N₂O emission from grass-clover swards is largely unaffected by recently fixed N₂

M. Thyme and P. Ambus

Plant Research Department, Risø National Laboratory

Biological N₂ fixation in grass-legume swards provides a major N input to many organic farming systems, but knowledge is sparse regarding the amount of fixed N₂ lost from the grasslands as N₂O. Nitrifying and denitrifying bacteria are the main contributors to the N₂O production in soils. According to the current guidelines issued by The Intergovernmental Panel on Climate Change (IPCC), biological N₂ fixation in grass-legume swards should not be considered as a source of N₂O in the national greenhouse gas inventories (IPCC, 1997), partly because of uncertainties in quantifying the N₂ fixation in the grasslands (Mosier et al., 1998). Hence, the agricultural greenhouse gas release may presently be underestimated. As organic farming to a very large extent utilises grass-legume mixtures as N source, the contribution from organic farming systems in particular may be underestimated. For all other N inputs (viz. inorganic fertiliser, manure and biological N₂ fixation in other crops), it is assumed that 1.25 % of the total N supply is emitted as N₂O (IPCC, 1997). This standard emission factor relies on experiments with fertiliser and manure only (Bouwman, 1996), and could thus be considerably unrepresentative for biologically fixed N₂. Therefore, as part of the DINOG project, a ¹⁵N₂-tracer-experiment was initiated, on grass-clover to assess the contribution of recently fixed N₂ as a source of N₂O and the transfer of fixed N from clover to companion grass.

Materials and methods

A mixture of white clover (*Trifolium repens* L. cv. Klondike) and perennial ryegrass (*Lolium perenne* L. cv. Fanda) was sown in pots using topsoil from an organic crop rotation. The ¹⁵N-labelling approach consisted of enriching the atmosphere in a growth cabinet with ¹⁵N₂ (0.4 atom% excess) to trace the biological N₂ fixation (Fig. 1). A minimum-volume closed-system growth cabinet was developed, which could host 12 pots of 15 cm × 15 cm size. In this cabinet, three 14-day incubations were conducted with grass-clover mixtures at 16, 26 and 36 weeks of age. The N₂ fixation during the incubation was established by relating the excess ¹⁵N

content of the plant and soil fractions to the ¹⁵N enrichment of the atmospheric N₂. After the ¹⁵N₂-labelling, the emission of ¹⁵N₂O was measured using a static chamber method (Fig. 2).

Fixation of nitrogen

At 16 weeks after emergence, N₂ fixation measured in grass-clover shoots and roots as well as in soil constituted 342 mg N m⁻² d⁻¹ (Fig. 3). This is three times larger than daily means of N₂ fixation determined in harvested herbage in the field (Jørgensen et al., 1999; Vinther and Jensen, 2000), probably because of optimal growth conditions at this stage of the experiment. Furthermore, our study estimates total amounts of fixed N in all pools, in contrast to the field measurements. Following a severe aphid attack, the N₂ fixation had dropped dramatically when measured at 26 weeks after emergence. Transfer of fixed N from clover to grass shoots was observed at 26 and 36 weeks to be 0.7 mg N m⁻² d⁻¹, which accounted for 2 % of the N accumulated in grass shoots during the labelling period. In comparison, long-term field studies using ¹⁵N dilution technique have reported apparent transfer of fixed N from white clover to companion ryegrass in the range 0 to 80 % of the grass N content (Boller and Nosberger, 1987; Ledgard, 1991), with the percentage increasing according to time after labelling.

Emission of N₂O

Total N₂O emission was 91, 416 and 259 μ g N₂O-N m⁻² d⁻¹ at 16, 26 and 36 weeks after emergence, respectively (Fig. 4). To some extent, leaf insect pest status of clover seemed to influence the N₂O emission, probably by increasing death and decay of clover tissues. Emission of N₂O-N derived from recently fixed N₂ was not detected 26 or 36 weeks after emergence. At 16 weeks, only 3 ± 0.5 ppm of the recently fixed N₂ was emitted as N₂O on a daily basis, which represented 2 % of the total N₂O emission. Hence, the long-term mineralisation of dead clover tissues is most likely a more important source of N₂O than recently fixed N. Biological N₂ fixation in grass-legume swards should not be neglected as a source of N₂O in the national greenhouse gas inventories, especially not when considering the large area of Europe covered by managed grasslands. However, even though a longer time scale is taken into account, we find it unlikely that the N₂O emission factor of 1.25 % suggested by IPCC. The reason is that only a part of the fixed N is mineralised during the lifetime of the clover, and furthermore that the release of inorganic N into the soil occurs slowly following decomposition of clover residues.

Conclusions

Our results indicate that N fixed within the previous two weeks constitutes about 2 % of the labile N pool in the soil. The data support the general view that recently fixed N contributes little to the N transfer from white clover to companion grass. Moreover, only a tiny fraction of the fixed N was lost as N_2O over the course of a few weeks. Thus, the long-term mineralisation of dead clover tissues is probably more important than recently fixed N for the flow from N_2 fixation to N_2O emission.

References

- Boller, B. C. and Nösberger, J. (1987) Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrasses at low levels of ¹⁵N-fertilization. Plant Soil 104, 219-226.
- Bouwman, A. F. (1996) Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosys. 46, 53-70.
- IPCC (1997) Greenhouse Gas Inventory Reference Manual. *In* Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. *Eds.* Houghton, J. T. et al. Vol. 3. UK Meteorological Office, Bracknell.
- Jørgensen, F. V., Jensen, E. S. and Schjoerring, J. K. (1999) Dinitrogen fixation in white clover grown in pure stand and mixture with ryegrass estimated by the immobilized ¹⁵N isotope dilution method. Plant Soil 208, 293-305.
- Ledgard, S. F. (1991) Transfer of fixed nitrogen from white clover to associated grasses in swards grazed by dairy cows, estimated using ¹⁵N methods. Plant Soil 131, 215-223.
- Mosier, A. et al. (1998) Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutr. Cycl. Agroecosys. 52, 225-248.
- Vinther, F. P. and Jensen, E. S. (2000) Estimating legume N₂ fixation in grass-clover mixtures of a grazed organic cropping system using two ¹⁵N methods. Agr. Ecosyst. Environ. 78, 139-147.