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ABSTRACT 23 

There has been recently a renewed interest for variety mixtures due to their potential capacity 24 

to stabilize production through buffering abiotic and biotic stresses. Part of this results from 25 

complementarity and/or compensation between varieties which can be assessed under mixed 26 

stands only. Mixing ability of varieties can be partitioned into General and Specific Mixing 27 

Abilities (GMA and SMA) that have been estimated so far through the evaluation of binary 28 

mixtures in complete diallel designs. However, the number of mixtures increases exponentially 29 

with the number of studied varieties, and the only feasible devices are incomplete designs. 30 

Despite the long history of statistical analysis of variety mixtures, such incomplete design 31 

analysis have rarely been addressed so far. To fill the gap, we proposed a generalized 32 

statistical framework to assess mixing abilities based on mixed models and BLUP method, with 33 

an original modeling of plant-plant interactions. The approach has been applied to a panel of 34 

25 winter wheat genotypes observed in two contrasted experimental designs: (i) an incomplete 35 

diallel of 75 binary mixtures, and (ii) a trial including higher order mixtures (four and eight 36 

components). The use of mixing ability models improved prediction accuracy (of modeled 37 

values for observed traits) in comparison to predictions from the mean of the pure stand 38 

components, especially in the first experiment. Genetic variability was detected for the GMA of 39 

yield and its components, whereas variability for SMA was lower. GMA predictions based on 40 

the diallel trial were highly correlated with the GMA of the second trial providing accurate inter-41 

trial predictions. A new model has been proposed to jointly account for inter and intra-genotypic 42 

interactions for specific mixing ability, thus contributing to a better understanding of mixture 43 

functioning. This framework constitutes a step forward to the screening for mixing ability, and 44 

could be further integrated into breeding programs for the development of intra- or inter-specific 45 

crop mixtures. 46 

 47 

Key-words: intra-specific mixtures, plant-plant interactions, diallel, Triticum aestivum, BLUP 48 

 49 
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1. INTRODUCTION 50 

Crop genetic diversity is a major lever that can be mobilized to face current challenges in 51 

agriculture such as the increasing climatic stochasticity and the necessity to reduce the use of 52 

synthetic inputs (Newton et al. 2009). Among diversifying strategies, cereal variety mixtures 53 

have attracted increasing interest in recent decades (Kiær et al. 2009, 2012, Borg et al. 2018, 54 

Reiss and Drinkwater 2018). In particular, mixtures of susceptible and resistant cereal varieties 55 

have been shown to provide a larger reduction in the development of foliar diseases than 56 

expected from the sum of their components when complementary resistances are combined 57 

(Wolfe 1985; Finckh and Mundt 1992; Zhu et al. 2000; de Vallavieille-Pope 2004). Using variety 58 

mixtures may also allow buffering abiotic and other biotic stresses, therefore leading to a 59 

stabilization of production (Østergård et al. 2005; Kaut et al. 2009; Creissen et al. 2016), 60 

through complementarity and compensation mechanisms that might occur between plants of 61 

different varieties, as shown in species mixtures (Tilman et al. 1997). 62 

Despite these potential advantages of mixtures, very little literature provides practical 63 

guidelines for designing mixtures, and consequently mixtures used in agriculture are often 64 

composed of the varieties showing the best performances in pure stand (Borg et al. 2018). 65 

However, it has been shown that mixtures performances are not necessarily correlated with 66 

the means of their pure stand components: interaction between plants with different genotypes 67 

(Finckh and Mundt 1992) can make it difficult to predict the behavior of mixtures. Therefore, it 68 

is important to accurately estimate and predict the performances of varieties in mixtures. 69 

Screening a set of lines for their mixing ability nevertheless presents many methodological 70 

challenges, in particular in the case of a high number of genotypes and an exponentially higher 71 

number of binary or higher order mixtures, and calls for adapted statistical methods (Dawson 72 

and Goldringer 2012; Barot et al. 2017) that could be used to detect the best varieties for mixing 73 

conditions, and to develop specific breeding schemes for intra-specific mixture design. 74 

Mixing ability relies on an analogy with the concept of combining ability developed for hybrid 75 

breeding (Sprague and Tatum 1942). By assessing a set of p genotypes in all possible hybrid 76 
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combinations, the combining ability can be estimated and partitioned between the general 77 

combining ability of the genotypes and the specific ability of each particular combination 78 

(Griffing 1956). The analogy has first been proposed for the study of plant interactions between 79 

rows of genotypes (Jensen and Federer 1965) and has then been broadly applied to the study 80 

of binary mixtures for estimating mixing ability, both when the performance of each component 81 

is accessible in the mixture (McGilchrist 1965; Chalbi 1967; Gallais 1970; Federer 1979; 82 

Federer et al. 1982), or when only the mixture performance is surveyed (Federer 1979; Federer 83 

et al. 1982; Gizlice et al. 1989; Knott and Mundt 1990; Gallandt et al. 2001). The work 84 

developed hereafter deals with this second case, where only the global performance of each 85 

mixture is available. The general mixing ability (GMA) refers to the average performance of a 86 

variety in mixture (additive term) and the specific mixing ability (SMA) relates to the interaction 87 

between the two components of a particular combination of varieties. According to Griffing’s 88 

decomposition of combining ability in hybrids (1956), the performance of binary mixtures can 89 

be modeled as: 90 

 1
2 ( )ijbr b i j ij ijbrY µ GMA GMA SMA , 91 

where 
ijbrY  is the performance of the mixture of varieties i  and j  for block b  (and possibly 92 

replicate r  in block b ), µ  is the intercept, b  is the effect of block b , iGMA  is the general 93 

mixing ability of variety i , 
ijSMA  is the specific mixing ability of varieties i  and j  grown 94 

together, and 
ijbr

 is the error term of the observation. The 1
2  coefficient is applied on the GMA 95 

term since each variety accounts for only half of the plants grown in the plot (in case of equal 96 

proportions at sowing). 97 

However, due to the need to grow all the possible binary mixtures (that is to use a complete 98 

design) among a set of varieties to estimate GMA and SMA, the field evaluation can be 99 

cumbersome regarding the cost and management of experimental trials. For this reason, 100 

authors have usually applied this method to a limited number of varieties (e.g. six or eight in 101 

Gallandt et al. 2001; Gizlice et al. 1989 respectively). A key constraint for experimental efforts, 102 
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this curse of dimensionality has also been encountered when studying hybrids’ combining 103 

ability, and solved by the use of incomplete designs (Jensen 1959). By reducing the number of 104 

mixtures to grow for each variety, such designs allow a wider range of varieties to be evaluated. 105 

Nonetheless, due to the reduced number of observed mixtures using the Griffing’s model 106 

(1956), the use of incomplete design raises the question of the definition of GMA and SMA. If 107 

GMA and SMA are defined assuming a complete design setting, then some GMA and SMA 108 

cannot be estimated in practice if the actual design is incomplete. Otherwise, if GMA and SMA 109 

are defined conditionally to the set of observed mixtures only, then the definition of GMA and 110 

SMA is specific to this set of mixtures. 111 

Alternatively, hybrid’s geneticists suggested the use of mixed linear models for the analysis of 112 

crossing designs, in which the estimates of GCA and SCA are provided by Best Linear 113 

Unbiased Predictors (BLUP, Möhring, Melchinger and Piepho 2011). In this framework, both 114 

the parameters of the models (namely the intercept and the variance of the random effects) 115 

and the (random) effects to be predicted have the same definition whatever the design (see 116 

Appendix A for a theoretical comparison of the two approaches). Interestingly, despite the 117 

known similarity between binary mixtures and hybrids, the methods developed for hybrids’ 118 

unbalanced designs have not been adapted so far to mixtures. 119 

Moreover, there is also a need for suitable approaches to handle higher order mixtures (i.e. 120 

mixtures including more than two components) as they have been found useful in different 121 

studies (Lopez and Mundt 2000; Mille et al. 2006), and are closer to the three to five-way 122 

mixtures commonly grown by farmers. Indeed, higher order mixtures present strong 123 

agronomical interest, such as their ability to reduce disease development (Newton et al. 1997, 124 

