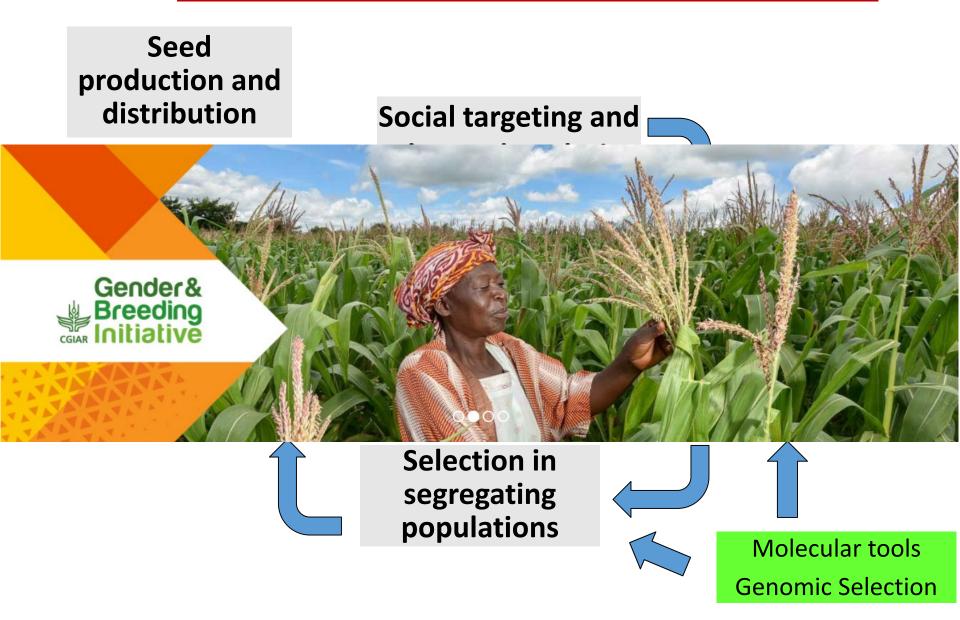

Participatory Plant Breeding and its challenges

S. Ceccarelli (ceccarelli.Salvatore83@gmail.com)



Local solutions to global problems

What is Plant Breeding?

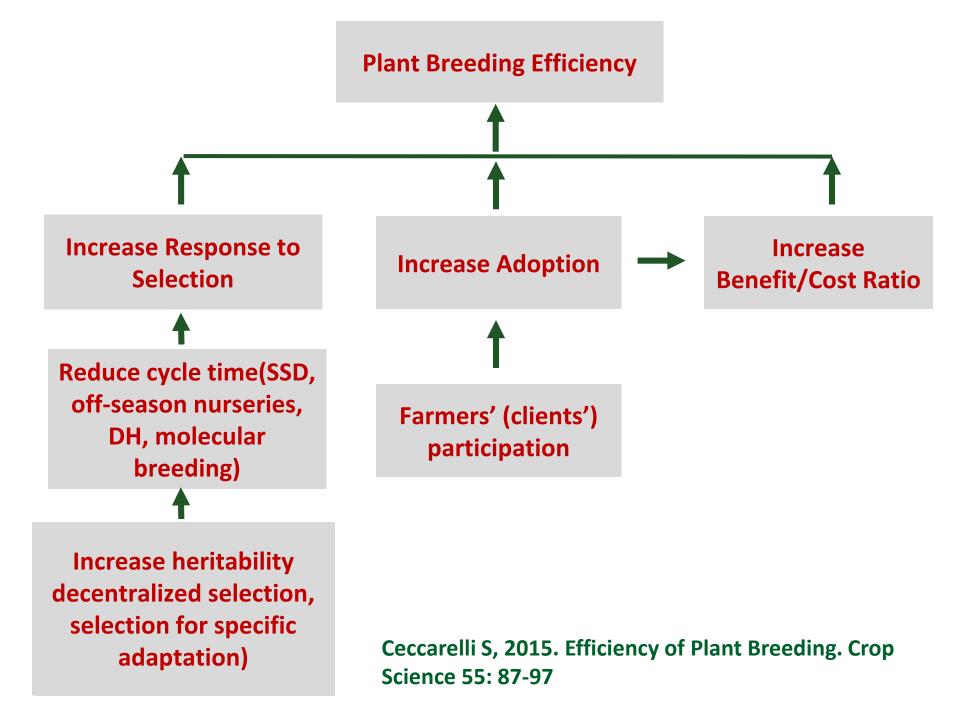
Breeding Cycle – Main Stages

Customer Profile

Breeding for whom?

Product Profile:

Breeding what type of variety?


Breeding Efficiency

- **1. Number of varieties adopted/number**
- 1. Muchaseofwadeties released
- Response to Selection = (i σ_p h²)/t
 Benefit/Cost Ratio

Genetic feaise in agro biodigensityeder's equation

Why Participatory Plant Breeding?

History of Participatory Plant Breeding (PPB)

Begins in the early eighties (Rhoades and Booth, 1982)

Rhoades RE and Booth RH (1982) Farmer-back-to-farmer: a model for generating acceptable agricultural technology. Agricultural Administration, 11: 127-137

PLANT - BREEDING

Riverside's Advocate

Herbert John Webber is remembered for many contributions to science, education, and agriculture, but his lasting influence on the city of Riverside and the University of California comes from his insistence that the fledgling Citrus Experiment Station remain in the city.

