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Abstract

In Finland, barley, Hordeum vulgare L., 
covers 50 % of the total acreage devot-
ed to cereal cultivation. The most com-

mon disease of barley in Finland is net 
blotch, a foliar disease caused by the asco-
mycete Pyrenophora teres Drechsler. Dis-
ease resistance based on plant genes is an 
environmentally friendly and economical 
way to manage plant diseases caused by bi-
otic stresses. Development of a disease re-
sistance breeding programme is dependent 
on knowledge of the pathogen. In addi-
tion to information on the epidemiology 
and virulence of a pathogen, knowledge on 
how the pathogen evolves and the nature 
of the risks that might arise in the future 
are essential issues that need to be taken 
into account to achieve the final breed-
ing aims.

The main objectives of this study were 
to establish reliable and efficient testing 
methods for Pyrenophora teres f. teres viru-
lence screening, and to understand the role 
of virulence of Pyrenophora teres f. teres in 
Finland from a disease resistance breed-
ing point of view. The virulence of P. teres 
was studied by testing 239 Finnish P. teres 
f. teres isolates collected between 1994 – 
2007 originating from 19 locations, and 
200 P. teres progeny isolates originating 
from artificially produced P. teres matings.

According to the results of this study, 
screening for P. teres f. teres isolates on 

barley seedlings under greenhouse condi-
tions is a feasible and cost efficient meth-
od to describe the virulence spectrum of 
the pathogen. However, the environmental 
conditions of temperature, light and hu-
midity, need to be stable to achieve reliable 
and comparable results between different 
studies. Inoculum concentration and the 
seedling leaf used to gauge virulence had 
significant effects. Barley grain size, mor-
phological traits of P. teres isolates, spore 
production and growth rate on agar did 
not affect the expression of virulence. A 
common barley differential set to charac-
terize the P. teres virulence was developed 
and is recommended to be used globally: 
c-8755, c-20019, CI 5791, CI 9825, Cana-
dian Lakeshore, Harbin, Prior, Skiff, and 
Harrington.

The virulence spectrum of Finnish P. teres 
f. teres isolates collected in 1994-2007 was 
constant both within and between the 
years. The results indicated differences in 
the pathogen’s aggressiveness and in barley 
genotypes resistance. However, differenc-
es in virulence were rarely significant. No 
virulent reactions were recorded on barley 
genotypes CI 5791 and CI 9819. Unlike 
in laboratory conditions, no indications of 
changes in virulence caused by the sexual 
reproduction have been observed in Finn-
ish barley fields.
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In Finland, durable net blotch resistance 
has been achieved by introducing resist-
ance from other barley varieties using tra-
ditional crossing methods, including wide 
crossing, and testing the breeding materi-
al at early generations at several sites under 
natural infection pressure. Novel resist-
ance is available, which is recommended 
to minimize the risk of selection of vir-
ulent isolates and breakdown of current-
ly deployed resistance. Barley genotypes 
c-8755, CI 9825 and CI 5791 are poten-
tial resistance sources to be used in Finn-
ish barley. They differed in their reaction 

to the P. teres f. teres isolates collected glo-
bally and all of them showed excellent re-
sistance to Finnish P. teres f. teres isolates. 

Keywords: 
Hordeum vulgare, barley, Drechslera 
teres, net blotch, net form of net blotch, 
virulence testing, differential set, sex-
ual reproduction, evolution, tillage 
method, disease resistance
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Tiivistelmä

Puolella Suomen viljanviljelyalas-
ta kasvaa ohraa. Yleisin ohran kas-
vitauti on lehtiä vioittava verkko-

laikku, jonka aiheuttaja on kotelosieniin 
kuuluva Pyrenophora teres Drechsler. Tau-
dinkestävyys on ympäristöystävällinen ja 
taloudellinen keino hallita pieneliöiden ai-
heuttamia kasvitauteja. Taudinaiheuttajan 
tuntemus on taudinkestävyysjalostuksen 
perusta. Taudinaiheuttajan yleisyyden li-
säksi on huomioitava taudinaiheuttajan 
virulenssi (taudinaiheuttamiskyky) ja sen 
muuntelun todennäköisyys. Taudinaiheut-
tajan kyky muuntua tuo mukanaan riske-
jä, joiden ennakoiminen on oleellinen osa 
onnistunutta taudinkestävyysjalostusta.

Tutkimuksen tavoitteena oli kehittää 
luotettavat ja tehokkaat menetelmät Py-
renophora teres f. teres – virulenssin testaa-
miseksi ja selvittää, mikä on suomalaisten 
P. teres f. teres –isolaattien virulenssi ja mi-
ten se huomioidaan taudinkestävyysjalos-
tusohjelmassa. Aineisto koostui vuosina 
1994–2007 Suomesta 19 paikkakunnalta 
kerätyistä 239 P. teres f. teres –isolaatista 
sekä 200 laboratoriossa tuotetusta suvullis-
ten P. teres –risteytysten jälkeläisisolaatista.

Tutkimus osoitti, että kasvihuoneessa to-
teutettava virulenssitesti on luotettava ja 
taloudellinen menetelmä P. teres f. teres 
-sienen virulenssin kuvaamiseksi. Ympä-
ristöolosuhteiden, lämpötilan, valon ja 

ilmankosteuden tulee olla testeissä va-
kioidut, jotta eri testien tulokset ovat kes-
kenään vertailukelpoiset. Tartukkeen itiö-
pitoisuus sekä havainnoitavan ohralehden 
ikä vaikuttivat merkittävästi virulenssin 
ilmenemiseen. Sitä vastoin ohran sieme-
nen koko, P. teres -isolaattien morfologi-
set ominaisuudet, itiöntuottokyky tai kas-
vunopeus agar-maljalla eivät vaikuttaneet 
virulenssiin. Tutkimuksessa määritettiin 
ohragenotyypit, joiden reaktiot ilmentä-
vät P. teres -sienen virulenssia eri maissa 
ja joita suositellaan käytettäväksi kansain-
välisesti. Virulenssia tehokkaasti mittaa-
viksi ohragenotyypeiksi osoittautuivat: 
c-8755, c-20019, CI 5791, CI 9825, Ca-
nadian Lakeshore, Harbin, Prior, Skiff, ja 
Harrington.

Suomalaisten P. teres f. teres -isolaattien 
virulenssi on pysynyt muuttumattoma-
na vuosien 1994 ja 2007 välillä. Tulokset 
osoittivat eroja taudinaiheuttajan aggressii-
visuudessa mutta erot isolaattien virulens-
sissa olivat harvoin merkittäviä. Yksikään 
testatuista P. teres f. teres -isolaateista ei ol-
lut virulentti ohragenotyypeillä CI 5791 ja 
CI 9819. Toisin kuin laboratoriotesteissä, 
Suomen ohrapelloilla ei havaittu suvulli-
sesta lisääntymisestä johtuvaa virulenssin 
muuntelua.

Tutkimustulokset osoittivat, että suoma-
laisissa ohralajikkeissa esiintyy pitkäkes-
toista verkkolaikunkestävyyttä. Tämä on 
saavutettu laajoilla perinteisiin menetel-
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miin perustuvilla risteytyksillä, sekä tes-
taamalla jalostusaineistoa jo ensimmäis-
ten sukupolvien aikana eri ympäristöissä 
luonnon tartunnalle altistettuna. Tutki-
muksessa valikoitui jalostustyössä aiem-
min käyttämätöntä, hyvin verkkolaikun 
kestävää ohramateriaalia. Laaja-alaisuudel-
taan ja tehokkuudeltaan poikkeavien tau-
dinkestävyyslähteiden käyttö on suositelta-
vaa, jotta P. teres -isolaattien muuntumista 
sekä tästä aiheutuvaa taudinkestävyyden 
murtumisen riskiä voidaan hillitä. Ohra-
genotyypit c-8755, CI 9825 ja CI 5791 
ovat suositeltavia uusia verkkolaikun kes-
tävyyslähteitä käytettäväksi suomalaises-

sa ohranjalostuksessa. Näillä on toisistaan 
poikkeava yhdysvaikutus eri P. teres f. te-
res -isolaattien kanssa, ja kaikki genotyypit 
ovat erityisen kestäviä suomalaisia P. teres 
f. teres -isolaatteja vastaan.

Asiasanat: 
Hordeum vulgare, ohra, Drechsle-
ra teres, verkkolaikku, verkkolaikun 
verkkotyyppi, virulenssin testaus, dif-
ferentiaalisetti, suvullinen lisääntymi-
nen, evoluutio, muokkausmenetelmä, 
taudinkestävyys
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1 Introduction

In 2007, barley, Hordeum vulgare L., 
was the fourth most important cere-
al crop both in terms of quantity pro-

duced and global area of cultivation (FA-
OSTAT 2009). In Finland, barley covered 
50 % (601 000 ha) of the total acreage 
used for cultivation of cereals in 2009 
(Matilda 2009). Plant pathogens can cause 
an average loss of 20 % of the average an-
nual value of the barley crop (Murray and 
Brennan 2010). 

The most common disease of barley in 
Finland is net blotch, a foliar disease 
caused by the ascomycete Pyrenophora teres 
Drechsler. The imperfect state of Pyreno-
phora teres is Drechslera teres (Sacc.) Shoe-
maker (syn. Helminthosporium teres Sacc.). 
Two forms of the pathogen exist: Pyren-
ophora teres Drechs. f. teres Smedeg., the 
causal agent of the net form of net blotch, 
and Pyrenophora teres f. maculata Smedeg., 
the causal agent of the spot form of net 
blotch. These two forms are morpholog-
ically indistinguishable in culture media 
but they produce different types of symp-
toms on barley leaves (Smedegård-Petersen 
1971). Rau et al. (2007) studied the mat-
ing type genes in net and spot form isolates 
and found a long genetic isolation between 
the two forms. 

In 1970 and 1971, net blotch was found 
in over 50 % (Mäkelä 1972) and in 1971-
1973 nearly 60 % of the Finnish spring 
barley fields, and in nearly 90 % of the lo-
calities studied (Mäkelä 1975). In 1985, 
84 % of the 234 inspected Finnish bar-
ley fields had net blotch symptoms as ob-
served on the two uppermost leaves of 
plants (Avikainen and Isotupa 1986). The 
latest results from 2006-2007 showed that 
net blotch exists in 60 % of Finnish barley 
fields (Manninen et al. 2009).

1.1 Role of virulence in 
host-pathogen interactions

Infectious plant diseases result from an in-
teraction between at least two organisms, 
a host plant and a pathogen. The outcome 
in each host-pathogen combination is de-
termined by the genetic constitution of the 
host and the pathogen. Host plants vary in 
resistance and tolerance while pathogens 
are variable in their ability to infect a host 
(Barrett et al. 2009). Plant-pathogen in-
teractions are due to continuous long-term 
co-evolution of plants and the microbes. 
Plants have evolved systems to recognize 
pathogens while pathogens have evolved 
effectors to turn off plant defences (Stuke-
nbrock and McDonald 2009).

According to Ebert and Hamilton (1996), 
the impact that parasites have on the evo-
lution and ecology of their hosts depends 
on their virulence, which is a product of 
the host-parasite interaction. Pathogens 
produce compounds termed pathogen as-
sociated molecular patterns (PAMPs) that 
are molecules unique to pathogens and 
conserved across many pathogen species 
(Navarro et al. 2004). PAMPs have a key 
role in the basal defence system of the host. 
Pathogenic species have developed special-
ized strategies to overcome the plant basal 
defence (Abramovitch and Martin 2004). 
Production of enzymes, toxins, and effec-
tor proteins can promote pathogen viru-
lence by interacting with the host. Effec-
tors do not usually have a function outside 
of the host. Pathogens may deliver various 
effectors by different mechanisms (Bent 
and Mackey 2007). Several of the fun-
gal effectors are cloned and most of them 
are small proteins of unknown function 
(Chisholm et al. 2006). However, with 
novel and sophisticated biotechnological 
tools the function of most fungal effec-
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tors can be investigated experimentally and 
it is expected that their role in the preven-
tion of PAMPs triggered immunity is sig-
nificant (De Wit et al. 2009).

