

Humusreproduktion und N-Umsatz

Schriftenreihe, Heft 1/2013

Verfahren zur Abschätzung von Humusreproduktion und N-Umsatz im ökologischen und konventionellen Ackerbau

Hartmut Kolbe, Uwe Franko, Enrico Thiel, Ekkehard Ließ

Schriftenreihe des LfULG, Heft 1/2013 | 2

1	Einleitung	. 12
2	Zielstellungen	. 12
3	Material und Methoden	. 14
3.1	Charakteristik der Datensammlung "Dauerversuche"	. 14
3.2	Beschreibung des Modells CCB zur Abbildung der C- und N-Dynamik	. 19
3.2.1	Datenmodell und Modellalgorithmen	. 19
3.2.2	Modellstart	. 21
3.2.3	Berechnung des C-Umsatzes	. 21
3.2.4	Faktor zur Definition der langzeitstabilen organischen Bodensubstanz	. 22
3.3	Berechnung verschiedener Stufen der N-Bilanz	. 22
3.3.1	Berechnung der klassischen Schlagbilanz	. 22
3.3.2	Berechnung unter Einbeziehung der N-Mineralisation	. 22
3.4	Methodik zur Fehleranalyse	. 24
3.4.1	Grundsätzliche Überlegungen	. 24
3.4.2	Klassische Verfahren zur Fehleranalyse	. 26
3.4.3	Ergänzende Verfahren zur Fehleranalyse	. 27
3.5	Möglichkeiten der Optimierung der Startwerte für C _{org} und N _t	. 28
4	Ergebnisse	. 29
4.1	Überblick zu Arbeitsschritten und Ergebnissen der einzelnen Projektphasen	. 29
4.2	Modellergebnisse – Teil Kohlenstoff	. 30
4.2.1	Ergebnisse der C _{org} -Modellierung und Validierung	. 30
4.2.2	Problemstandorte und Lösungsansätze	46
4.3	Modellergebnisse – Teil Stickstoff	. 51
4.3.1	Ergebnisse der N _t -Modellierung und Validierung	. 51
4.3.2	Ergebnisse der N-Saldo-Berechnung	. 54
4.4	Ergänzende Bewertungen der C _{org} - und N _t -Dynamik (H. Kolbe)	. 59
4.4.1	Startwertfestlegungen	. 59
4.4.2	Validierungsergebnisse	. 62
4.5	Berechnung der N-Nachlieferung aus dem Humusumsatz (H. Kolbe)	. 69
4.5.1	Schlagbilanz	. 69
4.5.2	N-Mineralisation	. 76
4.5.3	Potenzielle N-Bereitstellung und Düngebedarfsermittlung	. 86
5	Ergebnisausgabe im Modell CCB	. 103
6	Schlussfolgerungen	. 106
7	Zusammenfassung	. 112
8	Literatur	. 113
9	Anhang	. 117