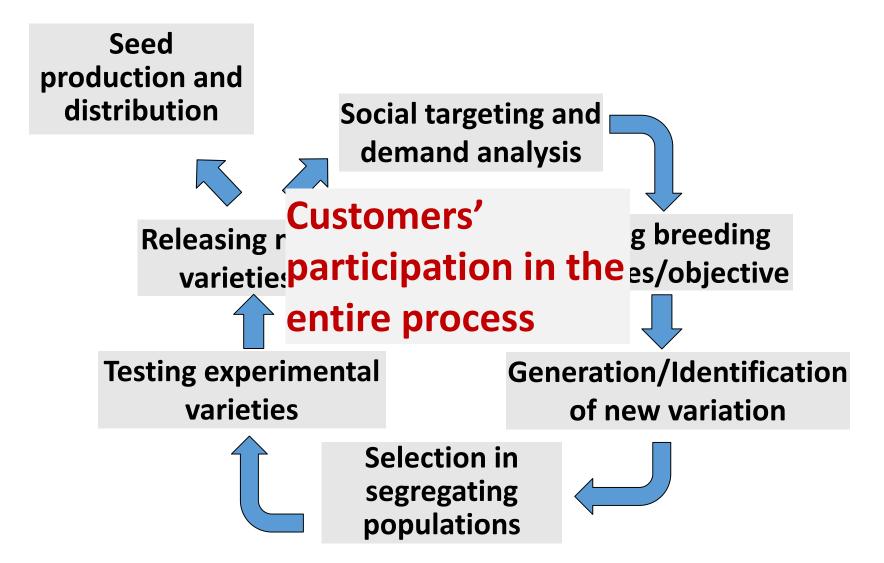
International Center for Agricultural Research

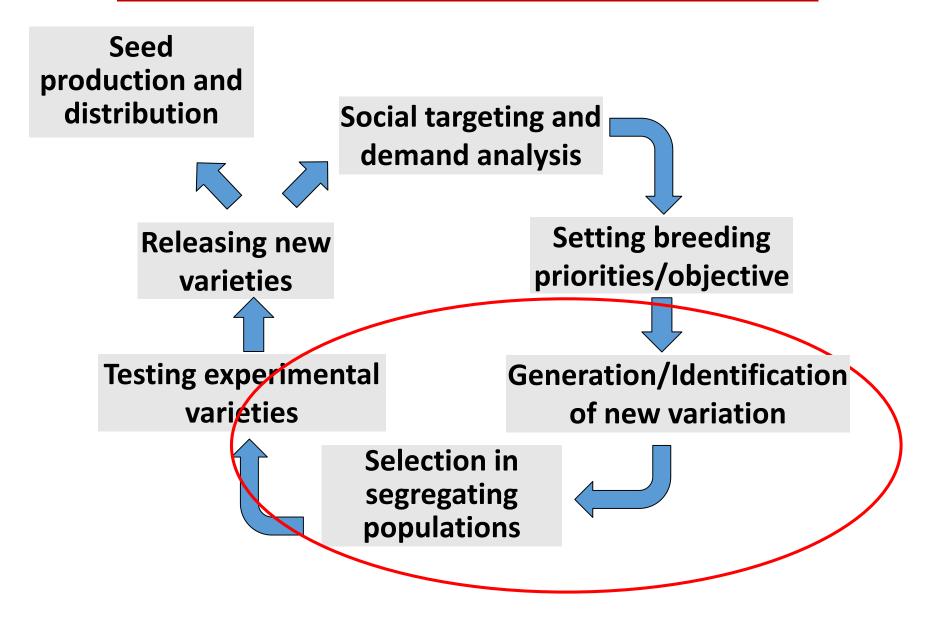
Plant breeding


in the Dry Areas

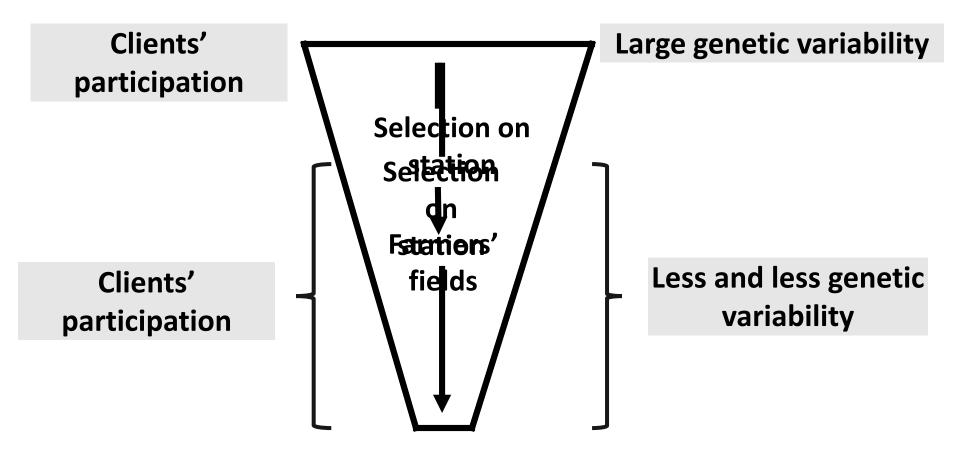
A professor of plant breeding from Cornell University before joining the Experiment Station as director in 1912, Webber was a "brilliant research scientist" whose research for the U.S. Department of Agriculture on citrus had made him well-known to California growers, wrote Harry Lawton and Lewis G. Weathers in chapter 5 of The Citrus Industry, Vol. 6.

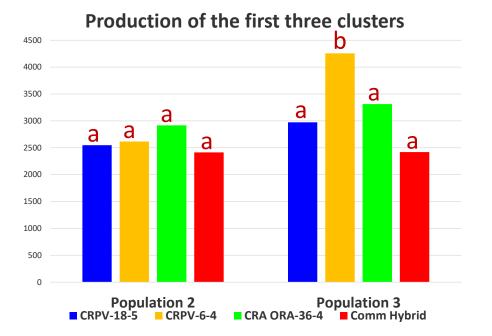
ITHACA, X. Y. PUBLISHED BY THE UNIVERSITY.


Support for research and production of this publication


At the University of Illinois, reliance on farmers was to some extent a necessary evil. In their own breeding work, university researchers were hampered by a lack of fields for trials and literally "farmed out" their inbreds for crossing to farmers who volunteered for the task. This did not sit well with the commercial breeders, **It was 1938** is could not be relied on to maintain accurate records of Keep the lines pure. At issue was the question of whether ordinary farmers were competent to manage the crossing of corn.