In a gene-for-gene model, the term viru-
lence is used for the pathogen genotype that 
is able to overcome a resistance factor (Sac-
ristán and García-Arenal 2008). Gene-for-
gene interaction was first described by Flor 
(1955) based on investigations on the host-
parasite interaction between flax, Linum usi-
tatissimum L., and rust, Melampsora lini var. 
lini (Ehrenb.) Lév. Flor’s studies led to the 
gene-for-gene hypothesis, which applies to 
cases in which resistance is controlled by 
monogenic, dominant or semi-dominant 
resistance genes. Resistance response re-
sults when plant resistance proteins (R pro-
teins) recognize corresponding proteins of 
the pathogen, named avirulence (Avr) fac-
tors. When a pathogen carrying an Avr gene 
attacks the host carrying the correspond-
ing R gene, the Avr gene product can act 
as an elicitor, or it can direct the synthesis 
or modify a metabolite or protein that is a 
race-specific elicitor that can be recognized 
by a receptor of a resistant plant (Figure 1). 

Contrary to non-specific resistance induced 
by PAMPs, the interaction between the 
products of R and Avr genes specify resist-
ance between a particular host and a path-
ogen (Stukenbrock and McDonald 2009). 
The gene-for-gene model is commonly con-
nected to biotrophic fungal pathogens as a 
result of long-term co-evolution (De Wit 
et al. 2009). However, several necrotroph-
ic pathogens have been reported to pro-
duce proteins that may function as effec-
tors in inducing necrosis in plants following 
a gene-for-gene model (Figure 1). Host spe-
cific toxins (HST) are defined as pathogen 
effectors that are critical for the virulence 
in necrotrophic pathogens. They facilitate 
the disease infection, for example, in spe-
cies of Alternaria, Cochliobolus and Pyreno-
phora (Friesen et al. 2008).

Progress towards understanding the mo-
lecular basis of the gene-for-gene interac-
tion has been made and numerous novel 
Avr genes and R genes have been identi-
fied (Bent and MacKey 2007; De Wit et al. 
2009). The role of avirulence determinants 
has been questioned in pathogen popula-
tions: why should a microbe keep a mol-
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Figure 1. Genetic basis for gene-for-gene interactions based on avirulence proteins and 
host specific toxins (HST). Adapted from Stukenbrock and McDonald (2009).
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ecule that allows it to be recognized? Avr 
genes may perform some essential functions 
for pathogen survival and must be main-
tained (Skamnioti and Ridout 2005). In a 
plant-pathogen system where evolution of a 
pathogen is directed towards avoiding rec-
ognition and induction of resistance, in-
creasing evidence implicates Avr genes in 
roles other than race-specificity (Leach and 
White 1996). In some cases the products 
of diverse Avr genes are not only for R-gene 
recognition but have a functional role by 
encoding effectors that facilitate virulence 
(De Wit et al. 2009). In susceptible hosts 
Avr genes may enhance the pathogen infec-
tion (Stukenbrock and McDonald 2009).

Different Avr genes do not share com-
mon features (Sacristán and García-Arenal 
2008). A number of avirulence genes have 
a measurable fitness function, and mutation 
of these genes might impose a cost on vir-
ulence. Huang et al. (2006) studied near-
isogenic isolates of Leptosphaeria maculans 
(Desm.) Ces. & De Not. (phoma stem can-
ker) differing at the AvrLm4 avirulence lo-
cus in oilseed rape, Brassica napus L., cul-
tivars that were lacking the resistance gene 
Rlm4, which corresponds to AvrLm4. They 
determined that the isolates without the Avr 
gene incurred a fitness cost compared with 
AvrLm4 isolates. In contrast, Schürch et al. 
(2004) showed how deletion of an aviru-
lence gene may allow pathogens to escape 
recognition by the corresponding resist-
ance gene in the host. Virulence of a barley 
pathogen Rhynchosporium secalis (Oudem.) 
Davis isolate to a barley genotype carry-
ing the Rs1 resistance gene was achieved 
through deletion and point mutations of 
the Avr gene NIP1 that produces a phy-
totoxic peptide which acts as an elicitor of 
the defence response. Plant pathogens have 
evolved Avr determinants in a complex en-
vironment. Although Avr genes function as 
effectors to promote virulence, not all have 
obvious function in pathogen-host interac-
tion (Leach et al. 2001). 

Plant pathogens are difficult to control be-
cause their populations are variable over 
time, space and genotype. Pathogen effec-
tor genes, including Avr elicitors and host 
specific toxins, are diverse and local selection 
pressure plays an important role in their evo-
lution (Stukenbrock and McDonald 2009). 
Barrett et al. (2009) summarized that envi-
ronmental heterogeneity increases the po-
tential for variation in host-pathogen inter-
actions. They also stated that host range and 
traits associated with fitness vary, making 
broad ecological and evolutionary predic-
tions difficult. Selection on the pathogen 
population favours escape of host recogni-
tion and the pathogen is pressured to keep 
updating its virulence factors (Does and Rep 
2007). Thrall and Burdon (2003) investi-
gated the Linum usitatissimum - Melamp-
sora lini interaction and demonstrated that 
virulent pathogens occurred more frequent-
ly in highly resistant host populations and 
avirulent pathogens in susceptible popula-
tions. Gene loss and mutation in a patho-
gen population may be compensated for by 
gene gain through horizontal gene trans-
fer (HGT) (Van der Does and Rep 2007). 
New combinations of Avr genes generated 
by HGT may evolve in unpredictable situa-
tions (Skamnioti and Ridout 2005). Friesen 
et al. (2006) have provided strong evidence 
on HGT, where a gene encoding a virulence 
factor (ToxA) was transferred from a wheat, 
Triticum aestivum L., pathogen, Stagonospo-
ra nodorum (Berk.) E. Castell. & Germano, 
to another wheat pathogen, Pyrenophora trit-
ici-repentis (Died.) Shoemaker.

The term virulence has a confused history 
and various usages for the term exist (Sac-
ristán and García-Arenal 2008). In the cur-
rent study I use the term virulence as it is 
defined by Sacristán and García-Arenal 
(2008): virulence is the degree of damage 
caused to a host by parasite infection. More 
specifically, in gene-for-gene interactions vir-
ulence is used for the pathogen genotype 
that is able to overcome a resistance factor.
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1.2 Plant disease resistance

The majority of plants possess natural de-
fence that enables them to avoid or resist 
infection by the majority of plant patho-
gens present in their environment. Recog-
nition of pathogen results in a massive re-
programming of the plant cell to activate 
and deploy defence responses to interrupt 
pathogen growth (Bolton 2009). Plants 
have evolved two lines of defence. The first 
line is based on recognition of PAMPs, 
which provides basal defence against all 
pathogens. The second line is based on 
pathogens’ effector recognition by plant 
R (resistance) proteins. Jones and Dangl 
(2006) introduced a four phased ‘zigzag’ 
model to illustrate the quantitative out-

put of the plant innate immune system. 
In phase 1, PAMPs are recognized by pat-
tern recognition receptors (PRRs) result-
ing in immunity that can halt further col-
onization. In phase 2, successful pathogens 
deploy effectors that contribute to patho-
gen virulence. Effectors can interfere with 
PAMP-triggered immunity (PTI) which 
results in effector-triggered susceptibility 
(ETS). In phase 3, a given effector is rec-
ognized by proteins resulting in effector-
triggered immunity (ETI). ETI results in 
disease resistance and usually, a hypersen-
sitive cell death response. In phase 4, nat-
ural selection drives pathogens to avoid 
ETI. Natural selection results in new R 
specificities and the ETI can be triggered 
again (Figure 2). 
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Figure 2. A zigzag model that illustrates the quantitative output of the plant immune 
system. PAMP: pathogen-associated molecular pattern. PTI: PAMP-triggered immu-
nity. ETS: effector-triggered susceptibility. ETI: effector-triggered immunity. Adapted 
from Jones and Dangl (2006).
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Plants are resistant to certain pathogens 
either because they belong to taxonom-
ic groups that are outside the host range 
of these pathogens, or because they pos-
sess genes for resistance directed against 
the avirulence gene of the pathogen, or 
because they tolerate or escape infec-
tion by these pathogens. Van der Plank 
(1968) divided disease resistance into two 
types: vertical (race-specific) and horizon-
tal (non-specific). According to Stuthman 
et al. (2007) Van der Plank’s terms were 
more epidemiological than genetic. Verti-
cal resistance reduces initial inoculum by 
screening out avirulent races but has no ef-
fect on the rate of increase of the virulent 
races. Horizontal resistance is at least par-
tially effective against all races. 

R-genes are important in many systems. 
They typically provide high levels of resist-
ance and are easy to manipulate, but their 
utility varies among pathosystems. Several 
R-genes have been isolated and their func-
tions have been studied in detail. The lim-
itations of R-genes in crop protection are 
a lack of durability in some systems and a 
lack of availability in others (Poland et al. 
2008). For highly specialized pathogens 
with narrow host ranges, monogenic race-
specific resistance has generally been un-
reliable (Stuthman et al. 2007). 

Resistance breakdown is considered to be 
less of a problem with multiple gene based 
quantitative (horizontal) disease resistance, 
which leads to lower selection pressure on 
the pathogen (Poland et al. 2008). Palloix 
et al. (2009) demonstrated that the fre-
quency of breakdown of major gene re-
sistance against Potato Virus Y was high 
when introgressed into a susceptible back-
ground and no breakdown occurred when 
the same gene was introgressed into a par-
tially resistant genetic background. Even 
though quantitative disease resistance is 
generally considered being non-race-specif-
ic, race-specific quantitative disease resist-
ances have also been identified. However, 
the molecular mechanism of the quantita-

tive disease resistance is still poorly under-
stood (Poland et al. 2008). 

1.3 Breeding for disease 
resistance

Breeding crops for disease and pest resist-
ance is one method used to protect them 
from damage due to biotic factors. Inher-
ited resistance is valuable because it is easy 
for the grower and reduces the need for 
other methods of control. The breeder has 
to choose weather to select for resistance, 
or against high susceptibility. Surveys of 
disease incidence are useful in indicating 
the importance of diseases providing infor-
mation for breeders on priorities (Johnson 
and Jellis 1992). Stuthman et al. (2007) 
identified three aspects of disease resist-
ance relating to practical breeding strate-
gies: inheritance, effectiveness and specif-
icity of disease resistance. 

Special and increased interest in disease re-
sistance breeding has emphasised durable 
resistance that is cost effective, environ-
mentally sound, and promotes the conser-
vation of genetic resources. Durable resist-
ance can be defined as the adequacy of the 
resistance throughout the useful lifetime 
expected from a variety. Keeping ahead 
of the changing pathogen populations is 
a continuous challenge for plant breed-
ers. The capacity to predict the durabili-
ty of resistance genes would be desirable 
when making investments in plant breed-
ing (Leach et al. 2001). 

The durability of disease resistance is high-
ly influenced by the recognition method of 
R protein, by the capability of the path-
ogen to retain virulence after altering or 
eliminating the recognized effector, and by 
the ability of a pathogen to evolve. Using R 
genes in rotation, with monitoring the cur-
rent races of pathogen, using R genes only 
when needed, removing them from use be-
fore they become widely ineffective, keep-
ing more than one effective R gene present 
in plant, combining use of fungicides and 
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R genes, and coordinating the system care-
fully among pathologists, plant breeders, 
and growers, are examples of how to en-
hance the durability of genetic resistance 
(Bent and Mackey 2007). The challenge 
and main goal in plant breeding is to op-
timize the plant genotype by choosing the 
most promising resistance genes and gene 
combinations for durable disease resistance 
(Palloix et al. 2009). 