Borg et al. 2018), and can provide multiple agroecosystem services (i.e. weed suppression, 125 

yield and grain quality when considered altogether, Lazzaro et al. 2018). Here the mixtures 126 

reveal their fundamental divergence with hybrids: if hybrids are constrained to binary and 127 

balanced combinations (1:1 of the two parental genomes, except when considering polyploids), 128 

mixtures allow all degrees of freedom, considering any number of components, in any possible 129 

proportion. 130 
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 131 

The aim of this article is to provide a methodological framework for the analysis of mixing ability 132 

in incomplete designs for binary and higher order mixtures based on dedicated statistical 133 

methods using mixed models. For a given panel of genotypes, this allows (i) the assessment 134 

of the relative importance of the additive part of the mixing ability vs the part that results from 135 

specific interactions due to the combinations of genotypes (using two modeling of the inter and 136 

intra-genotypic interactions thus providing a better understanding of mixture functioning), (ii) 137 

the identification of the best performers in mixtures, and (iii) the prediction of mixture 138 

performances using mixing ability modeling. The approach was applied to two contrasted 139 

cases: (i) a trial of wheat binary mixtures and their pure stands, and (ii) a trial including higher 140 

order mixtures. 141 

 142 

 143 

2. MATERIAL AND METHODS 144 

2.1 Modeling of mixing ability: 145 

2.1.1 Griffing’s model with fixed GMA and SMA effects 146 

Mixing ability can be modeled using the same formalism as proposed by Griffing for combining 147 

ability (1956). In this setting, the GMA and SMA are defined as fixed effects and the residual 148 

term as random. This model is associated to the particular context of complete diallel 149 

experiment design i.e. (i) all the possible mixtures are assessed and (ii) only binary mixtures 150 

are considered, in 1:1 proportions. The use of this model in a broader context raises some 151 

statistical issues: in case of incomplete design the condition (i) is not fulfilled, so the definition 152 

of the terms becomes unclear, the estimability of the GMA and SMA is not warranted and the 153 

estimators initially proposed by Griffing are no longer valid; if requirement (ii) is not met, a 154 

model for SMA in higher order mixture should be proposed. To address the problem of the 155 

definition of GMA and SMA resulting from assumption (i) we propose to treat the genetic effects 156 
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as random effects in a mixed model (as proposed, but not developed, by Griffing 1956, and 157 

further developed by Möhring et al. 2011 for the prediction of combining ability in hybrids). 158 

 159 

2.1.2 Models with random GMA and SMA effects 160 

In order to analyze the diverse experimental designs allowed by mixtures, we have adapted 161 

the previous model to binary and higher order mixtures (but considering in a first step equal 162 

proportions for each component). First, the model can be defined to estimate a block effect and 163 

to predict GMA effects: 164 

( )

( )

( ) 1

1

( )

K n

nbr b k n nbr

k n

Y µ GMA e
K n

 (Model 1) 165 

where nbrY  stands for the performance of the r -th replicate of mixture (or genotype) n  in block 166 

b ,  is the mean of the experiment, b  is the effect of block b , ( )K n  is the number of 167 

components of mixture n  and ( )k n  stands for the k -th genotype within mixture n  (or 168 

( ) 1K n  and ( ) 1k n  if n  is a pure stand), 
( )k nGMA  is the general mixing ability of the 169 

genotype, and nbre  is the residual term. 170 

In a second model, we included the SMA effects corresponding to first order interactions 171 

between genotypes (i.e. at the level of pairs of genotypes), supposing that higher order 172 

interactions are negligible (their estimation would require an even larger experimental effort). 173 

The model is defined as follows: 174 

( ) ( ) 1 ( )

( ) ( ) '( )( )
( ) 1 ( ) 1 ( ) ' ( ) 12

1 1

( )

K n K n K n

nbr b k n k n k n nbrK n
k n k n k n k n

Y µ GMA SMA e
K n

 (Model 2) 175 

where b  is the effect of block b , ( )

2

K n  is the number of all possible pairs of different 176 

genotypes in mixture n  of ( )K n  components when ( ) 1K n , and 
( ) '( )k n k nSMA  stands for 177 

inter-genotypic interaction between components ( )k n  and '( )k n  of the mixture. 178 
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It should be noticed that n  can be either a mixture (m) or a pure stand (p). The pure stands 179 

are thus included in the estimation of the GMA as an intra-genotypic mixture (in contrast with 180 

Gallais 1970), with the originality to consider the SMA of pure stands (SMAii). This intra-181 

genotypic interaction SMAii indicates how a given genotype performs in pure stand compared 182 

to the mean of mixtures comprising this genotype. In the case of pure stands (when ( ) 1K n  183 

and only variety ( )l n  is grown) the model writes: 184 

( ) ( ) ( )nbr b l n l n l n nbrY µ GMA SMA e , 185 

where 
( ) ( )l n l nSMA  stands for intra-genotypic interaction within the grown genotype in pure 186 

stand. The importance of intra-genotypic competition has been raised before, but only in the 187 

context of experiments where the performance of each component in a mixture is accessible 188 

(Gallais 1970). The access to intra-genotypic SMA through the integration of pure stands 189 

directly in the analysis therefore provides an original description of the effect of competition in 190 

a pure stand. 191 

In addition to the residual term, the GMA and SMA terms are also defined as random effects 192 

which ensures estimability even for incomplete designs. The precise distribution of the random 193 

effects will be detailed in the following section (2.2). 194 

Higher order mixtures might be interesting to characterize mixing ability of genotypes, since for 195 

a given number of plots, they allow to observe each genotype interacting with a higher number 196 

of partners compared to a design of binary mixtures only, though with a lower contribution of 197 

the genotype to each mixture performance. 198 

 199 

2.1.3 Intra-genotypic interactions in mixture 200 

In a mixture, a plant is exposed to inter-genotypic interactions but also to intra-genotypic 201 

interactions, so we modified the model to better describe the biological reality for specific 202 

effects, according to the components proportions in mixture: 203 
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( ) ( ) ( )

( ) ( ) '( )

( ) 1 ( ) 1 '( ) 1

1 1

( ) ( ( ))²

K n K n K n

nbr b k n k n k n nbr

k n k n k n

Y µ GMA SMA e
K n K n

 (Model 3) 204 

where b  is the effect of block b . In this model, intra-genotypic interaction ( '( ) ( )k n k n ) is 205 

therefore always part of the mixture performance, for any mixture order ( ( ) 1K n ). For 206 

instance, for a given binary mixture n  of genotypes i  and j , the interaction term between the 207 

components can be written as: 1 1 1
4 2 4ii ij jjSMA SMA SMA  since 

ji ijSMA SMA . Observe 208 

that for ( ) 1K n , Model 2 and Model 3 coincide. The coefficients 1
( ( ))²K n  represent the 209 

expected weight of each kind of neighborhood in the plant community, assuming a random 210 

distribution of genotypes in the plant community. It should be noticed that due to the differences 211 

in SMA effects weighting, the SMA variance and SMA BLUPs are expected to be higher with 212 

Model 3 than with Model 2. Nevertheless, the integration of neighboring probabilities in the 213 

modeling of mixing ability (especially through the introduction of intra-genotypic interactions 214 

within mixture) constitutes a novel advance in mixture analysis. 215 

 216 

 217 

Figure 1: Schematic representation of plant interactions modeled by Model 2 and Model 3 218 

 219 

The motivation for considering both models is that Model 2 only accounts inter-genotypic 220 

interactions within mixtures, while Model 3 also accounts for intra-genotypic interactions in 221 

mixtures (Figure 1). For convenience we adopted notations for all models similar to the 222 

