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Abstract

Characteristics models in demand analysis capture the idea that
people value goods not for the commodity itself but for the character-
istics (or attributes) or embodied in the good. For example, agents
may care about the fat content and the taste of different sorts of milk
but not the actual type of milk. When we have fewer characteristics
than types of good the theory imposes restrictions on observables.
We present a revealed preference characteristics model analysis of

the demand for milk in Denmark.

1 Introduction.

We present an analysis of the demand for milk using a characteristics model
in which agents value different types of milk for their characteristics (at-
tributes) such as fat content, whether the milk is produced under envi-
ronmentally friendly conditions (‘oko’ to use the Danish abbreviation) and
taste. In this paper we consider only linear characteristics models. We de-
velop Afriat-Varian style revealed preference tests for linear characteristics
models that obviate the need for assuming a particular functional form for
preferences. The principal questions we address are:

• are the data on milk prices and demand nonparametrically consistent
with a linear characteristics model with a known technology?

• as well as the characteristics mentioned above, are other (latent) at-
tributes also needed to rationalise the data?
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• if the data are not consistent with a known technology, are they con-
sistent with any non-trivial linear characteristics model?1

• if the data can be rationalised with a linear characteristics model, what
are the implied bounds on the willingness to pay for a characteristic
such as ‘oko’? Here we can make a distinction between the market
valuation and the valuation for particular households.

• can a revealed preference analysis yield bounds on the value of a new
market good that bundles attributes in some way that has not previ-
ously been offered?

Milk is a particularly simple commodity to model since it is non-durable,
non-storable (so that there is no inventory problem to deal with), absolutely
homogeneous within milk types and we can observe some (or even all) of the
characteristics in our data. Thus milk is one of the simplest commodities
we could think of modelling (another is eggs, as in the classic paper in the
field, Gorman (1980)). Despite this simplicity we shall see that important
modelling and substantive issues arise. It is our hope that highlighting these
for such a simple commodity will be useful for modelling goods such as soap
powder, cars and personal computers.

The empirical analysis uses an unusual data set in which we have the
records of purchases of milk (and other goods) for a large number of Danish
households over several years (a maximum of 208 weeks for some house-
holds). We conduct separate analyses for each household so that we do not
have to model between household heterogeneity explicitly.2 Since so much
of the subsequent analysis is motivated by the nature of our data, in the
next section we present an detailed description of the data.

In the third section we consider the analysis of demand data using re-
vealed preference techniques. A necessary condition for being able to ratio-
nalise demand behaviour with a characteristics model is that the data satisfy
the Generalised Axiom of Revealed Preference (GARP); see Varian (1982).
If the data do pass GARP we can then ask whether the data are also con-
sistent with the existence of a non-trivial linear characteristics model. The
analysis is conducted for two cases; the first in which we know the linear
technology (and all characteristics are observed) and the second in which we
do not know the technology. Additionally we discuss one way to allow for
measurement errors in prices for RP type tests.

1As we discuss below, a non-trivial characteristics model is one in which there are fewer
characteristics than market goods.

2Or, rather, we deal with heterogeneity by allowing that preferences might be com-
pletely different from household to household.
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Type Fat content Oko Taste Share
1 0.1% No Regular 14.9
2 1.5% No Regular 47. 2
3 3.5% No Regular 13.7
4 0.1% Yes Regular 7.7
5 1.5% Yes Regular 7. 9
6 3.5% Yes Regular 2.8
7 0.5% No Buttermilk 4.5
8 0.5% Yes Buttermilk 1. 25

Table 1: Types of milk

2 A first look at the data.

2.1 The market for milk in Denmark.

We present a description of the milk market in Denmark during our sample
period. This will include a discussion of the types of milk and the marketing
structure. Discuss our sample period with mention of the introduction of
’mini-milk’ in the final year. Detailed description of how prices are set.

2.2 A description of the price data.

Describe how the data are collected.
For each household, daily records of expenditures (in Danish Kroner) and

the quantity bought (in liters) of various types of milk are recorded. The
types are differentiated by fat content, whether the milk is produced under
environmentally congenial conditions (‘oko’) and taste. Table 1 records the
characteristics of the eight types that we work with. We also record the
market shares for the different types (these are derived for our total sample).3

As can be seen 75% of milk purchases are for regular non-oko milk. For
oko milks, low fat is relatively popular (as compared to non-oko milk). We
construct weekly unit values for each type of milk and each of nine regions
4 by dividing the weekly expenditure on that type of milk by all households
in our survey in that region by the weekly quantity in the region. We shall
refer to these week-region specific unit values as prices; note that these are
absolute prices and are not deflated by any general price index. We have
a number of missing values in our price data because no one in our sample
bought that particular type of milk in that region and week. Table A1 in the

3We exclude a small number of milk purchases that are not categorised and we also
exclude flavoured milk.