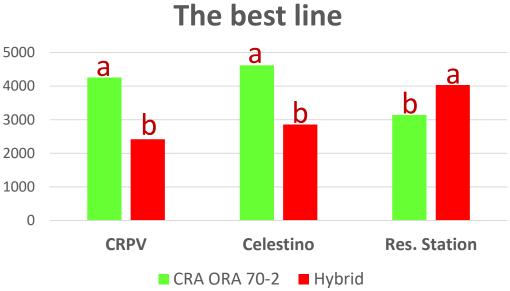
Twenty years earlier this was a task that Wallace had claimed "anyone" could do


Participatory Plant Breeding



Breeding Cycle – Main Stages

Participatory Variety Selection (PVS)



PPB in tomato

Campanelli et al. 2015. Participatory Tomato Breeding for Organic Conditions in Italy. Euphytica 204 (1) 179-197

Selection moved from Research Station to Farmers' Fields

Decisions shared between breeder and farmers

1995: our beginning

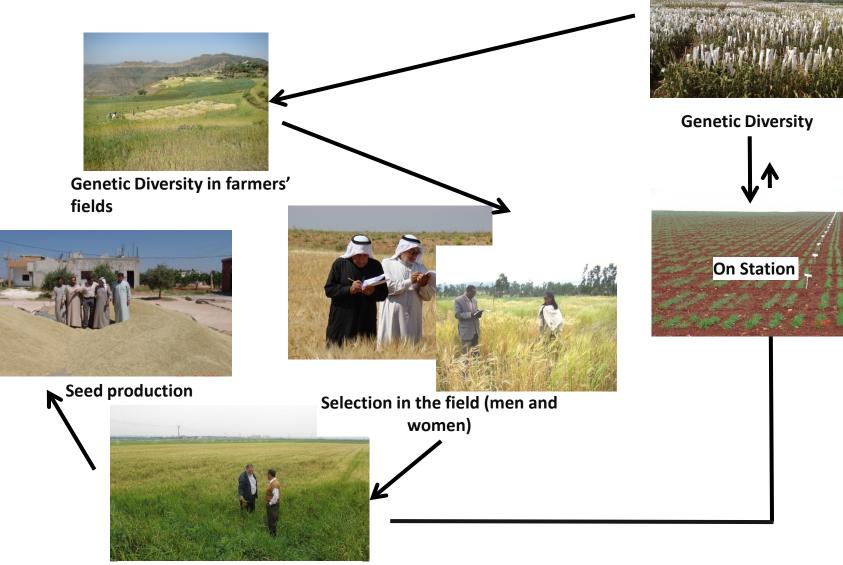
Participatory plant breeding

Proceedings of a workshop on participatory plant breeding 26-29 July 1995 Wageningen, The Netherlands

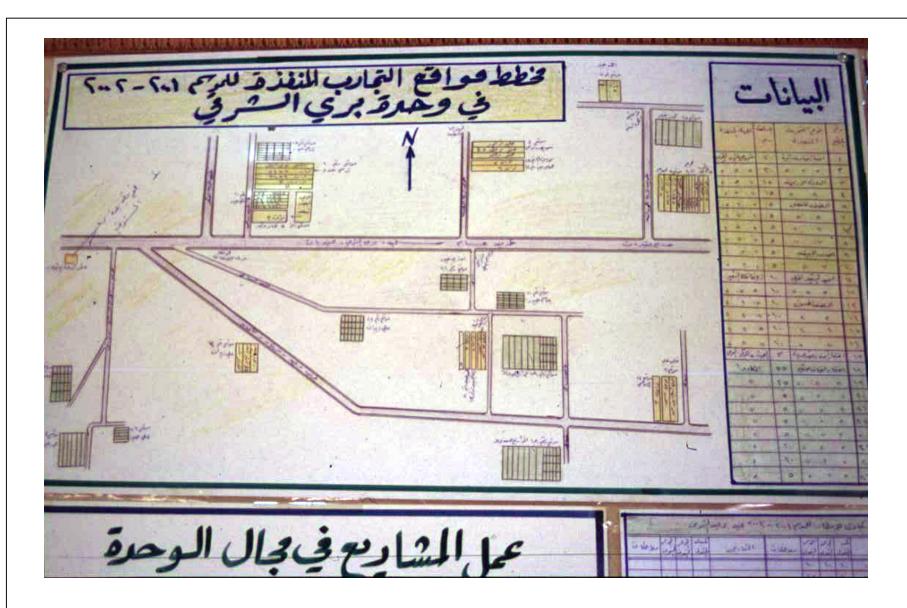
P. Eyzaguirre and M. Iwanaga, editors

of the main reasons for the failure of formal breeding to serve small, resource-poor farmers. Formal breeding has frequently adopted a negative interpretation of GE interaction. This has implied selection for broad adaptation, and consequently replacement of landraces with input-responsive cultivars ill-adapted to low-input and

1995 Jurn El-Aswad



Farmers + Public Institution



New varieties

One Model of Participatory Plant Breeding Program (one village)

The village IS the research station

At each stage and in addition to the usual data collected in a breeding program, a group of farmers score all the plots

Data collection

9

(T)

6

8

(2)