Griffing’s notations for combining ability. We emphasize that the interpretation of the different 223 

terms is quite different between Model 2 and Model 3. To illustrate these differences, we 224 

consider the expected performance over all possible equally weighted mixtures of order K that 225 
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include a given genotype k. This amounts to work conditionally on all random effects that 226 

depend on k only, so we denote this quantity by ( | , )E Y k K . 227 

One has 228 

( | , ) kGMA
E Y k K µ

K
    if K>1  in Model 2 229 

( | , ) k kkE Y k K µ GMA SMA    if K=1  in Model 2 230 

( | , )
²

k kkGMA SMA
E Y k K µ

K K
     in Model 3 231 

As a consequence, kkSMA  can be interpreted as the expected difference in performance 232 

between pure stand and mixture in Model 2, but not in Model 3 where it also includes intra-233 

genotypic interaction within mixture. Although the interpretation of kkSMA  is different from the 234 

one of 'kkSMA  in Model 2, we assumed a common distribution for these two terms in the 235 

following to reduce the number of variance parameters to be inferred. 236 

 237 

2.2 Statistical analysis: 238 

Inference method 239 

The mixed model framework has already been widely applied to plant breeding (Bernardo 240 

1996; Falconer et al. 1996; Lynch and Walsh 1998; Piepho and Möhring 2007), but to our 241 

knowledge not to crop mixing ability analysis. This framework allows studying mixtures of any 242 

order in incomplete designs, ensuring model estimability (as discussed above). 243 

Models 2 and 3 can be expressed in a matrix form as 244 

1 2y X Z g Z s e  245 
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where y  is the vector of performances,  is the vector of fixed effects, g  is the vector of the 246 

GMA random effects, and s  is the vector of SMA random effects. X , 1Z  and 2Z  are the 247 

corresponding design matrices. 248 

The random effects are assumed to be normally distributed according to the following 249 

distributions 2

1~ (0, )GMAg N A , 2

2~ (0, )SMAs N A  and 2~ (0, )ee N I . The variance of the 250 

observed values can be decomposed as: 251 

2 2 2

1 1 1 2 2 2( ) t t

GMA SMA eVar y Z AZ Z A Z I . 252 

In the present work, we used identity matrices for 1A  and 2A  matrices. Note that one can 253 

account for a priori similarities between genotypes by specifying more sophisticated variance 254 

covariance structures, e.g. accounting for genetic similarities between genotypes through 255 

relatedness matrices (Bernardo 1995). 256 

As for the estimation of the variance parameters, we used the Restricted Maximum Likelihood 257 

(REML). We used the Best Linear Unbiased Predictors (BLUP) to predict the GMA and SMA 258 

effects. 259 

 260 

2.3 Experimental designs: 261 

The analysis has been carried on two data sets produced by two experiments assessing mixing 262 

ability of a panel of 25 genotypes of winter wheat. This panel was designed to be representative 263 

of the phenotypic diversity of a larger set of 58 genotypes, evaluated in pure stand in a previous 264 

study for root and shoot architecture as well as other functional traits (Cantarel et al. in prep., 265 

Dubs et al. 2018). This 25 genotypes panel is composed of nine elite varieties cultivated for 266 

their high yielding performance in the Parisian Basin (Altigo, Apache, Arezzo, Boregar, Grapeli, 267 

Renan, Sogood, Soissons, Trémie), four landraces (Blé autrichien, Rouge de Bordeaux, 268 

Rouge du Roc, Saint Priest), six varieties bred for organic agriculture (Alauda, Hermes, Maxi, 269 

Midas, Ritter, Skerzzo), and six lines from a MAGIC population (A22, A208, A243, A398, F236, 270 



12 
 

F426, Thépot et al. 2015) (Table B.1). The way mixtures of two, four and eight genotypes of 271 

the panel were designed in the two following experiments has been inspired from the ecology 272 

literature, and more specifically the Jena diversity experiment (Weisser et al. 2017), exploring 273 

extensively the gradient of intraspecific functional diversity (Dubs et al. 2018). 274 

In the first experiment, the 25 genotypes were grown in a field trial both in pure stands and in 275 

75 binary mixtures during the season 2014-2015 in the Le Moulon (LM) experimental station 276 

(48°42'37.2"N, 2°09'37.6"E) in France, according to an incomplete diallel design (75 of the 300 277 

binary combinations: Figure 2.A). Each entry was sown in a 7,5m² plot at a density of 160 278 

grains.m-² (with 20 cm row width). All pure stand genotypes and binary mixtures were replicated 279 

twice in two randomized complete blocks. The mixtures were prepared for sowing using the 280 

thousand kernel weight in order to get equal proportion of seeds of each genotype. 281 
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Figure 2: Mixture designs of the Le Moulon and Clermont-282 

Ferrand trials 283 

A. Le Moulon trial: The 25 genotypes of the panel are presented 284 

in rows and columns. The light squares are the mixtures of two 285 

genotypes, and the dark squares on the diagonal represent the 286 

pure stands. 287 

B. Clermont-Ferrand trial: Each row shows a particular mixture 288 

composition with the presence of each of the 16 genotypes 289 

indicated by the colored squares in the corresponding genotype 290 

columns. Intensity of the color indicates the proportion of the 291 

components in the mixtures. 292 

 293 

 294 

 295 

 296 

 297 
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In the second experiment (Dubs et al., 2018), a subset of 16 genotypes of the panel (Altigo, 298 

Arezzo, Boregar, Grapeli, Renan, Soissons, Trémie, Blé autrichien, Alauda, Hermes, Maxi, 299 

Midas, Ritter, Skerzzo, A22, F426) has been assessed in the INRA experimental station of 300 

Clermont-Ferrand (CF) (45°46'04.2"N, 3°08'52.2"E) in 2014-2015, in pure stand and in 24 301 

mixtures of two genotypes (also observed in the Le Moulon trial), 28 mixtures of four genotypes 302 

and 20 mixtures of eight genotypes (Figure 2.B), where the components of each mixture were 303 

also in equal proportions of seeds. They were sown in 7,5m² plots, for a target density of 250 304 

plants.m-² and replicated in two randomized complete blocks. 305 

In both experiments, three fungicide treatments were applied in order to study mixtures without 306 

disease development since it has already been shown that mixtures can lead to important 307 

disease reduction on wheat, and we aimed at focusing on compensation effects (Stützel and 308 

Aufhammer 1990). Herbicides were applied to avoid weed competition to interfere with wheat 309 

competition, and a nitrogen fertilization was applied (60 kg N/ha and then 40 kg N/ha of nitrogen 310 

fertilizer in the LM trial, and 60 kg N/ha in the CF trial) according to the leftovers from the 311 

previous crops on each trial to reach the common objective of 150 kg N/ha. 312 

 313 

Phenotypic data 314 

Yield and its components (number of spikes.m-², number of grains/spike, thousand kernel 315 

weight (TKW)) were recorded on each plot in the LM experiment, while only yield and protein 316 

content were recorded in the CF experiment. 317 

Yield was calculated as the weight of grain harvested on the plot surface, and after measuring 318 

the humidity of a sample, it was standardized into q.ha-1 at 15% humidity (1quintal / hectare = 319 

100kg / 10.000m² = 10-2 kg.m-2). The number of spikes has been counted after flowering date, 320 

on one meter length for two adjacent rows in each plot, and converted into a number of 321 

spikes.m-² taking into account the distance between rows (20 cm). TKW was measured after 322 

harvest and threshing, and the number of grains/spike was calculated based on the yield 323 
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components (= (yield/ TKW)/ number of spikes.m-²). Protein content was estimated on grain 324 

samples using near-infrared spectroscopy (NIRS). 325 

 326 

2.4 Data analysis: 327 

2.4.1 Application of the models to the datasets of each location 328 

For each location, the correlation between the observed mixtures and the mean of their pure 329 

stand components was calculated. The main analyses (model comparison, analysis of the 330 

variance components and the BLUPs) were then performed with the three models on all the 331 

observations (mixtures and pure stands) of each location separately. The predicted values 332 

were obtained from the different models, fitted on the observed data. The correlation between 333 

all the observed values and the predictions from (i) the means of the genotypic effects of the 334 

corresponding pure stand components (according to Federer et al. 1982 and Gizlice et al. 335 

