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Abstract Accumulated growing degree-days (aGDD) are
widely used to predict phenological stages of plants and in-
sects. It has been shown in the past that the best predictive
performance is obtained when aGDD are computed from
hourly temperature data. As the latter are not always available,
models of diurnal temperature changes are often employed to
retrieve the required information from data of daily minimum
and maximum temperatures. In this study, we examine the
performance of a well-known model of hourly temperature
variations in the context of a spatial assessment of aGDD.
Specifically, we examine whether a generic calibration of such
a temperature model is sufficient to infer in a reliable way
spatial patterns of key phenological stages across the complex
territory of Switzerland. Temperature data of a relatively small
number of meteorological stations is used to obtain a generic
model parameterization, which is first compared with site-
specific calibrations. We show that, at the local scale, the pre-
dictive skill of the generic model does not significantly differ
from that of the site-specific models. We then show that for
aGDD up to 800 °C d (on a base temperature of 10 °C), phe-
nological dates predicted with aGDD obtained from estimated
hourly temperature data are within ± 3 days of dates estimated
on the basis of observed hourly temperatures. This suggests

the generic calibration of hourly temperature models is indeed
a valid approach for pre-processing temperature data in re-
gional studies of insect and plant phenology.

Keywords Hourly temperature model . Accumulated
growing degree-days . Phenological dates . Spatial variation

Introduction

Air temperature is the main determinant of plant and insect
growth (Huey and Stevenson 1979; Deutsch et al. 2008), a
well-known fact that led to the development of conceptual
models relating plant and insect phenology to temperature
(as a measure of heat availability) already in the middle of
the eighteenth century (Allen 1976; Wilson and Barnett
1983). Particularly important in this context is the total
amount of heat required for an organism to develop from
one point to another in its life cycle (Baskerville and Emin
1969). This is usually expressed in terms of accumulated
growing degree-days (aGDD), that is to say, the integral over
a given period of time of the daily excess of temperature over a
lower developmental threshold, the so-called base temperature
(Baskerville and Emin 1969; Prentice et al. 1992).

The degree-day approach assumes a linear relationship be-
tween development rate and temperature (Riedl 1983; Roltsch
et al. 1999; Snyder et al. 1999). It requires specification of
organism dependent temperature thresholds that can be de-
rived from laboratory experiments (Pitcairn et al. 1991) or
field observations (Snyder et al. 1999). The approach has been
extensively used in agricultural fields to predict harvest times,
schedule planting dates of crops, or to plan disease, weed, and
pest control applications (e.g. Worner 1988). In recent years,
the approach has also been adopted for climate change impact
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assessments (e.g. Grigorieva et al. 2010; Stoeckli et al. 2012;
Juszczak et al. 2013; Bethere et al. 2016).

Comparison of degree-day estimates obtained from daily
and hourly data has shown that the latter should be preferred,
whenever possible (Worner 1988; Reicosky et al. 1989;
Roltsch et al. 1999; Cesaraccio et al. 2001; Purcell 2003; Gu
2016). Unfortunately, hourly data is not always available. For
this reason, models for simulating diurnal temperatures varia-
tions from daily minimum (Tn) and maximum temperature
(Tx) have been proposed in the past (Parton and Logan
1981; Eckersten 1986; Worner 1988; Linvill 1990; Tejeda
Martinez 1991; Cesaraccio et al. 2001; Chow and
Levermore 2007; Eccel 2010a; Horton 2012; Kearney et al.
2014). Irrespective of the specific choice, all models assume
that observed temperature variations follow regular diurnal
temperature patterns. This usually is the case for clear-sky
conditions over flat terrain, but less so on overcast or rainy
days (Reicosky et al. 1989) or in complex terrain.