Abbildung 1:	Umfang an Eingabedaten für das Modell CCB	13
Abbildung 2:	Lage der Versuchsstandorte (Gesamtdatensatz) in Europa	15
Abbildung 3:	Literaturdatenbank (Screenshot) zu den Dauerversuchen	15
Abbildung 4:	Gruppierung der Versuchsvarianten (n = 598) in Güteklassen in Abhängigkeit von der Qualität	
-	der Eingangsdaten und der Messwerte	16
Abbildung 5:	Gruppierung der Versuchsvarianten (n = 598) nach Bodenarten in 0-30 cm Tiefe gemäß	
	Reichsbodenschätzung (RBS)	16
Abbildung 6:	Anzahl der verfügbaren C _{org} - und Nt-Messwerte (Gesamtdatensatz) für die Bodentiefe 0-30 cm	
	nach Bodenarten (RBS)	19
Abbildung 7:	Das grundlegende CCB-Datenmodell	20
Abbildung 8:	Genereller Aufbau des Modells CCB (Abkürzungen siehe Verzeichnis)	20
Abbildung 9:	Fiktive Anpassung verschiedener Modelle an zwei Beobachtungspunkte	25
Abbildung 10:	Häufigkeitsverteilung der C _{org} -Messwerte der 65 Versuche	31
Abbildung 11:	Boxplotdarstellung aller Mess- und Simulationswerte (n = 5.130) der 65 Versuche	31
Abbildung 12:	Modellfehler ME für die C _{org} -Simulation	32
Abbildung 13:	Modellfehler RMSE für die Corg-Simulation	33
Abbildung 14:	Differenz zwischen Mess- und Simulationswert in den einzelnen Bodenartenklassen	
	(aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	35
Abbildung 15:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen organischer Dünger	
	(aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	35
Abbildung 16:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen organischer Dünger	
	unterteilt nach dem C/N-Verhältnis (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org}	
	(grüne Linien)	36
Abbildung 17:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Getreideanteil	
	in der Fruchtfolge (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	36
Abbildung 18:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Leguminosen-	
	anteil in der Fruchtfolge (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)	37
Abbildung 19:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Höhe der	
	Mineraldüngung in der Fruchtfolge (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org}	
	(grüne Linien)	37
Abbildung 20:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach der Versuchsgüte	
	(aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	38
Abbildung 21:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach berechneter	
	wirksamer Mineralisationszeit (BAT) (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org}	
	(grüne Linien)	38
Abbildung 22:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach C_{org} -erster	
	Messwert (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% Corg (grüne Linien)	39
Abbildung 23:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach C_{org} -Differenz	
	(Ende – Anfang) (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	39
Abbildung 24:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Versuchsdauer	
	in Jahren (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	40
Abbildung 25:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach der Qualität der	
	Bodeninformationen (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	40

Abbildung 26:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach der Lufttemperatur	
	(aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	41
Abbildung 27:	Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach dem	
	Jahresniederschlag (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C _{org} (grüne Linien)	41
Abbildung 28:	Boxplots der Fehlergröße RMSE geprüft gegen verschiedene Einflussfaktoren	
-	(schwarze Linie 0,15 M. % C _{ora} ; Klassenbezeichnungen nach Tab. 7) (aus FRANKO et al. 2011)	44
Abbildung 29:	Boxplots des RMSE _{rel} für die möglichen Einflussgrößen erster C _{oro} -Messwert (a) und	
0	Bodenart (b)	45
Abbildung 30:	Modellergebnis Methau DV Var 11 N0	46
Abbildung 31:	Modellergebnis Spröda DV	46
Abbildung 32:	Modellergebnis Ellwangen 4 1 N0 K3	47
Abbilduna 33:	Therwil öko (CH)	47
Abbildung 34:	Zusammenhang zwischen mittlerem und guadratischem Fehler an Corre für die Problemstandorte	49
Abbildung 35:	Anpassung an die Messwerte bei sehr geringem Cinert Pool im Versuch Methau DV	50
Abbildung 36:	Darstellung der Definition des 1. N-Startwertes (x-Achse = durch Regression optimierter N-	
, and a second second	Startwert: v-Achse = 1. Messwert als N _r -Startwert) mit Darstellung der 1:1-Linie (schwarz).	
	Regressionsgeraden (grün) und Abweichung von +/- 0.015 M.% N _t (rot)	52
Abbildung 37:	Modellfehler ME für die N _t -Simulation	53
Abbilduna 38:	Modellfehler RMSE für die N⊦Simulation	53
Abbilduna 39:	Häufigkeitsverteilung N-Saldo	54
Abbildung 40:	N-Saldo in Abhängigkeit von der Bodenart (Klasse siehe Corg)	55
Abbildung 41:	N-Saldo in Abhängigkeit vom Getreideanteil (Klasse siehe Corro)	55
Abbildung 42:	N-Saldo in Abhängigkeit vom Leguminosenanteil (Klasse siehe Com)	55
Abbilduna 43:	N-Saldo in Abhängigkeit von der mineralischen N-Düngung (Klasse siehe Corre)	56
Abbildung 44:	N-Saldo in Abhängigkeit von der BAT (Klasse siehe Corra)	56
Abbildung 45:	N-Saldo in Abhängigkeit von der Qualität der Bodeninformationen (Klasse siehe Com)	56
Abbildung 46:	N-Saldo in Abhängigkeit vom Jahresniederschlag (Klasse siehe Com)	57
Abbildung 47:	N-Saldo in Abhängigkeit von der Jahresmitteltemperatur (Klasse siehe Com)	57
Abbildung 48:	Häufigkeitsverteilung (n = 598) des berechneten N-Saldos mit N-Gehalten nach CANDY	58
Abbildung 49:	Häufigkeitsverteilung (n = 598) des berechneten N-Saldos mit N-Gehalten nach BEFU	
0	(konventionell)	58
Abbildung 50:	Häufigkeitsverteilung (n = 598) des berechneten N-Saldos mit N-Gehalten nach BEFU	
C C	(ökologisch)	58
Abbildung 51:	Darstellung der Definition des 1. Startwertes (x-Achse = durch Sichtprüfung bestimmter C_{ora} -	
C C	Startwert; y-Achse = 1. Messwert als C_{org} -Startwert verwendet) durch lineare Regression	
	(n= 246; nur Versuche, deren Trend richtig nachgebildet wird und Startwertänderung notwendig	
	erschien) mit Darstellung der 1:1-Linie (schwarz), Regressionsgeraden (grün) und Abweichung	
	von +/- 0.15 M.% C _{org} (rot)	59
Abbilduna 52:	Zeitlicher Verlauf der Punkteschare von experimentell (Exp) und berechneten (Mod) Corre-Werten	
5	einer Variante des Dauerversuches in Barvbino nach Anwendung des Optimierungsalgorithmus	
	(Kap. 3.5.2) zur Festlegung der Corre-Anfangswerte	60
Abbilduna 53:	Zeitlicher Verlauf der Punkteschare von experimentell (Exp) und berechneten (Mod) Corre-Werten	
	einer Variante des Dauerversuches in Barybino nach Anwendung des Regressionsverfahrens	
	zur Festlegung der C_{org} -Anfangswerte	61
Abbilduna 54 [.]	Darstellung der Definition des 1. Startwertes (x-Achse = durch Regressionen optimierter Car-	
	Startwert: v-Achse = 1. Messwert als Com-Startwert) durch lineare Regression mit Darstellung	

