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A B S T R A C T

Soil carbon sequestration (SCS) is one of the cheapest and technically least demanding carbon dioxide (CO2)
removal (CDR) or negative CO2 emission technologies. For a realistic assessment of SCS, it is critical to evaluate
how much carbon (C) can be stored in soil organic matter under actual agricultural practices. This includes
typical crop rotations and fertilization strategies, depends on resources that are available (e.g. farmyard manure
(FYM)) and are affordable for farmers. Furthermore, it is important to assess SCS based on given climatic and soil
conditions. Here, we evaluate changes in soil C storage for Switzerland using data from eleven long-term field
experiments on cropland and permanent grassland that include common local practices.

At all sites, changes in soil organic carbon (SOC) stocks were measured in topsoil (∼0-0.2m) in response to a
total of 80 different treatments including different types of mineral or organic fertilization (e.g. FYM, slurry,
peat, compost) or soil management (tillage vs. no-till). The treatments were applied to different, diverse crop
rotations or grass mixtures that are representative for Switzerland. We found that topsoils lost C at an average
rate of 0.29Mg C ha−1 yr−1, although many of the investigated treatments were expected to lead to SOC
increases. Based on a linear mixed effects model we showed that SOC change rates (ΔSOC) were driven by C
inputs to soil (harvest residues and organic fertilizer), soil cover and initial SOC stocks. The type of land use or
soil tillage had no significant effect. Our analysis suggests that current efforts to manage soils sustainably need to
be intensified and complemented with further techniques if Switzerland wants to achieve the goal of the 4 per
1000 initiative.

1. Introduction

Globally air temperatures have already increased by about 1 °C re-
lative to pre-industrial levels (IPCC, 2018). To limit this human-induced
warming to 1.5 degrees, we need to depend, in part, on CDR or negative

CO2 emission technologies. These can neutralize emissions for which no
mitigation measures have been identified or can be used to achieve net-
negative emissions following an overshoot of the 1.5-degree pathways.
Several CDRs exist, all having their advantages and disadvantages
(Minx et al., 2017; Fuss et al., 2018). They can be characterized as
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biological or technological options (Smith and Friedmann, 2017). While
the biological approaches such as biomass energy carbon capture and
storage (BECCS) and afforestation have the advantage of being cheaper
and closer to deployment compared to engineered methods such as
direct air capture or enhanced weathering, they have the disadvantage
of being more vulnerable to reversal (UNEP, 2017).

Soil C sequestration (SCS) belongs to the biological options. It is
defined as a change in land management that leads to an increase in the
soil C content and therefore a net uptake of CO2 from the atmosphere.
Due to its large potential, the international “4 per 1000” initiative was
launched at the COP21 (2015 Paris Climate Conference) to foster
agricultural practices that enhance soil C (https://www.4p1000.org/).
Minasny et al. (2017) estimated that in the top 1m of agricultural soils,
between 2–3 Pg C year−1 could be sequestered, thereby offsetting about
one third of the global anthropogenic greenhouse gas (GHG) emissions.
In contrast to afforestation or BECCS, SCS has the advantage that it does
not compete with food production. Increasing the soil C content of
mineral soils also has many co-benefits, such as improved soil quality,
enhanced resilience to climatic extremes or even higher productivity if
SOC is low (Pan et al., 2009). However, SCS also has a few dis-
advantages. The most important is that it is reversible if practices are
not maintained, because soil C is continuously decomposed. Ad-
ditionally, soil C sequestration is finite, as soils become C saturated and
SOC stocks tend to equilibrate (Johnston et al., 2009). Furthermore,
there are practices that increase emissions of other GHGs (e.g. fertili-
zation of deficient soils with N leads to N2O emissions), potentially
resulting in no effect on the GHG balance or even enhanced GHG
emissions.

The amount of organic C in soil is dependent on several factors, but,
at a given site, the balance of C inputs (e.g. roots, manure, and residues)
and losses (mainly through respiration) is the crucial driver
(Buyanovsky and Wagner, 1998). Soil C sequestration can thus be
achieved by increasing C inputs or by reducing losses. Many different
practices to improve SCS exist (Smith et al., 2008; Lal, 2011), but not all
are suitable for each region or country. Potential strategies depend on
many local factors such as agricultural practices including crop rota-
tions and fertilization regimes, soil type, or climatic conditions.

Here, we assess SCS in agricultural topsoils of Switzerland under
current incentives for sustainable soil management and under experi-
mental settings. As a result of stringent conditions for subsidies that
were implemented in 1998, local practices differ (or have differed) from
practices in many European countries (Common Agricultural Policy
towards 2020) or temperate regions in general. For farms with more
than three ha cropland, for example at least four different crops need to
be planted in rotation on arable land, and soils need to be covered by
winter or cover crops when the main crop is harvested before end of
August to receive subsidies based on ‘Proof of Ecological Performance’
regulations. Grass-clover ley is often part of the crop rotation. Cereal
straw is usually removed and used for animal bedding, but returned to
the field together with manure (i.e. FYM). It is therefore critical to
evaluate Swiss SCS under these conditions. Based on a study from Ba-
varia, a region very similar to Switzerland in terms of climate and
pedogenesis, cropland and grassland soils theoretically have the po-
tential to sequester four times the amount of CO2-equivalents in the
long-term as released by total GHG emissions annually (Wiesmeier
et al., 2014).

