and humans. Furthermore soil processes play a key role in22

suppressing weeds, pests and diseases. Figure 1 illustrates conceptually the23

complexity of the relationships between soil fertility and the different components24

within and outside the system that may influence it. One of the fundamental25
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differences between management of organic and conventional systems is the way in1

which problems are addressed. Conventional agriculture often relies on targeted short-2

term solutions e.g. application of a soluble fertiliser or herbicide. Organic systems, in3

contrast, use a strategically different approach, which relies on longer-term solutions4

(preventative rather than reactive) at the systems level. An example of this is the5

importance of rotation design for nutrient cycling and conservation and weed, pest6

and disease control (Stockdale et al. 2001). 7

8

Organic farming is the only sustainable farming system that is legally defined. Within9

the EU, crop and livestock products sold as organic must be certified as such under10

EC Regulation 2092/91 and 1804/99. In the UK, it is the role of the UK Register of11

Organic Food Standards (UKROFS) to implement this legislation. UKROFS licences12

a number of certification bodies, such as the Soil Association, to certify and inspect13

organic farms to ensure that organic production practices are followed. Although the14

regulations of the different bodies differ in detail they all aim to create an15

economically and environmentally sustainable form of agriculture with the emphasis16

placed on self-sustaining biological systems rather than on external inputs. 17

18

This paper explores how organic farmers and growers can utilise a range of19

management practices to maintain and develop soil fertility in order to achieve these20

wider goals.21

22

ORGANIC FARMING SYSTEMS23

The total value of UK organic production in 2000/01 was £97 million. Around 81% of24

certified organic land is rough grazing and permanent pasture, 9% is temporary ley,25
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7.5% is in arable production and 2% is used for horticultural crops. There is an1

increasing proportion of organic land in pasture, reflecting the relative ease of2

converting extensive systems and greater benefits from area based support payments3

(Soil Association 2001). Organic farming systems fall into similar categories as those4

of conventional agriculture: mixed, livestock, stockless and horticultural. Berry et al.5

(2002) (this volume) describe examples of some of these in more detail. The main6

characteristics of these systems and their specific soil fertility challenges are7

summarised below.8

9

Mixed systems10

Mixed systems are most commonly based on ley/arable rotations (see rotations11

section). Fertility is built during the ley phase, in which grazing and fodder12

production provide an economic return.  The degree of integration of livestock and13

cropping will vary, depending on rotation, land type and livestock species. For14

example, sheep may graze turnips or vegetable residues over winter, while pigs are15

sometimes used instead of a plough to achieve the transition from ley to arable. 16

17

Livestock systems18

In situations where it is undesirable or impractical to operate a rotation due to19

soil/land type, climate constraints or conservation issues, the use of long-term or20

permanent grassland is acceptable within the organic regulations. Management21

emphasis is, however, still on the maintenance of soil fertility through nutrient22

recycling, with minimal external inputs. 23

24

Stockless systems25
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The trend towards specialisation in conventional farming has led to large agricultural1

areas in Europe lacking grazing livestock, e.g. Eastern and South Eastern Denmark,2

Eastern Germany, and East Anglia in the UK (Høgh-Jensen 1999). The infrastructure3

costs associated with establishing livestock enterprises on farms wishing to convert4

from a conventional stockless system to mixed organic agriculture are frequently5

prohibitive (Lampkin 1990) and so the area of organic land farmed using stockless6

organic systems is increasing (Mueller & Thorup-Kristensen 2001). The greatest7

challenge for stockless organic farming is management of the nutrient supply.  Forage8

legumes are of no direct economic benefit in stockless systems (other than for setaside9

payments), so there is greater emphasis on alternative fertility building strategies,10

such as the use of green manures, grain legumes and the import of manures, composts11

and other acceptable fertilisers. These types of organic system are relatively recent12

and further development of suitable fertility building strategies is required.13

14

Horticultural systems15

The term horticulture covers a wide range of systems from field vegetable production16

to fruit and protected cropping (glasshouse/polytunnels). Intensive organic17

horticultural production systems are often the most dependent on imported nutrients.18

Many of the fruit and vegetables grown have a high demand for major and minor19

nutrients and additionally are susceptible to many pests and diseases (Toosey 1983).20

