INSTITUTE OF LIFE SCIENCES

Scuola Superiore Sant'Anna

Is agroecology the most sustainable approach for all organic farming systems?

Paolo Bàrberi

Institute of Life Sciences – Group of Agroecology Sant'Anna School of Advanced Studies, Pisa (Italy)

NJF Seminar 461: 'Organic farming systems as a driver for change', Bredsten (DK), 21.8.2013

The objectives of Agroecology

- Challenge to mainstream <u>agronomic</u> model based on high external input use
- Challenge to mainstream <u>ecological</u> model separating biodiversity protection from food production (land sparing)
- Challenge to mainstream <u>economic</u> model pointing towards globalisation of (food) production and markets

Agro-ecological Innovation Network http://agro-ecoinnovation.eu

Agroecological principles

- Biomass recycling, OM supply, optimisation of biogeochemical cycles
- Reduction of dependency on external inputs
- Conservation of limiting natural resources (soil, water)
- Valuing of non limiting natural resources (solar radiation)
- Conservation of genetic diversity (crops and livestock)
- Yield optimisation and stability (not maximisation)
- Exploitation of positive interactions between agroecosystem components
 - Mixed crop-livestock systems
 - Agroforestry and agrosylvopastoral systems
 - Conservation biological control of crop pests (e.g. semi-natural areas)

FUNCTIONAL AGROBIODIVERSITY

Agro-ecological Innovation Network http://agro-ecoinnovation.eu

Do environmental, economic and social sustainability have the same weight in all organic farming production models?

The different organic farming production models

'MULTIFUNCTIONAL' model

- Small-scale farms
- Diversification of cropping/farming systems
- Strong link with local territory
- Short/very short supply chain

'SPECIALISED' model

- Medium to large farms
- Semplification of cropping/farming systems
- Weak link with local territory
- Supermarkets and export

AGROECOLOGICAL APPROACH INPUT SUBSTITUTION APPROACH

Bàrberi (2010). Strategie per l'evoluzione dei sistemi agricoli e zootecnici biologici. In: Le strategie per lo sviluppo dell'agricoltura biologica. Risultati degli Stati Generali 2009. Ed. INEA, Roma, IT (modified).

The different organic farming models

Agriculture and Human Values (2008) 25:95–106 DOI 10.1007/s10460-007-9073-1 © Springer 2007

Organic agriculture and the conventionalization hypothesis: A case study from West Germany

Henning Best Institute for Applied Social Research, University of Cologne, Cologne, Germany

> Agron. Sustain. Dev. 30 (2010) 67–81 © INRA, EDP Sciences, 2009 DOI: 10.1051/agro/2009011

Available online at: www.agronomy-journal.org

Review article

Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review

Ika DARNHOFER*, Thomas LINDENTHAL, Ruth BARTEL-KRATOCHVIL, Werner ZOLLITSCH

BOKU - Univ. of Natural Resources and Applied Life Sciences, Vienna, Feistmantelstr. 4, 1180 Vienna, Austria

(Accepted 8 April 2009)

Sustainability – case study #1 'Multifunctional' model

FERTORTOMEDBIO Project (MiPAAF, 2005-2009)

Improvement of soil fertility management in organic vegetable systems

> Scuola Superiore Sant'Anna

INSTITUTE

OF LIFE SCIENCES

The management systems (spinach)

PWC = System based on physical weed control **PWC+LM** = Physical weed control + living mulch

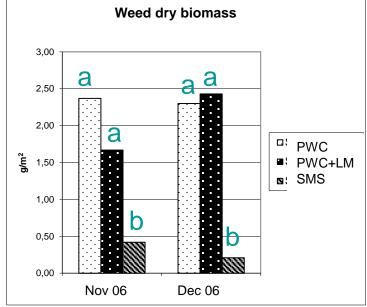
- Precision sowing (55 seeds m⁻²)
 - Rolling harrow