To evaluate possible SCS strategies for Switzerland, we analyze for
the first time results from eleven long-term field experiments (Table 1).
At all sites, SOC stock changes in the upper 0.2m (or less if equivalent
soil masses could be calculated) of soil were measured in response to 80
treatments (2–24 per site) applied over 10 to 60 years. They included
combinations of mineral and organic fertilizations (Table S1, Supple-
ment), different types of crop rotations (e.g. including or excluding
grass-clover ley), entire management systems (organic versus conven-
tional) or different cutting frequencies for permanent grassland. Agri-
cultural practices that are typical for Switzerland were evaluated, as

well as extreme treatments ranging from no nutrient additions to four
times the theoretical crop nutrient uptake (Richner and Sinaj, 2017).
We thus address following questions: are Swiss agricultural topsoils
under common and experimental practices C sinks or sources? Which
factors drive SOC change rates?

2. Material and methods

2.1. Description of experiments

Most of the experiments have been described in detail elsewhere.
We therefore only characterize them briefly (Tables 1,2 , S1; Fig. 1).
Information regarding site histories is given in Table S2.

The Zurich Organic Fertilizer Experiment (ZOFE) compares twelve
different fertilization treatments (organic and mineral fertilizers (ni-
trogen (N), phosphorus (P) and potassium (K)) and their combination)
applied to a 8-year crop rotation including grass-clover ley (main spe-
cies: Poa pratensis L., Lolium perenne L., Festuca pratensis Huds., Dactylis
glomerata L., Trifolium repens L., Trifolium pratense L.), winter wheat
(Triticum aestivum L.), grain maize (Zea mays L.), and potato (Solanum
tuberosum L.) (Oberholzer et al., 2014). Prior to the experiment, the
field was a natural grassland under low intensity management (Walther
et al., 2001). The experiment Demo87 (Demo) was set up to assess
different nutrient deficiencies and compare mineral versus organic
fertilization. The 7-year crop rotation includes rapeseed (Brassica napus
L.), sugar beet (Beta vulgaris L.), potato, ley, maize. Experiment p24A
tests a large number of different combinations of organic and mineral
fertilizers that are applied at different rates to a 6-year crop rotation
with winter wheat, grain maize, rapeseed and summer barley (Hordeum
vulgare L.) (Maltas et al., 2018). In close vicinity, p29C was set up to
study different soil management practices such as minimum tillage
(Büchi et al., 2017). The 4-year crop rotation is composed of winter
wheat, winter rapeseed and grain maize. The plots are fertilized with
mineral fertilizer according to Swiss guidelines (Richner and Sinaj,
2017). From 1969–2006 wheat straw was exported, while maize and
rapeseed residues were chopped and left on the field. In the year 2000,
cover crops were sown before grain maize. Because soil texture and SOC
stocks vary strongly at this site, the experimental field is divided into
two parts. The DOK experiment (D: biodynamic, O: bioorganic, K:
conventional) compares management systems that differ mainly re-
garding type and intensity of fertilization and methods of plant pro-
tection (Mäder et al., 2002; Fließbach et al., 2007). The treatments
were applied to plots with identical crop rotations (that were repeated
three times, but started in different years (subplots A, B, C)). Of the
regular intensity treatments, we consider subplots A only. The 7-year
crop rotation included potatoes, winter wheat, beetroots, winter barley
and two subsequent years of ley. The experiment Oberacker (Ober) was
established to compare conventional ploughing with notill (Chervet
et al., 2005). In both treatments, all crop residues were left on the field.
There were six plot pairs with very diverse 6-year crop rotations in-
cluding winter wheat, winter barley, sugar beet, silage maize, summer
oat, potato, rapeseed, pea (Pisum sativum L.), winter rye (Secale cereale
L.), ley, summer oat, and soybean (Glycine max L.). The experiment
Hausweid (Haus) was set up to test different tillage systems with a high
loosening intensity (moldboard plough or chisel) compared to shallow
and no tillage (Anken et al., 2004; Hermle et al., 2008). The 4-year crop
rotation comprised winter wheat, winter rapeseed and silage maize.
The experiment Burgrain (Burg) compares a conventional, an extensive
and an organic farming system. They differ regarding plant protection
and fertilization intensities (Zihlmann et al., 2010). The 6-year crop
rotation included ley, winter wheat and barley. Before starting the ex-
periment, the site was intensively fertilized with P and K.

The experiment Balsthal (Bals) is a hay meadow that receives dif-
ferent mineral fertilizer treatments and is cut either twice or thrice a
year, representing a relatively low (2x) to intermediate (3x) mowing
frequency for the site’s potential productivity (Thomet and Koch,
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1993). In the experiment Watt all plots were cut 3 times per year. This
represents a relatively low cutting frequency given the site’s potential
productivity (Liebisch et al., 2013). The plots received different
amounts of mineral fertilizer. The experiment in Oensingen (Oens)
compared two meadows under different management intensities
(Ammann et al., 2007). The intensively managed field was typically cut
four times per year and received mineral and organic fertilizer, whereas
the extensive field received no fertilizer and was cut three times per
year. Prior to the experiment, the site was under ley-arable rotation
management. In total the effect of 80 different treatments on ΔSOC
were compared (Section 2.7).

