Viljelusviisi mõju talinisu tärkliseteradele ja jahusaagile

Maarika Alaru, Liina Talgre, Viacheslav Eremeev, Anu Riisalu, Evelin Loit, Anne Luik
Eesti Maaülikool, Põllumajandus- ja keskkonnainstituut > maarika.alaru@emu.ee

Sissejuhatus

Nisu on maisi ja riisi kõrval üks olulisemaid teravilju maailmas. Nisu kogutoodangust kasutatakse 75-78\% inimestele toiduks, ülejäänud läheb valdavalt loomadele söödaks. Euroopas on mahesüsteemis kasvatatud nisu saagikus keskmisena $30-40 \%$ madalam kui tavasüsteemis kasvatatud nisul, seda enam tuleb hinnata erinevates süsteemides kasvatatud nisu kvaliteeti. Püüli- e peenjahu saak on oluline kvaliteedinäitaja, mida mõjutab suurel määral taimede kasvukeskkond. Peale sorditunnuste sõltub kasvukeskkonnast näiteks tera kõvadus, mis omakorda mõjutab nisuterade jahvatusefektiivsust. Pehmema nisutera jahvatamisel saadakse üldjuhul rohkem ebaregulaarse kuju ja väikse diameetriga osakesi, mis vähendavad jahu voolavust, põhjustades seadmete ummistusi (Evers ja Millar, 2002). Tänapäeva jahuveskites suunatakse esmaselt purustatud terad sageli uuesti ringlusse, et saavutada võimalikult väikese tuhasisaldusega jahu. Mida suurem on püülijahu saak juba pärast esmast terade purustamist, seda ökonoomsem on tootmine (Campbell jt., 2007).

Keskkond mõjutab nisuterade endospermis olevate tärkliseterade suurust ja suuremate ning väiksemate tärkliseterade arvukust ning omavahelist suhet (Edwards, 2010). Tärkliseterade suurus ja arvukus määrab nisujahu küpsetusomadused (taigna kerkimine, venivus, tugevus, pätside suurus jms). Tärkliseterad jagatakse läbimõõdu alusel erinevatesse fraktsioonidesse: A-tüüp, ehk suured (üle $15 \mu \mathrm{~m}$), B-tüüp, ehk keskmised ($5-15 \mu \mathrm{~m}$) ja C-tüüp, ehk väikesed (alla $15 \mu \mathrm{~m}$) (Edwards, 2010). Mida rohkem on suuri A-tüüpi tärkliseteri, seda paremad on nisujahu küpsetusomadused, st pätsi kerkimine ja struktuur on parem. Väiksemad ning jahvatamisel kahjustada saanud tärkliseterad suurendavad jahu veeimavusvõimet ehk seda vee kogust, mis on vajalik taigna valmistamiseks. Sellisel juhul pikeneb ka taigna segamise aeg (Park jt., 2005).

Toitainete, eelkõige lämmastiku kättesaadavus mahe- ja tavasüsteemis on erinev ja see tingib ka tärkliseterade hulga ja suuruse erinevuse süsteemides. Lämmastikuga väetamisel on täheldatud A-tüüpi ja väävliga väetamisel B-tüüpi tärklise juurdekasvu (Li jt., 2013).

A-tüüpi tärkliseterade teke algab peale nisu õitsemist ning neid tekib juurde kuni tera on saavutanud piimküpsuse. Hiljem, vaha- ja täisküpsuse faasis suureneb A-tüüpi tärkliseterade diameeter, arvuliselt neid enam ei lisandu. B- ja C-tüüpi tärkliseterade kujunemine algab A-tüüpi graanulitest ca 10 päeva hiljem. Keskmisest madalama temperatuuri korral pikeneb tera täitumisperiood ja sellega kaasnevalt suureneb ka hiljem kujunema hakkavate väiksemate B- ja C-tüüpi tärkliseterade hulk. Seevastu kõrge temperatuur tera täitumisel kiirendab viljatera valmimist ning limiteerib väikeste tärkliseterade osakaalu endospermis (Shevkani jt., 2016).