	der 1:1-Linie (schwarz), Regressionsgeraden (grün) und Abweichung von +/- 0,15 M.% $\rm C_{org}$	
	(rot)	62
Abbildung 55:	Einfluss von Temperatur in den Dauerversuchen auf die berechneten ME-Werte für C_{org}	
	(n = 598; Temperatur R^2 = 0,131**)	66
Abbildung 56:	Einfluss des C_{org} -Gehaltes in den Dauerversuchen auf die berechneten ME-Werte für C_{org}	
	$(n = 598; C_{org} R^2 = 0.0849^*)$	66
Abbildung 57:	Zusammenhang zwischen steigender N-Zufuhr und den N-Abfuhren bei der Schlagbilanz ermittel	t
	aus 65 Dauerversuchen	70
Abbildung 58:	Zusammenhang zwischen steigender N-Zufuhr und den N-Salden bei der Schlagbilanz ermittelt	
	aus 65 Dauerversuchen	70
Abbildung 59:	Zusammenhang zwischen steigender N-Zufuhr und der N-Effizienz (unten) bei der Schlagbilanz	
	ermittelt aus 65 Dauerversuchen	71
Abbildung 60:	Einfluss steigender N-Gesamt-Zufuhr auf die berechnete Nt-Differenz im Boden	71
Abbildung 61:	Boxplot über die berechneten Nt-Differenzen des Bodens von 589 Versuchsvarianten	72
Abbildung 62:	Zusammenhang zwischen steigender N-Zufuhr und den N-Abfuhren bei der Schlagbilanz unter	
Ū	Einbeziehung der Veränderung der Nt-Bodenbilanz in die N-Zufuhr	73
Abbildung 63:	Zusammenhang zwischen steigender N-Zufuhr und den N-Salden bei der Schlagbilanz unter	
Ū	Einbeziehung der Veränderung der Nt-Bodenbilanz in die N-Zufuhr	73
Abbildung 64:	Zusammenhang zwischen steigender N-Zufuhr und der N-Effizienz bei der Schlagbilanz unter	
0	Einbeziehung der Veränderung der Nt-Bodenbilanz in die N-Zufuhr	74
Abbildung 65:	Zusammenhang zwischen steigender N-Zufuhr (incl. negativer N _t -Differenzen) und den	
0	N-Abfuhren (incl. positiver N _t -Differenzen) bei der Schlagbilanz unter Einbeziehung der	
	Veränderung der N⊢Bodenbilanz	74
Abbildung 66:	Zusammenhang zwischen steigender N-Zufuhr (incl. negativer N-Differenzen) und den N-Salden	
	bei der Schlagbilanz unter Einbeziehung der Veränderung der N _t -Bodenbilanz	75
Abbildung 67:	Zusammenhang zwischen steigender N-Zufuhr (incl. negativer N-Differenzen) und der N-Effizien:	7
3	bei der Schlagbilanz unter Einbeziehung der Veränderung der N _t -Bodenbilanz	75
Abbildung 68:	Einfluss steigender N-Gesamt-Zufuhr auf die berechnete N-Mineralisation	76
Abbildung 69:	Boxplot über die berechnete N-Mineralisation von 589 Versuchsvarianten	77
Abbildung 70:	Simulierter Finfluss des Kleegrasanbaus auf die N-Mineralisation bei Zugrundelegung eines	••
, abbildenig i ei	Sandbodens	78
Abbildung 71.	Simulierter Finfluss des Anbaus von Mais. Zuckerrüben. Weizen. Kartoffeln und einer legumen	10
, abbildenig i il	Zwischenfrucht (bei Aberntung der Konnelprodukte) auf die N-Mineralisation bei Zugrundelegung	
	eines Sandbodens	79
Abbildung 72:	Simulierter Finfluss von Zwischenfruchtszenarien auf die N-Mineralisation hei Zugrundelegung	10
Abbildung 72.	eines Sandhodens	79
Abbildung 73:	Simulierter Finfluss verschiedener Szenarien der Strobdüngung auf die N-Mineralisation	80
Abbildung 73:	Simulierter Einfluss von Szenarien der Düngung mit Stalldung verschiedener C/N	00
Abbildung 74.	Zusammensetzung und von Dindergülle auf die N Minoralisation	<u>م</u>
Abbildung 75:	Simulierter Einfluss von Szenarien unterschiedlicher klimatischer Bedingungen und Bodenarten	00
Abbildulig 75.	auf die N-Mineralisation	Q1
Abbildung 76:	Einfluss von Rewirtschaftungsszangrien mit jeweils um ein Jahr vorzägerter Einführung der	01
	Schwarzbrache (SR) einer Variante des Ökovoreuches auf Lössbaden auf die M. Minerelisation	
	(Erläuterung siehe Text)	റ
		02