2.2. Determination of soil organic carbon content

Soil organic C content in topsoil (∼0-0.2 m) was assessed by two
different methods, depending on the experiment: 1) a modified K-di-
chromate oxidation method, using hot sulfuric acid (FAL, 1996) or 2)
elemental analysis whereby SOC is oxidized in O2 and quantified as CO2

by GC-TCD (Gas chromatography with a thermal conductivity detector
(Hekatech, Germany)). Elemental analysis recovers slightly more C
than wet oxidation and we therefore applied a correction factor of
1.059 if SOC was determined by wet oxidation to allow comparing the
different experiments (Oberholzer et al., 2014; Gubler et al., 2018).

2.3. Calculation of soil organic carbon stocks

For each experiment, the best possible method given the data
available was used to calculate soil organic carbon stocks for topsoil
(∼0-0.2m depth): If C concentrations and bulk densities were mea-
sured for several layers, the equivalent soil mass approach described by
Poeplau and Don (2013) was used. Otherwise, SOC stocks were calcu-
lated based on minimum equivalent soil masses (Ellert and Bettany,
1995; Lee et al., 2009). Both methods use dry mass for calculations.
Accounting for different soil masses was especially important for ex-
periments that included different tillage treatments (Haus, Ober, p29C)
as these often affect bulk densities. For the experiment Burg bulk
densities were estimated based on a pedotransfer function based on Corg

(Oberholzer et al., 2014).

2.4. Fertilization intensity

To compare the effect of different fertilization treatments on SOC
stock changes, we estimated their intensity based on a similar approach
as Hirte et al. (2018a). We calculated the sum of fertilizer added as
mineral NPK, plus how much NPK was mineralized from organic fer-
tilizer. For this estimate NPK contents of manure of 1.5/0.9/6.0 kg
Mg−1 and for undiluted slurry 2.7/0.6/6.3 kg m-3 were used (Richner
and Sinaj, 2017). The ratio of amounts added relative to amounts re-
commended for specific crops to be applied in Switzerland (Richner and
Sinaj, 2017) was calculated. A fertilization intensity of zero thus refers
to an unfertilized treatment, one is equal to the recommended amount
and anything above one is higher than recommended.

2.5. Carbon inputs to soil

The amount of annual plant C that was added to soil (including
above ground residues (stubble, chaff, stover), roots, extra-root mate-
rial from turnover and exudation) was estimated using an allometric
equation modified from that of Bolinder et al. (2007). The original
equation describes the amount of C input as a crop-specific, linear
function of the measured harvest. However, a recent field study carried
out in Switzerland on two of the sites included here (DOK, ZOFE)
showed that belowground C inputs of maize and winter wheat were
constant, regardless of yields (Hirte et al., 2018b). We therefore used

Table 1
Description of experimental sites in Switzerland on cropland (CL) and grassland (GL). Mean annual temperature and precipitation (MAT, MAP) near sites and starting
year of experiments are presented (years of SOC sampling in parentheses).

Name of experiment
(abbreviation)

Location Landuse Altitude
(m a.s.l)

MAT (°C) MAP (mm) Start of experiment Latitude/
Longitude

ZOFE Zurich CL 420 9 1040 1949
(1949-2009)

47°25ˈ37ˈˈN,
8°31ˈ10ˈˈE

p29C Changins CL 430 10.3 1009 1969
(1969-2005)

46°23ˈ56ˈˈN,
6°14ˈ30ˈˈE

p24A Changins CL 430 10.3 1009 1976
(1976-2009)

46°24ˈ 01ˈˈN,
6°13ˈ46ˈˈE

DOK Therwil CL 300 9.7 791 1978
(1979-2005)

47°30ˈ10ˈˈN,
7°32ˈ23ˈˈE

Demo87
(‘Demo’)

Zurich CL 420 9 1040 1987
(1990-2013)

47°25ˈ 33ˈˈN,
8°31ˈ00ˈˈE

Hausweid
(‘Haus’)

Tänikon CL 540 8.3 1180 1987
(1987-2009)

47°28ˈ53ˈˈN,
8°54ˈ 22ˈˈE

Burgrain
(‘Burg’)

Alberswil CL 520 8.5 1100 1991-2008
(1991-2006)

47°08ˈ20ˈˈN,
7°59ˈ31ˈˈE

Oberacker
(‘Ober’)

Zollikofen CL 550 9.1 1048 1995
(2002-2014)

46°59ˈ23ˈˈN,
7°27ˈ43ˈˈE

Balsthal
(‘Bals’)

Balsthal GL 930 5 1200 1972
(2002-2014)

47°19ˈ 50ˈˈN,
7°39ˈ55ˈˈE

Watt Watt GL 500 9.5 1055 1992
(1997-2014)

47°26ˈ46ˈˈN,
8°29ˈ34ˈˈE

Oensingen
(‘Oens’)

Oensingen GL 450 9.5 1100 2001
(2001-2011)

47°17ˈ08ˈˈN,
7°43ˈ55ˈˈE

Table 2
Soil types and clay content for each experiment. Note that p29C includes plots
that differ strongly regarding their clay content.