Ð

Ø

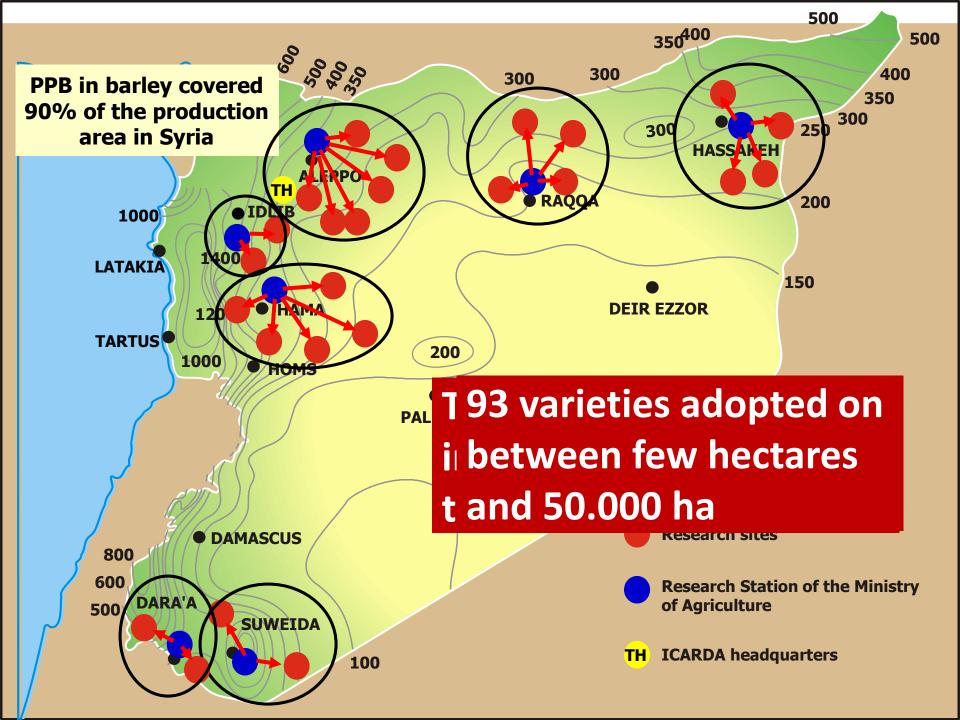
18

XI 🔒 🕤 · 🔿 · -	Figure 30.xlsx - Excel	
FILE HOME INSERT PAGE LAYOUT FORMULAS	DATA REVIEW VIEW DEVELOPER Nitro Pro 8	
Arial - 10 - A [*] A [*] ≡ ≡	= w/ F Wrap lext General T	AutoSur Fill -
Paste $\overset{\bullet}{\checkmark}$ Format Painter $\overset{\bullet}{\checkmark}$ B $I \ \underline{U} \ \underline{\lor}$ $\overset{\bullet}{\blacksquare} \ \underline{\bullet}$ $\overset{\bullet}{\blacktriangle} \ \underline{\bullet} \ \underline{\bullet} \ \underline{\bullet}$ $\overset{\bullet}{=} \equiv$	😑 💳 🚝 🚝 Marga & Center x 🔍 x 04 x 🔩 09 Conditional Format as Cell Insert Delete Format 🗍	Clear •
Clipboard 🗔 Font 🗔	Alignment 🗔 Number 🗔 Styles Cells	
D90 - : $\times \checkmark f_x$		
B D E F G H I J K L	O P Q R S T U V W X Y Z AA AB AC AD AE AF AG AH AI AJ AK	AL
2 1 1 1 1 1 1 4 16 Tadmor ICB00-0748		32.80
3 1 2 1 1 1 2 9 41 ArabiAl-		32.45
4 1 3 1 1 1 3 8 32 Harmal- ICB82-1169		
5 1 4 1 1 1 4 11 45 Furat2 -	2 W 40 44 4 237 236 36 1.6 1478.1 3 3 3 3 4 3 3 3 4 3 2 39.65 38.25	38.95
23 1 21 2 6 2 4 8 32 Harmal- ICB82-1169	39 2 W 40 46 6 206 145 36 1.6 1096.9 4 4 3 4 3 4 3 3 3 3 3 3 3. 34.35 33.85	34.10
24 1 22 2 6 2 3 10 43 Arta -	2 W 40 46 6 167 196 36 1.6 1134.4 2 3 2 2 3 3 2 3 3 2 2. 32.95 32.4	32.68
25 1 23 2 6 2 2 2 12 ChiCm// ICB98-1110	10 2 W 44 51 7 203 157 36 1.6 1125 4 4 3 4 4 4 3 3 4 3 3.6 32.75 31.8	32.28
26 1 24 2 6 2 1 6 26 Hml -	2 W 40 45 5 193 248 36 1.6 1378.1 3 4 4 3 4 4 4 3 4 4 3.7 32.7 32.35	32.53
27 2 1 1 1 1 1 1 1 2 ChiCm// ICB98-1110		34.20
28 2 2 1 1 1 2 9 41 ArabiAl-	2 W 30 36 6 161 140 3 1.6 940.63 3 1 2 3 2 3 3 3 3 2 2.5 35.3 33.35	34.33
29 2 3 1 1 1 3 5 22 Soufare ICB92-0926		
		35.35
		38.45
		28.83
55 3 4 1 1 1 4 6 26 Hml -		34.45
71 3 19 2 5 2 6 6 26 Hml -		33.75
72 3 20 2 5 2 5 5 22 Soufare ICB92-0926		28.58
73 3 21 2 6 2 4 10 43 Arta -	2 W 24 30 6 73 108 36 1.6 565.63 1 1 2 0 0 2 0 1 2 2 1 35.45 34.75	
74 3 22 2 6 2 3 12 52 Nawair -	2 W 29 34 5 55 70 36 1.6 390.63 1 1 0 1 1 1 1 0 0 0 0 0.6 27.85 28.25	
75 3 23 2 6 2 2 8 32 Harmal- ICB82-1169		
76 3 24 2 6 2 1 2 12 ChiCm// ICB98-1110	10 2 W 29 35 6 76 85 36 1. 503.13 3 3 3 3 3 4 2 2 2 2 3 2.9 32.5 32.6	32.55
77		
78 Min	24 30 4 55 62 1.6 90.63 1 0 0 0 1 0 0 0 0 0.6 27 25.1	26.95
79 Max	50 56 9 261 264 1.6 50 4 4 4 4 4 4 4 4 4 4 4 39.65 39.95	39.73
80		
81		
FLDBOOK (+)		
READY 🛅		E
👩 🚞 🔯 😻 🔼 🏉 🔉) 🔨 💥 💏 🧑 S 🖬 📴 🖬	*