Abbildung 77:	Zusammenhang zwischen steigender N-Zufuhr und der N-Aufnahme durch die Fruchtarten	
	bei der N _m -Flächenbilanzierung unter Einbeziehung der berechneten N-Mineralisierung aus	
	65 Dauerversuchen	83
Abbildung 78:	Zusammenhang zwischen steigender N-Zufuhr und den N-Salden bei der Nm-Flächen-	
-	bilanzierung unter Einbeziehung der berechneten N-Mineralisierung aus 65 Dauerversuchen	83
Abbildung 79:	Zusammenhang zwischen steigender N-Zufuhr und der N-Effizienz bei der N _m -Flächen-	
5	bilanzierung unter Einbeziehung der berechneten N-Mineralisierung aus 65 Dauerversuchen	84
Abbildung 80:	Gegenüberstellung der berechneten N _m -Salden (unter Einbeziehung der N-Mineralisation)	
3 • • • 3 • •	und den Salden berechnet auf Basis der üblichen Schlagbilanzierung	84
Abbildung 81 [.]	Gegenüberstellung der berechneten N _m -Salden (unter Einbeziehung der N-Mineralisation)	• ·
,	und den Salden berechnet auf Basis der Schlagbilanzierung unter Einbeziehung der	
	NRodendifferenzen in die N-Zufuhren	85
Abbildung 82	Gegenüberstellung der berechneten NSalden (unter Finbeziehung der N-Mineralisation)	00
Abbildung 02.	und den Salden berechnet auf Basis der Schlagbilanzierung unter Einbeziehung der nositiven	
	N. Differenzen zu den N-Abfuhren und der negativen Differenzen in die N-Gesamt-Zufuhr	85
Abbildung 83:	Gegenüberstellung von mit dem Gleichungssystem incl. des Merkmals Tongehalt berechneten	00
Abbildung 00.	und aus den Dauerversuchen ermittelten Werten für die N-Aufnahme	87
Abbildung 84:	Gegenüberstellung von mit dem Gleichungssystem incl. des Merkmals Tongehalt berechneten	07
Abbildung 04.	und aus den Dauerversuchen ermittelten Werten für den N Saldo	87
	Gegenüberstellung von mit dem Gleichungssystem incl. des Merkmals Eginanteil berechneten	07
Abbildung 65.	und aus den Deuerversushen ermittelten Werten für die N. Aufnahme	07
	Cogoniliberatellung von mit dem Cleichungsowetern ind. des Markmala Esinanteil berechneten	07
Abbildung oo.	Gegenüberstellung von mit dem Gleichungssystem ind. des Merkmais Feinanten berechneten	07
Abbildung 07.	Zussemmenhans zwischen den berechneten Werten en N. Cesemt Zufuhr. N. Aufrehme und	07
Abbildung 87:	Zusammennang zwischen den berechneten werten an N-Gesamt-Zufuhr, N-Aufnahme und	00
Alala ilaluura e. O.O.	N-Saido Im Beispielsversuch auf Sandböden (aggregiene vverte, n = 25)	88
Abbildung 88:	Zusammennang zwischen berechneten werten der N-Gesamt-Zufuhr, N-Aufnahme und	~~
	N-Saiden (Einzelwerte, $n = 1.000$)	88
Abbildung 89:	Zusammenhang zwischen simulierten Werten der N-Gesamt-Zufuhr, N-Aufnahme und	~~
	N-Salden der Fruchtarten	89
Abbildung 90:	Zusammenhang zwischen simulierten Werten der N-Gesamt-Zufuhr sowie der N-Salden der	~ ~
	Fruchtarten im Versuch auf Sandboden	90
Abbildung 91:	Zusammenhang zwischen N-Gesamt-Zufuhr und der N-Effizienz	90
Abbildung 92:	Zusammenhang zwischen N-Saldo und der N-Effizienz	91
Abbildung 93:	Zusammenhang zwischen den berechneten Werten der N-Gesamt-Zufuhr und N-Salden bei	
	Kartoffeln bei Absenkung des Achsenabschnitts (a) der Gleichung um 45 kg N ha ⁻ im Versuch	
	auf Sandboden	91
Abbildung 94:	Anbauabfolge sowie berechnete Werte der N-Mineralisation und weiterer wichtiger	
	N-Komponenten in chronologischer Abfolge einer Beispielsvariante auf Sandboden	92
Abbildung 95:	Chronologische Abfolge der N-Mineralisation und weiterer N-Komponenten eines Ökoversuches	
	auf Lössboden: Variante 7002 System Futterbau	93
Abbildung 96:	Chronologische Abfolge der N-Mineralisation und weiterer N-Komponenten im Ökoversuch auf	
	Lössboden: Variante 7010 System Marktfrucht	93
Abbildung 97:	Zusammenhang zwischen steigender N-Gesamt-Zufuhr und der berechneten N-Aufnahme	
	durch die Fruchtarten eines ökologischen Versuches auf Lössboden	94
Abbildung 98:	Zusammenhang zwischen steigender N-Gesamt-Zufuhr und den N-Salden in den Einzelvarianter	۱
	des ökologischen Versuches auf Lössboden	95