Combined with the fact that these systems frequently include several crops within one21

growing season, the maintenance of soil fertility is a major concern in these intensive22

systems.   Organic standards recognize the difficulties of this type of production and23

permit rotations which, although there are still restrictions, rely on external inputs to24

maintain crop production (UKROFS 2001). It is difficult to maintain fertility by the25
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use of rotations in perennial crops such as fruit, and in protected cropping where it is1

uneconomic to grow fertility building crops.  Development of organic production in2

both of these systems is still at an early stage and development of both associated3

management techniques and standards is ongoing.4

5

USING CROP ROTATIONS TO MANAGE SOIL FERTILITY 6

Crop rotation is a system where different plants are grown in a recurring, defined7

sequence. Crop rotations, including a mixture of leguminous ‘fertility building’ and8

cash crops, are the main mechanism for nutrient supply within organic systems.9

Rotations can also be designed to minimise the spread of weeds, pests and diseases10

(Altieri 1995). The development and implementation of well-designed crop rotations11

is central to the success of organic production systems (Lampkin 1990; Stockdale et12

al. 2001). 13

14

Organic rotations are divided into phases that increase the level of soil nitrogen and15

phases that deplete it (Altieri 1995). The nitrogen building and depleting phases must16

be in balance, or show a slight surplus, if long-term fertility is to be maintained (See17

Berry et al. 2002 and Watson et al. 2002 this volume). This type of rotation provides18

the basis for forward planning of nitrogen supply, necessary in the absence of soluble19

nitrogen fertiliser. In UK conditions the fertility building phase of the rotation usually20

takes the form of a ley, from one to five or more years in length, which incorporates a21

legume usually in combination with grass (Lampkin 1990). Atmospheric nitrogen22

fixed by the legume-rhizobium symbiosis is made available to subsequent cash crops23

when the ley is incorporated and the nitrogen mineralised through the action of soil24

micro organisms. 25
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1

The ratio of ley to arable will be determined by both the system (stocked or stockless)2

and the soil type, being lower on nitrogen retentive soils and higher on un-retentive3

(sandy) soils. A typical rotation on a mixed organic farm with a three-year grass and4

clover ley will support two or three years of arable cropping (Lampkin 1990). This5

may be extended by including a nitrogen-fixing cash crop, such as beans, or by6

including a short period of nitrogen fixing green manure such as vetch between cash7

crops (Stockdale et al. 2001). In order to make maximum use of the large quantity of8

nitrogen released following ley incorporation; crops with a high demand for nitrogen,9

such as winter wheat or potatoes, are usually grown at the start of the cropping phase10

(Lampkin 1990). The amount of N released decreases with time following11

incorporation of the ley  (Whitmore et al. 1992) thus spring sown cereals are often12

placed later in the arable phase of the rotation due to their lower N demand (Taylor et13

al. 2001). As with conventional agriculture, the primary limiting nutrient in organic14

systems is nitrogen (N) (Stockdale et al. 1995; Torstensson 1998). Yields of arable15

crops under organic management vary from as little as 50% to more than 95% of16

those in conventional agriculture, depending on the crop (Lampkin & Measures 2001;17

Nix 2001; SAC 2000). The large shortfall in cereal yields is linked to the difficulty of18

managing soils to synchronise N mineralization with the period of maximum N19

demand (Stockdale et al. 1992). This is one of the greatest challenges faced by20

organic farmers (Willson et al. 2001). 21

22

Incorporation of leys carries with it a high risk of nitrate loss by leaching. Spring23

incorporation prior to spring cropping, where possible, has been shown to minimise24

leaching loss (Watson et al. 1993; Djurhuus & Olsen 1997). Other factors such as25
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grazing intensity and sward composition have also been shown to be important in1

determining the quantity and pattern of N release following ley incorporation (Davies2

et al. 2001). 3

4

Crop rotation also modifies the physical characteristics of the soil both directly and5

indirectly. The accumulation of organic matter during the ley phase plays a major6

direct role in soil structure formation (Clement & Williams 1967; Grace et al. 1995).7

This results from the production of organic binding agents, such as polysaccharides,8

by microorganisms breaking down organic matter, and the enmeshing effects of the9

clover and grass roots and fungal hyphae (Wild 1988; Breland 1995). Conversely, soil10

organic matter and aggregate stability decline during the arable phase (Tisdall &11

Oades 1982). The architectural characteristics of the root systems of different crops12

included in the rotation also influence soil structure formation (e.g. Chan & Heenan13