1989), or (ii) a subset of observations of the same location (mixtures only using Model 3) has 336 

been performed for each site. Finally, the CF observed values for different mixture orders were 337 

compared with predictions obtained from CF or LM trials analyzed with Model 1. The analysis 338 

was performed using an adaptation of the lme4 R package (Bates et al. 2015; see File S.1). 339 

 340 

2.4.2 Model comparison 341 

In order to compare the relative importance of GMA, SMA and intra-genotypic vs inter-342 

genotypic interaction, we compared the following models: 343 

- Model 1 which includes only the block effect and the GMA, 344 

- Model 2 which includes the GMA and the SMA, with inter-genotypic interactions in 345 

mixture, and intra-genotypic interactions for pure stands only, 346 
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- Model 3 which includes the GMA and the SMA, with inter-genotypic interactions and 347 

intra-genotypic interactions in mixture in addition to intra-genotypic interactions in pure 348 

stand. 349 

The models were compared based on the AIC, BIC and on Likelihood Ratio Tests (LRT, using 350 

Maximum Likelihood procedure (ML)) which were further performed for nested models (Model 351 

2 vs Model 1, and Model 3 vs Model 1). We also computed the second-order AIC and the 352 

conditional AIC using MuMIn and cAIC4 R packages respectively, but no difference with the 353 

AIC values was observed. In addition, the R² and the RMSE were reported for the different 354 

models. While open to criticism (Alday 2016), the calculation of a R² for mixed models is a 355 

convenient tool for assessing the model quality using a common dimensionless metric for the 356 

different response variables. The R² were calculated following Xu (2003) to assess the 357 

proportion of the total variance which is explained by the model (conditional variance, for both 358 

fixed and random effects), as one minus the ratio of the residual variance of the full mixed 359 

model, over the residual variance of a null model (the fixed intercept-only model). 360 

 361 

2.4.3 Within-location comparison of observed values with predictions from BLUP based on 362 

subsets of observations 363 

We investigated the possible impact of including pure stands in the BLUP of mixture in the 364 

same location. For that, the observed values (mixtures and pure stands) were correlated to (i) 365 

the BLUP values predicted from mixture data only (i.e. without pure stands) and (ii) the BLUP 366 

from the complete data set. In both cases, BLUP were performed using Model 1 and 367 

alternatively using the best model for each response variable. 368 

 369 

2.4.4 Inter-trial predictions 370 

Finally, the observed values of the CF trial for different mixture orders were compared with 371 

predictions based on the GMA predicted using Model 1 on all the observations of the LM 372 
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experiment. 373 

The observed values were also compared to the predictions based on (i) the GMA in LM 374 

predicted with Model 1 fitted on the mixture observations only, or on (ii) the mean of the 375 

genotypic effects assessed on the LM pure stands only. Model 1 was preferred for predictions 376 

because (i) regarding breeding strategy, it is preferable to being able to predict mixture 377 

performances based on GMA than based on GMA and SMA, since using SMA requires having 378 

observed the corresponding pairs of genotypes (for using Models 2 or 3), and (ii) for practical 379 

considerations, in this study no higher order mixture had all its SMA predicted in the LM trial in 380 

order to predict their performances, so SMA are diluted in higher order mixtures. Nevertheless, 381 

as all the binary mixtures observed in the CF experiment were also observed in the LM trial (so 382 

they were all predictable from LM BLUPs), we assessed how including SMA (using Models 2 383 

and 3) affects prediction of the yields of binary mixtures in the CF trial. 384 

 385 

2.5 Data and program availability: 386 

The data and the program are available on an online public repository 387 

(https://github.com/cambroise/lme4-adapt-for-variety-mixture). The program is described in 388 

File S.1. 389 

 390 

 391 

3. RESULTS 392 

3.1 Correlation between mixtures and pure stands 393 

The Pearson’s correlation between the observed binary mixtures performances and the means 394 

of their pure stand components was high for TKW (0.91) but moderate for yield (0.51, Figure 395 

3), for the number of spikes.m-² (0.51), and for the number of grains per spike (0.42) in the Le 396 

Moulon (LM) experiment, showing the need for modeling of mixing ability. The correlation in 397 
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Clermont-Ferrand (CF) reached 0.75 for yield and 0.63 for the protein content (respectively 398 

0.81 and 0.73 when considering only binary mixtures). 399 

 400 

Figure 3: Observed yield for binary mixtures and the means of their pure stand components for the Le 401 

Moulon experiment 402 

The dotted line is the regression line (y= 34.395 + 0.515 x, with standard errors of 5.395 and 0.073 403 

respectively, and DF= 146). The black solid line is the y=x line. 404 

 405 

3.2 Model comparison 406 

Based on LRT (Likelihood Ratio Test) using ML procedure for model comparison, both models 407 

including SMA have been found significantly better than Model 1 for TKW (p-values of 0.026 408 

and 0.030 respectively, Table 1). Models 2 and 3 had low but non-significant p-values (0.060 409 
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and 0.182) for spike density, while for yield and other response variables in LM and CF trials 410 

the p-values were non-significant. 411 

Response 

variable 

Model AIC BIC p-value 

Yield Model 1 1393.3 1406.5 NA 

Model 2 1395.1 1411.6 0.664 

Model 3 1394.6 1411.0 0.385 

Spike density Model 1 2075.5 2088.7 NA 

Model 2 2074.0 2090.4 0.060 (.) 

Model 3 2075.7 2092.2 0.182 

Grain number per 

spike 

Model 1 1188.4 1201.6 NA 

Model 2 1190.4 1206.9 1 

Model 3 1190.4 1206.9 1 

Thousand kernel 

weight 

Model 1 672.5 685.7 NA 

Model 2 669.6 686.0 0.026 (*) 

Model 3 669.8 686.3 0.030 (*) 

TABLE 1: Comparison of Models 2 and 3 to Model 1 in LM trial using the maximum likelihood procedure 412 

The p-values are based on LRT (likelihood ratio test) comparisons. “.” indicates significance < 0.1 and 413 

“*” significance < 0.05. 414 

 415 

Model 1, the most parsimonious as only based on GMA effects, was as efficient as Models 2 416 

and 3 for the number of grains per spike in LM (Figure 4.C) or for the yield and the protein 417 

content in CF (Figures 5). 418 
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419 

420 

Figure 4: Observed and predicted values for each response variable in LM trial 421 

A. Yield, B. Spike density, C. Grain number per spike, D. Thousand kernel weight. Model 1 is the model 422 

comprising fixed effects and GMA, Model 2 additionally includes SMA effects (inter-genotypic effects 423 

within pairs of genotypes within mixtures, and intra-genotypic effects for pure stands), Model 3 further 424 

includes intra-genotypic effects within mixtures. The black diagonal is the y=x line. 425 

 426 
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 427 

Figure 5: Observed and predicted values for each response variables in CF trial 428 

A. Yield, B. Protein content. The black and red dots are hidden by the blue dots due to equal values for 429 

the three models. The black diagonal is the y=x line. 430 

 431 

However, considering the yield in the LM experiment (Figure 4.A), Model 3 including SMA 432 

effects showed a higher R² and a lower RMSE (Table 2), although the likelihood of Model 3 433 

was not significantly different from the one of Model 1 with ML procedure. For the spike density 434 

and TKW (Figures 4.B and D), Models 2 and 3 had higher R² and lower RMSE than Model 1, 435 

Model 2 appearing slightly better than Model 3 for spike density. These models including the 436 

SMA effects seemed to partly reduce the shrinkage effect observed in Figure 4. 437 

 438 

Response variable Model R² RMSE 

Yield (LM) Model 1 0.563 6.690 

Model 2 0.593 6.454 

Model 3 0.613 6.294 

Spike density Model 1 0.508 36.908 

Model 2 0.650 31.125 

Model 3 0.613 32.702 

Grain number per spike Model 1 0.456 4.023 

Model 2 0.456 4.023 

Model 3 0.456 4.023 
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TKW Model 1 0.911 0.923 

