

4th NJF Organic Conference Jun. 19 – 21, 2017 Mikkeli, Finland

Organic Farming as a GHG Emission Mitigation Possibility in Latvia

Dz. Kreismane, D. Popluga, L. Berzina, K. Naglis-Liepa, A. Lenerts, P. Rivza Latvia University of Agriculture

Latvia and organic farming profile

Population: 1.95 million Area: 64 589 sq km Agricultural area:1 872 k ha Organic agr. area: 231 k ha (12%) Forest area: 3 355 k ha Currency: euro GDP per cap PPP: \$ 25 195

Background and objectives

Changes in the total and agricultural GHG emissions

Proportion of agricultural GHG emissions in the total, %

In 2014, agricultural GHG emissions were +17.5% compared with 2005 level

Source: authors' construction based on Latvia's National Inventory Report 1990-2016

How work was carried out?

Application of organic farming methods in agricultural production one of the **possibilities to** reduce GHG emissions?

Aim of research to characterise role and contribution of organic farms in agricultural GHG emissions in Latvia.

Characteristics of identified farm clusters in Latvia

GHG emissions calculation (conceptual)

Key results and discussion

Indicator	2013	Cluster 1	Cluster 2	Cluster 3	Cluster 4	Cluster 5		Organic	farms	comprises	7%	from	tota
-----------	------	-----------	-----------	--------------	--------------	--------------	--	---------	-------	-----------	----	------	------

Total agricultural GHG emissions, kt CO _{2 eq}	2570.33	877.71	307.62	1048.10	184.54	152.35
Average GHG emissions per farm , t CO _{2 eq} per farm	31.42	3068.92	2796.58	50.40	53.14	2.67
Average GHG emissions per UAA , t CO _{2 eq} per ha	1.37	3.09	1.80	1.21	0.99	0.41

agricultural GHG emissions and comprises relatively small GHG emissions per utilized agricultural area. Similar findings regarding role of organic farms in GHG emission reduction can be found in other studies.

Conclusion

Further development and increase in organic areas can be used as one of the GHG emission reduction tools. **Results of this research will serve as background for broader research which aims to identify GHG emission reduction possibilities in** Latvia.

Acknowledgements

This research was carried out with the support of the Government of Latvia for project "Value of Latvia's ecosystem and climate dynamic impact on those - EVIDEnT", Contract No 2014/VPP2014-2017, a component of the National Research Programme 2014 - 2017.