Improving disease resistance of pea through selection at the plant-soil interface

Lukas Wille1,2 (lukas.wille@fibl.org), Pierre Hohmann2, Monika Messmer2, Bruno Studer1
1Institute of Agricultural Sciences – Molecular Plant Breeding, ETH Zürich; 2Department of Crop Sciences – Plant Breeding and Variety Testing, Research Institute of Organic Agriculture (FiBL)

1 Background

Pea (Pisum sativum L.) is the third most important pulse crop after common bean and chickpea. They are a valuable protein source for food and feed. They form an intimate mutualistic symbiosis with nitrogen fixing rhizobacteria, and thereby, are able to significantly improve soil fertility. Despite their ecological and economic importance, legume cultivation remains below expectations due to low and unstable yields, mainly because of biotic and abiotic stresses. Peas are highly prone to soil-borne pathogens. Rotation breaks of up to ten years are recommended to avoid building up of high pathogen load. This stands in conflict with efforts to increase acreage of legumes in general and peas in particular to strengthen low input farming systems and meet the increasing protein demand of a growing world population.

2 This project aims to

- Improve resistance of pea against soil-borne diseases
- Elucidate the genetic basis of polygenic resistance of pea against fungal pathogens
- Enhance the understanding of soil microbe-plant interactions
- Provide the knowledge base to breed for superior cultivars for sustainable agricultural systems

3 Screening of 300 pea accessions for resistance

- Field soil infested with pea pathogens (e.g. Fusarium and Aphanomyces)
- Each accession is grown on untreated or X-ray sterilised soil
- After 3 weeks growth period plants are phenotyped:
 - e.g. shoot dry weight is measured
 - and compared between plants growing on natural soil vs. sterilised soil

4 First Results

- Plant biomass ratio non-sterile vs sterile soil

- “Strong” grows as good on pathogen infested field soil as on sterilised soil
- “Weak” grows much worse on non-sterile soil

5 Next: Key pathogens and beneficial microbes

Hypothesis: Different pea accessions modulate their root associated microbiome through the exudation of different organic compounds (e.g. organic acids and flavonoids)

- Heavy infection by two pathogen strains
- Roots are destroyed and plant growth is stunted
- Symbiosis with a beneficial fungus
- Moderate infection by one pathogen strain
- Bioprotection by beneficial fungus

6 References