Models of diurnal temperature variations are expected to
also play an important role for climate change impact assess-
ments. In fact, while it is true that current global or regional
climate models do compute temperature (and other variables)
at high temporal and spatial resolution, the possibility to use
model outputs directly for further analysis is ruled out by the
presence of systematic errors, and the relatively course spatial
resolution of the climate models. Downscaling and bias cor-
rection techniques are used for the post-processing of climate
model output and the development of reliable regional climate
change scenarios (Wilby et al. 2009; Calanca and Semenov
2013). Yet, these procedures typically aim at the daily
timescale.

Increasing computational power, the availability of weather
records at sub-daily scale and of satellite imagery havemade it
possible to use more sophisticated schemes to estimate
degree-days (Floyd and Braddock 1984; Reicosky et al.
1989; Kean 2013) and to apply degree-day models at the
spatial scale (e.g. Hassan et al. 2007; Kean 2013; Spinoni
et al. 2015; Wypych et al. 2017). For an overview of different
approaches for the calculation of degree-days, see Zalom et al.

(1983), Cesaraccio et al. (2001), and Rodríguez Caicedo et al.
(2012) and references therein.

In this study, we investigate the potential for using a simple,
widely used model of diurnal temperature variations (Parton
and Logan 1981) in spatial analysis of accumulated degree-
days in Switzerland, a country characterised by complex to-
pography and a wide range of local thermal regimes. The
model assumes a sinus function and an exponential decay to
simulate day-time and night-time temperatures, respectively.
In addition to T n and Tx as well as sunrise and sunset hours as
input data, the model involves only three parameters that are
easily calibrated (e.g. Parton and Logan 1981; Eckersten
1986). It has been shown earlier that the range of model pa-
rameter values across sites tends to be narrow, suggesting that
in many circumstances even a generic calibration can deliver
satisfactory results (Reicosky et al. 1989). A specific goal of
our study was to develop a generic model for the whole of
Switzerland using hourly temperature data from only ten me-
teorological stations and test its performance for computing
accumulated degree-days in comparison to specific models
obtained from individual parameterizations.

Material and methods

The model

For this work, we adopted the model of Parton and Logan
(1981) but with improvements concerning (i) the phase shift
of the sinusoid invoked to simulate day-time temperature var-
iations (the curve was forced to run through maximum tem-
perature), (ii) the exponential decay at night (an additive term
was included to force the curve through minimum tempera-
ture), and (iii) the specification of temperature at sunset and
minimum temperature to model the exponential decay in the
early morning hours and the late evening hours (information
from the previous and next day was included as appropriate).

With this, the following set of equations (Eq. 1) describes
the improved temperature model:

T hð Þi ¼

Tn;i þ TS;i−1−Tn;i
� �

e
−b h−hS;i−1þ24ð Þ

n1 −
h−hS;i−1 þ 24

n1
e−b for h < hR;i þ c Eq: 1að Þ

Tn;i þ Tx;i−T n;i
� �

sin
π h−hR;i−c
� �

hS;i−hR;i þ 2a−2c

� �
for h≥hR;i þ c and h≤hS;i Eq: 1bð Þ

Tn;iþ1 þ TS;i−T n;iþ1

� �
e
−b h−hS;ið Þ

n2 −
h−hS;i
n2

e−b for h > hS;i Eq: 1cð Þ

8
>>>>>>><

>>>>>>>:

where T(h) is the temperature at hour (h) of day i, Tn and Tx are
the daily minimum andmaximum temperature; TS is the sunset
temperature (calculated with Eq. 1b for hS); n1 the corrected

night length before sunrise (n1 ¼ hR;i − hS;i−1 þ cþ 24) and
n2 the corrected night length after sunset until the sunrise of the
following day (n2 ¼ hR;iþ1 − hS;i þ cþ 24); hR and hS are
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sunrise and sunset hours, respectively, and a is the lag coefficient
for Tx from noon, b the night-time temperature decay coefficient
and c the time lag for Tn from sunrise.

Sunrise (hR) and sunset hour (hS) were calculated for each
site as a function of geographic latitude and day of the year
(Iqbal 1983).