Käesoleva uurimistöö eesmärgiks oli selgitada talinisu 'Fredis' püüli- e peenjahu saagikust ja tärkliseterade suurust sõltuvalt ilmaoludest aastatel 2013-2016 ning viljelusviisist (mahe- ja tavasüsteem).

Materjal ja metoodika

Pikaajaline põldkatse mahe- ja tavaviljelusviisi võrdluseks on rajatud 2008. aastal Eesti Maaülikooli taimekasvatuse ja taimebioloogia õppetooli Eerika katsepõllule ($58^{\circ} 22^{\prime} \mathrm{N}, 26^{\circ} 40^{\prime} \mathrm{E}$), kus külvikorras olevaid kultuure väetatakse mahesüsteemis orgaaniliste ja tavasüsteemis mineraalsete väetistega. Mahesüsteemis on kolm väetisvarianti - M0 (mahe kontroll), M1 (talvised vahekultuurid; nende poolt kogutud toitained viiakse mulda kevadel külvieelse künniga) ja M2 (talvised vahekultuurid + kevadel komposteerunud veisesõnnik). Tavasüsteemis on neli väetisvarianti - N0 (kontroll, $\left.\mathrm{N}_{0} \mathrm{P}_{0} \mathrm{~K}_{0}\right)$, $\mathrm{N} 50\left(\mathrm{~N}_{50} \mathrm{P}_{25} \mathrm{~K}_{95}\right)$, N100 ($\mathrm{N}_{100} \mathrm{P}_{25} \mathrm{~K}_{95}$) ja $\mathrm{N} 150\left(\mathrm{~N}_{150} \mathrm{P}_{25} \mathrm{~K}_{95}\right)$. Kõik variandid on neljas korduses.

Tärkliseterade loendamiseks ja mõõtmiseks kasutati Stoddardi (1998) poolt koostatud meetodit. Tärkliseteradest määrati kaks fraktsiooni: A-tüüp (diameeter üle $15 \mu \mathrm{~m}$) ja B-tüüp (diameeter alla $15 \mu \mathrm{~m}$). Mõõtmised tehti 2015-2016 aastate talinisu 'Fredis' terasaagist. Püülijahu saak määrati 2013-2016 aastate terasaakidest. Selleks võeti igast variandist 300 g teri, mis jahvatati laborveskiga ja sõeluti kolme fraktsiooni: kliid ja sõklad, jämejahu ning püüli- e peenjahu. Püülijahu saak on esitatud protsentides kogu jahust (jämejahu + peenjahu).

Katsetulemused analüüsiti programmiga Statistica 12, viljelusviiside võrdluses kasutati Tukey HSD testi.

Tulemused ja arutelu

Ilmastik aastatel 2013-2016 oli väga kontrastne, mis aastate lõikes tingis ka talinisu terasaagis kuni 6 kordse erinevuse. Aastad 2014 ja 2015 olid pikaajalise keskmisega võrreldes jahedamad, sademete jaotus talvitumisjärgsel talinisu vegetatsiooniperioodil oli ühtlane. Aastate 2013 ja 2016 talvitumisjärgne periood oli aga pikaajalise keskmisega võrreldes $0,9-2,7^{\circ} \mathrm{C}$ soojem ning sademete jaotus oli väga ebaühtlane (näiteks 2016. a maikuus oli talinisu võrsumis- ja kõrsumisfaasis sademete kogus vaid 2 mm).

Põldkatsest selgus, et nisujahu kvaliteeti mõjutavate A- ja B-tüüpi tärkliseterade arvukuse omavaheline suhe ja tärkliseterade läbimõõt sõltus tugeval määral viljelusviisist ja ilmastikust. Mõlemal katseaastal (2015 ja 2016), kui tärkliseteri mõõdeti, oli B-tüüpi tärklise graanuleid mahesüsteemis 5-7\% rohkem kui tavasüsteemi variantides (joonis 1). See võib olla tingitud taimedele kättesaadava