Although disease resistance is a valuable 
tool to be used in plant breeding, the ac-
tive defence processes in plants occur at 
the expense of the energy resources and 
may be a limiting factor in plant growth 
and yield. The use of energy for defence 
responses relies on several metabolic path-
ways (Bolton 2009). If resistance is costly 
and has a negative effect on yield, a breed-
er’s most effective strategy may not be to 
select for excellent resistance but to select 
for moderate resistance and eliminate very 
susceptible lines. The gene content, instead 
of comprising single genes, determines a 
cultivar’s value to end-users (Brown 2002). 

1.4 Pyrenophora teres as a 
pathogen

The life cycle of P. teres f. teres involves 
both an asexual and a sexual stage. The 
asexual lifecycle includes over-wintering 
of the pathogen as mycelium in seed or 
in crop debris. The sexual fruiting bod-
ies, pseudothecia, are formed on barley 
straw after harvest in autumn. Asci and 
ascospores are formed during the late au-
tumn and the following spring and sum-
mer, depending on the climatic condi-
tions (Smedegård-Petersen 1972, Shipton 
et al. 1973). Infection of barley seedlings 
is caused by D. teres conidia or P. teres 
ascospores, and is more efficient at cool 
temperatures (10-15 ºC). The role of as-
cospores in the life cycle of P. teres is con-
sidered more as a source of novel variation 
than as an important source of primary in-
oculum (Shipton et al. 1973). The most se-
vere damage caused by seed-borne infec-

tion of P. teres f. teres occurs in dry soils at 
temperatures of 12 ºC (Youcef-Benkada et 
al. 1994). Infected volunteer crop species 
may also serve as sources of primary inocu-
lum. Brown et al. (1993) demonstrated the 
successful net form net blotch infection on 
65 gramineous species in California. One 
of the volunteer crop species for net blotch 
is couch grass, Elymus repens L. Gould, a 
common weed of cereal fields that exists 
in 66 % of the spring cereal fields in Fin-
land (Salonen et al. 2001). Besides barley, 
Finnish P. teres f. teres isolates have shown 
pathogenicity on spring and winter wheat, 
winter rye and oats (Mäkelä 1972). 

During the growing season, D. teres co-
nidia produced on the surface of prima-
ry lesions caused by ascospores or conidia 
serve as secondary inoculum. Sporulation 
occurs when relative humidity is near 100 
% for 10 – 30 hr and the temperature re-
mains between 15 and 25 ºC. Isolates of 
P. teres from areas where barley is grown 
over mild winter periods have lower tem-
perature requirements for sporulation and 
infection (Shipton et al. 1973). In a suc-
cessful penetration, a primary vesicle de-
velops within the epidermal cell, followed 
by the formation of a secondary vesicle. 
Subsequently, infection hyphae grow from 
the secondary vesicle to penetrate the inner 
cell wall of the epidermal cell and the apo-
plastic space of the mesophyll. No hyphae 
penetrate the mesophyll cells during the 
early stages of infection. Cells within the 
developing lesions exhibit various degrees 
of disruption (Keon and Hargreaves 1983).

In infected barley tissue, P. teres induces 
long dark brown netted necrotic lesions 
(the net form) or dark brown circular or 
elliptical spots (the spot form) surrounded 
by chlorosis (Smedegård-Petersen 1971). 
Smedegård-Petersen (1977) isolated two 
toxins, toxin A and toxin B, from P. teres 
cultures that produced necrosis, chloro-
sis and water-soaking on barley leaves. A 
third aspergillomarasmine-derived toxin, 
toxin C, was later identified by Bach et 
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al. (1979). Weiergang et al. (2002) found 
a positive correlation between the reac-
tions on detached barley leaves caused by 
the toxins A B, and C of both net and 
spot form P. teres strain cultures. Toxins A, 
B and C induce water soaking, chlorosis, 
and general necrosis but not well-defined 
necrotic net or spot lesions. Sarpeleh et al. 
(2007) isolated phytotoxic low molecu-
lar weight compounds and proteinaceous 
metabolites both from P. teres f. teres and 
P. teres f. maculata which were responsible 
for symptoms on susceptible barley culti-
var. Later Sarpeleh et al. (2008) found that 
the activity of toxins on barley is both tem-
perature and light dependant. Toxins were 
only active in the presence of light and no 
necrotic lesions were induced when treated 
plants were kept for 168 h at 4 ºC. 

The severity of net blotch is related to the 
climatic conditions, to the cultivation 
practice and to the susceptibility of culti-
vars used. The seed borne P. teres infection 
reduces leaf area, plant height and total 
mass compared to healthy plants (Dead-
man and Cooke 1988). The net blotch in-
fection of the uppermost three leaves of a 
barley plant has the main effect on yield, 
which may be reduced by 30 %. However, 
the effect of the disease on barley yield is 
more than the pure effect of the destroyed 
leaf area (Jebbouj and Yousfi 2009). Kernel 
weight and size are the yield components 
most affected by P. teres f. teres infection 
(Steffenson 1991).

The studies on avirulence genes in P. teres 
f. teres provide information on the role of 
virulence in the P. teres – barley interac-
tion. Weiland et al. (1999) reported that a 
single major gene controls virulence in P. 
teres f. teres on ‘Harbin’ barley. They found 
five random amplified polymorphic DNA 
(RAPD) markers associated with the low 
virulence on Harbin and designated the 
trait avrHar denoting avirulence to ‘Har-
bin’. Lai et al. (2007) constructed an AFLP 
(amplified fragment length polymorphism) 
based genetic linkage map and identified 

three major genes in P. teres f. teres in-
volved in avirulence/virulence of the fun-
gus: AvrHar conferring avirulence to Ti-
fang and Canadian Lake Shore, and two 
epistatic genes AvrPra1 and AvrPra2 con-
ferring avirulence to Prato. Beattie et al. 
(2007) identified six AFLP markers linked 
to a P. teres f. teres avirulence gene Avr-
Heartland. Despite the identification of 
the P. teres f. teres avirulence genes their 
function in the virulence of P. teres is still 
unclear.

1.5 Net blotch resistance in 
Finnish barley

Studies on barley net blotch resistance were 
already conducted in 1948 in California 
when resistance of 4 526 barley varieties 
was tested in the field (Schaller and Wiebe 
1952). Seventy-five of the tested varieties 
were highly resistant to net blotch and most 
of the resistant varieties originated from 
Manchuria. Later, Buchannon and Mc-
Donald (1965) studied the reaction of P. 
teres infection on 6 174 barley genotypes in 
Canada. Forty varieties, seventeen originat-
ing from Ethiopia, showed good resistance 
to a wide range of P. teres isolates. Already 
then it was concluded that P. teres isolates 
from different regions, and even within the 
same region, may differ in pathogenicity 
and the results of the disease screening tests 
are highly dependent on the methodology 
and isolates used. Later on, several exper-
iments on screening for P. teres resistance 
have been conducted and a considerable 
amount of valuable information is available 
(e.g. Steffenson and Webster 1992b; Rob-
inson and Jalli 1996; Jørgensen et al. 2000; 
Gupta et al. 2003; Bonman et al. 2005). 

Research on the net blotch resistance genes 
indicates a complex host-pathogen inter-
action controlled by both quantitative and 
major resistance genes. The reports on the 
presence of qualitative net blotch resistance 
suggest the potential existence of a gene-
for-gene interaction in the P. teres - barley 
pathosystem (Afansenko et al. 2007). Stef-



16 MTT SCIENCE 9

fenson et al. (1996) identified three QTL 
(quantitative trait loci) for seedling resist-
ance and seven QTL for adult plant re-
sistance. Also several other studies on the 
genetic background on the net blotch re-
sistance show that the resistance is control-
led by a single or several genes depending 
on source of resistance, plant development 
stage and P. teres isolate used (Manninen 
et al. 2000; Cakir et al. 2003; Manninen 
et al. 2006; Grewal et al. 2008). When fur-
ther studying barley net blotch resistance, 
molecular marker technology provides po-
tential tools both for mapping disease re-
sistance genes and for genotypic selection 
and may promote considerable resource 
savings (Grewal et al. 2008).

The Finnish barley breeding programme is 
working systematically on improving bar-
ley net blotch resistance. Special input has 
been targeted to reduce the susceptibility 
of six-rowed barley cultivars by selection 
of crossing parents that inherit high levels 
of quantitative resistance, which mainly 
originates from two-rowed North Ameri-
can barley genotypes. The programme re-
lies on a multi-locational testing system 
where the material is tested already in ear-
ly generations under a high disease pressure 
(Nissilä 2009, personal communication).

The level of net blotch infection in barley 
varieties has been monitored in the official 
variety trials in Finland since 1989. The 
main purpose of the official variety trials 
is to assess the value of new genotypes and 
make recommendations on yield and quali-
ty parameters. Plant disease resistance is an 
increasingly important factor in the culti-
vation value of cereal varieties (Kangas et 
al. 2008). Robinson and Jalli (1997a) stud-
ied the severity of net blotch in Finnish of-
ficial barley variety trials over six years and 
five sites. Net blotch occurred at all five 
sites. The disease severity differed between 
years but was similar across sites. The data 
indicated that differences in resistance to 
net blotch existed among the 19 genotypes 
studied.

The disease pressure by net blotch in Finn-
ish official trials is based on natural infec-
tion whose average level varied between 
5 and 12 % over all tested cultivars and 
breeding lines in 2000-2008. The data 
were analyzed using linear mixed mod-
els and the estimated means for the differ-
ent varieties are comparable despite the dif-
ferent trial period. The general level of the 
resistance against barley net blotch in the 
barley material tested in the Finnish official 
variety trials has improved. When com-
paring the barley genotypes to the stand-
ard cultivar Scarlett, a malting barley orig-
inating from Germany, 55 % of the tested 
barley genotypes were more susceptible in 
2002, and only 21 % in 2008. In neither of 
the years were any of the genotypes signifi-
cantly more resistant than Scarlett (Kangas 
et al. 2002, Kangas et al. 2008). In 2001-
2008, the average net blotch infection lev-
el in Scarlett was 1.5 %. Thirteen of the 16 
Finnish barley cultivars that are on the of-
ficial variety list in Finland in 2009 express 
resistance comparable to Scarlett. Nine of 
these cultivars are six-rowed barleys (Ta-
ble 1). None of the cultivars is known to 
carry any specific resistance genes against 
net blotch.

Currently, plant breeding is business that 
has to respond rapidly to end-users’ needs. 
At the same time it represents a long term 
project that has to look to the future. 
Building up a disease resistance breed-
ing programme relies on knowledge of the 
pathogen. Besides information on the epi-
demiology of the pathogen, knowledge on 
how the pathogen evolves and which risks 
might arise in the future are key points that 
need to be taken into account to achieve 
the final breeding goals. 

MTT Agrifood Research Finland, in 
close cooperation with the Finnish breed-
ing company Boreal Plant Breeding Ltd., 
has concentrated on improving barley net 
blotch resistance in several research projects 
(Figure 3). The research has concentrat-
ed on understanding the function of the 
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Table 1. The net blotch infection % of the Finnish barley cultivars in the Finnish Official Vari-
ety Trials in 2001-2008 compared to the standard cultivar Scarlett (Kangas et al. 2008).