4The regions are Copenhagen, North Zealand, South Zealand, Funen, Bornholm, East
Jutland, North Jutland, West Jutland and South Jutland.
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Type ADF Mean SD ARMA(1, 1) AR MA AR(1) MA(1)
1 −2.6 5.1 0.11 5.1 0.99 −0.91 32.9 36.0

2 −4.4 5.3 0.16 4.2 −0.01 −0.20 4.9 4.2

3 −3.0 6.1 0.15 3.4 0.91 −0.74 22.3 24.7

4 −2.9 6.4 0.12 5.7 0.98 −0.75 37.9 65.1

5 −5.0 6.6 0.20 3.4 0.96 −0.92 5.2 5.2

6 −4.7 7.5 0.18 2.4 −0.47 0.61 5.9 5.3

7 −4.8 5.2 0.21 8.8 0.98 −0.95 15.1 15.1

8 −4.3 6.5 0.16 0.1 0.92 −0.84 4.5 4.9

ADF is the ADF unit root test statistic. The 5% value for a unit root is −2.9.
ARMA(1, 1) is the χ2 (2) statistic for ARMA(2, 2) → ARMA(1, 1).
AR and MA are the estimated parameter values from the ARMA(1, 1).
AR(1) is the χ2 (3) statistic for restricting an ARMA(2, 2) to an AR(1).
MA(1) is the χ2 (3) statistic for restricting an ARMA(2, 2) to an MA(1).

Table 2: Price statistics

Appendix gives the number of weeks in which we do not observe a particular
price for a particular region. We have very few observations in regions 3
(South Zealand) and 5 (Bornholm) so we drop these from our analysis. We
choose to impute missing prices for the remaining missing prices using a
simple interpolation scheme; details are given in the Appendix.

Since the prices and their properties play an important role in the analy-
sis below we present here a time series analysis of the prices for one region
(Copenhagen). For this region we do not have any missing values for any
prices. Figure 1 presents the plots for 208 periods (1997.1 to 2000.52) for
milk types 2, 3 and 5. The y-axis gives the price per liter in Danish Kroner
(about 7 kroner to one Euro). The first feature of this figure is that there
is a clear (upwards) break in prices for types 1 and 2 in weeks 15/16 and
194/195. This break is also seen in all of the other non-oko price series but
not in any of the oko milk price series. In some of our analysis below it is
convenient to work with stationary series, so we restrict attention to weeks
16 to 194 (a total of 179 time periods). In our demand analysis we use the
whole sample since the discrete, persistent and exogenous change in the rel-
ative price of oko milk obviously helps the identification of price effects. On
the restricted period there is no visual evidence of a time trend in absolute
prices over the 179 weeks of the sample; below we shall present formal tests
for stationarity. The other important feature of the graphs is that higher
fat milk is more expensive (compare types 1 and 2) and oko milk is more
expensive (compare types 2 and 5). To supplement this visual analysis, we
present some statistics for the eight price series in Table 2. milk).
The first column presents the augmented Dickey-Fuller (ADF) unit root test
statistic (with 5 lags of differences included in the regression) for the sample
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from weeks 16 to 194.5 Although types 1 and 4 are marginal we shall
proceed as though none of series has a unit root. Given this, we present
means and standard deviations in columns 2 and 3. The means show that
higher fat content milks cost more (ceteris paribus) as does oko milk. The
differences between the mean price for non-oko and the comparable oko
variety are all about 1.3 Kroner per liter. The other columns of Table 2
examine the univariate process that each price series follows. We start with
an ARMA(2, 2) with Gaussian errors. We then test for restricting this to
an ARMA(1, 1). The results for this test are given in column 4; mostly we
do not reject the restrictions. The final two columns give the test statistics
for restricting the processes to being even simpler than the ARMA(1, 1). As
can be seen, we reject these simpler models in most cases. Accepting that a
common model of an ARMA(1, 1) is appropriate, we present the parameter
estimates in the columns headed AR and MA. One major surprise from this
analysis is how different the processes are. For example, the price for regular
1.5% milk (type 2) displays no autoregressive component and only a small
and negative MA component. On the other hand, regular 0.1% milk (type
3) seems to have an autoregressive parameter that is almost unity and a
very large and negative MA component.