1991). Indirectly, the timing and use of different cultivation techniques and manure14

application at different points in the rotation influence soil structure.15

16

Rotation design modifies both the size and activity of the soil microbial biomass.17

Indicators of biomass activity such as basal respiration and enzymatic activity suggest18

that there is a more active microbial biomass associated with grass-clover leys than19

with arable cropping (Watson et al. 1996; Haynes 1999), which is in turn linked to the20

decomposition of organic matter and nutrient mineralization (Haynes 1999). An21

active soil microbial biomass may also reduce the incidence of organisms deleterious22

to crop health (Hornby 1983). Currently the possibilities for manipulating individual23

components of the soil microbial biomass using agricultural practices are limited by24

our understanding of the functional significance of different organisms or groups of25
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organisms. Knowledge of the impact of management practices on some beneficial1

organisms e.g. Arbuscular Mycorrhizal (AM) fungi is increasing. The beneficial2

effects of AM fungi, including improved crop nutrition, reductions in soil borne3

disease and improved soil structure,are liable to be stimulated in organic systems4

(Bethlenfalvy & Lindermann 1992; Mäder et al. 2000). Fallow periods (Douds et al.5

1997), cultivation (McGonigle & Miller 2000) and the inclusion of non-mycorrhizal6

crops within the rotation (Karasawa et al. 2001) can reduce survival and effectivity of7

AM fungi. 8

9

Rotations are the primary means of controlling weeds, pests and diseases in organic10

farming. The use of the term 'appropriate rotation' in the UKROFS Standards11

(UKROFS 2001) implies that continuous monoculture is unacceptable due to the12

likely increased pressure from weeds, pests and diseases as well as difficulties of13

maintaining soil fertility. It has been demonstrated that soil borne pathogens are14

influenced by rotation length, with reduced disease levels associated with longer gaps15

between susceptible crops (Clark et al. 1998). Several soil fertility-related factors may16

contribute to the control of soil borne diseases, including increased soil microbial17

activity, leading to increased competition, parasitism and predation in the rhizosphere18

(Jawson et al. 1993; Workneh & van Bruggen 1994; Knudsen et al. 1995). In general,19

organic systems are characterised by a diversity of crops in the rotation that improves20

the potential for cultural control of pests and diseases (Altieri 1995).  Soil fertility21

management can also affect the susceptibility of crops to pests and diseases. For22

example, the relationship between mineral-nutrient content of crops and pest23

susceptibility is well documented (Dale 1988). Phelan et al. (1995) demonstrated for24

the first time that soil organic matter management history was related to the25
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susceptibility of crops to the above ground pest Ostrinia nubilalis (European corn1

borer).2

3

Growing a range of crops with different physiological attributes, sowing and harvest4

dates offers opportunities for cultivation and mechanical weed controlling operations5

to be undertaken at different times helping to prevent particular species from6

becoming a problem (Liebman & Davis 2000). (See also section on cultivations). The7

proportion of ley within the rotation has also been shown to affect weed populations8

and the weed seed bank with weed problems declining as proportion of ley increases9

(Davies et al. 1997). Roots of some plants exude chemicals that deter potential10

competitors from growing in their vicinity through inhibition of germination and/or11

growth and the effects can continue after the incorporation of the inhibitive plant.12

This effect, known as allelopathy, is exhibited by both crop plants such as rye, vetch13

and triticale and weed species e.g Stellaria spp. (Barnes and Putnam, 1986; Teasdale14

1988; Inderjit & Dakshini 1998). Although there may potentially be negative effects15

of allelopathy on crop production, e.g. when there is inhibition of the germination of16

crop seedlings, there is a need to understand allelopathic effects in more detail as they17

can potentially be manipulated to advantage in organic systems (Olofsdotter 1999). 18

19

Fertility building crops20

Legume based leys are the principle fertility building crops in temperate organic21

systems. In mixed systems white clover-grass leys are most common.  Red clover is22

also frequently produced, both grown alone or with grass, and used for silage or as a23

green manure. Other legumes, grown either as fodder or as green manures, may be24

used in the shorter term or under particular soil or climatic conditions. These include25
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other types of clover, lucerne, vetches, lupins and trefoils. Poutala et al. (1994) and1