Experiment Soil type (WRB) Clay (%)

ZOFE Haplic Luvisol 14
p29C Calcaric Cambisol 25/48
p24A Calcaric Cambisol 14
DOK Haplic Luvisol 16
Demo Eutric Cambisol 23
Hausweid Orthic Luvisol 17
Burgrain Gleyic Cambisol 18
Oberacker Eutric Cambisol 15
Balsthal Clayic Cambisol 16
Watt Loamic Cambisol 22
Oensingen Eutri-Stagnic Cambisol 43
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these measured C inputs from roots and rhizodeposition. For small
grain cereals (barley, oat, wheat), we used the value for winter wheat
(0.6 Mg C ha−1 yr−1). Values for grain maize were 0.46Mg C
ha−1 yr−1 and for silage maize 1.1 Mg C ha−1 yr−1. In the case of other
crops, belowground C inputs were scaled to a depth of 0-0.2 m as de-
scribed in Keel et al. (2017). For permanent grassland and grass-clover
ley in crop rotations, we used a constant soil C input (2.27Mg C
ha−1 yr−1, Franko et al., 2011). This approach, though simplistic, was
found to result in good model-data agreement for the site DOK (Keel
et al., 2017).

Carbon inputs from organic fertilization (e.g. manure, slurry, com-
post) were either measured or calculated based on the assumption that
manure contains 162 kg Mg−1 organic matter (Richner and Sinaj, 2017)
with a C content of 45%. For slurry, an organic matter content of 67 kg
m-3 (for undiluted slurry), C content of 45% and dilution of 1:1 with
water were assumed. The annual average amounts applied are de-
scribed in Table S1.

2.6. Temperature change

We calculated the temperature change for each individual site and
across experimental years based on data measured on site or from
weather stations nearby (Federal Office of Meteorology and
Climatology MeteoSwiss, www.meteoswiss.admin.ch). At all sites, a
temperature increase was recorded based on linear regressions ranging
from 0.013 °C yr−1 (Ober) to 0.069 °C yr−1 (DOK).

2.7. Statistical analysis

To compare different SOC trends, a linear regression was fitted to
each treatment per site and the slope was used as a proxy for ΔSOC
(n=80 treatments), although fits were not always statistically sig-
nificant (P < 0.05). At site Haus, we also fitted an exponential decay
function, due to a strong SOC decrease at the beginning of the experi-
ment. However, the linear fit was better than the exponential function,
supporting the use of the former (Fig. S1e).

The effect of different factors on ΔSOC was analyzed using a linear
mixed effects model with site as a random factor (function lmer in R
package lmerTest; Kuznetsova et al., 2017).

The following fixed factors were tested: fertilization intensity (F0-
F4.5), organic amendments other than crop residues (yes or no, e.g.
manure, peat, green manure), clay content of soil (%), initial SOC stock
(Mg C ha−1), soil cover (average number of months per year across
rotations based on crop-specific cover times), C inputs to soil (average
sum of harvest residues plus other organic additions such as manure,
peat etc. in Mg C ha−1), land use (grassland or cropland), conversion
from grassland to cropland prior to start of experiment (this was the
case for sites ZOFE, Haus, Demo), management change (any changes
that are expected to result in a loss of soil C, such as shifts from organic
to mineral fertilization or drainage in addition to conversions from
grassland to cropland (ZOFE, Haus, Demo, Watt, Ober, p29C)), organic
(DOK, Burg) vs. conventional farming, and climatic conditions (mean
annual temperature and precipitation, change in mean annual tem-
perature (calculated as linear regression through mean annual tem-
peratures)).

Factors that did not have a statistically significant effect on ΔSOC in
a full model were identified using backward selection (function step, R
package lmerTest) and were removed. This function does a backward
elimination of random-effect terms followed by backward elimination
of fixed-effect terms in linear mixed models. The two factors initial SOC
stock and clay content were linearly related (R2= 0.56) based on visual
inspection of scatter plots (function pairs in R package graphics, R Core
Team 2018); the latter was excluded from further analysis because it
had a lower F-value in the full model. The final model selected was
ΔSOC∼ C input+ soil cover+ initial SOC + (1 | site). The residuals of
this model and the random effect “site” were checked for normality and
the variance was tested for heteroscedasticity. The variance explained
by the entire model, including fixed and random effects, was calculated
using the function r.squaredGLMM (R package MuMIn; Bartoń, 2018).

In addition to analysis of the whole data set, we analyzed a subset of
treatments considered typical for Swiss agricultural systems and refer to
these as ‘common treatments’. These results should more closely reflect

Fig. 1. Map of Switzerland showing location of 11 experimental sites.
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on-farm situations. This subset only included cropland experiments
since mineral fertilization on permanent grassland is not typical.
Furthermore, we selected only those treatments receiving sufficient but
not excessive NPK addition (fertilization intensity of 1–1.5; see above),
and only those receiving all three nutrients. In total, the subset included
42 treatments (Table S1).

3. Results

Soil organic carbon stocks in topsoil (∼0-0.2m) ranged from 33.6
to 76.7Mg C ha−1 at the start of the experiments (Table S3). On
average SOC stocks across 80 different treatments declined at a rate of
0.29Mg C ha-1 yr-1. The loss rate was slightly larger when sites were
equally weighted (0.30Mg C ha-1 yr-1; n= 11 sites (i.e. mean over
treatments per site)). Site-to-site variability in ΔSOC was considerable
(Fig. 2, Table S3), with means ranging from SOC losses (-1.35Mg C ha-1

yr-1, Haus) to small gains (0.16Mg C ha-1 yr-1, Watt). The average
variance within sites was much smaller than between sites (0.024Mg C
ha-1 yr−1 vs 0.179Mg C ha-1 yr-1).