Sites and temperature data

Hourly air temperature data measured at 2-m height above
ground from 20 meteorological stations in Switzerland
(Fig. 1) as provided by the Federal Office of Meteorology
and Climatology (MeteoSwiss 2016) were used in this study.
Full names, coordinates and data availability are listed in
Table S1 (Supplementary Material). Most of these sites are
located in agricultural areas, at elevations below 800m.a.s.l.
Two of them, FRE and DAV (Bullet/La Frêtaz and Davos), are
located above 1100 m.a.s.l. They were included to test the
model performance in high-elevation agricultural areas.
Finally, JUN (Jungfraujoch) is located at 3580 m.a.s.l. It is a
high alpine station with no relevance for agriculture. The site
was nevertheless taken into account to test the suitability of
the hourly temperature model under extreme conditions.

The model operates with true solar time (TST), but the
hourly temperature data is given in mean local time. To syn-
chronise the data, mean local time was converted into TST on
the basis of Eq. (1.4.1) and Eq. (1.4.2) in Iqbal (1983).

For each site, daily minimum and maximum temperatures
were obtained from the hourly data. Ten sites (BAS, BER,
BUS, CGI, CHU, GUT, MAG, SIO, STG and WAE; blue
points in Fig. 1) denoted as ‘calibration sites’, were used for
developing the generic model. The other ten sites (DAV, FRE,
INT, JUN, LUG, PUY, REH, TAE, VIS andWYN; green stars
in Fig. 1) were used to assess the potential for spatial

application of the generic model. These sites are referred as
‘validation sites’ in the following.

Model calibration and validation

The model was calibrated for each site individually,
giving 20 site-specific parameterizations. We refer to
this set as the ‘site-specific models’. Additionally, a sin-
gle calibration was carried out for the ten calibration
sites taken together. In the following, this will be re-
ferred to as the ‘generic model’. Twenty-five randomly
selected years were used for the calibration.

Following Reicosky et al. (1989), only ‘clear-sky’ days
were considered for the calibration. They were selected on
the basis of Tn occurring before noon and the ratio between
observed and potential solar radiation, assuming for the latter
a threshold of 0.9.

Parameter fitting was carried out with the ‘Nelder-Mead’
method, as implemented in the function ‘optim’ of the R soft-
ware (Version 3.2.2, R Core Team 2016). The modified index
of agreement (MIA; Legates andMcCabe 1999) was used as a
performance metric for the optimization.

To assess the model performance, the following metrics
were used: mean error (ME), mean absolute error (MAE), root
mean square deviation (RMSD), modified index of agreement
(MIA), Nash-Sutcliffe efficiency (NSE) and coefficient of de-
termination (R2). The performance statistics were evaluated
using the R library ‘hydroGOF’ (Zambrano-Bigiarini 2012).

Accumulated growing degree-days

Accumulated growing degree-days, which we denote as
aGDD (°C d) in accordance with the terminology introduced
in the Glossary of Biometeorology (Gosling et al. 2014), were

BER
CHU

WAE

BAS REH

SIO

CGI

MAG

BUS

GUT
STG

FRE

JUNPUY

TAE

DAV

VIS

LUG

WYN

INT

Fig. 1 Locations of the 20
meteorological stations in
Switzerland used in this study.
Blue dots indicate sites used for
model calibration and validation
(years 1981–2015). Green stars
indicate sites used for assessment
of the generic model (years 1988–
2015)
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computed from (observed or simulated) hourly temperatures
as (Purcell 2003):

aGDD kð Þ ¼ 1

24
∑k

d¼1∑
24
h¼1max 0; Th dð Þ−Tbð Þ ð2Þ

where k is the upper summation limit (day of the year or
DOY), Th the air temperature of the h-th hour of day (d) and
Tb the base temperature. In our examples, we set Tb = 10 °C,
which is roughly in the middle of the range of base tempera-
tures adopted for modelling insect phenology (Pruess 1983)
but at the upper end of the range of base temperatures that
apply to insects found in Mid-Europe. As shown by Pruess
(1983), the performance of models estimating aGDD from
diurnal temperature variations degrades with increasing base
temperature. We hence consider the choice of an elevated Tb
as pertinent for addressing model performance.