Joonis 1. A- ja B-tüüpi tärkliseterade arvukus (\%) mahe- ja tavasüsteemi erinevatel väetisvariantidel aastatel 2015-2016. M0 - mahesüsteemi kontrollvariant; M1 talvised vahekultuurid; M2 - talvised vahekultuurid + veisesõnnik; N0 - tavasüsteemi kontrollvariant; N50, N100, N150 - mineraalse lämmastikväetise kogus vastavalt 50,100 ja $150 \mathrm{~kg} \mathrm{ha}^{-1}$; erinevad tähed tähistavad usutavat erinevust variantide vahel. (Tukey HSD test, $\mathrm{p} \leq 0,05$).
lämmastiku väiksemast kogusest mahesüsteemis (orgaaniline lämmastik peab eelnevalt mineraliseeruma, et muutuda taimedele kättesaadavaks). Nagu eespool nimetatud, on varasematest katsetest selgunud, et lämmastikväetis suurendab Atüüpi tärkliseterade arvukust (Li jt., 2013).
2015. aastal esines suuri A-tüüpi tärklisegraanuleid arvuliselt suhteliselt vähem kui 2016. aastal. See on seostatav pikema tera täitumisperioodiga ja sellega kaasnenud väikeste tärkliseterade osakaalu suurenemisega, kuna nende süntees algab hiljem (Stone ja Morell, 2009). Maikuu põud 2016. a mõjutas talinisu talvitumisjärgse kasvuperioodi pikkust - see oli 2015. aastaga võrreldes paar nädalat lühem, terasaak oli väiksem ning hiljem kujunevate B-tüüpi tärkliseterade arvukus suhteliselt väiksem. Seega tuleb tärkliseterade arvukuse järgi lugeda 2016. a peenjahu kvaliteeti paremaks, kuna siis oli taina kerkimist soodustavate A-tüüpi tärkliseterade arv suurem.

Erineva fraktsiooniga tärklise graanulite läbimõõt sõltub nende arvukusest. Mida rohkem esineb A-tüüpi tärklist, seda väiksem on B-tüüpi tärklise arvuline osakaal; seetõttu on kõigi tärkliseterade ($\mathrm{A}+\mathrm{B}$ graanulid) üldine keskmine graanulite läbimõõt suurem. Suurema läbimõõduga tärkliseterad annavad taignale elastsuse, venivuse ja kohevamad pätsid (Edwards, 2010). Väiksemad B-tüüpi tärkliseterad kleepuvad küpsetamise käigus sageli kokku, mistõttu tekib liiga paks ja halvasti kerkiv tainas ning saadakse väikse ruumalaga pätsid. Antud katses oli üldine keskmine tärkliseterade diameeter 2015. aastal $2,9 \mu \mathrm{~m}$ suurem kui 2016. aastal. Viljelusviiside võrdluses neil usutavat mõju ei olnud; mahesüsteemis kõikus vastav näitaja $13,1-18,1 \mu \mathrm{~m}$ ja tavasüsteemis $16,0-20,0 \mu \mathrm{~m}$ vahel.

Antud katses hinnati pärast esmast jahvatust saadud püülijahu saagi suurust. See sõltus väga tugeval määral ilmastiku ja viljelusviisi koosmõjust (joonis 2). Suurem püülijahu saak saadi 2013. ja 2016. aastal mahesüsteemis kasvanud talinisu teradest siis, kui õhutemperatuur oli keskmisest kõrgem ja sademete jaotus vegetatsiooniperioodil väga ebaühtlane.

Nendel aastatel oli tera täitumisperiood lühem ja talinisu koristati juuli lõpus. Nendel aastatel mahesüsteemis saadud suuremat peenjahu saaki võib seostada A-tüüpi tärklisegraanulite suurema läbimõõduga, mis olid keskmiselt 1-4 $\mu \mathrm{m}$ suuremad kui tavasüsteemi omadel (samas A-tüüpi tärkliseterade arvukus oli väiksem). Teraviljakasvuks soodsamatel aastatel (2014 ja 2015) oli püülijahu saak pärast esmast jahvatust vastavalt väetisvariandile kuni 10% väiksem.