Model 2 0.941 0.754 

Model 3 0.940 0.758 

Yield (CF) Model 1 0.728 4.174 

Model 2 0.728 4.174 

Model 3 0.728 4.174 

Protein content Model 1 0.642 0.502 

Model 2 0.642 0.502 

Model 3 0.642 0.502 

TABLE 2: Criteria for characterization of the model fits in Le Moulon and Clermont-Ferrand trials 439 

 440 

3.3 Comparison with predictions based on the pure stands 441 

When using mixing ability models fitted on all the observations instead of the pure stand genetic 442 

effects, the R², the RMSE, the Pearson’s correlation coefficient (on the values of the mixtures 443 

and the pure stands) and the Kendall’s correlation coefficient (on their ranking) between 444 

observed and predicted values were improved for most of response variables in LM 445 

experiment, but this was marginal on the CF trial, as shown in Table B.4. For instance, for the 446 

yield in LM trial, the Pearson’s correlation coefficient increased from 0.687 with predictions 447 

based on the means of the pure stands (p), to 0.790 with predictions based on BLUP predicted 448 

with Model 3 (m+p) showing a higher ability to predict mixture performances. In the CF 449 

experiment, the correlation between observed and predicted values was as high with 450 

predictions based on the mean of the genotypic effects of the pure stand components (0.840, 451 

Table B.4) as with BLUP predicted from mixtures and pure stand observations (0.854, with 452 

Model 1). 453 

 454 

3.4 Variances of GMA and SMA 455 

The variance components estimated with each model for yield and for the number of     456 

spikes.m-² are detailed below for the LM and CF experiments (Table 3). The other responses 457 

are given in supplementary material (Table B.2). It should be noticed that, as expected, 458 
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weighting of SMA effects was higher for Model 3 than for Model 2 (higher SMA variance and 459 

SMA BLUPs). 460 

Response variable Model σGMA² σSMA² σe² σSMA²/ 

σGMA² 

Yield Le Moulon trial Model 1 63.57 NA 50.48 NA 

Model 2 63.10 2.11 48.66 0.03 

Model 3 54.69 14.67 47.40 0.27 

Yield Clermont-Ferrand trial Model 1 95.18 NA 19.20 NA 

Model 2 95.18 0 19.20 0 

Model 3 95.18 0 19.20 0 

Number of spikes.m-² Le Moulon trial Model 1 1621.82 NA 1531.06 NA 

Model 2 1536.02 303.75 1267.18 0.19 

Model 3 1357.87 822.18 1338.40 0.61 

TABLE 3: Variance components and ratio of variances in Le Moulon and Clermont-Ferrand trials 461 

 462 

In all experiments and with all considered mixed models, the GMA variance was always higher 463 

than the residual variance (10 times higher in the case of the TKW in LM experiment: Table 464 

B.2). The amount of the SMA variance compared to the GMA variance ranged from 0 to 0.19 465 

with Model 2 and from 0 to 0.61 with Model 3. The highest rates were obtained for spike density, 466 

while the number of grains per spike and the CF response variables did not show any specific 467 

effects. Consequently, the three models were equivalent for variance partitioning in the CF 468 

experiment.  469 

 470 

3.5 GMA and SMA predictions 471 

The predicted values of GMA and SMA with Model 3 for yield in LM trial are shown in Figure 6 472 

(in Figure B.1 for spike density and TKW with Model 2 in LM trial) and the GMA values for each 473 

response variable with the best model are given in Table B.3. 474 
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475 

Figure 6: Predicted values for GMA and SMA per genotype for yield in LM trial with Model 3 476 

Values in quintal per hectare (10-2 kg.m-2). The red dots represent the intra-genotypic SMA, and the blue 477 

dots the inter-genotypic SMA. 478 

The GMA for yield at LM ranged from -18.67q.ha-1 to 7.41 q.ha-1 (with Model 3), while the SMA 479 

showed lower ranges (from -2.34 q.ha-1 to 5.38 q.ha-1). The range of SMA values per genotype 480 

with Model 3 varied among genotypes, with varieties such as Renan and Midas obtaining 481 

similar SMA with most genotypes (Figure 6). Overall, intra-genotypic SMA effects displayed 482 

both high and low values, while inter-genotypic SMA were somehow more intermediate (Figure 483 

6). The intra-genotypic SMA obtained with Model 2 were less extreme for spike density and 484 

TKW than for yield (Figures B.1 A and B). The intra-genotypic SMA with Model 3 was overall 485 

positively correlated with the GMA for yield (0.679). This was also the case for spike density 486 

(0.659) but the correlation was lower for TKW (0.235). 487 

The elite variety Trémie had the highest GMA and displayed the highest SMA when grown in 488 

pure stand (Figure 6). Interestingly, two genotypes with relatively low GMA (A22 and Rouge 489 
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de Bordeaux, Figure 6) showed a rather high SMA value when grown together in a mixture 490 

(Figure 7). More extreme values were obtained with Model 3, due to higher SMA variance (as 491 

expected). This was also the case for spike density and TKW in LM trial although to a lesser 492 

extent (Figure B.2). The inter-genotypic SMA for Model 2 and Model 3 were very highly 493 

correlated for the yield, spike density and TKW (0.9993, 0.9996 and 0.9998 respectively). 494 

 495 

496 

Figure 7: SMA predicted values for yield with Models 2 and 3 in LM trial 497 

The SMA obtained with Model 2 and Model 3 are plotted respectively above and below the diagonal 498 

(black line). The intra-genotypic SMA are not represented on the plot. 499 

 500 

The GMA was highly correlated with the pure stand genotypic effect in the CF trial (0.98 for the 501 

yield with Model 1, Table B.5), and to a lesser extent in the LM experiment (0.88). The 502 
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correlation between the GMA obtained in both experiments for yield using Model 1 was also 503 

quite high (0.903). The CF trial displayed higher variance for the GMA values than did the LM 504 

trial (Figure 8). 505 

 506 

 507 

Figure 8: GMA values predicted with Model 1 for yield in the two experiments (LM and CF) 508 

The dotted line is the regression line between the GMA of the two experiments (y= -1.174 + 1.347 x, with 509 

standard errors of 1.066 and 0.171 respectively, and DF= 14). 510 

The elite varieties obtained the highest GMA in both experiments, while most organic varieties 511 

and the landrace had the lowest, although some organic varieties also obtained high GMA. 512 

Organic varieties performed better in LM trial than in CF trial. The best varieties were more 513 

spread in CF trial than in LM trial. 514 

 515 
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3.6 Predictions based on subsets of observations 516 

In the LM experiment, when the analysis was performed on mixture observations only (m) 517 

instead of all observations (m+p), the variance of SMA for yield (estimated with both Models 2 518 

and 3) became null. The correlation between the observed and predicted mixtures with Model 519 

3 was 0.786 for yield when using GMAm, not different from the one obtained with m+p 520 

observations (0.790), and the RMSE was reduced from 6.3q.ha-1 to 5.8q.ha-1 (Table B.4). This 521 

result suggests that mixing ability analysis might be performed without requiring pure stands in 522 

the dataset. The GMA for yield were modified (Figure B.3) although the correlation between 523 

GMAm and GMAm+p with Model 3 was 0.91 (Table B.5). In the CF experiment, the correlation 524 

between GMAm and GMAm+p (with Model 1) was even higher (0.96, Table B.5), and the 525 

correlation between observed and predicted values was equal when excluding the pure stands 526 

for GMA predictions (0.834) to the one when pure stands were included (0.854, Table B.4). 527 

 528 

3.7 Predictions of CF high order mixtures based on CF BLUP 529 

Both Pearson’s and Kendall’s correlations between the observed values for pure stands and 530 

mixtures in the CF trial and the predicted values based on the CF mean of the genotypic effects 531 

in pure stands decreased with the order of the mixtures (Table 4), indicating that the four-way 532 

and eight-way mixtures had the largest level of deviation from additivity in the CF experiment. 533 