Abbildung 99:	Zusammenhang zwischen steigender N-Gesamt-Zufuhr und den N-Salden der angebauten	
	Fruchtarten incl. mittlerer Regressionsgeraden des ökologischen Versuches auf Lössboden	95
Abbildung 100:	Zusammenhang zwischen steigender N-Gesamt-Zufuhr und der Regressionsgeraden bei	
	Absenkung des Achsenabschnitts (a) um 45 kg N ha ⁻¹ des ökologischen Versuches auf	
	Lössboden	96
Abbildung 101:	Zusammenhang zwischen steigenden N-Salden und der Nährstoff-Effizienz (Zufuhr = 1) der	
	Einzelvarianten des Ökoversuchs auf Lössboden	96
Abbildung 102:	Gegenüberstellung von berechneten Mittelwerten (MW) und aus den Versuchen ermittelten	
	Werten (Exp.) der N-Gesamt-Aufnahme verschiedener Fruchtarten der Beispielsversuche	99
Abbildung 103:	Gegenüberstellung von potenziellen Werten (POT) und aus den Versuchen ermittelten Werten	
	(Exp.) der N-Gesamt-Aufnahme verschiedener Fruchtarten der Beispielsversuche	99
Abbildung 104:	Gegenüberstellung von berechneten und verabreichten Mengen der N-Düngung verschiedenen	r
	Fruchtarten im Versuch auf Sandboden	102
Abbildung 105:	Ergebnis der CCB-Modellierung am Beispiel C _{org} -Gehalt	103
Abbildung 106:	Ergebnisdarstellung der Humusreproduktion	103
Abbildung 107:	Ausweisung der N-Mineralisierung	104
Abbildung 108:	Ausweisung der Komponenten der N-Schlagbilanz	104