Variety Head type Net blotch infection % in 
Finnish Official Variety 
Trials 2001-2008

Breeder Year of Approval 
on National List 
of Plant Varieties

Harbinger two-rowed 0.6 Boreal Plant Breeding Ltd 2009

Elmeri six-rowed 0.7 Boreal Plant Breeding Ltd 2009

Edvin six-rowed 0.7 Boreal Plant Breeding Ltd 2008

Eerik six-rowed 0.8 Boreal Plant Breeding Ltd 2009

Minttu two-rowed 1.4 Boreal Plant Breeding Ltd 2005

Scarlett two-rowed 1.5 Saatzucht Josef Breun GmbH & Co 1998

Einar six-rowed 1.6 Boreal Plant Breeding Ltd 2008

Olavi six-rowed 2.2 Boreal Plant Breeding Ltd 2006

Saana two-rowed 2.4 Boreal Plant Breeding Ltd 1996

Jyvä six-rowed 2.4 Boreal Plant Breeding Ltd 2000

Kunnari six-rowed 2.5 Boreal Plant Breeding Ltd 2001

Erkki six-rowed 2.7 Boreal Plant Breeding Ltd 1998

Polartop six-rowed 3.0 Boreal Plant Breeding Ltd 2005

Pohto six-rowed 4.9 * 1) Hankkija Plant Breeding 1994

Rambler two-rowed 5.2 Boreal Plant Breeding Ltd 2009

Rolfi six-rowed 5.4 *** Boreal Plant Breeding Ltd 1997

Voitto six-rowed 25.4 *** Boreal Plant Breeding Ltd 2005
1) Significantly different from Scarlett: * at 5 % level, ** at 1 % level, *** at 0.1 % level
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Figure 3. The background of the barley net blotch research in Finland at MTT Agrifood Re-
search Finland.
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disease triangle that illustrates interac-
tions among the three components of net 
blotch: the pathogen, the environment and 
the host.

1.6 Objectives of the thesis

The main objectives were to establish relia-
ble and efficient testing methods for Pyren-
ophora teres f. teres virulence screening, and 
to understand the role of virulence of the 
Pyrenophora teres f. teres pathogen in Fin-
land from a disease resistance breeding 
point of view. The background material 
in this study includes four publications 
that are discussed together with related 
scientific papers. The papers included in 
my thesis were chosen based on the re-
sults of P. teres virulence screening in Fin-
land using greenhouse test methods. Only 
the parts of the articles that support the 
objectives of this study are presented and 

discussed. In addition to the data already 
published in the individual papers I-IV, 
this work includes new results on com-
bined data (Finnish P. teres f. teres isolates 
in collection 1-4), which made it possible 
to study the virulence over a longer time 
period. Those results are published only 
in this work. 

The specific aims were:

•	 To establish stable virulence testing 
methods under greenhouse conditions 
(papers I, II, III, IV)

•	 To assess diversity of virulence among 
Finnish isolates of Pyrenophora teres f. 
teres (papers I, II, III, IV)

•	 To identify the impact of P. teres f. 
teres virulence on a net blotch resist-
ance breeding programme (papers I, 
II, III, IV)
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2 Materials and methods

2.1 Pyrenophora teres f. 
teres isolates (I-IV)

Virulence of 239 Finnish P. teres f. teres 
isolates was tested in 1994 - 2008. The iso-
lates that were collected in 1994, 1997, and 
2000-2007 across 19 locations originat-
ed from four P. teres collections: 1) 20 P. 
teres f. teres isolates collected in 1994 from 
11 sites in Finland originating from two 
barley cultivars, a net blotch susceptible 
cultivar Arve and a field resistant cultivar 
Pohto (Kangas et al. 2008). Three Swed-
ish and one Canadian isolate were also in-
cluded in the studies. One of the Swedish 
isolates represented P. teres f. maculata. 2) 
120 Nordic-Baltic and Irish P. teres f. teres 
isolates collected in 1997. The collection 
consisted of 19 Estonian, 29 Finnish, 11 
Irish, 20 Latvian, 22 Norwegian, and 19 
Swedish isolates. 3) 247 isolates originat-
ing from 13 countries from Europe, North 
America and Australia collected between 
1984 and 2007. 153 of the isolates originat-
ed from Finland, collected in 2000-2007. 
4) Six P. teres populations isolated from ex-
perimental fields in Jokioinen Finland in 
2006-2007 (276 P. teres f. maculata and 
37 P. teres f. teres isolates). The fields had 
a five to eight year history of barley mono-
culture. Three of the populations were col-
lected from no-tillage and three from nor-
mal tillage cultivation systems.

Leaf samples with net blotch lesions were 
surface sterilized in 50 % ethanol for 15 
s and in 2 % NaOCl for 30 s, rinsed in 
distilled water and placed on 2.3 % lima-
bean (LB) or 20 % V8-agar. Plates were 
kept under near-UV light for 5-7 days. 
Single spores were collected with a needle 
and placed on LB- or V8-agar. For inocu-
lum production, single spore cultures were 
grown under near-UV-light in a 12-h pho-
toperiod at 16 ºC for 14 days. A spore sus-
pension for inoculum was made by flood-
ing Petri-dishes with sterile water. For 

long-term storage the isolates were deep-
frozen as mycelium and conidia and stored 
in –80 ºC at MTT Agrifood Research 
Finland and Boreal Plant Breeding Ltd.

2.2 Mating studies with 
Pyrenophora teres isolates 
(IV)

Twenty-four P. teres isolates were used for 
mating studies. One of the isolates rep-
resented the spot form. Sterilized barley 
straw was placed on Sachs’s agar (Sme-
degård-Petersen 1971) and inoculated at 
both ends with 100 µl of two P. teres sus-
pensions. The plates were incubated in 
darkness for six months at 15 ºC. The suc-
cess of crossings was studied under the 
microscope by assessing the mature pseu-
dothecia. The ascospores were released 
from the pseudothecia by breaking the asci 
with a thin needle. Single ascospores were 
placed on 2.3 % LB-agar.

Morphological character measurements 
were made on one successful crossing 
population between a net and a spot form 
P. teres isolate. Colony growth, weight of 
mycelium, conidia production, conidia 
length, width and amount of septa were 
measured on six subcultures from one 
hundred single ascosporic cultures.

2.3 Set of differential barley 
genotypes used in P. teres f. 
teres virulence studies (I-IV)

The barley genotypes suggested by Stef-
fenson and Webster (1992a) constituted 
the net blotch differential set in the first 
P. teres virulence study. In the later stud-
ies, that set formed the basis of barley gen-
otypes used and was modified according 
to the aim of the study. Barley genotype 
CI 9819 was included in all test sets. Arve, 
Rolfi, or Pirkka was included in a test set 
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as a susceptible check (Table 2). In addi-
tion to the barley differential set, barley va-
rieties cultivated in Finland were included 
in the virulence tests. The total amount of 
barley genotypes in the ten virulence tests 
was 46, including 16 varieties that have 
been cultivated in Finland.

2.4 Inoculation and scoring 
(I-IV)

The virulence studies were carried out in 
two greenhouses at MTT Agrifood Re-
search Finland and at Boreal Plant Breed-
ing Ltd. Barley seeds were sown in pots 
containing nutrient-supplemented peat 
and placed in the greenhouse at 18-22 ºC 
with a 12-h photoperiod. The pots were 
arranged in a split plot design; isolates as-
signed to main plots and barley genotypes 
to sub plots with 2-4 replicates. At the two 
to three leaf stage (14 days after the sow-
ing) relative humidity in the greenhouse 
was raised to 100 % and plants were in-
oculated with a conidial suspension at 0.1 
– 0.2 ml / plant by using a pressurized 
sprayer. Lights were switched off and high 
humidity was maintained for 24 h after in-
oculation. The infection response was re-
corded 7 to 14 days after the inoculation 
on the first, second or third seedling leaf 
using the 10-point scale of Tekauz (1985) 
or the percentage of leaf area damaged. 
The infection scores < 5 were classified as 
avirulent reactions and > 5 as virulent re-
actions (Figure 4).

2.5 Data analysis (I-IV)

The virulence data were analysed as split 
plot designs by using SAS PROC ANO-
VA, PROC GLM and PROC GLIMMIX. 
Significantly different means were separat-
ed with Tukey’s HSDs. SAS PROC FREQ 
was used to study the general association 
of virulence of the P. teres isolates and till-
age method. Kendall Correlation coeffi-
cients between the morphological char-
acters and virulence data were analyzed 

with SAS PROC CORR (SAS Institute 
2004). Hierarchical cluster analyses were 
carried out to examine similarities and dis-
similarities in the reaction patterns of the 
accessions with respect to the net-blotch 
isolates. The clustering method of Ward 
(1963) and Simpson’s diversity index was 
computed to characterize pathotype diver-
sity of the isolates.

Table 2. The barley genotypes in barley 
differential sets used for screening viru-
lence in P. teres f. teres.

Genotype CI-number Used in 
studies 

Algerian CI 1179 I 
Atlas CI 4118 I, II
Beecher CI 6566 I 
c-20019 c-20019 III
c-8755 c-8755 III
Canadian Lake-
shore

CI 2750 I, II, III

Cape CI 1026 I, II 
CI 4922 CI 4922 I, II 
CI 5791 CI 5791 I, II, III, IV
CI 5822 CI 5822 I, IV
CI 7584 CI 7584 I, II 
CI 9214 CI 9214 III
CI 9819 CI 9819 I, II, III, IV
CI 9825 CI 9825 III
CI 11458 CI 11458 I, II 
Coast CI 2235 I, II 
Corvette III
Harbin CI 4929 I, II, III
Harrington III
Haruna Nijo III
Kombar CI 15694 I, II 
Manchuria CI 2330 I, II, IV
Manchurian CI 739 I, II, III 
Ming CI 4797 I
Pirkka III, IV
Prato CI 15815 I 
Prior III
Rika CI 8069 I, II 
Rojo CI 5401 I, II 
Skiff III
Tifang CI 4407 I, II, III
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Figure 4. The 10-point scale of Tekauz (1985) and the corresponding infection response 

on living barley genotypes 10 days after inoculation on the second seedling. Photo 

Marja Jalli. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The 10-point scale of Tekauz (1985) and the corresponding infection re-
sponse on living barley genotypes 10 days after inoculation on the second seedling. 
Photo Marja Jalli.
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3 Results and discussion

Table 3. Range and mean susceptible re-
actions of P. teres f. teres isolates tested 
on barley differential genotypes.

Barley differential Range of 
susceptible 

reactions (%)

Mean of 
susceptible 

reactions (%)

CI 5791 0-14 1.7

CI 9819 0-25 2.9

CI 9214 0-25 7.2

Beecher 0-24 7.6

c-8755 0-25 9.7

CI 9825 0-50 10.2

c-20019 0-50 13.1

Manchurian 0-35 17.9

Tifang 0-75 22.4

Prior 0-50 31.3

Harbin 0-64 41.1

Canadian Lakeshore 0-75 41.5

Skiff 0-97 63.6

Corvette 13-86 71.4

Haruna Nijo 25-100 78.5

Pirkka 50-94 80.9

Harrington 50-100 89.4

3.1 Pyrenophora teres f. 
teres virulence testing meth-
ods

In the first virulence study (paper I) it was 
shown that the comparison and interpre-
tation of results from the same laboratory 
from different times, and between labora-
tories is made difficult by the variable na-
ture of the host-pathogen interaction. That 
was also observed in the second study (pa-
per II) where there were significant differ-
ences in the results between the replicates 
that were located in different greenhouse 
rooms.

The environmental factors, temperature, 
light and humidity, were stable in all tri-
als and their effect was not studied in this 
research. However, it has been shown that 
even the slight changes in environmen-
tal conditions can significantly affect the 
expression of plant infection. Khan and 
Boyd (1969) indicated the importance of 
stable testing methods based on their re-
search on P. teres resistance in Manchurian 
varieties, which was enhanced by provid-
ing either pre-inoculation high tempera-
ture or high light intensity during the in-
cubation period.