 534 

 Pearson’s correlation Kendall’s correlation 

Mixture 

order 

CF 

GEp 

CF 

GMAm+p 

CF 

GMAm 

LM 

GEp 

LM 

GMAm+p 

LM 

GMAm 

CF 

GEp 

CF 

GMAm+p 

CF 

GMAm 

LM 

GEp 

LM 

GMAm+p 

LM 

GMAm 

All 

orders 

0.840 0.854 0.834 0.653 0.785 0.741 0.651 0.669 0.664 0.498 0.598 0.573 

1 0.973 0.955 0.876 0.718 0.876 0.770 0.871 0.831 0.734 0.548 0.706 0.621 

2 0.836 0.862 0.786 0.662 0.805 0.751 0.649 0.677 0.700 0.505 0.667 0.613 

4 0.742 0.777 0.789 0.599 0.695 0.727 0.516 0.554 0.582 0.405 0.481 0.541 

8 0.700 0.713 0.719 0.574 0.649 0.680 0.544 0.569 0.569 0.438 0.500 0.538 
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TABLE 4: Correlation between observed and predicted values or ranking for the yield in the Clermont-535 

Ferrand (CF) trial based on the CF or the Le Moulon (LM) mean of the genotypic effects in pure stands 536 

(GE) or GMA predicted with Model 1 on different sets of observations in the CF and LM trials 537 

The order of the mixture indicates the number of components: one for pure stand, two for binary mixture, 538 

four for four-way mixture and eight for eight-way mixture. The capital letters indicate the trial for 539 

observations for genotypic effects in pure stand or GMA predictions using Model 1. The lower case letter 540 

specifies if pure stands observations were used (p) or mixture observations (m) or both (m+p) in each 541 

trial for GMA predictions. 542 

 543 

3.8 Inter-trial predictions 544 

In order to assess the ability of the BLUP values obtained in a design based on binary mixtures 545 

to predict the observed values for higher order mixtures, we computed the predicted values for 546 

the CF observations based on the LM GMA using Model 1 (Figure 9). The Pearson’s correlation 547 

between the observed values in CF and predictions based on LM was 0.785 (and 0.598 for 548 

Kendall’s correlation, Table 4). The correlation was slightly lower when excluding the pure 549 

stand observations in LM of the analysis (0.741). However, the correlation was always much 550 

higher than when using the mean of the corresponding genotypic effects of pure stand 551 

components (correlation of 0.653). When including SMA in addition to GMA predicted on all 552 

observations in the LM trial (using Models 2 and 3) for predicting yields of binary mixtures in 553 

the CF trial, the correlation between observed and predicted yields was not clearly improved 554 

(0.814 with Model 2 and 0.817 with Model 3, vs 0.805 with Model 1). 555 

 556 
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 557 

Figure 9: Predicted yields for the Clermont-Ferrand experiment based on GMA predicted from all 558 

observations in the Le Moulon trial with Model 1 and the corresponding observed yields 559 

The black diagonal is the y=x line. 560 

 561 

As for predictions based on CF BLUP, when using LM BLUP, the Kendall’s correlation 562 

coefficient between the predicted values and the observed values decreased with the mixtures 563 

complexity (Table 4). Interestingly, when removing the pure stands in LM observations for 564 

fitting Model 1, the observed vs. predicted correlations were lower for pure stands and binary 565 

mixtures than when including pure stands in LM, while they were rather similar for four-way 566 

and eight-way mixtures. 567 

 568 

 569 
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4. DISCUSSION 570 

Mixed models are pivotal statistical tools for the prediction of breeding values in modern 571 

breeding programs, and are commonly used to analyze diallel designs of hybrid crosses. This 572 

formalism has surprisingly never been applied to cultivar mixtures analysis, despite the 573 

similarity between Combining Ability and Mixing Ability. Herein we adapted mixed models for 574 

the study of mixing ability in diallel-like designs, unlocking the analysis of incomplete designs. 575 

We combined the Griffing formalism for combining ability (Griffing 1956) and mixing ability 576 

modeling with the recent developments in mixed models (Bates et al. 2015) adapted to fit 577 

specialized linear mixed models. The approach is highly flexible as it can be applied to binary 578 

and any order mixtures, including pure stands. 579 

 580 

4.1 General Mixing Ability predominates in two experiments on wheat mixtures 581 

This approach has been applied to two experimental designs of bread wheat mixtures: one 582 

based on pure stands and binary mixtures, and the other including higher order mixtures too. 583 

In the first experiment (Le Moulon, LM), the correlation between the observed mixture 584 

performances and their predicted performances based on their pure stand means was 585 

moderate (0.51, 0.51 and 0.42 respectively for yield, for the number of spike.m-² and for the 586 

number of grain/spike), except for TKW (0.91), underpinning the importance of estimating 587 

mixing ability of the genotypes. Using mixing ability modeling allowed to improve the correlation 588 

between observed values and predictions to 0.79 for the yield in Le Moulon (LM) experiment 589 

for instance (with Model 3). 590 

The part of variance explained by GMA and SMA effects was relatively high, given that the 591 

proportion of observed mixtures on the total number of possible mixtures was rather low 592 

(75/300=0.25). This suggests that using a random sample of 25% of the total number of all 593 

possible mixtures, in addition to the pure stands, seems efficient to assess GMA and SMA of 594 

the genotypes used as components, and this is in accordance with previous findings for 595 
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combining ability in wheat (Zhao et al. 2015). This result calls for the possibility to screen a 596 

large number of genotypes from a diversified panel for their GMA using incomplete designs 597 

instead of growing all pairwise mixtures within a limited set of genotypes. In the second 598 

experiment, the correlation between the mixture performances and the means of the pure 599 

stands components was rather high for yield (0.75) and for protein content (0.63) so the 600 

predictions of all the observations based on the pure stand performances were efficient and 601 

were only marginally improved when using mixing ability modeling. This is explained by a very 602 

high correlation between the GMA and the genotypic effects of the pure stands for yield in this 603 

trial (0.98), for reasons discussed hereafter (section 4.3). 604 

 605 

4.2 An original modeling of specific mixing ability 606 

Specific Mixing Ability was modeled using two different approaches that could better reflect the 607 

underlying plant-plant interactions:  608 

- in addition to inter-genotypic interactions within mixtures, we introduced intra-genotypic 609 

interactions within pure stands (Model 2). Note that in the literature, pure stands are not always 610 

considered as particular cases of mixtures and therefore are usually not included as such in 611 

the analysis; 612 

- we further refined the SMA estimates, by accounting for intra-genotypic interactions not only 613 

within pure stands but also within mixtures. For that, SMA effects were weighted by the 614 

probabilities of neighborhood of varieties in a mixture (Model 3). 615 

These two models resulted in differences in variance components and in ratio of variance 616 

between SMA and GMA, with a higher SMA variance observed with Model 3, as expected. The 617 

intra-genotypic SMA of yield had noticeably more extreme values in the SMA distribution when 618 

using Model 3 compared to Model 2, suggesting that the intra-genotypic interactions in 619 

mixtures significantly accounted for SMA variance in Model 3 for this trait. The interpretation of 620 

the intra-genotypic SMA should be different depending on the model used. Model 3 might be 621 
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more realistic regarding the biological mechanisms occurring within mixtures, as it integrates 622 

intra-genotypic interactions within mixtures, and dilutes their weight in high order mixtures. 623 

Presently, a unique variance component is estimated in Models 2 and 3 for SMAii and SMAij. 624 

However, intra and inter-genotypic interactions might have different distributions, as might 625 

occur for yield in LM trial (Figure 6). Therefore, a refinement might be to estimate separately 626 

two variance components: one for for SMAii and one for SMAij (with i ≠ j) for both Models 2 and 627 