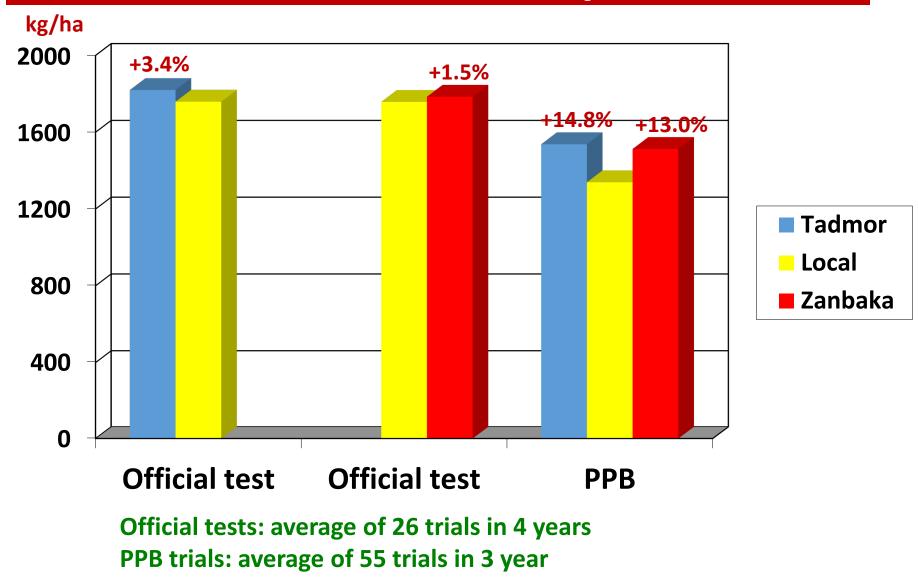
After the statistical analysis of the trials, the final selection for the following stage is done in a joint meeting with farmers

ام العمد - تجربة اولية - افضل ٢٠ صنف انتاجيا - ٢٠٠٩

GY


	ترتيب انتاج الحب	انتاج الحب كغ/هكتار	نرتيب وزن ۱۰۰ حبة	وزن ۱۰۰۰ حبة	ترتيب التقاب المزارع	انتخاب المزارع	ئرتيب طول السنبلة	طول السنبلة سم	ئرتيب طول النبات	طول التبات سم	اسم الصنف	المخل
11 1	1	198.	T1	77,77	1.	۳,۸۱	٥Å	٧,٩٥	Ví	\$9,11	Clipper//WIXX1XY/WIXX14/T/SLB_1	14
Cen 1.8-	۲	1771	۳۷	rr.11	09	5,15	Y	17.1	11	£A,V	Harmal	109
	٣	14.5	AA	11,11	09	7,11	70	V,91	1117	£V,VY	WIYY41/Furat Y	110
- حرمل	1	1195	17.	٢٠,1٩	1.1	7,70	۷	٨,٣٢	A	01,.1	Zanbaka/e/Pyo/Cam//Avt/RM10+A/T	10.
= h -	0	17.00	YE	rr,v1	10	1,14	٧	٨,٣٢	10	01.41	WITTS1/1/V.TA/TV#4/F/74-AT//DS/A	
aps -	1	1209	19	11,17	70	T,VT	1.1	V.11	183	£1,7£	Tadmor//ER/Apm/Y/H.spont. 1-7	111
- and	Y	1101	11	YE,11	٤٧	Γ,1Λ	1	A, YY	Y	05.5	Clipper/Volla/T/Arr/Esp//Alger/Ceres	11
1 1.	٨	1777	9	12.91	oi	T,11	0Å	V,90	A£	٤٨,٩٨	Clipper//WINTINTY/WITTIN/%/Soufar	1.1
- 20-	9	1774	11.	r v	1.	٢,٨١	Y	٨,٣٢	F1	01,.9	Hml1/e/Cg/Cm//Apm/1/1111./1/gi	154
	1.	1777	1	TV, TE	۳٧	۳,۷۱	٣	٨,٦٨	1A	01,10	ArabiAbiad/Arar//H.spont. 1-9/Tadr	111
400 -	11	1777	£ -	٢٢,.٢	11.	¥,4V	1.1	V,19	11.	1V.T1	Arta/*/Legia/LaurelS//Aleli	iY
	14	1111	7A	٣١,٨٤	97	٣,٤٣	٤Y	٨.٢٢	1.1	141	WITT1//WITT14//WIT14//Lignee 1T1	14
A	117	11-1	**	17,17	۲A	T,VE	٧	٨,٣٢	oi	0.,.1	ChiCm/Anoy//Albert/Y/Alger/Ceres*	01
1	11	11-4	175	5.,90	97	T, ET	1.1	V.19	11.	\$1,.1	ChiCm/AnoY//Albert/Y/Alger/CeresT	11
12	10	17-Y	19	r1,17	Y)	T,01	0Å	V,90	1.4	£9,£A	Hml/1/Arar/H.spont.11-10//Hml/T/H.	111
	17	17.1	117	11.10	£	٢,٨٦	٤٧	٨.٢٢	77	01,V	Moroc9-Ye//WITT1)/CI-1TAV/T/H.sp	۳۳
	14	1090	110	11.19	YA	T.OY	0A	V.90	۳.	01,4	Sara/1/Moroc1-ve/Hml-+1/e/Clipper	7.4
· C · I	14	1094	Y	11.01	٨	٣,٨٢	٧	٨,٣٢	٥	01.01	Hml/T/ArabiAbiad/Arar//H.spont.11-	111
1001	19	109.	11	r£.r9	1EV	1.41	100	V.10	104	11,41	Arta/T/Legia/Laurel'S//Aleli/e/Roho/	i٣
	۷.	1041	AA	**,.*	4"	٣,٤٣	1.1	4,19	1.7	11,"1	Clipper//WITTITT/WITTIT///SLB_	11
	100	1774	114	14.61	107	1,10	11.	1,70	11	07,.1	فرات ۱	101
	**	101.	۳۳	**.**	10.	1,11	٥Å	V.10	1.1	11,71	قرات ۲	101
	01	1114	11	r1,rv	٦٢	٢,1.	٧	٨,٣٢	01	0.,11	فرات ۳	101
	17	1647	٩٨	51,70	105	11.71	٥A	٧,٩٥	110	£V, • A	عربى أسود	100
	YY	1614	1	*1,71	161	¥,VV	110	V. 1 Y	110	10,71	نواعير ا	101
	۲T	1044	141	5.,95	95	5.51	0.7	٧,٩٥	115	10,41	عرطة	104
	λo	1109	1.1	**.*.	157	۲,۸٦	111	V.Y1	144	17,70	عربى أبيض	104
	Y	IVTÉ	4.4	11.11	09	1,11	۷	٨,٣٢	11	£A,Y	<u>حرمل</u>	109
	17	1EAT	AA	11.41	144	٣,٠٨	٥A	¥,90	15.	11,44	واسطة ا	11.

