Organic apples (cv. Elstar) quality evaluation during hot-air drying using Vis/NIR hyperspectral imaging

Shrestha, L.1; Moscetti, R.2; Crichton, S. O. J; Hensel, O.1; Sturm, B.1,3
1Department of Agricultural and Biosystems Engineering, University of Kassel, Witzenhausen, Germany
2Department for Innovation in Biological, Agro-food and Forest systems DBAF - University of Tuscia, Italy
3School of Natural and Environmental Science, Newcastle University, Newcastle upon Tyne, UK
*sthaluna@gmail.com

Introduction

- Organic and dried agricultural products is continuously growing and has high market demands
- Non-invasive and non-destructive methods are useful to detect quality metrics to improve production line settings
- Method is based on models that were developed from measured and hyperspectral data relating the visual and quality parameters

Objectives

- To investigate quality metrics predictions such as moisture content and chromaticity using the visible/near-infrared (Vis/NIR) spectroscopy coupled with chemometrics during the drying process

Materials, Methods and Statistics

PLSR model
Determined in terms of regression vector (RV)

Results

- A good moisture content prediction model was achieved on the test set with highest R^2 (0.98) and lowest RMSEP (0.27 g Water/g D.M) (Fig 1a)
- The highest peak was observed at wavelengths 580 nm and downward peaks at 680 nm and 970 nm (Fig 2b and 2c)
- At 970 nm, there might be the non-bonded O-H stretching second or third overtone vibration in water and free water molecules in the apple slices [1,2]. Specifically, 680 nm is related to change in chlorophyll content [1]

Conclusions

- Colour (a^*b^*) parameter changed at each drying interval compared to the onset of drying
- RV model had a higher prediction accuracy indicating that wavelengths selected are powerful in predicting the MC and a^*b^* colour of organic apple slices

Acknowledgments

The authors wish to thank the KAAD for providing the stipendium, Core Organic Plus Programme for the financial support within the SusOrganic plus project (project number BIL-2014/0193)