Tabelle 1:	Anzahl der verfügbaren C_{org} - und N_t -Messwerte für die Bodentiefe 0-30 cm nach Versuchen	18
Tabelle 2:	Komponenten der Schlagbilanz	22
Tabelle 3:	Komponenten der Flächenbilanz unter Einbeziehung der N-Mineralisation	23
Tabelle 4:	Genutzte Gütemaße zur Fehlerbewertung und deren Bezeichnung im Modell	26
Tabelle 5:	Projektphasen der CCB-Entwicklung und deren grundlegende Arbeitsergebnisse	29
Tabelle 6:	Klasseneinteilung zur Prüfung eines Zusammenhanges verschiedener Faktoren mit den definierten	ı –
	Fehlergrößen (n = 598)	34
Tabelle 7:	Klasseneinteilung zur Prüfung eines Zusammenhanges verschiedener Faktoren mit dem Fehler	
	RMSE (n = 391)	43
Tabelle 8:	Liste der Problemstandorte	48
Tabelle 9:	Liste der identifizierten Problemstandorte, wenn ohne Begrenzung des Cums-Pools gerechnet wird	50
Tabelle 10:	Mittelwert der Fehlergrößen für N $_{\rm t}$ [M %] über alle Versuchsvarianten	52
Tabelle 11:	Kennwerte der multiplen Regression für die geprüften Faktoren	58
Tabelle 12:	Zeitliche Entwicklung der Modellgenauigkeit sowie Vergleich von verschiedenen Erfassungsmethoe	den
	(M1 – M3) zur ME- und RMSE-Statistikanalyse über den Vergleich zwischen Experiment- und	
	Modellwerten für C _{org} und N _t	63
Tabelle 13:	Statistische Analyse des Fehlers (Grundgesamtheit der untersuchten Varianten) für ME C_{org}	
	mit Hilfe der Regressionsanalyse (n = 598)	65
Tabelle 14:	Statistische Analyse des Fehlers der Standardvarianten (ohne organische Materialien) für ME Corg	
	mit Hilfe der Regressionsanalyse (n = 167)	67
Tabelle 15:	Statistische Analyse des Fehlers (gesamt) für ME Nt mit Hilfe der Regressionsanalyse (n = 421)	68
Tabelle 16:	Statistische Analyse des Fehlers der Standardvarianten (ohne organische Materialien) für ME Nt	
	mit Hilfe der Regressionsanalyse (n = 96)	69
Tabelle 17:	Multiple Regressionsgleichungen zur Bestimmung des Saldos ermittelt aus den 65 Dauerversucher	n
	bei Verwendung der Mittelwerte über die Varianten (n = 591)	86
Tabelle 18:	Mittelwerte der berechneten N-Salden für die Fruchtarten	92
Tabelle 19:	Berechnungsabfolge zur Ermittlung der N-Bereitstellung für den Kartoffelanbau am Beispiel eines	
	Versuches auf Sandboden (Ø 167 dt Stalldung, 100 kg N-Mineraldüngung ha ⁻¹)	97
Tabelle 20:	Mögliche Varianten der Berechnung der N-Gesamt-Aufnahme (kg N ha ⁻¹) verschiedener	
	Fruchtarten im Vergleich zu experimentell ermittelten Werten für den Versuch auf Sandboden	
	und auf Lössboden (Erläuterung siehe Text)	98
Tabelle 21:	Berechnungsbeispiel zur Ermittlung der Höhe der N-Düngung für den Anbau von Kartoffeln für ein	
	anzustrebendes Ertragspotenzial auf der Basis des Versuches auf Sandboden (Ø 167 dt Stalldung	,
	100 kg N-Mineraldüngung ha ⁻¹)	100
Tabelle 22:	Mögliche Varianten zur Berechnung der Höhe der N-Mineraldüngung (kg N ha ⁻¹) auf Basis einer	
	erweiterten N _{min} -Methode für verschiedene Fruchtarten im Versuch auf Sandboden	101
Tabelle 23:	Ausgabemerkmalskatalog des Modells CCB (teilweise noch im Aufbau)	105
Tabelle A 1	: Charakteristik des "Gesamtdatensatzes" an Dauerversuchen	117