Aastate 2013 ja 2016 keskmine

Aastate 2014 ja 2015 keskmine

Joonis 2. Püülijahu saak (\% kogu jahusaagist) mahe- ja tavasüsteemide väetisvariantidel erinevates ilmastikuoludes. M0 - mahesüsteemi kontrollvariant; M1 - talvised vahekultuurid; M2 - talvised vahekultuurid + veisesõnnik; N0 - tavasüsteemi kontrollvariant; N50, N100, N150 - mineraalse lämmastikväetise kogus vastavalt 50,100 ja $150 \mathrm{~kg} \mathrm{ha}^{-1}$; erinevad tähed tähistavad usutavat erinevust variantide vahel. (Tukey HSD test, $\mathrm{p} \leq 0,05$).

Viljelusviiside järgi olid viimati nimetatud aastatel nii mahe- kui ka tavasüsteemis suuremad püülijahu saagid väetisvariantides, mis olid saanud vähem lämmastikku, samas olid mõlema süsteemi konttrollvariandid ja ka lämmastikku saanud variandid omavahel statistiliselt võrdsed.

Järeldused

Suurem püülijahu saak pärast esmast jahvatust saadi halvemate ilmaoludega aastatel (2013 ja 2016) mahesüsteemides siis, kui kasutati talviseid vahekultuure. Suurem peenjahu saak saadi tänu B-tüüpi tärkliseterade arvukusele ja suuremale läbimõõdule, mis aga oluliselt ei paranda küpsetusomadusi. Küpsetusomadusi aitaks parandada mahesüsteemide parem lämmastikuga varustamine. Terasaagi seisukohalt soodsamatel aastatel (2014 ja 2015) oli püülijahu saak mahe- ja tavasüsteemis statistiliselt võrdne.

Püülijahu omadusi mõjutavate A- ja B-tüüpi tärkliseterade proportsioon ja diameeter olid samuti mõjutatud ilmastikust ja viljelusviisist. Ebasoodsamatel
aastatel suurem peenjahu saak mahesüsteemides seostub ka A-tüüpi tärklisegraanulite suurema läbimõõduga, mis oli keskmiselt 1-4 $\mu \mathrm{m}$ suuremad kui tavasüsteemi omadel, kuid A-tüüpi tärkliseterade arvukus oli väiksem kui tavasüsteemides. A-tüüpi tärkliseterade suurem arvukus tavasüsteemis kasvanud talinisu terades viitab selle peenjahu paremale kvaliteedile, kuna tal on paremad küpsetusomadused.

Tänuavaldused. Uurimustöö viidi läbi ERA NET Core Organic FertilCrop ja Eesti Maaülikooli baasfinantseerimise projekti 8-2/T13001PKTM ning Eesti Haridusja Teadusministeeriumi uurimistoetuse IUT36-2 abil.

Kirjandus

Campbell, G.M., Fang, C., Muhamad, II. 2007. On predicting roller milling performance VI: Effect of kernel hardness and shape on the particle size distribution from first break milling of wheat. Food and Bioproducts Processing, 85, 7-23.
Edwards, M. 2010. Morphological features of wheat grain and genotype affecting flour yield. PhD thesis. Australia, Southern Cross University, Lismore NSW.
Evers, T., Millar, S. 2002. Cereal grain structure and development: Some implications for quality. Journal of Cereal Science, 36, 261-284.
Li, W., Shan, Y., Xiao, X., Zheng, J., Luo, Q., Ouyang, S., Shang, G. 2013. Effect of nitrogen and sulfur fertilization on accumulation characteristics and physicochemical properties of A- and B-Wheat starch. Journal of Agricultural and Food Chemistry, 61, 2418-2425.

Park, S.H., Chung, O.K., Seib, P. A. 2005. Effects of varying weight ratios of large and small wheat starch granules on experimental straight-dough bread. Cereal Chemistry, 82 (21), 66-172.

Shevkani, K., Singh, N., Bajaj, R., Kaur, A. 2016. Wheat starch production, structure, functionality and applications - a review. International Journal of Food Science and Technology, 52, 38-58.
Stoddard, F.L. 1998. Survey of starch particle-size distribution in wheat and related species. Cereal Chemistry, 76 (1), 145-149.
Stone, B.A., Morell, M.K. 2009. Carbohydrates, pp. 308-338. In: Wheat Chemistry and Technology (Khan, K., Shewry, P. R. eds), (4th Edition), AACC International, Inc., St. Paul, MN.