In revealed preference analysis only relative prices matter. In figure 2 we
present the path of the relative price of type 5 (medium fat, oko) milk to the
price of type 2 milk (medium fat, non-oko) milk. This displays considerable
variability with a premium for oko of between 10% and 35% (in the middle
periods). This high variability is of considerable interest for the identification
of price effects in a model that assumes intertemporal additivity but we must,
of course, allow that some of it may be due to demand shocks.

2.3 A description of the quantity data.

The prices given above are assumed common to all households in the partic-
ular week and region. The purchases by households are, of course, specific to
the household. Here we present an informal analysis of the demand patterns
for a small number of households who are present in our sample for a large
number of contiguous weeks. To minimise ’taste changes’ we also select on
the household not having any change in household structure, except for the
ageing of the members. Describe sample.

Graphs of ‘aggregate’ data. For a given region (Copenhagen) graph
aggregate budget shares for non-oko and oko regular milks. Also graphs of
three fat types for non-oko and oko. Finally buttermilk, non-oko and oko.

For illustrative purposes we consider seven households who are in our
sample for almost 208 years and who consist of a married couple with no
one else present during the whole data period. Table ?? presents the mean

5Including a deterministic trend gives very similar results.
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Household
A B C D E F G

Quantity 2.7 3.2 2.2 3.7 5.4 3.4 2.0

Type 1 0 0 0 0 0.1 0 15.7

Type 2 0 7.4 33.4 45.4 95.0 9.2 21.8

Type 3 99.5 82.5 48.5 32.5 0.5 2.6 3.9

Type 4 0 0 0 0 3.7 0.9 12.8

Type 5 0 0.2 0 0 0.7 70.0 43.6

Type 6 0.5 0.2 0.2 0 0 16.5 2.2

Type 7 0 9.5 1.3 21.6 0 0.8 0.1

Type 8 0 0 16.6 0.5 0 0.1 0

Quantities in litres per week.
Budget shares (multiplied by 100)

Table 3: Individual budget shares

budget shares (averaged over time) for the seven households for each of the
eight goods.

Most obvious features:

• some households buy mostly one type of milk (A, B and E).

• lots of zeros over whole four years

• lots of heterogeneity

Figure ?? presents the time path of budget shares for types 2, 3 and 7
for household D. As can be seen, there seems to be a switch from type 3 to
type 2 milk at around week 80. The research question is whether we can
account for these changes assuming unchanging preferences.

The sample we work with is a sample of households who are present for at
least 156 weeks of the 208 we consider and who live in the same region for the
whole period. The numbers of such families are (133, 112, 62, 136, 60, 59, 66)
for regions (1, 2, 4, 6, 7, 8, 9) respectively for a total of 628 households in all.

3 The linear characteristics model.

3.1 The basic framework.

Suppose we observe quantity bought by an individual household and price
data onK market goods q =

£
q1, ..., qK

¤0 and p = £p1, ..., pK¤0 for in periods
t = 1, ...T . Afriat and Varian have established empirical conditions under
which the data {qt,pt}t=1...T can be rationalised as the maximisation of a
utility function u (q) with standard properties. In this and he next section
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we extend these conditions to the case where the data are generated by a
utility maximising consumer whose preferences have the following structure:

u (q) = v (Aq) (1)

where A is a J × K non-negative matrix with full row rank J < K. The
J-vector z = Aq is a vector of characteristics or intermediate goods or at-
tributes. To illustrate the use of characteristics consider our milk data. We
have eight types of milk. One set of characteristics we could take are: (‘milk-
iness’, 1.5% fat, 3.5% fat, oko, regular taste) so that J = 5.6 This gives the
following A matrix:

A =

⎡⎢⎢⎢⎢⎣
1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎦
This matrix has rank five. The technology is not unique, in the sense that
BA is also a linear technology for any non-singular J × J matrix; this cor-
responds to a linear redefinition of the intermediate goods. For example,
we could replace the first row with a vector so that the first characteris-
tic is ‘0.1% fat’. If we assume that preferences are linear over fat content
then we have only three characteristics, (fat,oko,taste) with following rank
3 transformation matrix:

A =

⎡⎣ 0.1 1.5 3.5 0.1 1.5 3.5 0.5 0.5
0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 1

⎤⎦
It is important to test for this structure since if it is accepted we can put
much tighter bounds on the market valuation of mini-milk (the new type of
regular milk that was introduced with an 0.5% fat content). Below we shall
present tests for whether we can replace a five factor model by a three factor
model.