Mueller & Thorup-Kristensen (2001) have illustrated the potential of short-term2

leguminous green manures crops in stockless systems. 3

4

Predicting the actual amount of nitrogen fixed is notoriously difficult as it depends on5

many factors including legume species and cultivar, proportion of legume in the ley,6

management, weather conditions and the age of the ley (Ledgard & Steele 1992;7

Watson et al. 2002 (this volume)). White clover-grass leys can fix up to 250 kg N8

ha-1yr-1 (Kristensen et al. 1995), red clover leys up to 240 kg N ha-1yr-1 (Schmidt et al.9

1999) and lucerne up to 500 kg N ha-1yr-1 (Spiertz & Sibma 1986).  Field beans have10

been estimated to fix up to approximately 200 kg N ha-1 yr-1 (van Kessel & Hartley11

2000). In terms of increasing soil nitrogen, grain legumes are of limited value since12

only 50% of their N requirement is derived from fixation (compared with >80% in13

forage legumes) and much of the fixed N is removed in the grain harvest. This can14

sometimes result in net removal of nitrogen from the soil (van Kessel & Hartley15

2000). 16

17

The importance of crop and varietal selection18

Crop choice is liable to reflect a number of different factors, such as previous19

experience of the farmer, soil type and climate constraints, markets and labour20

availability.  The UKROFS standards (UKROFS 2001) require an appropriate multi-21

annual rotation including legumes (see section Fertility Building Crops) and crops22

with differing rooting depths. The use of crops with different rooting depths occurs23

between crops within the rotation and within individual crops, e.g. forage herbs are24
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commonly mixed with several varieties of clover and grass to provide different sward1

structures both above and below ground. 2

3

The inclusion in a rotation of green manures or cover crops can considerably increase4

the efficiency with which nitrogen is used. Non leguminous plants that grow5

vigorously over the winter period, such as grazing rye (Secale cereale) immobilize6

soil nitrogen that would otherwise be leached over winter (Wyland et al. 1995). This7

nitrogen is subsequently made available after incorporation by mineralization. Careful8

attention to the timing and method of incorporation of the cover crop can synchronize9

mineralization with periods of high crop demand (Hu et al. 1997; Rayns et al. 2000).10

One of the primary difficulties in designing rotations for organic farming is the11

complexity of managing soil fertility for multiple aims. For example, although the12

incorporation of green manures/cover crops can have beneficial effects on nitrogen13

management there may be associated diseases risk, for example, plant pathogens with14

a saprophytic phase such as Rhizoctonia solani can multiply in plant debris (Weinhold15

1977). In contrast green manures and cover crops have also been shown to have16

potential for controlling diseases in vegetable crops (Abawi & Widmer 2000).17

18

Selection of modern crop varieties has generally taken place under high inputs of both19

fertilisers and pesticides. Conditions of zero N application in conventionally managed20

soils do not accurately represent soils managed organically, and thus modern21

conventionally selected breeds are unlikely to have optimal characteristics for organic22

systems. The yield penalty associated with organic production of crops such as wheat23

and barley, which have been bred intensively, is greater than for crops such as oats24

and triticale, which have undergone relatively little selective breeding. Foulkes et al.25
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(1998) have found that modern varieties of winter wheat bred and tested with large1

amounts of fertilizer N were to some extent less efficient at utilising soil N than older2

varieties. Below ground characteristics such as rooting depth, root architecture and3

root length are likely to be more important in organic systems, where available soil4

nutrients may be limited (Atkinson et al. 1995). These characteristics have as yet5

received little attention in breeding programmes.  The ability of varieties to form6

effective associations with AM fungi may also be important for crop nutrition and7

disease resistance.  Hetrick et al. (1992) demonstrated that modern cultivars displayed8

less consistent and smaller growth responses to AM symbionts than old hexaploid9

wheat landraces and Hetrick et al. (1993) showed that cultivars released after 195010

have reduced dependance on AM fungal symbiosis. 11

12

Although conventional crop breeding has not produced varieties with nutrient13

acquisition characteristics that suit organic systems it has, to some degree, addressed14

resistance to pests and disease.  For instance, NIAB recommended lists of cereals15

include varieties resistance to fungal diseases (NIAB 1996).   16

17

Intercropping18

The growing of two or more crops together (intercropping) has the potential to19

improve resource use. This results from differences in competitive ability for20

resources between above and below ground crop components in space and time21

(Willey 1979). In organic systems, both variety mixtures and species mixtures are22

potentially useful for optimising nutrient use, controlling weeds pests and diseases23