The virulence of P. teres has been stud-
ied by using barley genotypes with specif-
ic resistance as virulence markers (Tekauz 
1990; Sato and Takeda 1993; Afanasenko 
et al. 1995). The lack of a universal bar-
ley differential set makes the comparison 
of separate virulence studies difficult. The 
aim in paper III was to develop an inter-
national standard set of barley differential 
genotypes to standardize the characteri-
zation of P. teres f. teres virulence global-
ly. In the greenhouse tests, the virulence 
of 174 P. teres f. teres isolates (part of col-
lection 3) was studied on 17 barley geno-
types. Most of the P. teres isolates were vir-
ulent on Harrington, Pirkka and Haruna 

Nijo, while the lowest frequencies of vir-
ulent reactions was observed on CI 5791, 
CI 9819, CI 9214, Beecher, c- 8755 and CI 
9825 (Table 3). Based on similarity anal-
ysis, the genotypes CI 5791 and CI 9819 
were almost identical in the reaction to 
the isolates. Also, Skiff and Corvette re-
sembled each other and were more sim-
ilar to susceptible cultivars Pirkka, Har-
rington and Haruna Nijo than to other 
cultivars. Excluding the cultivars Beecher, 
CI 5791, CI 9819 and Harrington from 
the test set had a minor effect on the rel-
ative number of pathotypes and diversity 



 MTT SCIENCE 9  23

index, whilst omission of cultivars Harbin 
and Skiff markedly affected both the rela-
tive number of pathotypes and the diver-
sity index. The results of greenhouse tests 
carried out in Finland were incorporat-
ed with the detached-leaf studies made by 
the All Russian Research Institute of Plant 
Protection (VIZR), Russia. Based on the 
similarity analyses and the ability of in-
dividual barley genotypes to discriminate 
pathotypes and indicate pathotype diver-
sity, barley genotypes c-8755, c-20019, CI 
5791, CI 9825, Canadian Lakeshore, Har-
bin, Prior, Skiff and Harrington were iden-
tified to be the most appropriate to char-
acterize P. teres f. teres virulence globally. 
A further aim was to study the genetic 
background of the resistance and to devel-
op near-isogenic lines that carry different 
resistance genes in the same background, 
similarly as the Pallas-lines for powdery 
mildew (Kølster et al. 1986). If P. teres f. 
teres resistance that has not been identified 
earlier exists, it needs to be included in the 
test set. The composition of a barley dif-
ferential set should be flexible when stud-
ying a pathogen-host system that evolves 
and might change rapidly. 

The effect of barley seed size on the in-
fection response via differences in growth 
speed was recorded for biotrophic path-
ogens (Jørgensen 1992). In our studies, 
the barley seed size correlated positive-
ly with plant growth. The seed size (sort-
ing through sieves with mesh diameters 
2.2 mm, 2.4 mm, 2.6 mm and 2.8 mm) 
used in the virulence test affected the plant 
height at seedling stage. Larger seeds pro-
duced larger plants for all tested geno-
types. Seed size, and its consequent ef-
fect on plant height, did not significantly 
affect the infection response or percent-
age leaf area damaged. Even though no 
correlation between the seed size and the 
P. teres infection response was found, the 
seed may carry other elements that inter-
act with the disease infection. Molinier et 
al. (2006) determined that stressed plants 
inherited the capacity for genomic change 

in Arabidopsis. The possible inheritance of 
a plant’s expression to stress from one gen-
eration to another may cause unpredicta-
ble interactions when measuring the plant-
pathogen interaction. Moreover, treating 
the seed with fungicides may affect infec-
tion response at the seedling stage. There 
is evidence that triadimenol is systemic and 
could be found even in the third wheat 
leaves 21 days after sowing (Thielert et al. 
2007). Triadimenol is an active ingredient 
in fungicides Baytan I and Baytan Univer-
sal (Finnish Food Safety Authority 2010), 
which are commonly used seed dressings 
in Finland. Therefore, the seed used in 
virulence studies should have been grown 
in a completely stress-free environment to 
avoid the effect of seed treatment products 
and the possible inheritance of expression 
to stress factors.

Passaging the P. teres isolates through bar-
ley might be necessary after several cycles 
of sub culturing on artificial culture me-
dia, the effect of which varies on different 
isolates (McDonald 1967). A fall-off in co-
nidia production capacity was also noticed 
in our studies, but was improved after pas-
saging the isolate through a living barley 
plant. However, we found no evidence that 
passaging the P. teres f. teres isolates, which 
were used directly after the isolation from 
field passaging once through barley cul-
tivars differing in resistance, were affect-
ed in terms of their virulence. As Lohan 
and Cooke (1986) reported, when compar-
ing different agar media for P. teres spore 
production, we found the spore produc-
tion to be most efficient in diurnal NUV 
light on V8-juice agar. In our studies, in-
oculum concentration (1 250 ml-1, 2 500 
ml-1, 104 ml-1 and 2 x 104 ml-1) had a sig-
nificant effect on plant height, suppress-
ing it at higher concentrations. Infection 
response and percentage leaf area dam-
age were also influenced by inoculum con-
centration. A higher concentration led to 
higher infection response and proportion 
of leaf area damaged. The inoculum con-
centration used in papers III and IV was 
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fixed at 4 x 104 ml-1 and the amount of in-
oculum was adjusted to 0.2 ml/plant. This 
quantity of spores per plant was sufficient 
to get an even infection and to differenti-
ate the infection response reactions of dif-
ferent barley genotypes.

Net blotch symptoms developed well in 
all our studies, lesions becoming appar-
ent within two days post-inoculation. The 
differences in the degree of symptom ex-
pression on the inoculated first, second 
and third leaves were significant. The sec-
ond seedling leaf was the most affected. 
Regression lines for the means infection 
response indicated that barley germplasm 
was more clearly differentiated into re-
sistant and susceptible categories by scor-
ing the second seedling leaf rather than 
the first. The information on the seedling 
leaf from which the virulence scorings are 
made is often missing in descriptions of 
materials and methods. Even if the second 
seedling leaf seems to be the most com-
monly used for disease scoring in seedling 
tests (e.g. Gupta 2001; Wu et al. 2003, 
Beattie et al. 2007), it is an essential de-
tail to report when analysing and compar-
ing P. teres virulence results.

The Tekauz 1-10 numerical scale for scor-
ing the infection response is based on 
symptom expression as it appears 7-9 days 
after inoculation (Tekauz 1985). Tekauz’s 
scale to classify barley reactions to Pyren-
ophora teres is used worldwide both for 
the P. teres virulence (e.g. Sato and Take-
da1993; Jonsson et al. 1997; Gupta 2001; 
Wu et al. 2003) and for resistance stud-
ies (e.g. Sato and Takeda 1997; Cakir et 
al. 2003; Ma et al. 2004; Manninen et 
al. 2006; Grewal et al. 2008). Our results 
showed that the infection response values 
based on Tekauz scale were not affected by 
any of the fungal isolates’ morphological 
characters (growth rate on agar, spore pro-
duction ability, size of conidia or amount 
of septa per conidium). That supports the 
uses of Tekauz scale for pathogen-host in-
teraction studies either to measure viru-

lence or resistance that are not influenced 
by other characters of P. teres isolates. 

The qualitative Tekauz scale provides a 
common understanding on infection re-
action types. In our studies the differential 
genotypes ranked similarly to the infec-
tion rate (Tekauz scale) and the percentage 
of leaf area damaged. However, the scale 
based on the infection type is less sensitive 
to the microclimatic conditions on a bar-
ley leaf at the time of inoculation and in-
cubation than the scale based on percent-
age leaf area damaged. When measuring 
infection type, a few successful symptoms 
on the second leaf are enough for prop-
er investigations while for the scale based 
on percentage leaf area damaged it is as-
sumed that all spores have standard con-
ditions for germination. Both scales are 
based on visual observations, which might 
cause some error between different studies. 
The Tekauz scale has clear descriptions for 
all infection types and the risk for misscor-
ing is relatively low. 

When comparing the studies made at 
the seedling stage in a greenhouse using 
the Tekauz scale and the field adult plant 
test, Robinson and Jalli (1997b) found no 
correlation between the tests on six Nor-
dic barley varieties carrying no known P. 
teres resistance genes.  The contrast was ex-
plained by the higher infection rate in the 
greenhouse than in the field. Therefore, for 
quantitative disease resistance screening 
in the greenhouse it is necessary to opti-
mize the test methods. In P. teres virulence 
screening studies, when a barley differen-
tial set is used, a high positive correlation 
between the reactions in greenhouse and 
in field is observed (Jalli 2009, unpub-
lished data).

Tekauz (1985) rated lesions below 5 as re-
sistant reactions and greater than 5 as sus-
ceptible reactions. In different studies a 
score of 5 is considered either as a viru-
lent/susceptible reaction (e.g. Beattie et al. 
2007) or avirulent/resistant reaction (e.g. 
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Jonsson et al. 1997; Wu et al. 2003). In our 
virulence studies, a value of 5 was consid-
ered to be a virulent reaction. However, 
the fixed limit between an avirulent and 
a virulent reaction over all tested barley 
genotypes might be misleading. For ex-
ample, on barley genotypes CI 5791 and 
CI 9819, a score of five is clearly a sign of 
virulence, which may develop further in 
time. On genotypes Canadian Lakeshore 
and Manchuria it is more considered as an 
avirulent, stable reaction. The expression of 
defence differs slightly between different 
barley genotypes. On some genotypes, like 
CI 9819, no netting is observed and the 
symptoms are closer to symptoms caused 
by P. teres f. maculata. Therefore, when 
monitoring the P. teres f. teres virulence, 
to follow the possible evolution in patho-
gen population, defining the limit between 
avirulent and virulent classes individually 
for each barley genotypes instead of hav-
ing a fixed limit over the entire barley dif-
ferential set may be a more sensitive tool.

An important part of the research is the 
use of different statistical analyses and 
their effect on the final conclusions. In 
our studies the statistical methods were 
chosen based on the trial design, on the 
type of data (categorical or continuous 
variable), on the distribution of data, and 
on the statistical methods available at the 
time of analyses. Several different statisti-
cal methods are used when analysing the 
virulence or resistance data based on the 
Tekauz scale: e.g. general linear models 
(GLM) procedure, restricted maximum 
likelihood (REML) procedure, best linear 
unbiased predictors (BLUPS), and protect-
ed least significant difference test (PLSD) 
(Grewal et al. 2008; Gupta et al. 2003; 
Tuohy et al. 2006). Statistical methods 
evolve and give increased opportunities 
for better understanding the data. That de-
mands optimal trial design, close coopera-
tion between researchers and statisticians, 
and careful comparison of studies with dif-
ferent statistical methods used. Definitive-
ly, statistical methods are the part of the 

research that should be as carefully evalu-
ated as other parts of the research and their 
value is often underestimated.

The screening of P. teres virulence with 
molecular tools instead of resistant bar-
ley plants might be possible in the future. 
There already exist molecular methods to 
detect P. teres avirulence genes AvrHar, 
AvrPra1, AvrPra2 (Lai et al. 2007) and 
AvrHeartland (Beattie et al. 2007). How-
ever, the relatedness between avirulence 
genes and virulence is variable between 
different pathogens (Sacristán and García-
Arenal 2008) and the role of the detect-
ed P. teres avirulence genes in virulence 
is still unclear (Beattie et al. 2007). Also, 
the research on phytotoxic compounds iso-
lated from P. teres (Sarpeleh et al. 2007) 
and their role as pathogen effectors (Stuke-
nbrock and McDonald 2009) may open 
novel possibilities to study virulence of 
P. teres. However, for routine virulence 
screening to monitor the changes of viru-
lence in P. teres f. teres populations, green-
house seedling tests still represent a valua-
ble and efficient tool.