4 The hedonic pricing model.

4.1 Known technology.

A particularly important special case of the linear characteristics model is
when prices are such that the available characteristics for a fixed outlay
on market goods all lie on a hyperplane; this is the hedonic pricing model.
Figure ?? illustrates for a three good, two characteristics model. In the

6Note that buttermilk is different in both taste and fat content but we can only allow
for one of these characteristics.

7



left hand panel we have that the available budget set is not linear and we
do not have a hedonic model. In the right panel the price of good 2 has
been increased until the boundary of the budget set is linear. The defining
characteristic of a hedonic pricing model is that market prices are simply
the weighted sums of the prices of the underlying shadow prices, πjt :

pt = A0π̃t

µ
µt
λt

¶
= A0πt (2)

where the π̃jt ’s are shadow prices for the characteristics.
We begin by considering the case in which the linear technology A is

known. In this case the full set of characteristics zt = Aqt are also observed
if market purchases are observed. From equation (2) we see that we need
to find shadow prices πt such that pt = A0πt for all t. For each t this is
a system of K equations in J < K unknowns so that a solution does not
generally exist. The following gives the well-known condition for existence,
where (A0|pt) is the K × (J + 1) matrix of A0 and pt stacked horizontally.

Lemma 1 There exists a πt satisfying pt = A0πt if and only if rank (A0|pt) =
J. If this condition holds then πt is given uniquely by:

πt =
¡
AA0

¢−1
Apt (3)

Some remarks:

• It is important to recognise that given any A and pt we can always
define πt uniquely in this way, but this πt will only satisfy pt = A0πt

exactly if the rank condition holds.

• Even if the rank condition holds, A is nonnegative and market prices
are positive we may have πjt < 0 for some j, t so that shadow prices
may not always be positive.

• A result that is useful below is that:

rank
¡
A0|pt

¢
= J ⇒ A0

¡
AA0

¢−1
Apt = pt (4)

The implications of this for the revealed preference conditions are given
by:

Proposition 2 If rank (A0|pt) = J for all t then {qt,pt} satisfies GARP
if and only if {zt,πt}satisfies GARP.

Proof. Suppose the rank condition holds and {qt,pt} satisfies GARP.
GARP for {qt,pt} implies:

p0tqt ≥ p0tqs and p0sqs ≥ p0sqw ⇒ p0wqw ≤ p0wqt (5)
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(where we have, without loss of generality, taken a chain of length 3, {t, s, w}).
Given the rank condition we can find unique shadow prices for period t that
satisfies pt = Aπt (and similarly for s and w). Substituting for market
prices this gives:

π0tAqt ≥ π0tAqs and π
0
sAqs ≥ π0sAqw ⇒ π0wAqw ≤ π0wAqt (6)

so that:
π0tzt ≥ π0tzs and π

0
szs ≥ π0szw ⇒ π0wzw ≤ π0wzt (7)

which is GARP on {zt,πt}.
Conversely, for GARP on {zt,πt} we examine inequalities such as:

π0tzt ≥ π0tzs (8)

Substituting for zt and πt and using (4) this implies:

p0tA
0 ¡AA0¢−1Aqt ≥ p0tA0 ¡AA0¢−1Aqs ⇒ p0tqt ≥ p0tqs (9)

so that GARP holds for {qt,pt} if it holds for {zt,πt}.

Given these results we have a clear path for revealed preference testing
for a characteristics model. First we test for GARP for the observed data
{qt,pt}. Clearly if this fails there is no utility model that rationalises the
data. Strictly GARP tests for the milk group being a separable group. If the
test fails we can attribute this to several reasons: the group is separable but
the demand for milk products is not ‘rational’; the group is not separable (for
example, we do not include substitutes such as other types of drink or other
sources of calcium and fat); the group is separable but preferences for milk
products change over time; the group is separable but preferences for milk
products are not time separable (there are habits); the prices or quantities
are measured with error. We shall return to some of these issues below. If the
market data satisfy GARP, then we test for the rank condition. If this passes,
then a characteristics model with this linear technology rationalises the data.
If the demand data satisfy GARP but the prices fail the rank condition then
we conclude that there is no characteristics model that rationalises the data
with the given linear technology . If this happens, two issues arise. First,
we can ask: is there any linear technology that is consistent with the data?
This is dealt with in the next sub-section. The second issue allows that
prices might be measured with error.