(Wolfe 1985; Wolfe 2001) and for reducing soil erosion through increased ground24

cover. Intercropping is commonly used in forage crops (e.g. grass-clover leys) in25
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organic systems but is less common in arable crops (Lampkin 1990). Several effective1

intercrop combinations of cereals and legumes have however been developed2

demonstrating that intercropping offers the opportunity to increase the use of3

symbiotically fixed nitrogen without compromising grain yield (Jensen 1996; Bulson4

et al. 1997). Undersowing of clover into cereals is a common practice for establishing5

leys (Taylor et al. 2001). Studies of intercropping of vegetables and fertility building6

crops have indicated that competition between the crop and the legume can be a major7

problem (Carruthers et al. 1997, Lotz et al. 1997). The understorey crop must be8

controlled by mowing and/or cultivation techniques and the cash crop must be more9

widely spaced than normal.  There is a need to develop effective management10

strategies and crop combinations for all organic systems, but particularly stockless11

systems, in order to minimise the use of unproductive fertility building phases. Before12

intercropping is more widely accepted in these systems, the economic viability of13

intercropping requires more careful analysis (Theunissen 1997). 14

15

Using cultivations within rotations 16

Cultivation has a number of purposes, including incorporation of manures and crop17

residues and weed and disease control, as well as preparation of a seedbed for crops18

and for remediation of damaged soil structure caused by trafficking (Wild 1988). The19

choice of cultivation type will depend on both the principle aim and the soil type.20

Organic systems tend to utilise shallow rather than deep ploughing, as this retains21

crop residues near the soil surface, where they break down more rapidly and where22

most rooting occurs, while achieving sufficient aeration (Lampkin 1990, Lampkin &23

Measures 1999). Cultivation itself leads to an increase in nutrient availability,24

particularly N, as microbial activity is stimulated and organic matter breakdown25
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occurs (Balloni & Favalli 1987; Torbet et al. 1998; Silgram & Shepherd 1999).1

Mechanical weed control can thus provide a mid-season boost to crops by stimulating2

mineralization although at other times additional stimulation of mineralization may3

cause losses by leaching or denitrification.  Intensive cultivation to control weeds may4

also be counterproductive if soil compaction occurs (Liebman & Dyck 1993), or5

where weeds provide a habitat for beneficial insects or a mycorrhizal bridge between6

crops (Atkinson et al. 2002). 7

8

MANAGING CROP RESIDUES 9

Crop residues can be an important source of nutrients to subsequent crops. It is well10

documented that different quantities of N, P, K and minor nutrients are removed from,11

and returned to, the soil depending on the crop species concerned (Wild 1988;12

Sylvester-Bradley 1993). The quantity and quality of crop residues will clearly13

influence the build up of soil organic matter (Jenkinson & Ladd 1981) and the14

subsequent availability and timing of release of nutrients to following crops (Jarvis et15

al. 1996). Cereal straw, for example, contains only around 35 kg N ha-1 compared16

with more than 150 kg N ha-1 for some vegetables residues (Rahn et al. 1992, Jarvis et17

al. 1996). Most available values for nutrient contents of crop residues are from18

conventional agriculture and N limitation in organic systems means that crop residues19

are likely to be lower in N (Berry et al. 2002 this volume) and other nutrients (Watson20

et al. 2002 this volume). Residues also contain variable amounts of lignin and21

polyphenols, which influence decomposition and mineralization rates (Jarvis et al.22

1996; Vanlauwe et al. 1997). Incorporation of N rich, low C:N ratio residues leads to23

rapid mineralization and a large rise in soil mineral N (Rahn et al. 1992), while24

residues low in N such as cereal straw can lead to net immobilization of N in the short25
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to medium term (Jenkinson 1985; Aulakh et al. 1991). The latter can be advantageous1

in preventing N leaching between crops (Jenkinson 1985; Nicholson et al. 1997). The2

inclusion of crops with a diverse range of C:N ratios can help to conserve N within3

the system and, compared with monocropping, has the potential to increase the4

capacity of the soil to supply N in synchrony with crop demand (Drinkwater et al.5