The distribution of DOYs corresponding to a given aGDD
value was examined by means of the Wilcoxon-Mann-
Whitney test and the Kolmogorov-Smirnoff test, using the
respective R functions (R Core Team 2016). In addition, a
model efficiency (Ef) was defined in the spirit of Worner
(1988) as the percentage of years and sites for which the esti-
mated aGDD occurred within a ± 3-day window of the actual
aGDD.

Results

Calibration and verification of the hourly temperature
model

Table 1 compares the mean of model parameters (a, b and c)
derived from the site-specific model calibration (site-specific
temperature models) to the parameter values of the generic
temperature model (more detailed information can be found
in Table S2, SupplementaryMaterial). Parameter values of the
generic model lie within the range (mean ± 1 SD) of parameter
values of the site-specific models. With respect to the site-
specific models, note also that parameters a and b show lower
relative variations than parameter c. Ancillary site-specific
calibration of the hourly temperature model for the ten valida-
tion sites (Table S2) confirm these findings, except for the fact
that at JUN and PUY, the values obtained for a are larger than
5.5, implying that in some cases the calibration procedure fails
to provide realistic timing of T x.

In principle, the model improvements implemented in
Eq. 1 ensure that Tn and Tx are more accurately simulated
than with the original model formulation. In practice, simulat-
ed Tn and T x can still depart somewhat from the observed
values because the phase shift parameters a and c are not
necessarily multiples of the hours at which temperatures are
simulated. Comparison of simulated Tn and Tx with observed

Tn and Tx yields R
2 larger than 0.98 and 0.99 for T n and T x,

respectively, with the site-specific model. The good perfor-
mance of the site-specific models is further stressed by the
statistics presented in Table S3 (Supplementary Material).
For all sites, the Nash-Sutcliff efficiency (NSE) is larger than
0.94, and the MIA is larger than 0.91.

Figure 2 shows observed and simulated (site-specific
model) temperature variations during one week of the summer
of 1991 at BAS, the site for which the model performance is
best (MAE = 0.91, cf. Table S3). The figure verifies that the
improved version of Parton and Logan’s (1981) model simu-
lates well the transitions from one day to the next, which was
not necessarily the case with the original formulation.

However, the figure also highlights four types of error that
cannot be addressed during calibration:

i) Slight overestimation of observed temperatures in the
late afternoon (DOY 249 to 253)

ii) Underestimation in the early morning, between mid-
night and sunrise (DOY 249 to 253)

iii) Failure of the assumed functional relations to describe
the diurnal temperature course on overcast or rainy
days (DOY 254 and 255)

iv) Error arising from a wrong attribution of Tn and Tx to
fixed hours relatively to sunrise and sunset (DOY 250
and 255)

Errors of types iii and iv tend to be larger than those of
types i and ii, but the latter are responsible for the seasonal
diurnal patterns of the difference between simulated and ob-
served hourly data (Fig. S1, Supplementary Material). For
example, for BAS (MAE = 0.91) and GUT (MAE = 1.06),
differences are positive around midday and sunset, but nega-
tive between 5:00 and 6:00 and 16:00 and 18:00. This con-
clusion holds true irrespective of whether only ‘clear-sky’ or
all days are considered and also irrespective of whether the
specific or generic parameter values are used (Fig. 3 and
Fig. S1). With the specific models for BAS and GUT, mean
hourly deviation of clear-sky days range from − 4.56 to
3.31 °C and from − 6.79 to 4.70 °C when only ‘clear-sky’
cases are considered and from − 2.19 to 2.11 °C and − 2.45
to 2.95 °Cwhen all days are included. Mean deviations for the
specific models range from − 2.44 to 2.56 °C for REH and

Table 1 Mean and standard deviation (SD) of the site-specific model
parameters a, b and c (upper line) and generic model parameters (lower
line)

Parameters

a b c

Site-specific 2.79 (0.29) 3.16 (0.36) 0.79 (0.27)

Generic 2.71 3.14 0.75
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from − 1.87 to 2.16 °C for LUG. With the generic model,
these ranges slightly increase: the values for REH vary be-
tween − 2.51 and 2.14 °C, while they vary between − 1.50
and 2.68 °C for LUG. As REH and LUG were not used for
the calibration of the generic temperature model, the panels on
the right can be considered as presenting an independent test
of the generic model.

