%R 10.1016/j.biosystemseng.2009.10.002 %D 2010 %X Current service robots have relatively primitive behaviours and limited interaction with the environment. Technological foresights have indicated that the next generation of service robots will demonstrate a high degree of autonomy and reliability, have minimal impact on the environment, and will interact in a flexible way with the user. It is necessary therefore, to determine the functional requirements for a future energy-efficient robotic bioproduction system from the perspective of various stakeholders, together with the development of a high-level framework for designing and prototyping the common functionalities of mobile robots. This study presents technical guidelines for the design of a plant nursing robot. The methodology uses Quality Function Deployment (QFD) functionalities involving the identification of relationships between identified user requirements and the derived design parameters. Extracted important user requirements included: 1) adjustable to row distance and parcel size, 2) profitable, 3) minimize damage to crops, and 4) reliable. Lower ratings were attributed to requirements such as: 1) affection value, prestige, 2) look attractive, 3) out of season operations, and 4) use of renewable energy. Subsequent important derived design parameters included: 1) PreparedForModularTools, 2) ControlableByExternalModules, 3) SemiAutonomous, and 4) Local- and GlobalPositioningSystem. The least important design parameters included: 1) OpenStandardSoftware, 2) Well-builtAppearance, 3) Wheels- With Infinite Steering Rotation, and 4) Internal Safety System. The study demonstrates the feasibility of applying a systematic design technique and procedures for translating the ‘consumer’s voice’ into the design and technical specifications of a robotic tool carrier to be used in bioproduction. %A C.G. Sørensen %A R.N. Jørgensen %A J. Maagaard %A K.K. Bertelsen %A L. Dalgaard %A M. Nørremark %L orgprints20657 %J Biosystems Engineering %P 119-129 %T Conceptual and user-centric design guidelines for a plant nursing robot %V 105 %N 1