1998; Sanchez et al. 2001).  Mixing residues of differing quality also has potential to6

synchronize mineralization with crop demands (Handayanto et al. 1997) though the7

practicalities of this on a farm scale are questionable. 8

9

MANAGING MANURES AND SUPPLEMENTARY NUTRIENTS10

In addition to symbiotic N fixation and atmospheric deposition, nutrients may be11

brought in to the organic system in imported animal feeds, manures, composts and12

permitted fertilisers, such as rock phosphate (UKROFS 2001). The nature and13

quantity of imported nutrients will depend on the system and the soil type. Watson et14

al. (2002) (this volume) highlight the reliance on bought-in feed and bedding on15

organic dairy farms and purchased manure in organic horticultural systems.16

17

 Animal manures are the most common amendments applied to the soil. On mixed and18

livestock farms they are an important currency for re-distributing nutrients as it is19

important to ensure that fertility is not built in some fields at the expense of others.20

Manure use should be planned with regard to both farm system and field nutrient21

budgets (see Berry et al. 2002, this volume). Organic manures are traditionally22

applied to silage and root crops although it may be more beneficial to apply them to23

cash crops. Manure management within the rotation has been shown to have large24

effects on both yield and product quality, including protein levels in cereals (Stein-25
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Bachinger 1996; Frederiksson et al. 1997). The possibility of using manures more1

profitably on cash crops is discussed in more detail by Berry et al. (2002) (this2

volume). Manures from non-organic livestock production may be brought onto the3

holding but there are restrictions (e.g. it must originate from an ‘ethical’ source and4

the animals producing it must not have been fed on a diet containing Genetically5

Modified Organisms (GMO’s)).6

7

The quantity of nutrients in manures varies with type of animal, feed composition,8

quality and quantity of bedding material, length of storage and storage conditions9

(Dewes & Hunsche 1998; Shepherd et al. 1999). A typical application of 25 t ha-1 of10

farmyard manure from housed organic cattle will contain 150 kg of N, 35 kg of P and11

140 kg of K (Shepherd et al. 1999). In organic systems it is particularly important to12

conserve manure nutrients for both economic and environmental reasons. Manure13

handling, storage and composting has been widely studied in organic systems (e.g.14

Hansen 1995). Composting is recommended in organic farming as a management tool15

for controlling weeds, pests and diseases. True composting of manures, i.e. aerobic16

decomposition at temperatures of around 60oC, results in fundamental physical and17

chemical changes, causing a significant reduction in nutrient availability, particularly18

of nitrogen. Composted manure thus has a more long-term role in building soil19

fertility, and has been shown to be more effective in building soil microbial biomass20

and increasing activity than uncomposted manure (Fließbach & Mäder 2000).21

Composts have been show to reduce disease severity (Kim et al. 1997; Abawi &22

Widmer 2000). In addition to composts made from on-farm materials, composts may23

originate from commercial sources and include materials from parks and gardens24

(green waste compost), pack house wastes and food industry wastes. Although such25
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material fits well with the ethical basis of organic farming there may be increasing1

problems with contamination with residues from GMO’s. 2

3

In order to balance the offtake of specific nutrients there are a number of mineral4

nutrient sources acceptable in organic systems although their use is permitted only5

where the need can be demonstrated to the certifying body (for example by soil6

analysis or by presentation of a nutrient budget). Amendments include rock7

phosphate, rock potassium, magnesium rock and gypsum. Products such as rock8

phosphate release nutrients over a period of years rather than weeks (Rajan et al.9

1996) and thus their use is planned to build fertility in the longer-term. Trace elements10

may also be applied, with approval, if they are necessary. The use of lime to maintain11

pH levels is also acceptable (UKROFS 2001).12

13

SOIL FERTILITY AND LIVESTOCK IN ORGANIC FARMING14

Within organic systems both the influence of livestock on soil fertility and the15

influence of soil fertility on livestock nutrition and health are important management16

considerations (See Figure 1). Livestock influences soil fertility by two major routes,17

through physical effects associated with trampling and also through the removal and18

return of nutrients in dung and urine. Stocking rate in organic systems is limited by a19

maximum application rate of 170 kg N ha-1 yr-1 (UKROFS 2001) over the farm as a20

whole. Compared with conventional systems the lower stocking rates and mixed21

grazing systems common in organic farming (Lampkin & Measures 1999) may help22

to minimise the effects of grazing on soil compaction. Bannerjee et al. (2000)23

suggested that pasture management could also influence soil microbial biomass, with24

lower stocking rates promoting both higher biomass C and N mineralization potential.25
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In forage based organic systems on soils naturally low in trace elements, livestock1

health can be adversely affected by trace element deficiencies. Under known2

deficiency conditions trace element supplementation is allowed within the organic3

standards (UKROFS 2001). An alternative solution is the inclusion of forage herbs4

such as chicory within organic swards; these are known to contain higher5

concentrations of trace elements than many grasses (Belesky et al. 2001). 6

7

It is becoming increasingly clear that both livestock and manures can act as a conduit8

for environmental pathogens that survive in soils. Management practices can help to9

minimise the spread of pathogens via manure. Both composting of farmyard manure10