Table 2 presents a summary of the performance of the ge-
neric models at calibration and validation sites, stratified by
time of the day and season. Analogous statistics for individual
sites can be found in Table S4 (Supplementary Material). By
and large, the statistics confirm that the generic model does
perform less well than the site-specific models. However, be-
cause the site-specific models are calibrated for clear-sky days
only, there are also sites performing slightly better with the
generic model than with the site-specific model (e.g. BER,
BUS and GUT with lower ME, MAE and RMSD values).

Also, there is no systematic difference between the perfor-
mance of the generic model at the calibration and validation
sites (Table S4, Supplementary Material). The ME is in all
cases negative, − 0.05 (± 0.09) and − 0.06 (± 0.10) °C for the
calibration and validation sites, respectively. The overall neg-
ative bias is induced by a most pronounced underestimation
during night-time (Table 2). If only hours for which T ≥Tb are
taken into account (inner domain bounded by the two dashed
lines in Fig. 3), then the ME becomes 0.22 (± 0.12) °C.

On a seasonal scale, the generic model shows the best per-
formance in spring and fall (R2 ≥ 0.94), followed by summer
(R2 ≥ 0.92) and winter (R2 ≥ 0.87). There is a positive bias in
summer, but a negative bias in all other seasons. The largest
bias is found for winter with − 0.32 °C.

At JUN, the generic model shows a much lower predict-
ability than at other sites (largest ME, MAE and lowest MIA,
R2 and NSE, respectively; Table S4, SupplementaryMaterial),

Site calibration

   a) REH
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   c) LUG
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Generic calibration
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   d) LUG
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Day of the year
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r o
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Fig. 3 Mean for 1981–2015 of
the difference between simulated
and observed temperatures as a
function of the time of the day (y-
axis) and day of the year (x-axis),
at REH (upper row) and LUG
(lower row). Panels on the left
present the mean deviations ob-
tained with the site-specific
models, whereas panels on the
right show the deviations
resulting from the application of
the generic model. Reddish/
blueish colours indicate a
positive/negative bias. The dotted
lines enclose the time of the day
when T is in excess of Tb = 10 °C

Fig. 2 Temperature evolution at BAS during the summer of 1991. Dots
and black line—observed temperatures. Grey line—simulated
temperatures. The asterisks denote the minimum temperatures (Tn)
extracted for each day from the corresponding 24 hourly values.

Vertical solid lines indicate midnight, dashed vertical lines sunrise and
sunset, respectively. Days 251 and 252 are classified as ‘clear-sky’ days
(for definition see text)
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indicating that applications of the generic model should be
restricted to altitudes below about 1500 m.a.s.l or less.

Accumulated growing degree-days and empirical
correction

Owing to the positive bias in T during the time of the day
when T ≥ Tb (cf. area between dotted lines in Fig. 3), there is
a systematic positive deviation of estimated versus actual
aGDD at the end of each year (Fig. 4). This can be accommo-
dated by applying an empirical correction factor (fcorr). For the
specific models, fcorr ranges between 0.958 and 0.989, where-
as the value is 0.974 for the generic model.

Inter-annual variability of accumulated growing
degree-days

Yearly variations in aGDD and corresponding dates are sim-
ulated with high accuracy at all sites (Fig. S2, Supplementary
Material). Because daily mean errors in simulated tempera-
tures are also accumulated when computing aGDD, the model

skill for the dates corresponding to aGDD ≤ 800 °C d is much
better than for dates corresponding to aGDD > 800 °C d, with
significant departures of estimated from actual dates
appearing from time to time even at sites for which the model
performance is otherwise excellent (e.g. BAS in 1993 or GUT
in 2008).

