Deep roots in Controlled traffic farming and intercropping – but not no-tillage systems – increased system’s resilience and nitrogen recycling

Any general conclusions to draw on deep roots from the complex effects of cropping systems?

Hanne Lakkenborg Kristensen
Margita Hefner, Sindhuja Shanmugam, Yue Xie

Department of Food Science, Aarhus University

Hanne L. Kristensen
Science team leader
Hanne.Kristensen@food.au.dk
Thanks to funders

Hanne L. Kristensen
Science team leader
Hanne.Kristensen@food.au.dk
In situ methods to 3 m depth
Dept. Food Science, Aarhus University

Mini video camera for filming

Non-destructive root registration in minirhizotrons

Roots of fodder radish in 2 m depth

15N injection and soil sampling

Photos AU FOOD
Controlled Traffic Farming - roots

- ↑ Root growth
- ↑ Yields and crop residues
- ↑ Mineralisation
- ↑ N uptake
- No effect on NO$_3^-$ leaching

Hefner et al. (2019) Soil & Tillage Research 191: 117-130
Controlled Traffic Farming – increase of system’s resilience

Hefner et al. (2019) Soil & Tillage Research 191: 117-130
Intercropping – more roots at harvest

Xie & Kristensen (2017)
European Journal of Agronomy 82: 21-32
Intercropping – decrease of soil N_{min}

Xie & Kristensen (2017)
European Journal of Agronomy 82: 21-32
More deep roots – system’s sustainability?

<table>
<thead>
<tr>
<th>System/Management</th>
<th>Soil type</th>
<th>Crop</th>
<th>Yields</th>
<th>Deep roots</th>
<th>N exploitation</th>
<th>Cause</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled Traffic Farming vs Random TF</td>
<td>Sandy loam</td>
<td>Many vegetables</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
<td>Hefner et al. 2019 Soil & Tillage Research</td>
</tr>
<tr>
<td>CTF vs RTF</td>
<td>Sand</td>
<td>Beetroot</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercropping vs sole cropping</td>
<td>Sandy loam</td>
<td>Leek Dyer’s woad</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Xie & Kristensen 2017</td>
</tr>
<tr>
<td>Winter legumes vs legume-rye mix</td>
<td>Sandy loam</td>
<td>Cabbage</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>N limited</td>
<td>Hefner et al. Accepted. Agriculture, Ecosystems & Environment</td>
</tr>
<tr>
<td>No-tillage vs full incorporation</td>
<td>Sandy loam</td>
<td>Cabbage</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>N limited</td>
<td></td>
</tr>
<tr>
<td>High sowing density vs low</td>
<td>Coarse sand</td>
<td>Rucola</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
<td>Kristensen & Stavridou 2017. Soil Use & Management</td>
</tr>
<tr>
<td>Low late season N fertilisation vs high</td>
<td>Coarse sand</td>
<td>Rucola</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>N saturated</td>
<td></td>
</tr>
<tr>
<td>Low top soil N vs high</td>
<td>Sandy loam</td>
<td>Fodder radish</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td>Xie et al. Submitted</td>
</tr>
<tr>
<td>Farmyard manure vs plant-based fertiliser</td>
<td>Sandy loam</td>
<td>Beetroot</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td></td>
<td>Shanmugam et al. In prep.</td>
</tr>
</tbody>
</table>
Key message for discussion

Session 3: Enhancing resource use through deep rooting – What is the potential for water and nutrient uptake by deep rooted crops?

Yes – more deep roots increase system’s sustainability
Unless crop N status interferes

Hanne L. Kristensen
Science team leader
Hanne.Kristensen@food.au.dk