3. This would require the inference of more variance parameters – each with less available 628 

information – which, in turn, would require the evaluation of more mixtures per genotype than 629 

available in this study. 630 

If the independence between the performance of pure lines and their hybrids (e.g. design 4 in 631 

Griffing 1956) can be explained by genetic interactions (i.e. dominance), it is biologically 632 

difficult to neglect intra-genotypic interactions in mixtures. However, if the focus is to detect 633 

genotypes that are particularly good partners for complex mixtures, it might be more relevant 634 

to remove pure stands. Running the analysis without the pure stands gave lower GMA 635 

predictions for the high yielding elite varieties (e.g. Trémie, Boregar ... Figure B.3) while 636 

different varieties such as Soissons showed higher GMA, therefore appearing as particular 637 

good mixing partners. In that case, no SMA effect was detected for yield, while it was still 638 

present for spike density (p=0.06) and TKW (p=0.009) (data not shown). Another approach has 639 

been proposed in the literature to account for the inter- and intra-genotypic interactions within 640 

mixtures. It is based on the partitioning of the GMA into a GPA (General Performing Ability) 641 

reflecting the genotypic effect in pure stand, and a TGMA (True General Mixing Ability) being 642 

the part of the GMA truly due to the mixing conditions obtained when analyzing the over-643 

yielding (OY, i.e. the difference between the yield of the mixture and the mean of its 644 

components in pure stands) as a response variable (Federer et al. 1982; Gizlice et al. 1989; 645 

Knott and Mundt 1990; Lopez and Mundt 2000). In these studies, both GPA and TGMA have 646 

been found important for mixing ability. Here, we chose to include the pure stands in the 647 

observations for modeling mixing ability, since SMA of the pure stands (SMAii) in Model 2 648 

provides sufficient information on how each genotype performs in pure stands in comparison 649 
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with its GMA in the experiment. Both approaches are strongly divergent in their philosophy: in 650 

the GPA/TGMA approach, pure stands and mixtures performances are used independently to 651 

estimate GPA and GMA, and the pure stand performances are considered as a reference to 652 

compute the TGMA. In the present model, pure stands and mixtures are jointly used to estimate 653 

GMA and SMA, and the intra-genotypic interaction (SMAii) has the same status as the inter-654 

genotypic interaction (SMAij), which seems biologically sound. 655 

 656 

4.3 Variance components vary between the two studied locations 657 

For all response variables in the binary mixtures trial (LM), the variance of GMA was higher 658 

than the one of SMA, in accordance with Knott and Mundt (1990) in similar trials, while no SMA 659 

effect at all was found in the experiment involving higher order mixtures, as in Lopez and Mundt 660 

(2000). However, only GMA/SMA estimates for yield can be compared among the two 661 

experiments since the other response variables differed among LM and CF. The absence of 662 

SMA in the CF experiment might be due to three possible factors which are confounded in this 663 

experimental design, and might contribute to limit the inter-genotypic interactions in CF. Firstly, 664 

the CF trial was conducted under more favorable conditions (higher yield objective and nitrogen 665 

inputs) that might have led to less stresses for the plants and therefore less opportunity for 666 

complementarity or synergy mechanisms to express among mixtures’ components. Secondly, 667 

the panel used in the CF experiment was a subset of the panel used for the Le Moulon 668 

experiment, the genotypes were less contrasted than in the LM trial (only one landrace included 669 

in the panel, lower diversity in functional traits) resulting in lower competition/synergies. Thirdly, 670 

the CF experiment involved higher order mixtures in which SMA within each pair of genotypes 671 

might have been too low to be detected (increasing the number of binary interactions results 672 

in a dilution of their effects), or the possible occurrence of higher order interactions might have 673 

masked the binary ones. Thus, this could lead to reducing the possibility to observe SMA 674 

effects in the CF trial compared to the LM trial. 675 
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For yield in the LM trial, the share of the genetic variance due to SMA effect was larger with 676 

Model 3 than with Model 2, indicating that the SMA variance might also be due to intra-677 

genotypic interactions within mixtures. However, both models including SMA did not provide a 678 

significantly better fit than the model with GMA only (and the differences in AIC values for the 679 

three models were very small for all response variables (Table 1)), as already found by Gizlice 680 

et al. (1989). In contrast, Gallandt et al. (2001) in wheat or Federer et al. (1982) in bean found 681 

significant SMA. Spike density displayed a SMA variance ratio of 0.61 with Model 3, indicating 682 

strong interactions between plants for this response variable. This is consistent with the fact 683 

that the number of tillers and therefore the number of spikes are known to be the most plastic 684 

traits when changing plant density (Darwinkel 1978) and/or the phenotypes of neighboring 685 

plants in mixtures (Jackson and Wennig 1997; Cowger and Weisz 2008, Lecarpentier 2017, 686 

Lecarpentier et al. 2019). This is also in line with the clear-cut difference observed in the range 687 

of spike density in the LM trial when comparing pure stands and binary mixtures (respectively 688 

217.5 to 490 for pure stands and 262.5 to 555 for mixtures). These specific effects observed 689 

on mixtures occurred in the experiment characterized by a low density leading to plasticity for 690 

tillering, and selection effects between genotypes due to differences in potential productivity. 691 

As this leads to differences in genotype frequencies in the harvested grain, it might be 692 

interesting to measure the proportion of grains (or spikes) of each genotype in mixtures to 693 

further investigate the specific effects and better predict the mixture performances based on 694 

individual contributions of the components. The estimation of selection effects may help to 695 

better understand the changes in proportions of the genotypes over time (Finckh and Mundt 696 

1992; Loreau and Hector 2001; Barot et al. 2017) but this requires particular designs or 697 

systems for separating the mixture components. 698 

 699 

4.4 BLUP 700 

In the LM experiment, the Trémie genotype showed the highest BLUP value for both GMA and 701 

SMAii due to its high productivity in particular in pure stand. However, the binary mixtures 702 
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involving this genotype had among the lowest SMAs and all had lower yields than expected 703 

based on the pure stands components (i.e. negative OY), therefore indicating that Trémie, as 704 

an elite variety selected for performing well in pure stand conditions, might not be the best 705 

“mixing partner” to combine. On the contrary, the genotype Soissons had intermediate GMA 706 

(in both trials) and a low SMA in pure stand, while its SMAs in mixtures were high and the 707 

mixtures displayed high yields (Soissons also had the highest GMA when considering mixtures 708 

only). This could be due to a favorable mixture design for this genotype, but the OY was always 709 

positive for this genotype (except when mixed with Trémie) with a mean of +7.7q.ha-1 showing 710 

its potential for mixing conditions. The important mixing ability for yield of this genotype might 711 

be explained by a high mixing ability for spike density. These results show the importance of 712 

taking both GMA and SMA into account for selecting candidates for mixtures. 713 

 714 

4.5 Prediction of mixtures and pure stands performances based on BLUP values 715 

Prediction of extreme observations was less accurate for response variables for which the 716 

correlation between mixtures and corresponding means of the pure stand means was lower. 717 

This might be because the GMA is an average effect leading to a shrinkage of the predicted 718 

values towards the mean of the observed mixtures performances involving the given genotype 719 

(which is partly corrected when including SMA in the models). It should also be noted that the 720 

GMA of the genotypes are relative to the assessed panel. This is particularly important since 721 

the GMA are computed using a common measure for all the components of a given mixture. 722 

In this regard, Federer et al. (1982) proposed an alternate model to analyze mixtures when 723 

individual component performances are available. Using this alternate model should lead to a 724 

reduction of the shrinkage effect since the GMA of a genotype is not dependent on the 725 

performances of its associated genotypes. Finally, the mixture performances are predicted 726 

assuming that the proportions of the components are the same as those used for sowing. 727 

 728 
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4.6 Predictions of higher order mixtures from binary mixtures evaluated in another experiment 729 