Additional information concerning the model performance
in simulating dates corresponding to aGDD of 200 and
800 °C d can be found in Tables S5 and S6 for the site-
specific model and Tables S7 and S8 (Supplementary
Material) for the generic model.

The probability distribution of the difference between sim-
ulated and actual dates corresponding to prescribed aGDD
discloses a small tendency for the generic model to anticipate
the actual dates (Fig. 5). For aGDD ≤ 800 °C d, most of the
differences lie within a window of ± 3 days, indicating a high
efficiency (Ef > 0.8). However, the efficiency drops below 0.5
for dates corresponding to aGDD = 1200 °C d (Table 3).

Spatial application of the generic temperature model
to calculate thermal heat sums

To illustrate the potential for application of the generic model
to the spatial analysis of plant and insect phenology, the dis-
tribution of the mean date of occurrence of 800 °C d (Tb =
10 °C) between 1981 and 2015, along with the associated
inter-annual standard deviation, is displayed in Fig. 6. For this
analysis, gridded data of daily T n and Tx at 0.02° × 0.02°
spatial resolution (approximately 2.2 × 2.2 km) were used.

In the complex topographic settings of Switzerland, mean
phenological development is primarily a function of altitude,
with aGDD = 800 °C d occurring in August on the plateau
(DOY ∈ [213:243]), but during the second half of September at
about 1000 m.a.s.l. The different thermal regimes to the north
and south of the Alps are also nicely reflected in Fig. 6a, with
earlier dates being predominant in Southern Switzerland.

For this particular value of aGDD, the inter-annual variabil-
ity of the date of occurrence is large, the standard deviation

Table 2 Performance statistics
(ME,MAE, RMSD,MIA, R2 and
NSE) of the generic temperature
model for selected hours of the
day (04:00, 23:00, 10:00, 13:00)
and seasons (spring, summer, fall,
winter)

ME (°C) MAE (°C) RMSD (°C) MIA R2 NSE

All − 0.05 (0.09) 1.01 (0.13) 1.52 (0.18) 0.92 (0.01) 0.96 (0.01) 0.96 (0.01)

04:00 − 0.81 (0.23) 0.90 (0.21) 1.56 (0.28) 0.92 (0.02) 0.96 (0.01) 0.94 (0.02)

23:00 − 0.69 (0.15) 1.08 (0.12) 1.58 (0.20) 0.91 (0.01) 0.96 (0.01) 0.95 (0.02)

10:00 0.22 (0.33) 0.98 (0.09) 1.29 (0.12) 0.93 (0.01) 0.98 (0.01) 0.97 (0.01)

13:00 0.58 (0.21) 0.66 (0.17) 1.14 (0.26) 0.95 (0.02) 0.99 (0.01) 0.98 (0.02)

Spring − 0.01 (0.11) 0.98 (0.08) 1.48 (0.13) 0.90 (0.01) 0.94 (0.02) 0.94 (0.02)

Summer 0.25 (0.10) 0.96 (0.07) 1.45 (0.11) 0.88 (0.02) 0.92 (0.02) 0.90 (0.02)

Fall − 0.14 (0.10) 1.01 (0.16) 1.51 (0.23) 0.89 (0.02) 0.94 (0.02) 0.93 (0.02)

Winter − 0.32 (0.12) 1.09 (0.23) 1.64 (0.31) 0.84 (0.02) 0.87 (0.03) 0.86 (0.03)

Given in the table are the mean and standard deviation (in parenthesis) of the corresponding statistics for the years
1988–2015
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Fig. 4 Probability distribution of the difference between simulated and
actual aGDD at the end of the year (DOY 365) during the period 1988–
2015 (excluding JUN; n = 532 site years)
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being about 10 days on the plateau, but 18 days in the Jura
Mountains and the Fore-Alps.