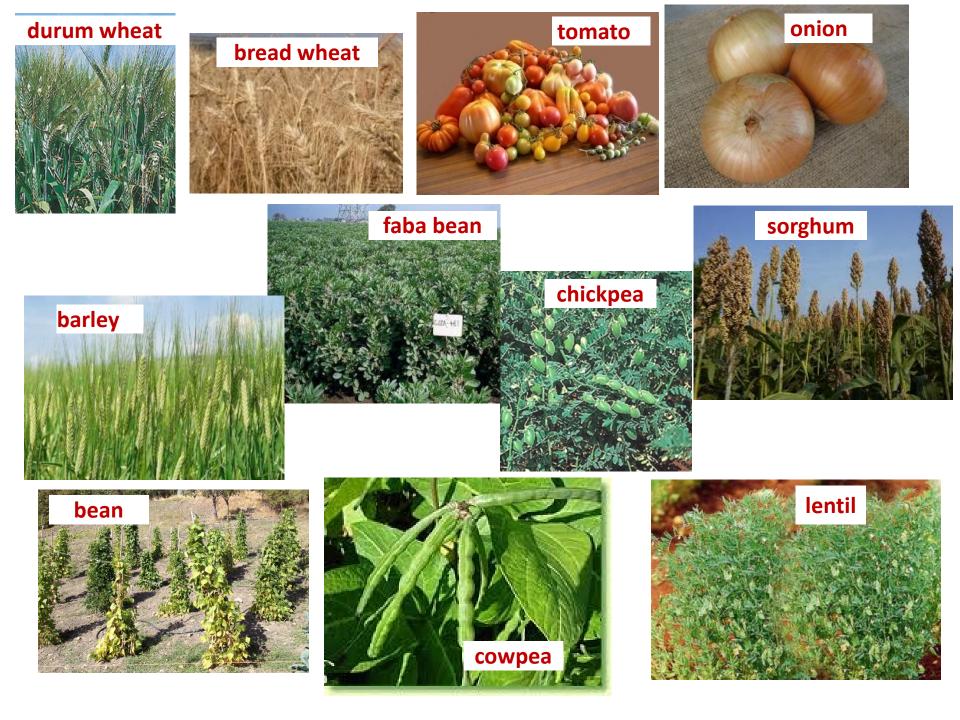
Precision and Relevance



Difference between official variety trials and PPB trials in Syria

It is possible to do it here?

Rice in Bhutan



Average grain yield (t/ha) of farmers' (FS) and breeder's selections (BS) in Syria

Loc.	Mean	FS	BS	prob
Ibbin	3.2	4.6***	4.0***	n.s.
Ebla	2.9	3.5*	3.2**	n.s.
Tel Brack	3.7	4.2	4.0*	n.s.
J. Aswad	1.4	2.0*	1.7**	n.s.
Bylounan	0.3	0.5*	0.3	n.s.
Al Bab	0.4	0.7***	0.5***	***
Melabya	0.7	0.9 ***	0.9***	n.s.
Bari Sharki	1.0	1.4*	1.1	n.s.
Suran	2.5	2.6	2.6	n.s.

Ceccarelli S, Grando S, et al. 2000. A Methodological Study on Participatory Barley Breeding. I. Selection Phase. Euphytica 111: 91-104.

On farm performance of bush bean varieties selected on station by farmers and breeders in Rwanda

	% of trials where selections out yielded the local	Yield increase (%)
	Farmer S	election
1989A	73 ns	3.9 ns
1989B	89 **	33.4 **
1990A	64 ns	12.9 ns
1990B	83 **	38.0 **
	Breeder Se	election
1987A	51 ns	6.7 **
1988A	50 ns	2.6 ns
1988B	50 ns	7.6 **

Sperling et al. 1993. Rethinking the farmer's role in plant breeding: local bean experts and on-station selection in Rwanda. Experimental Agriculture 29: 509-519

Farmers Selection Criteria

Farmers are interested in a wider range of traits than commonly expected

Although yield is quoted as the most important criterion, they in fact select also for several other traits

Farmers' selection criteria vary with the environment

Tall or short? Plant height of barley lines selected by a breeder and a farmer in a research station (favorable environment) and in the farmer field in a dry area

Selected by	Selected at		
	Res. Station	Farmer's field	
Farmer	71.1*	45.1***	
Breeder	71.8*	42.8*	
Pop. mean	77.5	39.6	

*,*** Differences significant at P<0.05 and P<0.001, respectively

PPB and Diversity

PPB and diversity

modern

Centralized non participatory selection in a wet Research Station

landraces

Decentralized participatory

dry

wet

PPB and in situ conservation

Through PPB several farmers are becoming aware of the value of landraces and more interested in their conservation

Participatory Plant Breeding

PPB is not a competition or a comparison of skills: it is merging two types of knowledge

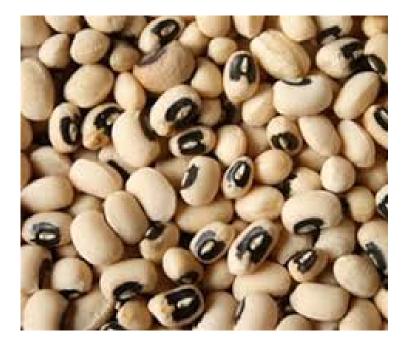
PPB is not revolutionary. It recognizes that ultimately are the farmers who decide whether or not to grow a new variety

Participatory Plant Breeding

Fits crops to the physical and agronomic environments and to different uses

Adapts crops to evolving agronomic practices

It may be the only possible breeding for remote areas and minor crops


Women Participation

Seeds or Leaves?

