

NIBIO NORSK INSTITUTT FOR BIOØKONOMI

Case Nortura/Norilia Improving the utilisation of co-streams in poultry processing

Adler S.¹, Løes A.-K.², Slizyte R.³, Bar E.M.S.³, Misimi E.³, Carvajal A.K.³, Tveit G.M.³, Wold J.P.⁴, Vikman M.⁵, Wikberg H.⁵, Honkapää K.⁵, Egelyng H.⁶, Alvestrand H.⁷, Nordal J.⁷

The research project **CYCLE** aims on achieving total utilisation of raw materials from fish, chicken and vegetables with cycle thinking and sustainable technological solutions for an efficient and profitable food industry. CYCLEindustry partner **Norilia** is responsible for development and sales of co-streams

from **Nortura** slaughterhouses. Some of the co-streams are further processed. Chicken **co-streams** are fully exploited, but there is still potential to increase value by up-cycling, i.e. by processing the material for new applications in more high-value-markets.

Robot

Automated concepts have been developed for an efficient and precise sorting of raw materials and costreams.

• The Gribbot (photo) is successful in both scrapping the carcass and harvesting the fillet including the tenderloin. The entire procedure takes 4.75 seconds (Misimi et al. 2016)

Online analysis

CYCLE researchers have developed VIS, NIR and Xray based sensor systems for quality differentiation of raw materials and co-streams.

- Mapping of fat and protein in poultry bones (photo)
- Collected data can be used to steer hydrolysis of the material

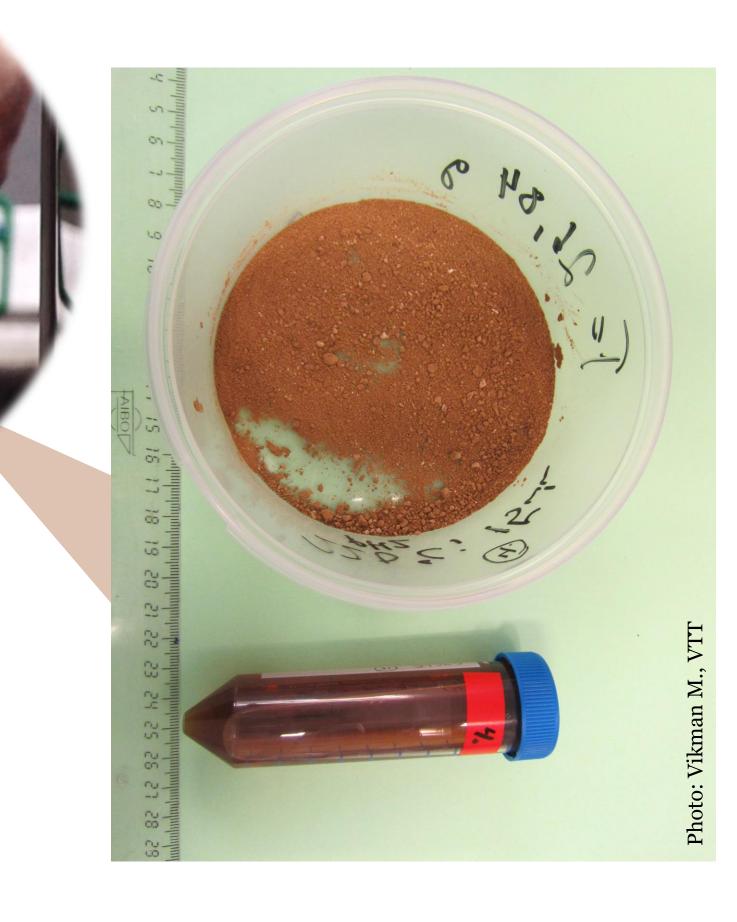
Enzymatic hydrolysis

Enzymatic hydrolysis, originally developed for fish co-streams, was adapted for use with poultry bones.

- For food applications, oil and dried hydrolysates were derived (photos)
- Chicken oil had low oxidation and hydrolysis values, but thermally separated oil had better quality than oil after enzymatic hydrolysis (Tveit 2014)

Feather meal

Pressure cooking increases the digestibility of feather keratin, but limits the availability of some amino acids. CYCLE researchers worked on improving the hydrolysis process.



Nortura SA is a cooperative owned by 19,000 farmers. Nortura-owned Norilia AS is responsible for development and sales of co-streams from slaughtering of beef, pork, lamb and poultry at the Nortura slaughterhouses.

Photo: Norilia

HTC

The residues from enzymatic hydrolyses of poultry bones were treated with hydrothermal carbonization (HTC: 150-220°C, <50 bar in aqueous suspension).

- Autoclaving, NaOH and Na₂SO₃ improved digestibility, but the tested enzymes had no effect
- Solubilised and residual fractions differed in pepsin digestibility and amino acid composition

CYCLE

"Total utilisation of raw materials in the supply chain for food with a bio-economical perspective" (2013-2016) was funded by the Norwegian Research Council and is supervised by SINTEF Fisheries and Aquaculture. www.cycleweb.no

Upcycling

Norilia is planning to invest in a hydrolysis plant for poultry bones in Hærland. A separate plant for hydrolysis for category 3 material is an option. Further development and implementation of CYCLE research may significantly improve resource utilisation and improve environmental sustainability in the chicken value chain by up-cycling co-streams and thereby improving the profitability for Nortura/Norilia.

References

Misimi E. et al. 2016. GRIBBOT – Robotic 3D vision-guided harvesting of chicken fillets. Computers and Electronics in Agriculture, 121:84-100. Tveit, G.M. 2014. Enzymatic hydrolysis of Chicken Rest Raw Material. M. Sc. thesis. Norwegian University of Science and Technology (NTNU), Trondheim.

- Distribution of the P and N between the liquid and solid phase can be controlled by adjusting process temperature and pH
- HTC yielded between 43 and 65% biochar
- The solid fraction can be utilised as feed ingredient, soil amendment, fertilizer or energy source (photo) • Nutrients can be recovered from the liquid fraction

Norwegian Institute for Bioeconomy Research (NIBIO), ² Norwegian Centre for Organic Agriculture, ⁴ Nofima, ⁵ Technical Research Centre of Finland Ltd (VTT), ⁷ Nortura / Norilia, ⁸ Nortura / Norilia, ⁹ Nortura / Nortur