Discussion

Need for models and choice of the model

There are situations in which aGDD estimated from daily data
are by no means worse than estimates obtained from hourly
data. This is the case when the time interval of integration is
short and the base temperature low. For instance, Purcell
(2003) found that for warm-season crops, there was no signif-
icant difference in using hourly or daily data to assess the time
needed to cumulate 200 °C d. In general, however, predictions
of aGDD and corresponding dates based on hourly tempera-
ture data are superior to predictions based on daily data
(Worner 1988; Gu 2016). Accordingly, various models have
been proposed to simulate diurnal temperature variations from
Tn and T x.

Of course, it is pertinent to ask whether such models are
still needed. In fact, meteorological data are nowadays rou-
tinely sampled at frequencies higher than the daily. In practice,
however, sub-daily scale temperature data are not always ac-
cessible. In particular, gridded data developed for or employed
in agricultural and biometeorological investigations, such as
WorldClim (Hijmans et al. 2005), CliMond (Kriticos et al.
2012), CHELSA (Karger et al. 2016a, b), various versions
of the CRU (Climate Research Unit, University of East
Anglia) data (e.g. Harris et al. 2014), the Global Climate
Data Repository of the University of Delaware (Willmott
and Robeson 1995), E-OBS (Haylock et al. 2008), as well
as other continental (NRC 2017), regional (Daymet 2017) or
national (Srivastava et al. 2009; Aalto et al. 2016) gridded data
repositories, are only available at monthly or, at the best, daily
time resolution. Similar considerations hold true concerning
climate change scenarios.

For the present investigation, we opted for the model pro-
posed by Parton and Logan (1981), not because we think that
it is in itself superior, but rather because it provides a pragmat-
ic workaround. In line with Eckersten (1986) and Eccel
(2010b), the original model was modified for smoothed day-
to-day transitions to prevent temperature jumps between days.
It was also corrected to force the simulated temperature curve
through Tn and T x.

Model parameters

Another chief advantage of Parton and Logan’s (1981) model
is that all parameters have a physical meaning, being either
time shifts (a and c) related to the delayed effect of radiation
on temperature or defining the exponential decay of tempera-
ture (b) caused by radiational cooling during night. This facil-
itates the model calibration since initial estimates of the pa-
rameter values are easily obtained from visual inspection of a
few data. In addition, two of the parameters (a and c) are
primarily determined by astronomical settings, implying that

a)

b)

c)

Fig. 5 Probability distribution of the difference between simulated and
actual DOY corresponding to aGDD = a) 200 °C d, b) 800 °C d and c)
1200 °C d. Vertical dashes show the mean differences at the individual
sites (except JUN). The grey area highlights the range of differences
bounded by ± 3 days

Table 3 Percentage of sites reaching accumulated growing degree-day
(aGDD) values of 100, 200 and 1200 °C d (Tb = 10 °C) for model
performance (Ef > 0.8 and Ef > 0.5) for the years 1988–2015

aGDD (°C d) N Years Ef > 0.8 (%) Ef > 0.5 (%)

200 19 532 100.0 100.0

800 18 476 88.9 94.4

1200 17 249 35.3 64.7

N denotes the number of sites reaching the aGDDvalue, years indicate the
total number of years summed over all sites reaching the aGDD value

Int J Biometeorol (2018) 62:621–630 627



spatial variations of their values are modest, as long as the
latitudinal extent of the area of interest is not too broad. Our
results show this being indeed the case for Switzerland,
confirming the conclusions drawn for other regions of the
world (Reicosky et al. 1989; Cesaraccio et al. 2001). As a
further simplification, they can be assumed as constant
throughout the year, although in theory, one could consider
letting their value vary depending on the season (Cesaraccio
et al. 2001).