The case of Cowpea in Uganda

Northern Gulu

Lake Albert

Lake-Kyoga

Ugandà,

Eastern

Katakwi

Busia

Mountains

Western

Central

Rampala

US Dept of State Geographer © 2016 Google

Image Landsat

Homa Bay Nyamira Kisii Bomet

Kakamega

Vihiga Nandi

Siaya Kisumu Kisumu Keric

Rut

West Poko

(Uasin Gist

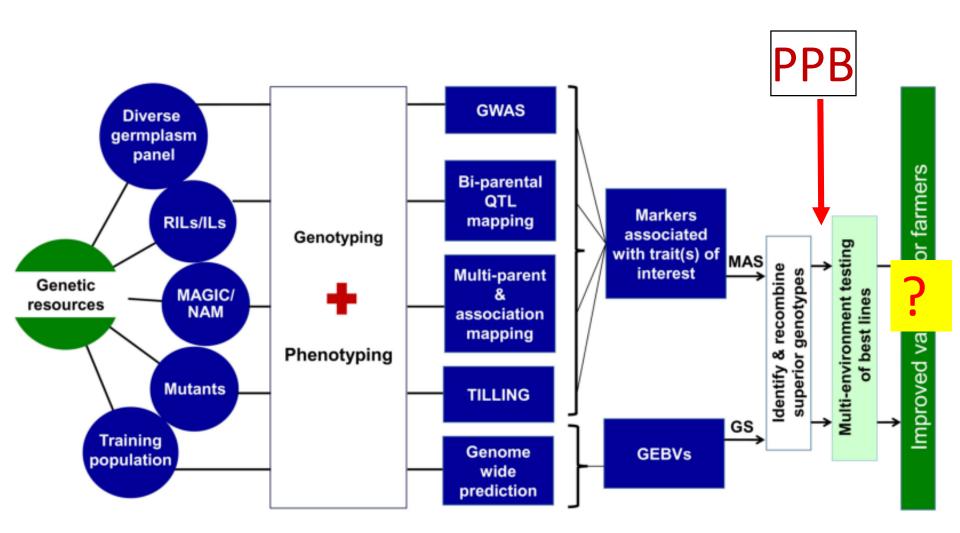
E

Trans Nzoia,

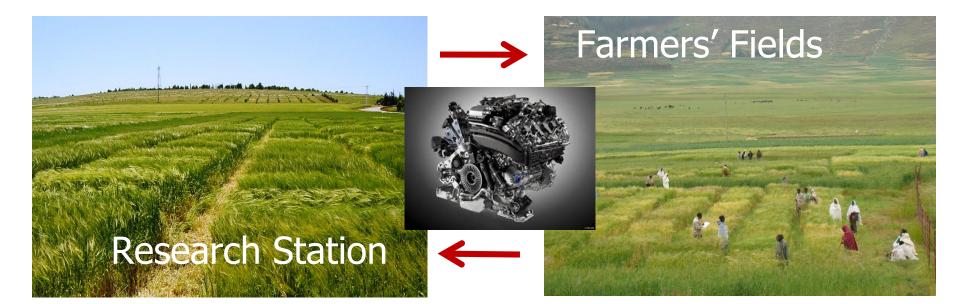
Bungoma

Design the trials together

Listen, listen, listen



Redesigning the trials


Genomic Assisted Breeding

Varshney et al, 2014. Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biol 12(6)

Participatory Plant Breeding: the weakness of the model

The attitude of Institutions and researchers Many set (usually energy) battle property and the set of the set

Experimental Agriculture (2019), 1–11 doi:10.1017/S0014479719000127

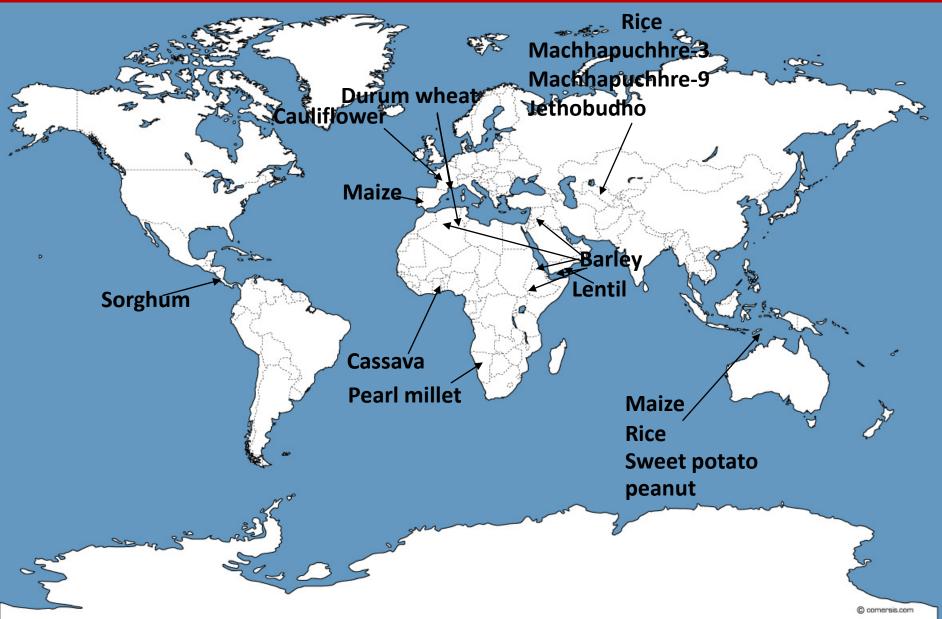
REVIEW

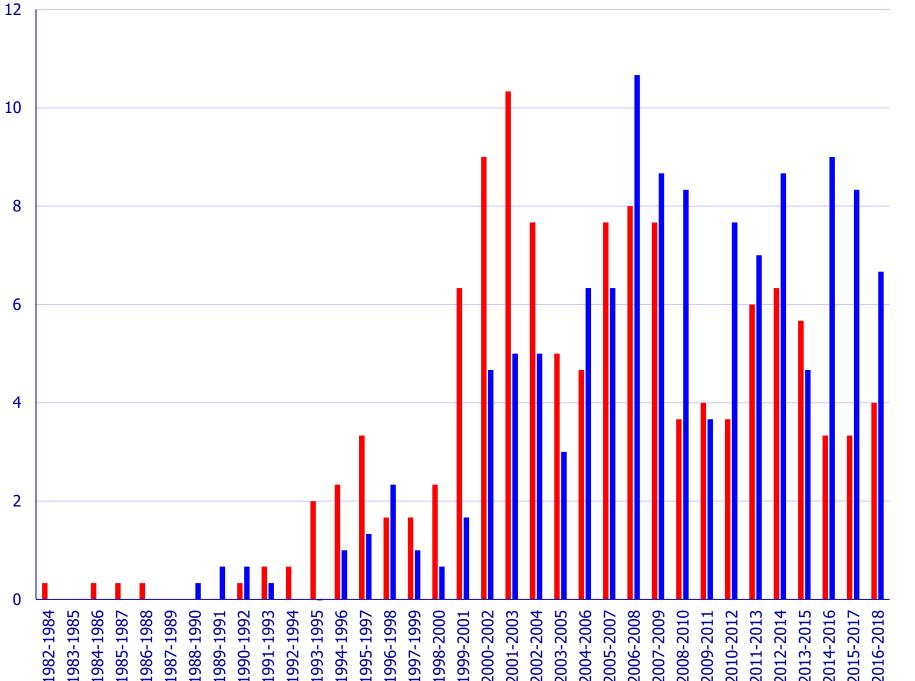
Participatory plant breeding: Who did it, who does it and where?