3.2 Diversity of Pyrenophora 
teres f. teres isolates in Fin-
land

3.2.1 Diversity in virulence

The P. teres isolates used in this study were 
originally collected for several different 
purposes. Some of the isolates were collect-
ed systematically from selected locations, 
cultivars and fields with known cultiva-
tion histories, while others were collected 
randomly from experimental or farmers’ 
fields. The testing conditions in different 
studies were close to each other and all the 
disease observations were made by the au-
thor, allowing the analyses and conclusions 
to be made over the separate trials.

In total, 239 Finnish P. teres f. teres iso-
lates were tested in 1994 – 2008. None 
of the isolates was virulent on CI 5791. 
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On CI 9819, 1 % of the isolates scored 5, 
the lowest value considered to be a viru-
lent reaction. All other reactions on CI 
9819 were avirulent. The median of the 
infection score was above four (virulent 
reaction) on 11 of 31 barley differential 
genotypes: Cape, Corvette, Harbin, Har-
rington, Haruna Nijo, Kombar, Manchu-
ria, Ming, Pirkka, Rika and Skiff (Figure 
5). The average infection score of the tested 
isolates over the all tested barley genotypes 
varied from 1.9 to 7.4 (Figure 6).

The first virulence study on 20 P. teres f. 
teres isolates collected from 11 sites in 1994 

in Finland provided the basis for this re-
search (collection 1). The results were il-
lustrated with regression plots and each 
isolate exhibited a unique pattern of re-
sponse on the differential genotypes. The 
results indicated differences between the 
isolates and genotypes, but not always in 
slope of the regression line. All the isolates 
were avirulent only on genotypes CI 5791 
and CI 9819 and virulent on the six Nor-
dic barley genotypes that showed a range 
of symptoms in the field. 

We investigated if the host plant from 
which the isolate originated significant-

 

Figure 5. Box plot displaying the median, quartiles, and minimum and maximum ob-
servations for the symptom scores of the 239 Finnish Pyrenophora teres f. teres iso-
lates on barley differential set genotypes. The medians are connected by a line.
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ly affected the virulence of the isolate. 
The isolates from susceptible barley cul-
tivar Arve were more virulent than those 
from less susceptible Pohto. That was con-
firmed by Jalli & Robinson (1997) using 
64 P. teres isolates originating from culti-
vars Arve and Pohto. However, as Thrall 
and Burdon (2003) reported in their stud-
ies on flax rust and flax, aggressiveness 
is favoured over virulence in susceptible 
host populations, whereas virulence is fa-
voured in resistant populations, and it 
might be that instead of greater virulence 
the issue in our studies was one of great-
er aggressiveness. The differences in defi-
nitions between various terms are not al-
ways clear. Aggressiveness and virulence 
are even used as synonyms (Shaner et al. 
1992). The same problem of nomenclature 
exists when discussing virulence on the 
barley genotypes that are quantitatively 
resistant or susceptible to the P. teres. The 
proper term to use in such cases would be 
aggressiveness (Pariaud et al. 2009).

In paper II, the virulences of 29 Finnish 
isolates collected in 1997 were compared 

to those of the isolates originating from 
Estonia, Latvia, Norway, Sweden and Ire-
land. The study identified large differenc-
es in response of barley genotypes to the 
P. teres f. teres isolates. Only little varia-
tion was detected among the P. teres iso-
lates from Nordic-Baltic countries on the 
tested genotypes Cape, CI 9819, Coast, 
and Manchuria. Contrary to our stud-
ies, Tuohy et al. (2006) found significant 
variation in virulence among Northern 
European P. teres f. teres isolates, includ-
ing isolates from Finland. However, the 
two studies included only one barley gen-
otype in common (Coast), which part-
ly explains the different conclusions from 
the two host-pathogen interaction studies. 

In paper III, the greenhouse test viru-
lence data on 174 P. teres f. teres isolates 
(including 80 Finnish isolates) were an-
alysed together with the virulence data 
from detached leaf tests on 885 isolates 
(including 150 Finnish isolates). Based on 
Afanasenko’s detached leaf studies on the 
Finnish isolates (Afanasenko 2009, per-
sonal communication), the most resistant 
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Figure 6. The average and standard deviation for the symptom scores of the 239 Finn-
ish Pyrenophora teres f. teres isolates over the tested barley differential genotypes. 
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barley genotypes identified were Tifang, 
CI 9819, Canadian Lakeshore, c-8755, 
and CI 5791. The results correlate well 
with our greenhouse virulence data col-
lected between 2000 and 2005. The high-
est frequency of avirulent reactions was 
found on CI 9819 and CI 5791. 86 % 
of the isolates were avirulent on c-8755, 
but only 47 % on Canadian Lakeshore. 
In the seedling tests Canadian Lakeshore 
was mainly considered to be a medium 
resistant genotype and some isolates were 
highly virulent on it. The slight differenc-
es between Afanasenko’s and our stud-
ies may have resulted from the origin of 
the isolates and the testing methods. In 
Afanasenko’s research the Finnish isolates 
originated from three fields while in our 
studies they were collected from 14 sites 
and several cultivars.

In paper IV, the virulence of P. teres f. teres 
isolates originating from a no-tillage and 
normal-tillage cultivation system was stud-
ied. Surprisingly, only 37 of the 313 sin-
gle spore isolates represented the net form 
of P. teres and the rest represented P. teres 
f. maculata. The virulence reactions of net 
form isolates on barley differential gen-
otypes CI 9819 and Manchuria were al-
most identical and no influence of the till-
age system was observed. All the isolates 
were avirulent on CI 9819. Two of the 37 
isolates were virulent on Manchuria, one 
originating from a no-tillage and the oth-
er from a normal tillage plot.  

3.2.2 Change in virulence over years

The combined dataset (Finnish isolates in 
the collections 1–4) was used to study the 
change in P. teres virulence over time. Chi-
Square values that illustrated the associa-
tion between the year of collection of the 
isolate and the virulence of all tested 239 
P. teres isolates on a susceptible barley gen-
otype and on CI 9819, indicated no signif-
icant interaction (P= 0.97). The virulence 
of 98 P. teres f. teres isolates collected in 
1994, 2003, 2004 and 2005 was tested in 

four trials and nine of the barley genotypes 
in different trials were common: Beecher, 
Canadian Lakeshore, CI 5791, CI 9819, 
CI 11458, Harbin, Manchuria, Manchu-
rian, and Tifang. Based on the results of 
GLIMMIX analyses made on the com-
bined data there were no significant av-
erage differences in the virulence of the 
P. teres isolates among the years (P=0.10). 
The pairwise analyses showed a slight dif-
ference in virulence of the studied P. teres 
isolates between 1994 and 2004 (P=0.04). 
The estimated frequencies of virulent iso-
lates over the nine barley genotypes in dif-
ferent years were 1994: 29 %; 2003: 40 %; 
2004: 20 %; and 2005: 35 %. The results 
of GLIMMIX analysis on 44 isolates col-
lected in 2000, 2003 and 2007 that were 
tested on five common barley genotypes 
(Annabell, CI 9819, Kunnari, Manchu-
ria, and Pirkka,) showed no significant in-
teraction between the collection year and 
the virulence (P=0.52).

The virulence studies on the combined da-
taset provided novel possibilities for anal-
yses of the specific and overall virulence 
among the isolates collected in 1994-2007. 
No clear virulence was found on CI 9819, 
which was the only barley genotype in-
cluded in all trials. The collecting year had 
no significant effect on the infection re-
sponse when using the avirulent/virulent 
classification. However, the expression of 
avirulence on CI 9819 varied while the 
infection response ranged between scores 
from one to five. Some of the isolates were 
highly aggressive, causing numerous leaf 
spots even when the spot size remained 
small and no chlorosis was observed. The 
same phenomenon was observed in field 
trials where CI 9819 seemed to be sensi-
tive to physiological leaf spots. The physi-
ological leaf spots appeared at later growth 
stages and no physiological spots were ob-
served in seedling tests. No virulence on 
CI 9819 is recorded in P. teres virulence 
studies made in other barley growing are-
as (paper III Afanasenko’s studies; Gupta 
et al. 2003; Tuohy et al. 2006). 
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Regarding the separate trials and the over-
all analyses, the virulence of Finnish P. 
teres f. teres isolates collected between 1994 
and 2008 was fairly stable, both within 
and among years. In Finland, the patho-
gen has not been exposed to major resist-
ance genes, and therefore it has not been 
under a selective pressure, making coevo-
lution of the pathogen-host interaction to 
produce a more virulent pathogen unlike-
ly. Similar results were reported by Gupta 
(2001). He concluded that the virulence 
among the isolates from Western Austral-
ia remained stable for 19 years due to the 
cultivars grown. More detailed knowledge 
on the evolution of Finnish P. teres f. teres 
populations could be achieved by desig-
nating pathotypes (Steffenson and Web-
ster 1992a) or isolate groups (Gupta 2001) 
that illustrate the similarities and differ-
ences between isolates in a very compre-
hensive way. However, in our studies, the 
rationale has been to serve the practical 
barley resistance breeding programme and 
therefore emphasis has been put on follow-
ing the evolution of virulence on specific 
barley genotypes instead of the general ev-
olution of P. teres pathogen populations. 
To get a more comprehensive overview 
of the changes in pathogen populations, 
larger numbers of isolates rather than sin-
gle isolates would have to be tested. Also 
the number of barley genotypes includ-
ed in virulence tests increases knowledge 
on the population structure. The variabil-
ity of a population of P. teres depends on 
the number of barley cultivars examined 
and the differences in their genetic back-
ground, the presence of both net and spot 
forms in studies, and the number of iso-
lates examined (Tekauz 1990). 

Not many comparable novel studies on P. 
teres virulence exist in the literature, which 
together with the different methodologies 
used weakens the comparison between the 
P. teres virulence situation in Finland and 
in other countries. Instead, the rapid de-
velopment of molecular tools has made it 
possible to put more emphasis on popula-

tion genetic studies of P. teres. Wu et al. 
(2003) combined the results of virulence 
and genetic variation studies based on re-
striction fragment length polymorphism 
(RFLP) analysis. The results indicated that 
P. teres possesses a high degree of diversi-
ty at species and subspecies level (P. teres 
f. teres and P. teres f. maculata). Serenius et 
al. (2005) studied the genetic variation of 
two P. teres populations originating from 
Finnish barley fields using AFLP analy-
sis. The mean genetic similarity among all 
the isolates was 93 % and most of the var-
iation was observed within field popula-
tions. They concluded that Finnish P. teres 
isolates are genetically more variable than 
expected based on virulence surveys in pa-
pers I and II. In later P. teres population 
studies Serenius et al. (2007) showed that 
most of the total variation within Finnish 
P. teres f. teres isolates was within the col-
lection years rather among them and they 
were genetically more different than those 
collected from other Nordic areas. Vir-
ulence is only one indicator used to de-
scribe the population structure. The com-
bination of systematic population genetic 
and virulence studies would be an ideal 
tool to study the factors affecting the P. 
teres – barley interaction and to predict 
the risk for changes in the P. teres viru-
lence spectrum. 