Model performance: hourly temperatures

In our study, the generic model performed slightly better than in
the original application discussed by Parton and Logan (1981).
MAE and RMSD were in the range of 0.99 ± 0.07 and 1.5 ±
0.11 °C at the calibration sites and 1.05 ± 0.16 and 1.60 ±
0.23 °C at the validation sites, respectively, compared to nom-
inal values of 2.35 and 3.14 °C as found by Parton and Logan
(1981). Applying the original model as well, Reicosky et al.
(1989) found MAE and RMSD of 1.67 and 2.08 °C for ran-
domly selected days. Cesaraccio et al. (2001) found RMSD of
2.93 °C for five sites in California during the period 1996–
1999. Concerning the model performance for individual sea-
sons, Cesaraccio et al. (2001) and Purcell (2003) found best
predictability (R2) for summer temperatures. In our study, the
best performance was found for spring and fall temperatures.

Both site-specific and the generic models showed a tenden-
cy to overestimate temperatures in the late afternoon but un-
derestimate temperature in the early morning (Fig. 3 and
Fig. S1, Supplementary Material). We argued that this is due
to the choice of sinusoidal variations to model day-time tem-
peratures and exponential decay to model night-time temper-
atures. More complex formulations have been proposed to
improve the performance of this type of model (Wilson and
Barnett 1983; Eckersten 1986; Roltsch et al. 1999; Cesaraccio
et al. 2001; Eccel 2010a), but these come at the expense of a
larger number of parameters that need to be calibrated.

Even more refined models cannot account for departures
from the expected behaviour caused by synoptic disturbances
(Purcell 2003) or induced by the specificities of the local to-
pography (Cesaraccio et al. 2001). A problem often encoun-
tered in such circumstances is that Tn and Tx do not necessarily
occur around sunrise and in the early afternoon, respectively,
as usually assumed by the models (Linvill 1990). In a study
carried out in the Trento region, Italy, Eccel (2010b) found that
in 20% of the days, Tn occurred after midday during the years
1983–2009. The analysis of the timing of Tn and Tx in the
data used for our model calibration showed that on 27% of the
days, Tn does occur in the afternoon. Similarly, on 13% of the
days, T x was found to occur before noon or after sunset.
Unfortunately, daily temperature records do not report the
time of occurrence of T n and Tx, implying that the problem
cannot be easily resolved. Statistical or dynamic downscaling
(e.g. Calanca et al. 2009; Hirschi et al. 2012a, b) could be
considered to circumvent this problem, but they rely even
more heavily on the availability of hourly temperature data
than the current approach.

Model performance: accumulated growing degree-days

Owing to the slight but systematic overestimation of hourly
temperatures by the model, estimated aGDD showed a posi-
tive bias at the end of the year. Even if not shown, this type of
error is known to depend on the choice of the base temperature
(Tb). As pointed out by Worner (1988), a lower Tb would
increase the number of hours included on a given day in the
computation of aGDD, resulting (in our case) in a larger com-
pensation of the positive bias during the afternoon by the
negative bias of the early morning hours. Notwithstanding,
the introduction of empirical correction factors (Allen 1976;
Pruess 1983) can be recommended. Our results showed a sig-
nificant improvement after the application of site-specific cor-
rection factors andmodest improvements after application of a
generic correction factor derived from a relatively small
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1981–2015
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org/10.3354/cr00888
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Sens 1:013511–1–12. doi: https://doi.org/10.1117/1.2740040
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number of sites. In both cases, the model efficiency in
predicting dates corresponding to prescribed aGDD value
was by and large satisfactory (0.8 for aGDD ≤ 800 °C d, 0.5
for aGDD above this threshold; cf. Table 3).

Conclusions

The ability to reliably predict phenological dates of crops and
insects is of paramount importance for informing agricultural
management. Many decision support systems developed for
this purpose adopt accumulated growing degree-days as a
basis for estimating phenological stages and require hourly
temperature data on input. Despite increasing availability of
temperature data at sub-daily timescales, there are still many
situations in which hourly temperatures need to be derived
from daily aggregated data.Models for predicting diurnal tem-
perature variations are essential in this context. In this work,
we showed that even a generic calibration of this type of
model can deliver reliable inputs for assessing crop and insect
phenology in space and time, opening opportunities for ex-
tending the range of application of current decision support
systems.
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