The linear mixed effects model allowed to identify three fixed fac-
tors that had a significant effect on ΔSOC (Table 3): C inputs to soil
(Fig. 3), soil cover (Fig. 4) and initial SOC stock (Fig. 5). The final
model explained 95% of the variance in ΔSOC between treatments.
While ΔSOC was positively related to C input and soil cover, it was
negatively related to initial SOC (i.e. higher SOC losses at higher initial
SOC, Table 3). At most sites, C inputs and ΔSOC were similar between
different treatments (e.g. for sites Haus, Burg; Fig. 3), although for
experiments DOK and p24A, C inputs spanned a large range, and were
linearly correlated with ΔSOC, demonstrating the importance of this
factor (R2= 0.78 and R2=0.71 for DOK and p24A respectively). At
both sites, the large range in C inputs was the result of a gradient in
plant-derived C (yields and thus harvest residues differed) plus a large
variation in organic C amendments from e.g. fertilizer or cover crops
(Table S1). Crop rotations, use of cover crops and type of tillage mainly
determined the duration of soil cover. Soils under permanent grassland
(Oens, Bals, Watt) and no-till (one treatment each at sites Haus, Ober)
that were covered year-round with plants or crop residues on the sur-
face showed smaller soil C losses (Fig. 4). One exception was the no-till
treatment at Haus, a site where SOC losses were consistently larger than

at other sites, most likely due to a prior land-use change (see below).
For other sites, respectively treatments at Haus and Ober, soil cover
ranged from 8.5 to 10.5 months and was mostly the same within each
site because crop rotations were identical for all treatments within each
site. Except for sites Haus and Burg, high initial SOC stocks were as-
sociated with high clay content (Fig. S2). High initial SOC stocks at
Haus are most likely a legacy of the former permanent grassland. To test
whether the outcome of our analysis was driven by pronounced SOC
losses at site Haus, we carried out the same tests without data from this
site. All factors remained statistically significant, though the statistical
significance of soil cover was reduced (P= 0.039) and the model ex-
plained only 91% of the variance in ΔSOC between treatments. If all
sites that experienced a grassland to cropland conversion were ex-
cluded, the factor soil cover was only marginally significant (P= 0.09),
but a difference in ΔSOC was found between grassland and cropland
sites (P < 0.01), with cropland sites losing more SOC than grasslands.

For a subset of the data, including only treatments typically

Fig. 2. Change in soil organic carbon stock of topsoil for eleven experimental
field sites in Switzerland presented as boxplots. n= 2–24 treatments per site.

Table 3
Results of linear mixed effects model (Standard error (SE), degrees of freedom
(df)). All three fixed factors had a statistically significant effect on changes in
SOC stocks.

Estimate SE df t-value P-value

Intercept −0.750 0.245 66.4 −3.06 3.17E-03
C input 0.128 0.021 66.8 6.12 5.63E-08
Soil cover 0.058 0.018 70.3 3.17 2.25E-03
Initial SOC stock −0.008 0.002 72.9 −4.33 4.61E-05

Fig. 3. Changes in topsoil SOC stocks were positively related to soil C inputs
from plants and organic amendments (e.g. farmyard manure) (n=80 treat-
ments).

Fig. 4. Changes in topsoil SOC stocks increased with duration of soil cover
(n= 80 treatments).

Fig. 5. Changes in topsoil SOC stocks were negatively related to mass-corrected
initial SOC stocks (n= 80 treatments).

S.G. Keel, et al. Agriculture, Ecosystems and Environment 286 (2019) 106654

5



practiced in Switzerland, four fixed factors had a significant effect on
ΔSOC: organic additions (whether or not any organic material was
applied in addition to harvest residues), soil cover (number of months),
clay content and mean annual temperature. Thus, with exception of the
variable temperature, the same or very similar factors (organic addi-
tions are related to C inputs and clay content was linearly related to
initial SOC stocks) were found to drive SOC changes for this subset of
treatments. The range of ΔSOC at each site was somewhat narrower,
but the overall picture did not change much (Fig. S3).

Permanent grasslands tended to lose less or even gain SOC (mean
ΔSOC: 0.09Mg C ha−1 yr−1) compared to croplands (mean ΔSOC:
-0.34Mg C ha−1 yr−1; Figs. 2 and 6 (‘Land use’)). On sites that were
converted from grassland to cropland (i.e. sites that experienced a land-
use change) just before the start of the experiment, soils tended to lose
more C than on sites with a constant land use, but the difference was
not statistically significant (Fig. 6). If the three converted sites were
excluded, we found a significant effect of land-use, while soil cover was
no longer significant. Initial SOC stocks and C inputs remained sig-
nificant. Contrary to expectations, two cropland soils that were not
tilled tended to lose more C than normally tilled soils and plots with
shallow tillage (Fig. 6).

Among all 80 treatments investigated, there was no treatment with
a statistically significant increase in SOC. Six out of eight treatments
that tended to show a positive soil C balance were on permanent
grassland and two were heavily fertilized croplands (Fig. 7, FYM70-105
and FYM70-70 in Table S1). With increasing fertilization intensity there
was a tendency for lower SOC losses or even small gains (Fig. 7). Or-
ganic additions tended to have a positive influence on the SOC balance,
though this factor was not statistically significant. There was no trend
in ΔSOC depending on the fraction of ley.