The GMA and SMA have been found quite variable over environments in other studies (Knott 730 

and Mundt 1990; Gallandt et al. 2001) but interestingly the GMAs predicted for yield by the 731 

experiments at Le Moulon and Clermont-Ferrand proved to be highly correlated (0.903) 732 

although one site had higher order mixtures, and the Clermont-Ferrand panel was only a 733 

subset of the Le Moulon panel. We assessed the ability of the pure stands and the binary 734 

mixtures of the LM experiment to predict the CF experiment mixtures and especially the higher 735 

order mixtures. The correlation between predicted and observed values was found decreasing 736 

with increasing orders mixtures (but for binary mixtures, it should be borne in mind that all 737 

binary mixtures observed in the CF trial were also observed in the LM trial). However, 738 

predictions based on binary mixtures were better than based on pure stands, as previously 739 

observed in literature (Lopez and Mundt 2000; Mille et al. 2006). The Kendall’s correlation 740 

coefficient was also calculated since the concordance in the ranking of mixture performances 741 

is desirable for breeding perspectives. This correlation was at least equal when the four-way 742 

and the eight-way mixtures were predicted from the LM observations without the pure stands 743 

(m) than when they were included (m+p), suggesting that the exclusion of pure stands from the 744 

GMA predictions does not degrade the predictions of high order mixtures. A higher correlation 745 

between observed and predicted values was expected when using all observations (m+p) than 746 

when using mixtures only (m), but the aim was to assess the impact of the pure stand 747 

information on the correlation. 748 

 749 

4.7 Improving screening and breeding strategies 750 

The two mixture designs used in this study were performed empirically, as in all agronomical 751 

and ecological experiments we have reviewed. This raises the question of how to optimize the 752 

experimental designs used to better estimate GMA/SMA. As far as we know, this question has 753 

been poorly addressed in the literature. For example Federer (2002) and Raghavarao and 754 

Federer (2003) have proposed balanced incomplete designs to achieve estimability of the 755 



37 
 

GMA and SMA for a specific number of varieties and three-way mixtures, without giving rules 756 

on the way varieties should be mixed. The experimental design optimization remains to be 757 

studied. The BLUP framework proposed here will allow such optimization, exploring various 758 

GMA/SMA ratios, according to panel/species biological characteristics. 759 

Different designs should be chosen for the estimation of mixing ability, depending on the 760 

objective of the experiment (i.e. assessment of GMA-SMA for a panel, improvement of mixing 761 

ability in breeding scheme) and the structuration of GMA and SMA effects. Once a design has 762 

been chosen for estimating mixing ability, it can be optimized using power tests to maximize 763 

the accuracy of the GMA and SMA predictions, whether or not using higher order mixtures 764 

instead or in addition to binary mixtures, whether or not including the pure stands, varying the 765 

proportion of possible mixtures to be observed, the number of observations per genotype, the 766 

number of replicates per mixture, the mixture composition, … and taking into account the gain 767 

in accuracy regarding the costs and efforts invested in the experimental design. The 768 

comparison of the power of different types of incomplete designs (nested design, balanced 769 

incomplete factorial design, topcross design, random design as used by Zhao et al. (2015) for 770 

combining ability analysis) may allow to identify the most adapted and powerful type of design 771 

regarding a particular situation, and to tailor it into an optimized design for mixing ability 772 

estimation. Since mixing ability might vary across environments and might be subject to 773 

interactions with environment, the decision to replicate the experimental design in different 774 

environments would depend on the objectives, resources and potential GxE interactions. 775 

Parameters to consider for assessing mixing ability are the correlation between the 776 

performances of mixtures and predictions from their pure stand components, and the 777 

importance of the GMA vs SMA effects. Therefore, in a breeding scheme, a preliminary 778 

experiment must be carried out in order to characterize the panel first and thus guide the 779 

breeding strategy and objectives. This study exemplifies the kind of preliminary study that can 780 

be developed to assess variance components. Three cases are expected: i) high correlation 781 
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between the mixture performances and the mean of their pure stand components, ii) important 782 

GMA versus SMA, iii) important SMA. 783 

i) In the case of a strong correlation between mixtures and the mean of their pure stand 784 

components, information on the performances of pure stands can be used since it requires less 785 

observation. In contrast, if the GMA is moderately or weakly correlated to the genotypic effects 786 

in pure stands or if SMA effects are detected, it would be necessary to include mixtures in the 787 

design, and consider excluding the pure stands in order to limit the number of plots especially 788 

for the development of high order mixtures. In addition to this advantage, in the LM trial, the 789 

exclusion of pure stands for predicting GMA and SMA effects led to a slight improvement in 790 

correlations between observed and predicted values for yield, spike density and TKW, while 791 

the SMA was reduced to zero for the yield. 792 

ii) When the GMA is the major source of variation, compared to the SMA, it could be wiser to 793 

focus on the components per se for mixing rather than on combinations of components. The 794 

experimental design should be based on genotype screening under conditions that allow 795 

interactions between different genotypes such as alternate rows (as proposed by Barot et al. 796 

2017) or mixtures with a tester (that can be a genotype with high GMA or eventually a mixture 797 

itself to save space and if the further purpose is the development of higher order mixture) for 798 

instance. If the SMA is low but not negligible, it might be interesting to search for panel structure 799 

to optimize the experimental design. 800 

iii) When SMA effects are important, the existence of complementarity groups for mixing ability 801 

should be investigated. As carried out for hybrid development, the use of clustering methods 802 

to search for heterotic-like pattern might allow to capture some of the specific effects in the 803 

GMA (increasing the accuracy of mixture performance predictions), and to further improve the 804 

complementarity between components within mixtures structuring the panel into groups (Zhao 805 

et al. 2015). For the development of higher order mixtures, the presence of higher order specific 806 

effects might be investigated (Federer 1999) to decide if the assessment of binary mixture is 807 

sufficient or if higher order mixtures should be included in the design. If each genotype is 808 
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observed in several mixtures, the stability of the SMA effects involving the genotype might be 809 

assessed, allowing to identify the most stable genotypes for specific effects; and stability of 810 

SMA over environments might be investigated. 811 

The mixing ability structuration between GMA and SMA has consequences on the conception 812 

of the breeding strategy. When the mixture performances are highly predictable based on pure 813 

stands (first case), no particular adaptation of the breeding scheme is required for selecting the 814 

best performing genotypes, other than assuring that the final mixtures are agronomically 815 

coherent. When the selection focuses on GMA (second case), genotypes should be assessed 816 

and selected in interaction with each other or with testers. Interaction traits (e.g. the number of 817 

spikes per plant) and the potential plasticity for these traits can be integrated into the screening 818 

or used as selection criteria. When SMA effects are important (third case), it is required to 819 

assess combinations of genotypes, but it is also desired to reduce the number of mixtures to 820 

evaluate. Prediction of mixture performances may then rely on both genotypic and phenotypic 821 

information (kinship, molecular markers, interaction traits). 822 

The inclusion of genetic relatedness matrices as covariance matrices for the GMA and the 823 

SMA random effects in the mixed models may improve the prediction of the mixing effects, 824 

while allowing for predicting unobserved mixtures or mixtures involving unobserved genotypes 825 

(as for combining ability analysis and predictions of performances of hybrids, Bernardo 1995; 826 

Falconer et al. 1996; Lynch and Walsh 1998). Phenotypic similarities assessed on pure stand 827 

performances and traits involved in plant-plant interactions could also be used as covariance 828 

matrices. On a more general level, the identification of traits associated to mixing ability could 829 

be relevant for integrating new selection criteria in breeding for mixtures, but should also help 830 

to better understand the functioning of the mixtures (also regarding traits complementarity 831 

between genotypes or species) and to improve the design of the mixtures (Barot et al. 2017). 832 

Note that this methodological framework can be easily further adapted to mixtures with varying 833 

proportions of the different components (by adjusting the weighting coefficients of GMA and 834 
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 and 
1

( ( ))²K n
, in Models 1, 2 and 3) based on their proportion of sown 835 

seeds and neighboring probabilities), and notably to inter-specific mixtures analysis. 836 
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