4.2 Noisy prices.

Suppose that we assume that true prices do satisfy the rank condition in
each period but that prices are measured with an additive error:

pt = A0π̂t + ηt (10)
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where ηt is a serially uncorrelated vector process with zero mean and con-
stant covariance matrix Ση. Let P be the K × T matrix of observed prices
stacked horizontally. If we have more time periods than goods (T > K)
then if ηt has a non-degenerate distribution, we will almost surely have
rank (P ) = K so that the exact rank condition of the previous section will
never hold. One procedure in this case is to regress prices in period t on the
transposed characteristics matrix A0 to give estimates of the shadow prices:

π̂t =
¡
AA0

¢−1
Apt (11)

and then to define ‘predicted prices’:

p̂t = A0π̂t = A0
¡
AA0

¢−1
Apt (12)

If (and only if) the price vector in period t satisfies the rank condition of
the previous subsection then p̂t = pt (see equation (4)). Given predicted
prices, the following gives a test for a characteristics model.

Proposition 3 The following are equivalent:
(i) {qt, p̂t} satisfies GARP
(iii) {Aqt, π̂t} satisfies GARP
(ii) there is a characteristics model with linear technology A that ratio-

nalises the data.

It is important to emphasise that GARP tests can pass for {qt, p̂t} but fail
for {qt,pt} (and vice versa) unless the rank condition holds for each period.

This framework can also be used to give the means of the shadow prices,
µπ, and hence valuations for the different characteristics. The obvious esti-
mator to take for the mean is:

π̄ =
1

T

X
π̂t =

¡
AA0

¢−1
A
1

T

X
pt =

¡
AA0

¢−1
Ap̄ (13)

Under the stationarity assumption, this is a consistent estimator of µπ.
Although the solution given in (11) is standard in the static factor analy-

sis literature it ignores the time series structure of shadow and market prices.
To take account of this, assume that shadow prices follow a stationary first
order vector autoregression:

πt = (I −B)µπ +Bπt−1 + ut (14)

where B is a non-singular J × J matrix with the usual stationarity condi-
tion. The J-vector ut is assumed to be serially uncorrelated with mean zero
and a constant contemporaneous covariance matrix Σu. Together equations
(14) and (10) constitute a state space representation with the former as the
transition equations and the latter as the measurement equations (see, for
example, Harvey (1990) or Hamilton (199?)). More specifically, this is a
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dynamic factor model; in this state space form it was introduced by Engle
and Watson (1981). In our structure we have a fixed and small number of
variables (K prices) and large T . Thus our structure is somewhat simpler
than for dynamic factor models with large K and T (see, for example, Bai
and Ng (2002)) or for models with K >> T , as in Stock and Watson (1998).
Taking account of the time series structure will provide a lower variance
estimator for the mean of the shadow prices. It will also facilitate testing
for additional factors or an alternative characteristics structure without the
need to use the tests for rank developed in, for example, Cragg and Don-
aldson (1997). The obvious estimation procedure is to use Kalman filter
based ML. An alternative is based on the reduced form of the state space
representation. From the (lagged) measurement equations we have:

πt−1 =
¡
AA0

¢−1
Apt−1 −

¡
AA0

¢−1
Aηt−1

If we substitute the transition equations into the measurement equations
and use this then we have the reduced form:

pt = A0 (I −B)µπ +A0B
¡
AA0

¢−1
Apt−1

−A0B
¡
AA0

¢−1
Aηt−1 + ηt +A0ut (15)

so that prices follow a vector ARMA(1, 1) (see Pena and Box (1987)):

pt = d+ Cpt−1 + vt +Θvt−1

This is consistent with the time series properties for prices found in section
2. From this framework we can derive predictions of shadow prices that are
alternative to those derived from (11).

4.3 Additional latent attributes.

We can ask: given the technology described by A, do we need an additional
(latent) attribute to adequately describe the evolution of prices?

4.4 Unknown linear technology.

Suppose that we have market data {qt,pt}t=1,..T that satisfy GARP and
that prices and quantities are measured without error. We suspect that this
may be rationalisable by a linear technology characteristics model but the
form of the technology (and the number of characteristics) is unknown.7

Clearly if we allow for as many characteristics as goods (J = K) then we
can always do this by setting A = IK . Thus we shall seek a non-trivial linear
characteristics model with J < K.

7This clearly requires that characteristics are not observed by the analyst (otherwise we
could estimate the technology). We always assume that agents observe all characteristics.
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Proposition 4 Suppose the market data {qt,pt} satisfy GARP. We can
find a non-trivial linear characteristics model that rationalises the data if
and only if rank (P ) < K .