4. Discussion

Soil organic carbon stocks of mineral topsoils (∼0-0.2 m) mostly
decreased in eleven Swiss agricultural field experiments carried out
over the last decades (mean: -0.29Mg C ha−1 yr−1). If only treatments
common in practice were considered, the loss was even higher
(-0.40Mg C ha−1 yr−1). Two recent studies carried out in Switzerland,
but based on very different approaches support our findings. Using
eddy covariance measurements, Emmel et al. (2018) reported losses in
SOC of 16–19% during 13 years for a crop field adjacent to site Oens;
these correspond to an annual decrease in SOC of -1.1 to -1.3 Mg C ha−1

yr−1. Also Stumpf et al. (2018) documented a decrease in SOC for
cropland (without ley in the rotation) based on a combination of
spectral imagery and a random forest model. Nevertheless, the wide-
spread SOC losses we found are unexpected, as several practices as-
sumed to enhance SOC stocks, such as organic fertilization (Poulton
et al., 2018), incorporation of crop residues (Buyanovsky and Wagner,
1998; Kong et al., 2005), and complex crop rotations with grass-clover
leys (Johnston et al., 2009) were among the 80 different treatments.

4.1. Potential explanations for soil organic carbon losses

Firstly, estimated C inputs to the soil were rather low. The sum of C
added to topsoil from plant residues and organic additions ranged from
0.91 to 3.25Mg C ha−1 yr−1 (mean: 2.2 Mg C ha−1 yr−1, up to 65%
from organic additions) and was similar when only common practices
were considered (1.21 to 3.25Mg C ha−1 yr−1; mean: 2.3 Mg C ha−1

yr−1). Studies in Europe or the U.S. that documented SOC enhance-
ments reported annual C inputs between 5.4Mg C ha−1 and 8.9Mg C
ha−1 (Buyanovsky and Wagner, 1998; Kong et al., 2005; Autret et al.,
2016). Most likely C inputs in these studies were higher due to in-
corporation of cereal straw, which is an uncommon practice in Swit-
zerland. Furthermore, C inputs through organic fertilization were also
comparatively low in our studies. For example, the Hoosfield Con-
tinuous Barley experiment and the Broadbalk Winter Wheat experiment
in Rothamsted (UK) both have treatments that receive around 3Mg
FYM-C ha−1 yr-1 (Poulton et al., 2018), which is twice as much as the
FYM treatment at site Demo that follows Swiss guidelines, but lower
than the highest fertilization rates at p24A (Maltas et al., 2018).

Secondly, initial SOC stocks were relatively high (cropland: 44.3 Mg
C ha−1 ; grassland: 66.1 Mg C ha-1) compared to the Swiss mean
(40.6 Mg C ha−1 for cropland and 50.7Mg C ha−1 for grassland (Leifeld
et al., 2005)) and soils might therefore be prone to C losses (Johnston
et al., 2009; Kätterer et al., 2013). While high initial SOC stocks can
partly be explained by high clay contents (Fig. S2; Johnston et al.,
2009), they are also a legacy of former land use. In our dataset, three
cropland sites were converted from permanent grassland before the
experiments started (Demo, ZOFE, and Haus). Grasslands commonly
have higher SOC stocks (Leifeld et al., 2009) and after conversion,
stocks decrease as the system moves towards a lower SOC equilibrium
state (Poeplau et al., 2011). This could be shown for sites Haus (Hermle
et al., 2008) and ZOFE (Oberholzer et al., 2014) where higher SOC
stocks were measured on adjacent grasslands. An alternative explana-
tion for high initial C stocks is that soils were previously wet and might
have accumulated C through incomplete (anaerobic) decomposition.
We checked historic maps for every prior decade back to the year 1860,
but could not find any indications for wetlands for any of the studied
sites (Table S2). Nevertheless, p29C is situated on drained soil, sug-
gesting it was previously wet, which could partly explain why some of
the plots had high initial SOC stocks.

Thirdly, increasing temperatures could have led to higher SOC
losses (Crowther et al., 2016; Bellamy et al., 2005), through increased
soil respiration rates (i.e. CO2 losses), since Switzerland is strongly af-
fected by recent climate change (Begert and Frei, 2018). However, al-
though air temperatures have increased at all sites during the duration
of the experiments, these temperature changes were not significant

Fig. 6. Land use, land-use change prior to start of experiment and tillage (only
cropland experiments shown) did not have a significant effect on ΔSOC.

Fig. 7. Changes in SOC stocks were not significantly affected by fertilization
intensities, organic amendments (e.g. manure, straw) or fraction of ley in the
rotation (only cropland experiments). Fertilization intensities are expressed
relative to Swiss guidelines and present averages across crop rotations. F0 un-
fertilized, F0.5: half, F1: normal, F1.5: 1.5-times, F2: double, F2.5: 2.5-times, F3:
3-times F4.5: 4.5-times (recommended fertilization intensity).
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factors in our analysis. This is in line with previous studies where other
factors such as changes in management had a more pronounced influ-
ence on SOC declines than temperature increases (Smith et al., 2007;
Leifeld et al., 2009). For the subset of data representative of typical
agricultural practices, we found a relationship with climatic conditions:
SOC losses were larger at mean annual temperatures below 9 °C, sug-
gesting that cooler sites are more prone to C losses. Temperature in-
creases however, did not explain this pattern, as they were lower at
cooler sites (0.028 °C yr−1) than at sites with mean annual tempera-
tures of 9 °C or above (0.036 °C yr−1).