3.2.3 Effect of sexual reproduction on 
virulence

Mating studies with pathogen isolates are a 
valuable method for better understanding 
pathogen-host interactions. The effect of 
sexual reproduction on virulence in P. teres 
was studied in three artificially produced 
populations (paper IV): in one crossing 
between two net form isolates (isolates 14 
x 15) and in two crossings between a net 
form and a spot form isolate (isolates 14 x 
24 and 16 x 24). The virulence of the P. 
teres f. teres parental isolates 14, 15 and 16 
were identical on five tested barley geno-
types Arve, CI 5791, CI 5822, Manchu-
ria, and Pohto: avirulent on CI 5791 and 
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CI 5822 and virulent on Arve, Manchuria 
and Pohto. The virulence reaction of the P. 
teres f. maculata parental isolate was oppo-
site to the net form isolates on CI 5791, CI 
5822, and Manchuria. None of the cross-
ing progenies was entirely identical to its 
parents in terms of virulence. The average 
similarity of the progeny isolates to their 
parents was calculated by assessing the per-
centage of similar reactions between the 
progeny isolates and parental isolates over 
the five barley genotypes. The average sim-
ilarity of the net by net form mating prog-
eny isolates to its parents was 92 %. The 
average similarity of the net by spot form 
mating progenies isolates was 58 % to the 
net form parents and 73 % to the spot 
form parent.

The P. teres crossing studies done in the 
laboratory showed the possible risk for 
changes in virulence on genotypes CI 
5791, CI 5822, and Manchuria if sexu-
al mating exists in the field. In the cross-
ing between the two net form isolates, the 
changes in virulence were smaller than in 
crossings between the net and spot form 
isolates because of the different virulence 
profiles of the net and spot form parents. 
All three progenies included isolates that 
were either avirulent or virulent on each 
barley genotype. Both net form parents 
were avirulent on CI 5791, but still 8 % of 
their progeny isolates were virulent on it. 
Both the parents scored 2 while in proge-
ny isolates the maximum score was 7. The 
studies included two net and spot form 
matings, having the same spot form pa-
rental and two net form parental isolates 
sharing the same virulence profile. How-
ever, the inheritance of virulence was not 
identical among the two net x spot form 
matings. On CI 5822, 68 % of the 16x24 
and 94 % of the 14x24 progeny isolates 
were virulent. The unpredictable results 
confirm that virulence of a pathogen is 
result of several factors (Bent and Mack-
ey 2007) and in the studied host-patho-
gen interactions it seemed to be control-
led by several genes. Our study is related 

to the specific isolates and host genotypes, 
and generalization of the results should be 
done with caution.

The sexual mating of heterothallic as-
comycetes is controlled by fast evolving 
mating type genes (MAT1 and MAT2) 
(Turgeon 1998) that determine the sexu-
al compatibility between different haploid 
individuals. The heterothallism among 
ascomycetes supports the importance of 
generating new genetic combinations. A 
pathogen must choose between sexual and 
asexual development, and they use nutri-
tional, temperature and light clues to make 
this decision (Nelson 1996). Serenius et al. 
(2005) reported that both mating types 
(MAT1 and MAT2) exist in Finland at a 
ratio close to 1:1. Based on the AFLP stud-
ies of Finnish P. teres f. teres isolates Seren-
ius (2006) concluded that sexual repro-
duction occurs in Finland. However, no 
visual evidence of the naturally existing 
pseudothecia has been reported. In con-
trast, pseudothecia were easily observed in 
Denmark and in southern Sweden (Sme-
degård-Petersen 1972; Jonsson 2001). The 
artificially inoculated straw samples that 
were stored at different soil depths over 
the winter 2006-2007 in Jokioinen, Fin-
land had visible pseudothecia in spring 
but at the time of collection, just before 
sowing time in early May, the ascospores 
were already ejected (Jalli 2007, unpub-
lished data). The equal amounts of mat-
ing types in Finnish populations (Seren-
ius et al. 2005), the conclusions reached 
on AFLP studies of Finnish isolates (Se-
renius 2006), and the success of artificial 
mating in nature (Jalli 2007, unpublished 
data) indicate the high probability of the 
existence of sexual reproduction of P. teres 
f. teres in Finland. However, the possible 
effects of sexual reproduction on the viru-
lence of P. teres have not yet been noted in 
Finnish barley fields.

Due to the different genetic structure (Rau 
et al. 2007) and virulence profile of net 
and spot forms of P. teres isolates (paper 
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IV) their recombination may lead to un-
predictable virulence. Our crossing stud-
ies in the laboratory were successful in pro-
ducing large amounts of viable ascospores. 
There are several examples of the success 
in mating the two forms under labora-
tory conditions (e.g. Smedegård-Petersen 
1971; Campbell et al. 1999). Campbell 
and Crous (2003) investigated the hybrid 
progeny of a mating between net and spot 
form isolates, concluding that they re-
tain their virulence and fertility over time 
and are genetically stable after two cycles 
of inoculation, mitosis and re-isolation. 
Evidence on the recombination between 
net and spot form isolates in the field in 
South Africa was reported (Campbell et 
al. 2002). In contrast, the results of Seren-
ius et al. (2007) on the AFLP studies on 
P. teres populations, which also included 
Finnish isolates, indicated that recombi-
nation between the two forms hardly oc-
curs in nature. Also the studies by Rau et 
al. (2007) confirm that the hybridization 
between the two forms is rare or absent 
under field conditions. In that regard our 
results on the net and spot form crossings 
should be considered more as an example 
of possible changes in virulence when two 
isolates of different virulence profile mate. 

3.2.4 Effect of cultivation practices on 
virulence 

Reproduction and mating systems affect 
how gene diversity is distributed with-
in and among individuals in a pathogen 
population. Populations of sexual patho-
gens usually exhibit a high degree of gen-
otype diversity and represent greater risks 
to break down of resistance (McDonald 
and Linde 2002). One phenomenon that 
may affect the occurrence of sexual repro-
duction is the cultivation system. Reduced 
and no-tillage cultivation systems are be-
coming popular among farmers around 
the world. Reduced tillage improves a 
soil’s physical, hydro-physical and biolog-
ical properties, especially in a good crop 
rotation system (Rusu et al. 2009). Due 

to the potential for enhanced productivity, 
cost and environmental savings, most agri-
cultural institutions and governments are 
promoting reduced tillage. However, in a 
minimum or no-tillage system the risk for 
residue-borne plant diseases may increase 
(Joshi et al. 2007). There are a few studies 
on the influence of no-tillage and reduced 
tillage on the incidence and severity of net 
blotch (e.g. Jordan and Allen 1984; Duc-
zek et al. 1999). There is also evidence on 
the effect of both the no-tillage and crop 
rotation on pathogen population structure. 
Almeida et al. (2008) showed that Macro-
phomina phaseolina, an important disease 
of soybean, is a genetically variable spe-
cies and can be affected by crop rotation. 
Chulze et al. (2000) indicated that the 
Fusarium populations isolated from no-till 
maize are similar to those recovered from 
maize managed with conventional tillage. 
However, no research has been done on 
the effect of cultivation system on P. teres 
population structure and virulence.

In this study the effect of no-tillage culti-
vation practices on the virulence of P. teres 
populations was studied among 313 iso-
lates that were obtained from three fields 
that had five to eight year histories of bar-
ley monoculture either under no-tillage or 
in normal tillage cultivation (paper IV). 
Of the isolates, 276 represented the spot 
form and only 37 the net form of P. teres. 
Based on Cochran-Mantel-Haenszel statis-
tics, the tillage method (no-tillage or nor-
mal tillage) had no effect either on the vir-
ulence structure of the P. teres f. teres or P. 
teres f. maculata populations.

Collections 1-3 in our studies represent 
only the net form of P. teres and the low 
frequency of net form isolates in collection 
4 was not predicted. The fungicide treat-
ed seed and the net blotch infections ob-
served at the early tillering stage in no-till-
age blocks confirms that the infection was 
mainly straw-borne. Besides the possible 
effect of the microclimatic conditions in 
the fields, the high proportion of spot form 
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isolates may be explained by long mono-
culture of barley cultivars Annabell and 
Saana in the fields from which the samples 
were isolated. Both cultivars are medium 
resistant against the net-form of the fungus 
(Kangas et al. 2008), which might have 
caused selection towards the spot form. 
Based on the virulence studies there were 
no signs of increased variation among the 
isolates originating from no-tillage com-
pared to isolates originating from normal 
tillage plots. No recombinants between net 
and spot form isolates were observed ei-
ther; all the isolates produced clear net or 
spot form symptoms. The AFLP analyses 
on some of the isolates support the results 
of virulence studies. No differences in the 
genetic variation were found among the 
populations originating from different cul-
tivation systems (Serenius 2008, unpub-
lished data). Even though natural drift of 
isolates between blocks with different cul-
tivation systems is probable, there was no 
such variation in virulence either in the 
isolates originating from no-tillage or nor-
mal tillage field. 

What was observed in the study on the 
effect of sexual mating on virulence, and 
the sexual recombination of P. teres isolates 
could not have been proved based on the 
virulence studies. The virulence of the net 
form isolates originating from no-tillage 
and normal tillage background was com-
parable to the results earlier presented in 
this work: all net form isolates were avir-
ulent on CI 9819 and virulent on Pirkka. 
However, this research was a preliminary 
study on the possible effects of cultivation 
methods on P. teres related to specific en-
vironments, and to better understand the 
long-term effect of no-tillage on sexual re-
combination and on the virulence of P. 
teres. The research continues, considering 
also the effects of monoculture and crop 
rotation on the virulence and on popula-
tion genetics.

3.3 Implications of P. teres f. 
teres virulence for net blotch 
resistance breeding 

Besides the differential sets that include 
barley genotypes with different resistance 
phenotypes, our virulence studies includ-
ed barley genotypes that are cultivated in 
the Nordic countries and whose resistance 
background is unknown. The virulence 
study results identified large differences in 
response of barley genotypes to P. teres f. 
teres. When infection scores from 1 to 4 
were considered as resistant reactions, CI 
5791 was the only genotype resistant to 
all tested isolates. Of the 46 barley geno-
types, 23 were resistant to at least 50 % of 
the isolates. Those genotypes included two 
commonly grown malting barley cultivars 
in Finland: Scarlett (resistant to 80 % of 
the isolates) and Annabell (resistant to 72 
% of the isolates), and a six-rowed culti-
var Kunnari (resistant to 61 % of the iso-
lates). The frequency of resistant reactions 
was less than 10 % on cultivars Tiril, Rolfi, 
Arve, WW 7977, Harrington and Agne-
ta (Table 4).  

Scarlett, Annabell and Kunnari have 
shown good net blotch resistance also in 
the Finnish official variety trials (Kangas 
et al. 2008). Robinson and Jalli (1997b) 
found adequate levels of quantitative re-
sistance in genotype H 6221 (‘Thule’) and 
later (2001) in Bor 94007 (‘Jyvä’). These 
genotypes are examples of widely adapted 
genotypes that possess adequate levels of 
resistance to make them useful parents in 
crossing programmes. Testing the breed-
ing material at several sites over several sea-
sons provides an opportunity to monitor 
and develop adapted genotypes that exhib-
it stable resistance to P. teres. Based on the 
analysis made on Finnish official variety 
tests, Robinson and Jalli (2001) concluded 
that there are no site-specific populations 
of net blotch that differ greatly in virulence 
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Table 4. Number of tested isolates, the minimum infection score, the maxi-
mum infection score, and the percentage of resistant reactions (score < 5) on 
barley genotypes tested with different Finnish P. teres f. teres isolates.