Salvatore Ceccarelli^{1.*}^(D) and Stefania Grando²

¹Consultant, Rete Semi Rurali, Scandicci 50018, Italy and ²Independent Consultant, Ascoli Piceno 63100, Italy *Corresponding author. Email: ceccarelli.salvatore83@gmail.com

(Received 26 November 2018; revised 01 March 2019; accepted 04 March 2019)

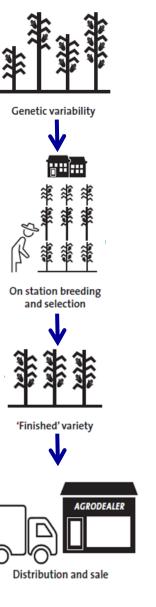

Abstract


The paper provides an overview of institutions, scientists, and practitioners involved over the years in the various ways in which participatory plant breeding (PPB) is implemented, with indication of the crops involved and the countries in which it took place, or is still taking place. This might help creating a better awareness of the scope (both geographical and crop wise) of the different methodologies as well as of their advantages, disadvantages, applicability, and limitations. Through a literature survey, we found 254 publications showing that over a period of 36 years participatory approaches in plant breeding have been used in 69 countries (10 developed and 59 developing) with 47 crops including self-pollinated, cross-pollinated, and vegetatively propagated crops, by several Institutions including CGIAR centers, universities, and NGOs. We argue that there are no obvious scientific or technical reasons limiting the use of PPB, and

69 countries have or have had PPB programs on 47 crops

Examples of varieties bred with participatory plant breeding and grown by farmers

151 (59.4%)


.... BUT, THEN IT IS NOT A SCIENTIFIC ISSUE! Universities

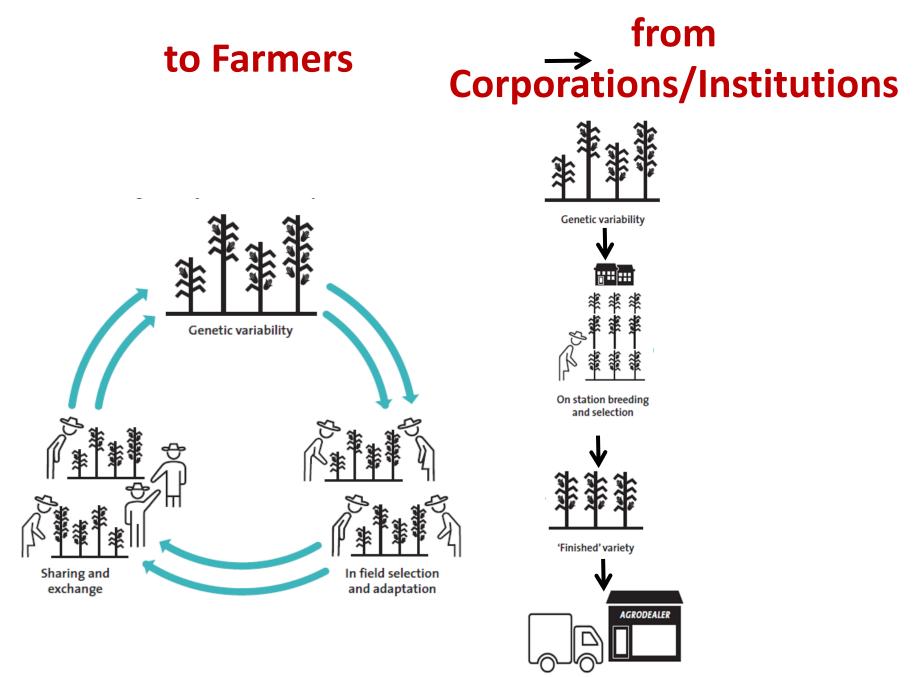
20 countries

Mostly in USA, UK and Italy

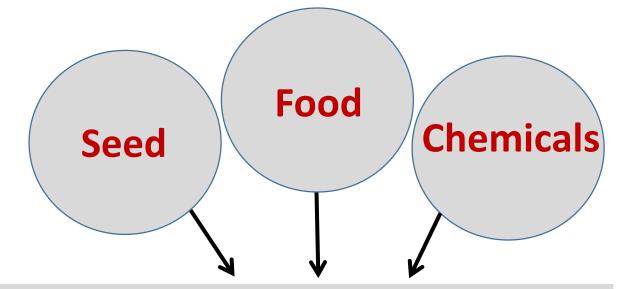
From farmers To Institutions/Corporations

Seed laws

Progressive corporate concentration of the seed market


Kloppenburg J, 2010. Impeding Dispossession, Enabling Repossession: Biological Open Source and the Recovery of Seed Sovereignty. Journal of Agrarian Change, 10: 367–388

Participatory Plant Breeding From Dispossession



Kloppenburg J, 2010. Impeding Dispossession, Enabling Repossession: Biological Open Source and the Recovery of Seed Sovereignty. Journal of Agrarian Change, 10: 367–388

Distribution and sale

Power, Authority and Control

Evolutionary (participatory) plant breeding may offer a solution as in this case institutions are no longer indispensable

Thank you

1 12 +

25