Proof. Consider the K × T matrix of prices P and let rank (P ) = J <
K. Let Π be a J × T row basis matrix for P (that is, every row of P can be
expressed as a linear combination of rows of Π). By definition Π has rank
J. Now consider the set of equations P = A0Π where A is a J ×K matrix.
By the definition of Π a solution A exists and is given by:

A =
¡
ΠΠ0

¢−1
ΠP 0 (16)

Now take the characteristics model with zt = Aqt and πt as the t’th column
of Π (so that pt = A0πt). This satisfies the conditions of Proposition 1 and
hence we have found a linear characteristics model that rationalises the data.

Conversely, suppose that there is a non-trivial linear characteristics model
that rationalises the data. Suppose that this has J characteristics. Then
proposition 1 gives that rank (A0|P ) = J which implies that rank (P ) ≤ J <
K.

A number of remarks:

• Given GARP for a particular household, the condition for the existence
and construction of a linear technology depends only on market prices
that household faces and not on the market purchases.

• If we have fewer time periods than goods (T < K) then rank (P ) ≤
T < K so that we can always find a linear technology that rationalises
the data if it satisfies GARP.

• There is nothing to ensure that all of the elements of A are non-
negative even if all market prices are positive. We conjecture that
there is some way to choose the row basis matrix so that A is always
non-negative. Consider, for example, the following technology with
T = 7 and K = 6:

P =

⎡⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 4 5
2 2 2 3 5 5 5
1 2 3 4 5 4 5
1 2 2 3 4 4 5
1 2 3 4 5 4 5
3 4 4 6 9 9 10

⎤⎥⎥⎥⎥⎥⎥⎦ (17)

This has rank 3. If we take a random row basis matrix then we always
end up with at least one negative element in each row of A. On the
other hand, if we take the row basis given by rows 1, 2 and 4:

Π =

⎡⎣ 1 2 3 4 5 4 5
2 2 2 3 5 5 5
1 2 2 3 4 4 5

⎤⎦ (18)
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we have:

A =

⎡⎣ 1 0 1 0 1 0
0 1 0 0 0 1
0 0 0 1 0 1

⎤⎦ (19)

which does satisfy our non-negativity restriction.

4.5 Noisy prices.

In general we will have many more periods than goods (T >> K) and any
noise in observing prices will almost surely give rank(P ) = K. On the other
hand we might posit that ‘true’ prices P ∗ do have rank less than K . One
informal check is to examine the eigenvalues of the K×K matrix PP 0. More
acceptable would be to conduct a test on the rank of P .

Use dynamic factor model to determine the number of factors and the
form of the transformation matrix A.

5 Testing for a linear characteristics model.

5.1 Known technology.

The previous section dealt with testing for a hedonic pricing model and was
concerned solely with market prices. In this section we move to a revealed
preference analysis of individual demands. We provides tests for whether a
time series of emands for a given agent can be rationalised by utility function
that has a linear characetristics form given in equation (1) and reproduced
eher for convenience:

u (q) = v (Aq) (20)

where A is a J ×K matrix with full row rank.

6 Conclusions.
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A Imputation of prices.

The following Table gives the mean number of households in each region
per week and the number of missing values for prices. Note that prices are
based on the full set of observations and not just those that are included
in our final elected sample of households. We drop regions 3 and 5 since
we have so few observations. For the other regions we have relatively few
missing price values for types 1 to 7 (11 out of a total of 1456 prices) so we
simply use the simple interpolation scheme:

pir,t = 0.5 ∗
¡
pir,t−1 + pir,t+1

¢
where r denotes region, i denotes the milk type and t is time. For the milk
type 8 which has 44 missing values, we use ??.

Number of missing prices for good:
Region # obs 1 2 3 4 5 6 7 8

1 389 0 0 0 0 0 0 0 0

2 308 0 0 0 0 0 0 0 0

3 40 1 0 0 36 15 86 0 97

4 164 0 0 0 0 0 0 0 27

5 19 1 0 0 46 151 156 29 139

6 336 0 0 0 0 0 0 0 0

7 173 0 0 0 0 0 3 0 4

8 163 0 0 0 2 1 5 0 2

9 182 0 0 0 0 0 0 0 11

Table 4: Table Caption
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B Figures.

Figure 1: Prices for three types of milk.
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Figure 2: Relative price for oko to non-oko milk.
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Figure 3: Budget shares for one household.
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