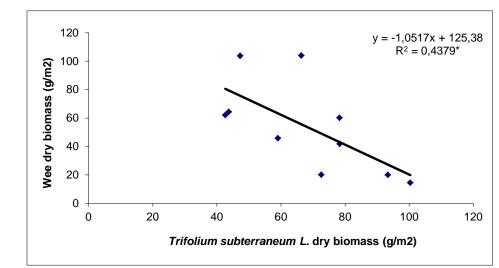
PWC

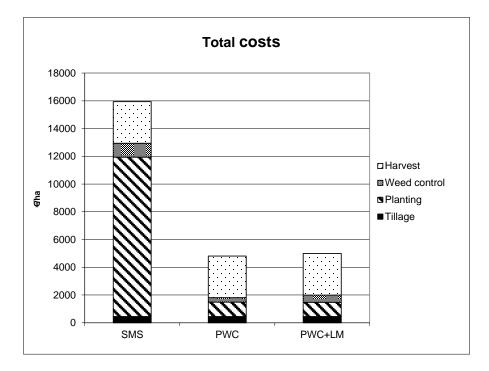
+LM

- Flame weeding
- Pwc Hand-steered hoe
 - Living mulch sown in rows: *Trifolium subterraneum*

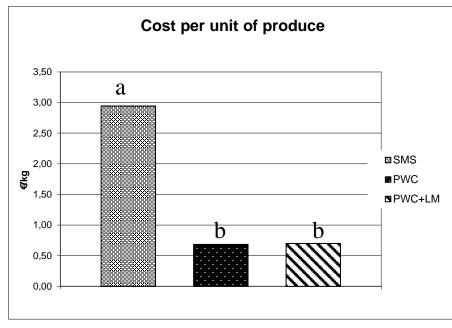
SMS = Standard Management System: manual transplanting on plastic mulch

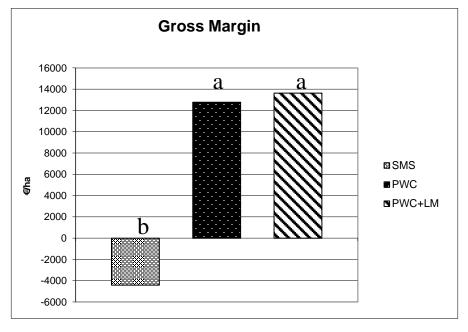



Spinach: weed and subclover biomass



INSTITUTE OF LIFE SCIENCES


> Scuola Superiore Sant'Anna



Spinach: costs and gross margin

What does not work in the SMS?

Sustainability – case study #2 'Specialised' model

Agri-environmental indicators in 12 organic vegetable farms

Agri-environmental indicator	Unit of measure	Optimum value	Mean of 12 farms
Soil cover/year	% months	x > 50	89.5
Soil cover in critical period	% months	x > 60	78.3
SOM	%	x ≥ 2.5	2.03
Soil total N	‰	x > 1.5	1.22
Soil C/N	-	9 < x < 12	9.71
Soil assimilatable P	mg kg⁻¹	35 < x < 25	81.3
Soil exchangeable K	mg kg⁻¹	150 < x < 200	359.8
Potential N leaching (N-NO ₃ -)	kg/ha	x < 70	408.0

Sustainability – case study #2 'Specialised' model

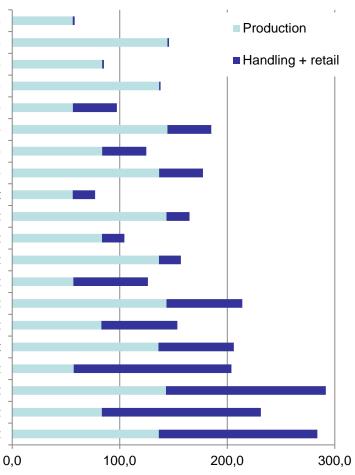
Agri-environmental indicators in 12 organic vegetable farms

Agri-environmental indicator	Unit of measure	Optimum value	Mean of 12 farms
Woodland	% TAL	x > 10	3.99
Field adjacency	-	x = 1	0.45
Field size	ha	1 < x < 5	5.92
Field length/width	-	1 < x < 4	4.91
Field density	Number ha-1	Max	3.62
Cultivar richness	Number	x > 20	45.0
Local cultivar richness	Number	x > 2	3.6
Index of ecological infrastructures	% AUL	x > 5	16.7
Richness of ecological infrastructures	Number	x > 35	56.3
Diversity of ecological infrastructures	Number	x > 2	3.4