In summary, low C inputs and in case of some sites, former land-use
conversions, are most likely explanations for the observed decreases in
SOC. The fact that plant-derived C inputs and other organic C additions
were identified as drivers for SOC changes in our analysis, is in line with
this conclusion and earlier studies for sites DOK (Leifeld et al., 2009)
and ZOFE (Oberholzer et al., 2014) as well as a global meta-analysis
(Han et al., 2016).

However, why were C inputs so low despite the use of practices
expected to increase them? Compared to a study in France (Autret et al.,
2016), Swiss experiments only assessed the effect of one or two such
practices at once. In contrast, Autret et al. (2016) combined several:
crop residues (including wheat straw) and the whole aboveground
biomass of cover crops (Alfalfa and fescue) as well as catch crops (oat,
vetch, white mustard and fodder radish) were left on the field, and crop
diversity was high. Furthermore, the soil was covered continuously. In
sum, these practices led to high C inputs of 5.41Mg ha−1 yr−1,
dominated by straw (1.84Mg C ha−1 yr−1), and an associated SOC
increase of 0.63Mg ha−1 yr−1. Leaving the entire biomass of Alfalfa on
the field – which contributed 1.12Mg C ha−1 yr−1 to their total inputs
– is however not a regular agricultural practice. Other studies from the
U.S. also showed that cereal straw residues contribute significant
amounts of C (1-2Mg ha−1 yr−1) (Buyanovsky and Wagner, 1998;
Kong et al., 2005). Because this is an uncommon practice in Switzer-
land, it was only tested at three sites (p24A, Haus, Ober) with negligible
to moderate effects although added amounts of C were large (3.8Mg C
ha−1 yr−1 for cereal straw at site Ober). At site p24A cereal straw re-
tention led to slight decreases in yield (and possibly lower C inputs from
residues) (Maltas et al., 2018) most likely due to reduced availability of
N for plants. This could explain why SOC did not increase in response to
straw additions.

Based on our analysis we cannot identify the main drivers of ΔSOC
for each site, but broad patterns of ΔSOC offer some indications. Given
the much smaller within than between site variability, we conclude that
site-specific factors including site history have a stronger effect on
ΔSOC than the actual management. For example, a combination of
former land use conversion and high initial SOC content are the most
likely explanations for dramatic C losses at site Haus. At ZOFE and
Demo, initial SOC stocks were not as high relative to the clay content
(Fig. S2), despite grassland-to-cropland conversions, offering a poten-
tial explanation for more moderate losses compared to Haus. Within
sites, gradients in ΔSOC are probably driven by gradients in C inputs as
indicated by linear relationships for sites p24A and DOK (Fig. 3). An
exception is site p29C, where differences of ΔSOC seem to be dominated
by pronounced differences in initial SOC stocks because of large var-
iations in soil texture within the field (Fig. S2).

4.2. Improvement of SOC in Swiss agricultural systems

Based on our analysis we have identified three factors that are cri-
tical for SCS: C inputs, soil cover and initial SOC stocks (i.e. a site
characteristic). In the following section, we will discuss potential op-
tions to enhance SOC in Swiss agricultural systems related to these.

Firstly, crop rotations can be optimized to increase plant derived C
inputs. This can be achieved by planting crops that contribute high
amounts of residues and by leaving as much of them on the field. Crops
with high fractions of residues are grain corn or grass-clover leys. Root

crops such as sugar beet or potatoes have very small amounts of re-
sidues. According to the information available for Switzerland, residues
are generally left on the field except for cereal straw (Swiss Agri-
Environmental Data Network). Cereal straw is typically used for animal
bedding (Federal Statistical office; https://www.bfs.admin.ch) and re-
turned to the field together with manure. In terms of the C balance, it is
not clear whichever option is more profitable. During storage of
manure, significant amounts of C are lost through respiration (Sommer
and Hutchings, 2001; Shah et al., 2016), due to a lack of a stabilising
soil matrix. Possibly, less C would be lost if cereal straw would be left
on the field and only slurry would be returned. Multi-cropping (under-
sowing/intercropping/double cropping) might be another option to
enhance plant C inputs (Cong et al., 2014). Furthermore, deep rooting
cultivars with higher belowground C inputs could be planted (Kell,
2011).

Based on data from Switzerland’s national GHG inventory, the
amount of organic fertilizer generated in Switzerland is lower than the
amount that could be distributed based on the Swiss fertilization
guidelines. Most likely, this gap is filled by mineral fertilizer, which
could partly be complemented with straw to improve the soil C balance
(Sinaj and Jeangros, 2019). According to this study, green manure in
combination with mineral fertilizer was not as efficient. Compost from
urban waste or the solid phase from biogas plants might be other op-
tions to enhance C inputs. Yearly about 350’000 Mg d.m. are applied in
Swiss agriculture (Kupper et al., 2018) but there is potential to increase
the production of these so-called recycling fertilizers (Mandaliev and
Schleiss, 2016). Generally, the transfer of C between different systems
has to be assessed carefully, as C added to agricultural soils can be
lacking elsewhere.