Genotype Number of tested 
isolates

Min infection 
score

Max infection 
score

% of resistant 
reactions

CI 5791 142 1 4 100
CI 9819 238 1 5 98
CI 7584 53 1 10 93
CI 5822 53 1 8 89
CI 9825 51 2 8 88
CI 9214 50 1 9 87
c-8755 51 1 6 86
Rojo 53 1 10 86
c-20019 51 1 8 83
Beecher 110 1 10 83
Scarlett 33 2 6 80
Manchurian 110 1 10 77
Coast 82 1 8 74
Annabell 22 1 10 72
Algerian 20 1 10 72
CI 11458 110 1 10 71
Tifang 110 1 10 63
Prato 20 1 10 63
Canadian Lakeshore 110 1 10 62
Kunnari 66 2 8 61
Prior 51 1 9 60
CI 4922 20 1 10 60
Atlas 20 1 10 51
Rika 20 1 10 48
Olavi 44 2 9 42
Skiff 51 1 9 37
Cape 49 1 10 36
Manchuria 160 1 10 33
Ming 20 1 10 30
Harbin 110 1 10 27
Kombar 20 1 10 24
Edel 43 3 9 18
Corvette 51 1 9 18
Pohto 49 3 9 17
Artturi 20 3 6 17
Pirkka 156 1 10 15
H 6221 20 1 10 14
Pilvi 44 2 10 13
Voitto 44 2 9 10
HarunaNijo 32 1 10 10
Tiril 44 2 9 9
Rolfi 33 1 10 9
Arve 93 2 10 5
WW 7977 20 1 10 4
Harrington 51 2 10 3
Agneta 20 4 10 1
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in Finland. That was confirmed by the vir-
ulence studies made during this research. 
Cultivar Kunnari was released in 2000 
and Jyvä in 2001 (Table 1). Both cultivars 
are widely cultivated in Finland (Kunnari 
30 000 ha and Jyvä 36 000 ha in 2009) 
but no breakdown of the resistance has 
been recorded (Kangas et al. 2008). The 
durability of resistance may be explained 
by the genetic background of the resistance 
and the stability of Finnish P. teres f. teres 
populations. In the Danish studies on net 
blotch infection on barley during sever-
al years and at several locations, the total 
variation in disease severity (61-81 %) was 
explained by plant genotype and environ-
ment, and only a minor part of the total 
variation was assumed to be caused by vir-
ulence characteristics of pathogen popula-
tions (Pinnschmidt and Hovmøller 2002).  

The results of our experiments indicate 
that the barley genotypes used in the dif-
ferential sets contain useful levels of resist-
ance to P. teres f. teres that could be used in 
the Finnish barley disease resistance breed-
ing programme. Several genotypes were 
more resistant than most of the cultivat-
ed barleys and could be used to strength-
en the level of resistance that exists among 
barleys as a result of the regular breeding 
programme. 

Barley genotypes CI 5791 and CI 9819 
were resistant to all Finnish P. teres f. teres 
isolates. In paper III, where genotypes were 
tested against 1059 P. teres f. teres isolates 
from 14 countries, the lowest mean fre-
quency of virulent isolates across popula-
tions and testing methods was observed 
on CI 5791, CI 9819, c-8755 and CI 9825, 
which indicates a high level of resistance in 
these cultivars. Genotypes c-8755 and CI 
9825 showed good resistance also against 
Finnish isolates. Despite the good poly-
genic resistance of CI 5791 and CI 9819 
against barley net blotch (Jonsson et al. 
1999; Manninen et al. 2006; Afanasenko 
et al. 2007), it seems that they are ful-
ly efficient only against the net form of 

net blotch (Arabi et al. 1992; Tuohy et al. 
2006; Grewal et al. 2008). According to 
the cluster analyses and the ability of indi-
vidual genotypes to discriminate P. teres f. 
teres isolates, c-8755, CI 9825 and CI 5791 
showed a different ability to illustrate vir-
ulence in P. teres isolates. Therefore, it is 
likely that these resistant genotypes carry 
at least partly different resistance genes. 
The genetic studies made on the host-
pathogen interaction of these barley gen-
otypes and P. teres f. teres isolates confirm 
that the resistance is mostly isolate-specific 
and controlled by one or two genes (Afa-
nasenko et al. 2007).

Diverse sources of resistance must be de-
ployed to achieve long-lasting resistance.  
Novel net blotch resistance sources are es-
sential in environments that encourage 
the risks for changes in P. teres popula-
tions. Even though this study demonstrat-
ed the slow evolution of P. teres virulence 
between 1994 and 2007, there are exam-
ples on host-pathogen interactions where 
the situation has changed rapidly result-
ing from recombination and the selection 
imposed by resistance genes (McDonald 
et al. 1989). 

Novel resistance sources and allelic vari-
ation could be found from landraces and 
wild genotypes originating from areas with 
high net blotch pressure. Robinson and 
Jalli (1996) showed that barley genotypes 
originating from Latin America carry ef-
ficient net blotch resistance against Finn-
ish P. teres f. teres isolates. Bonman et al. 
(2005) demonstrated that disease resist-
ance varies depending on geographic ori-
gin. Adult plant net blotch resistance was 
most common in accessions from East-
ern Asia, China, South Korea and Japan. 
Accessions from Eastern Africa showed 
the highest levels of resistance at the seed-
ling stage. Wild barley, Hordeum vulgare 
spp. spontaneum, may represent a total-
ly novel input for improving barley net 
blotch resistance. However, the value of 
genetic resources of wild barley will only 
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be realised when their resistance genes are 
transferred into cultivated barley. Sever-
al H. vulgare spp. spontaneum and culti-
vated barley crosses have been developed 
and resistance was successfully transferred 
into adapted barley germplasm (Steffen-
son et al. 2007). Sato and Takeda (1997) 
found H. vulgare spp.  spontaneum acces-
sions from Afghanistan and Russia that 
showed high levels of net blotch resistance. 
Using wild barleys and landraces to in-
crease biodiversity in barley breeding pro-
grammes affords the development of plant 
varieties with novel genetic combinations 
that will be required to meet the challeng-
es arising from the changing environment, 
like drought and pests.

The net blotch disease infection level is 
highly influenced by the environment 
and the reliability of the resistance screen-
ing results may decrease if they only rely 
on non-inoculated survey data or on data 
from too few on non-representative envi-
ronments (Pinnschmidt and Hovmøller 
2002). The testing methods for screening 
virulence of P. teres f. teres on seedlings in 
the greenhouse with specific isolates seem 
to be efficient also in disease resistance 
testing. Gupta et al. (2003) and Grewal 
et al. (2008) concluded there was strong 
agreement between seedling and adult-
plant reactions, which indicates that seed-
ling screening could be useful in select-

ing for adult-plant resistance. Jonsson et 
al. (1998) reported that net blotch resist-
ance in barley seedlings inoculated at the 
one to two leaf stage correlated with net 
blotch reactions on the fourth and flag 
leaves when barley was grown in growth 
chambers, as well as with disease levels re-
corded on the three uppermost leaves in a 
field experiment. However, based on our 
virulence studies on the barley differen-
tial set and the studies by Khan and Boyd 
(1969) on the sensitivity of resistance ex-
pression to temperature and light intensity, 
resistance screening only under the green-
house conditions can lead to false conclu-
sions. The value of expression of resistance 
in diverse climatic conditions is increasing 
due to climate warming. Climate change 
can also affect the durability of resist-
ance. There is evidence that some forms 
of disease resistance might be overcome 
more rapidly following changes in levels 
of CO2, ozone and UV-B (Chakraborty 
et al. 2000). The optimal way to get prof-
itable and long-lasting results in improv-
ing net blotch resistance could be to find a 
balance between different breeding meth-
ods most appropriate to the needs and re-
sources: molecular tools to map and screen 
specific resistance genes, greenhouse seed-
ling tests to select against specific viru-
lence, and multi-environmental field tests 
to follow the resistance-environment inter-
actions and to secure durability.
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4 Conclusions

Screening for P. teres f. teres virulence 
on barley seedlings under greenhouse 
conditions is a reliable and feasible 

method, especially in the absence of mod-
ern molecular tools to monitor the com-
plex P. teres f. teres – barley interaction. 
Because the method is based on visual 
observations of disease symptoms on liv-
ing plants it is also a comprehensive tool 
for studying the P. teres – barley patho-
system. Besides the genetic backgrounds 
of the host and the plant, disease expres-
sion is related to the environmental con-
ditions, temperature, light and humidity, 
which need to be stable to achieve reliable 
and comparable results among different 
studies. Even slight changes in environ-
mental conditions may change the disease 
expression of some barley genotypes. A 
common barley differential set to charac-
terize the P. teres f. teres virulence was de-
veloped based on its ability to discriminate 
pathotypes and indicate pathotype diver-
sity, and is recommended for use globally: 
c-8755, c-20019, CI 5791, CI 9825, Cana-
dian Lakeshore, Harbin, Prior, and Skiff. 
Cultivar Harrington is recommended to 
be used as a susceptible check. These gen-
otypes form the basis of the set that needs 
to be enlarged when novel resistance is in-
troduced. The barley seed for virulence 
tests should be produced in an environ-
ment that minimizes the risks for biot-
ic or abiotic stresses. Seed dressing treat-
ment is not recommended. Barley seed 
size, P. teres isolates morphological char-
acters, spore production or growth rate 
on agar have no effect on the expression 
of virulence. The Tekauz numerical scale 
based on infection type is more appropri-
ate to describe the virulence of the isolate 
than the percentage of leaf area damaged. 
The second seedling leaf is best for differ-
entiating the isolates.

The virulence spectrum of Finnish P. teres 
f. teres isolates collected in 1994-2007 is 
stable both within and between years. The 
results indicated differences between the 
isolates and genotypes but not always in 
their interaction. There is no virulence to 
barley genotypes CI 5791 and CI 9819. 
The virulence of Finnish P. teres f. teres iso-
lates is highest on Cape, Corvette, Har-
bin, Kombar, Manchuria, Ming, Rika, 
and Skiff of the barley differential geno-
type set. In Finland, there is no evidence of 
any effect of sexual reproduction on viru-
lence under natural conditions; not even in 
barley monoculture no-tillage fields, which 
should represent an optimal environment 
for sexual recombination. However, based 
on artificial mating studies the virulence of 
a pathogen is a result of several factors that 
may be influenced significantly by sexual 
recombination even when two isolates with 
similar virulence profiles mate. The mat-
ing and host-pathogen interactions studies 
related to specific isolates and host geno-
types, and generalization of the results, 
needs to be done with caution.

Even though no changes in the Finnish 
P. teres f. teres virulence spectrum were 
observed, changes in climate and cultiva-
tion methods could change the situation 
rapidly and breeders need to be prepared. 
Therefore, virulence surveys, concentrat-
ing on areas with high risk for evolu-
tion, should be an essential and contin-
uous part of a disease resistance breeding 
programme. Large differences in response 
of barley genotypes to P. teres f. teres ex-
ist. Finnish six-rowed cultivars Kunnari 
and Jyvä are examples of durable resist-
ance achieved through traditional breed-
ing methods. Novel resistance that has not 
been introduced earlier into Finnish barley 
is also available. Barley genotypes c-8755, 
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CI 9825 and CI 5791 have excellent re-
sistance against Finnish P. teres f. teres iso-
lates and it is assumed that their resist-
ance background is not entirely identical. 
The greenhouse virulence screening meth-
ods are valuable for P. teres f. teres resist-
ance monitoring, especially when screen-
ing against specific virulence. However, 
when screening for quantitative and du-
rable resistance, testing breeding material 
at early generations in multi-environmen-
tal field tests is an efficient way to gauge 
the effect of different environments and P. 
teres populations on the resistance expres-
sion. It is obvious that the importance of 

plant pathogens in barley production will 
not decrease in the future. There is also ev-
idence that besides P. teres f. teres, the spot 
form of the pathogen P. teres f. macula-
ta will be an important pathogen of bar-
ley in the future, which needs to be taken 
into account in disease resistance breed-
ing programmes. The barley disease resist-
ance breeding represents a palette of sev-
eral pathogens, resistance genes, positive 
and negative interactions, test methods, 
and also compromises but has a common 
aim to develop a plant that is valuable for 
farmers, end-users, the environment, and 
the breeder. 
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