Sustainability – case study #2 'Specialised' model

Agri-environmental indicators in 12 organic vegetable farms

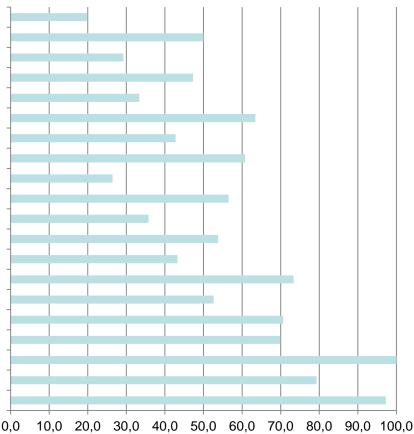
Agri-environmental indicators	Unit of measure	Optimum value	Mean of 12 farms
Duration of rotation	Year	x ≥ 6	6
Similarity between crops	Number	x = 0	0
Crop species share	% tot.	x ≤ 0.167	0.07
Crop group share	% tot.	x ≤ 0.33	0.18
Energy budget (Outputs- Inputs)	kg	x > 0	-4,704.37


Sustainability – case study #3 ARIA & SATREGAS projects (Region Tuscany)

- Aim: to analyse the environmental sustainability of integrated and organic production and retail systems
- Example (tomato for fresh consumption):
 - Estimated unit emissions (kg CO₂ kg prod.⁻¹) as based on LCA analysis for 20 tomato systems
 - 4 production systems x 5 retail systems (including both 'multifunctional' and 'specialised' systems)

CO₂ emissions (kg/kg produce) 4 production systems x 5 handling & retail systems TOMATO – FRESH CONSUMPTION

ORG field + Regional, unpacked, box scheme ORG greenhouse + Regional, unpacked, box scheme INT field + Regional, unpacked, box scheme INT greenhouse + Regional, unpacked, box scheme ORG field + Regional, unpacked, shop ORG greenhouse + Regional, unpacked, shop INT field + Regional, unpacked, shop INT greenhouse + Regional, unpacked, shop ORG field + Regional, unpacked, supermarket ORG greenhouse + Regional, unpacked, supermarket INT field + Regional, unpacked, supermarket INT greenhouse + Regional, unpacked, supermarket ORG field + Regional, packed, supermarket ORG greenhouse + Regional, packed, supermarket INT field + Regional, packed, supermarket INT greenhouse + Regional, packed, supermarket ORG field + Extraregional, packed, supermarket ORG greenhouse + Extraregional, packed, supermarket INT field + Extraregional, packed, supermarket INT greenhouse + Extraregional, packed, supermarket



Courtesy of Prof. Marco Mazzoncini (University of Pisa, Italy)

CO₂ emissions (kg/kg produce) 4 production systems x 5 handling & retail systems TOMATO – FRESH CONSUMPTION

Index value

ORG field + Regional, unpacked, box scheme ORG greenhouse + Regional, unpacked, box scheme INT field + Regional, unpacked, box scheme INT greenhouse + Regional, unpacked, box scheme ORG field + Regional, unpacked, shop ORG greenhouse + Regional, unpacked, shop INT field + Regional, unpacked, shop INT greenhouse + Regional, unpacked, shop ORG field + Regional, unpacked, supermarket ORG greenhouse + Regional, unpacked, supermarket INT field + Regional, unpacked, supermarket INT greenhouse + Regional, unpacked, supermarket ORG field + Regional, packed, supermarket ORG greenhouse + Regional, packed, supermarket INT field + Regional, packed, supermarket INT greenhouse + Regional, packed, supermarket ORG field + Extraregional, packed, supermarket ORG greenhouse + Extraregional, packed, supermarket INT field + Extraregional, packed, supermarket INT greenhouse + Extraregional, packed, supermarket

Courtesy of Prof. Marco Mazzoncini (University of Pisa, Italy)

Conclusions

- In all organic farming systems sustainability can be largely improved
 - 'Multifunctional' model: crop production optimisation (< costs)</p>
 - 'Specialised' model: mitigation of input substitution approach
- Organic farming systems must have clearly higher goals than integrated farming systems
 - EU Directive on sustainable pesticide use
 - CAP greening
- Valuing functional agrobiodiversity and short supply chains: the future?