(Jones 1982) and anaerobic digestion of slurry (Kearney et al. 1993) have been shown11

to decrease pathogen viability. It has also been shown that earthworms can be12

beneficial in parasite control as they ingest eggs and larvae and carry them far enough13

below ground to prevent them maturing (Wells 1999). The effect of organic14

management practices on earthworms is discussed in Scullion (2002) (this volume).15

16

DECISION SUPPORT TOOLS17

Improving soil fertility in organic farming relies on improved understanding of the18

effects of management practices on soil fertility and also on improved technology19

transfer of research results into practice. This requires the provision of good on-farm20

advice by advisors who fully understand the complexity of managing soil fertility in21

organic farming systems. The development and widespread accessibility of22

appropriate tools to support decision-making is also important (Wander & Drinkwater23

2000).  24

25
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Soil analysis1

As soil fertility management in organic systems is a longer term, more strategic2

process than in conventional systems, soil analysis and interpretation must be adapted3

to reflect this.  Trends in soil nutrient and organic matter status are likely to be more4

important than snapshot analysis. There has been considerable discussion over5

whether different methods of soil analysis are required for organic farming.6

Conventional soil analysis for advisory purposes relies on the interpretation of the7

chemical extraction of different nutrient pools from the soil to predict nutrient release8

to crops (Edwards et al. 1997). This type of analysis is likely to be more difficult to9

interpret in organic than conventional systems where there is a much stronger reliance10

on biological processes for nutrient supply. There is much interest in the development11

of indicators of soil health and quality although little agreement over what these12

should be (Doran & Zeiss 2000). Simple indicators of soil health would help organic13

farmers to solve problems on farm. Wander & Drinkwater (2000) suggest that organic14

matter and organic matter dependent properties show most promise for supporting15

management decisions. 16

17

Computer modelling18

Simple nutrient budgets are becoming widely used in organic farming by advisors and19

certification organisations to assist in the planning of organic crop rotations.20

Computer models for calculation of nutrient budgets are currently being developed in21

association with organic farming research programmes being funded by DEFRA and22

SEERAD. The use of nutrient budgets in organic systems is discussed more fully in23

Berry et al. (2002) and Watson et al. (2002) (this volume). One of the limitations of24

both nutrient budgets and more detailed nutrient cycling models such as WELL_N25
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(Rahn et al. 2001) is the difficulty of predicting the soil processes which drive organic1

systems, particularly mineralization and N fixation. Some of the more detailed models2

of nutrient cycling and crop growth may however be useful in developing new and3

efficient cropping systems for organic farming. For example, Baumann et al. (2001)4

suggest that ecophysiological crop growth models could be used to maximise crop5

complementarity and thus design more effective intercropping systems.6

7

CONCLUSIONS8

Organic farming systems utilise highly complex and integrated biological systems to9

achieve their goal of sustainable crop and livestock production. Most, if not all,10

management practices used in organic systems affect more than one component of the11

system, for example, cultivation may be beneficial for weed control but may stimulate12

mineralization of nitrogen when the crop does not require it. Some soil management13

decisions, such as the choice between winter and spring incorporation of a ley, are14

likely to have important economic consequences as well as environmental ones. Thus15

the interaction between soil management practices and different aspects of production16

and environmental impact will continue to challenge the nature and development of17

organic farming in the future. 18

19

Large-scale organic production is still a relatively recent development and further20

development of fertility building strategies is warranted in all systems. This is21

particularly true with regard to the most efficient use of manures and the most22

appropriate types of ley and green manures.  Fertility management in stockless arable,23

field vegetables, fruit and protected cropping is particularly challenging and requires24

development, both in terms of techniques and of organic standards. 25
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Figure 1. The interactions between soil fertility and crop and animal productivity in1

organic farming systems.2
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