Secondly, soil cover can be increased by an optimized rotation in-
cluding winter and summer crops. Additionally cover crops can be
planted, which have several advantages. They reduce NO3--leaching,
may decrease N2O-losses (Basche et al., 2014), and are not associated
with yield reductions, as is the case for extensification. Globally the SCS
potential is estimated to be 0.12 Pg C yr−1 (Poeplau and Don, 2015)
and a Swiss study indicated a positive effect on SOC (Büchi et al., 2018).
Due to former incentives, cover crops are already partly used in Swit-
zerland, but most likely this practice could be intensified. To strengthen
the positive influence on the SOC balance of practices described above,
they could be combined as was presented by Autret et al. (2016). In
typical Swiss farming systems, it should for example be possible to
combine cover crops with residue retention (for non-cereals) and or-
ganic fertilization.

From a soil C perspective, converting cropland to permanent
grassland would be an option to sequester C (Figs. 2 and 6). Due to
lower disturbance (no ploughing), that leads to protection of soil
through aggregation, higher belowground C inputs and a permanent
soil cover, grasslands usually store more SOC than croplands (Leifeld
et al., 2005). Unfortunately two of the three grassland sites studied here
received only mineral fertilizer for experimental purposes (Bals, Watt),
which is very uncommon for grassland managed by farmers in Swit-
zerland. If organic fertilizer had been applied, these sites might have
sequestered more C. Several lines of evidence suggest that soils under
permanent grassland in Switzerland are either CO2 neutral (FOEN,
2019) or are small CO2 sinks (0.33–2.7 t C ha−1 yr−1 for intensively
managed field (Ammann et al., 2007); -0.11 to +1.7 t C ha−1 yr−1

(Zeeman et al., 2010)).
For the same reasons just discussed for permanent grasslands, in-

creasing the fraction of ley in crop rotations might be an efficient
measure to sequester more C (Börjesson et al., 2018; Persson et al.,
2008; Poeplau et al., 2015) although this was not a statistically sig-
nificant factor in our analysis (Fig. 7). In Switzerland, ley could be used
to partly replace silage maize which, after ley, is the most important
fodder crop grown, covering a tenth of the agricultural area (about
43′000 ha). Since the 1990s, the area of ley has increased from about
100′000 to 125′000 ha and silage maize from 39′000 to 47′000 ha,
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without a clear effect on the overall SOC stocks (FOEN, 2019).
Regarding the effect of no-till on SCS, we cannot make any firm

conclusion based on the few data included in our analysis. However,
Luo et al. (2010) and Powlson et al. (2014) showed that no-till only
leads to a change in the distribution of C with depth. In subsoil, SOC
increases, while at lower depth SOC decreases, resulting in zero effects
over the whole profile. This was also confirmed for sites Ober and p29C
(Martínez et al., 2016; Büchi et al., 2017).

Thirdly, because high initial stocks were accompanied with larger
losses, we suggest concentrating described efforts on fields with rather
low SOC stocks. To decide which practices could be applied to improve
the soil C balance, it is important to evaluate them in a whole system
approach. In other words, it is critical to know whether the practice
might have negative side effects (e.g. fertilization can lead to N2O
emissions) and whether farmers would implement them (e.g. are they
expensive, do they reduce yields, are they labor intensive?). Cover
crops generally seem a very promising practice, as they have no GHG
emission trade-offs and are not very expensive.

Although practices discussed so far might enhance SOC stocks in
Switzerland, these measures will probably not be sufficient to sequester
the required amounts of C to reach the goal of the 4 per 1000 initiative
(0.2 Mg C ha−1 yr−1 for cropland and 0.25Mg ha−1 yr−1 for grass-
land). Yet, there are other promising practices that may be introduced.
The application of biochar has been widely discussed in the literature
and has often shown beneficial effects on soil C storage and mainly in
the tropics, also on soil fertility and yields (Lehmann, 2007; Smith,
2016). Adding biochar has the advantage of being less prone to rever-
sibility compared to other SCS measures, owing to the inherently higher
stability of biochar as compared to other organic inputs. Currently the
greatest disadvantage is the high cost. However, the Swiss agricultural
system is strongly dependent on subsidies and methods to improve SCS,
could be promoted through payments. Deep ploughing, a method used
to improve soil structure, has been shown to increase SOC stocks by
very significant amounts (Alcantara et al., 2016, 2017; Schiedung et al.,
2019). Nevertheless, to date, these studies remain the only ones we
know of and thus the generality of this approach, as well as further
ecological implications must be explored in more detail. Recent studies,
suggest that agroforestry has the potential to sequester C also in Swit-
zerland (Kay et al., 2018). Various combinations of woody plants and
crops or grasslands exist. Traditional combinations in Switzerland are
cherry orchards and pastures. More innovative combinations are Po-
pulus tremula as energy crops combined with maize or sorghum; apple
trees combined with wheat and strawberry fields (Kuster et al., 2012).
Agroforestry systems come along with many co-benefits such as in-
creased total productivity per area land, reduced soil erosion, less nu-
trient and pesticide leaching or increases in biodiversity (Kaeser et al.,
2010).

Based on a summary of eleven long-term experiments we show that
agricultural practices subsidized under the ‘Proof of Ecological
Performance’ in Switzerland, are not sufficient to sustain organic
carbon stocks in cropland topsoils. We suggest to intensify these prac-
tices as they are important to prevent even larger C losses and often
have many beneficial effects, such as improved water infiltration, ag-
gregate stability and ease of tillage (Blair et al., 2006; Chervet et al.,
2006). Based on our results we conclude that it will be necessary to 1)
combine several SOC enhancing practices to sequester significant
amounts of C in Swiss agricultural soils and 2) test novel measures such
as the application of biochar, deep soiling or agroforestry.
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