home    about    browse    search    latest    help 
Login | Create Account

Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley - winter wheat cropping sequence

Krauss, Maike; Ruser, Reiner; Müller, Tortsen; Hansen, Sissel; Mäder, Paul and Gattinger, Andreas (2017) Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley - winter wheat cropping sequence. Agriculture, Ecosystems and Environment, 239, pp. 324-333.

PDF - English

Online at: http://www.sciencedirect.com/science/article/pii/S0167880917300397


Organic reduced tillage aims to combine the environmental benefits of organic farming and conservation tillage to increase sustainability and soil quality. In temperate climates, there is currently no knowledge about its impact on greenhouse gas emissions and only little information about soil organic carbon (SOC) stocks in these management systems. We therefore monitored nitrous oxide (N2O) and methane (CH4) fluxes besides SOC stocks for two years in a grass-clover ley – winter wheat – cover crop sequence. The monitoring was undertaken in an organically managed long-term tillage trial on a clay rich soil in Switzerland. Reduced tillage (RT) was compared with ploughing (conventional tillage, CT) in interaction with two fertilisation systems, cattle slurry alone (SL) versus cattle manure compost and slurry (MC). Median N2O and CH4 flux rates were 13 μg N2O-N m−2 h−1 and −2 μg CH4C m−2 h−1, respectively, with no treatment effects. N2O fluxes correlated positively with nitrate contents, soil temperature, water filled pore space and dissolved organic carbon and negatively with ammonium contents in soil. Pulse emissions after tillage operations and slurry application dominated cumulative gas emissions. N2O emissions after tillage operations correlated with SOC contents and collinearly to microbial biomass. There was no tillage system impact on cumulative N2O emissions in the grass-clover (0.8–0.9 kg N2O-N ha−1, 369 days) and winter wheat (2.1–3.0 kg N2O-N ha−1, 296 days) cropping seasons, with a tendency towards higher emissions in MC than SL in winter wheat. Including a tillage induced peak after wheat harvest, a full two year data set showed increased cumulative N2O emissions in RT than CT and in MC than SL. There was no clear treatment influence on cumulative CH4 uptake. Topsoil SOC accumulation (0–0.1 m) was still ongoing. SOC stocks were more stratified in RT than CT and in MC than SL. Total SOC stocks (0–0.5 m) were higher in RT than CT in SL and similar in MC. Maximum relative SOC stock difference accounted for +8.1 Mg C ha−1 in RT-MC compared to CT-SL after 13 years which dominated over the relative increase in greenhouse gas emissions. Under these site conditions, organic reduced tillage and manure compost application seems to be a viable greenhouse gas mitigation strategy as long as SOC is sequestered.

EPrint Type:Journal paper
Keywords:Organic farming, Reduced tillage, Nitrous oxide, Soil organic carbon stocks, Grass-clover, Wheat, Tilman-Org, CoreOrganic 2, FiBL10047, Frick Versuch, Frick trial
Subjects: Soil > Soil quality
Crop husbandry > Soil tillage
Environmental aspects > Air and water emissions
Research affiliation: European Union > CORE Organic II > TILMAN-ORG
Switzerland > FiBL - Research Institute of Organic Agriculture Switzerland > Soil Sciences
Related Links:https://orgprints.org/6203/
Deposited By: Mäder, Paul
ID Code:31286
Deposited On:06 Mar 2017 11:44
Last Modified:15 Sep 2017 10:57
Document Language:English
Refereed:Peer-reviewed and accepted

Repository Staff Only: item control page