Kategorie	Abkürzung	Parameter
Software	CANDY	Carbon and Nitrogen DYnamics
	ССВ	Candy Carbon Balance
	RIS	Research Information System Format
	R-Script	einfache Textdatei zur Nutzung der Statistiksoftware R
	BEFU	Programm zur Düngebedarfsermittlung und zum Nährstoffvergleich
Versuche		Bestandesführung
	BDF	Bodendauerbeobachtungsflächen
	DTF	Dauertestflächen
	DE	Dungeinheit
	DV	Dauerversuche
CCB-Standort	ABT	Abschlämmbare Teilchen < 20 µm
	BAT	Biologische Aktive Zeit (vom Modell berechnet)
	di	Partikeldurchmesser
	FK	Feldkapazität
	GC	Skelettgehalt
	h	Tiefe (fest definiert 0,3 m)
	p(d _i)	kumulative Menge Partikel mit d ≤ di
	PV	Gesamtporenvolumen
	PWP	Permanenter Welkepunkt
	r ₁ ,r ₂ ,r ₃	Radius der Mikro-, Meso- und Makroporen
	ρ _B	Trockenrohdichte
	ρ _M	Mineraldichte
	ρ _{οм}	Dichte der organischen Substanz
	ρ _P	Trockensubstanzdichte
	RBS	Reichsbodenschätzung
	PTF	Pedotransferfunktionen
	C _{ora}	organischer Kohlenstoff im Boden (C _{ora} [%] x 1,724 = Humus [%])
	Nt	Gesamtstickstoff im Boden
CCB-Modellpools		
(tiefgestellt als Index)	BP	Koppelprodukte (verschiedene Pools)
	CIF	Fehler zur Definition der langzeitstabilen SOM
	C _{ums}	Pool der gesamten umsetzbaren SOM
	RES	Ernte- und Wurzelrückstände EWR (verschiedene Pools)
	OA	organische Dünger (verschiedene Pools)
	FOM	frische organische Primärsubstanz OPS (verschiedene Pools)
	SOM	organische Bodensubstanz
	А	pool der aktiven SOM
	S	pool der stabilen SOM
	DEC	leicht umsetzbare SOM

	LTS	langzeitstabile SOM
	F _{Its}	LTS–Anteil des organischen Kohlenstoffs Corg
	N _m	mineralischer Bodenstickstoff (NH ₃ + NH ₄ -N)
CCB-Stoffflüsse	C _{rep}	C-Menge, welche die neu synthetisierte SOM darstellt
	N _{rep}	N-Menge welche für die neu synthetisierte SOM benötigt wird
CCB-Modellparameter		
- Pflanzen	CC _{bp}	C-Gehalt in der Trockenmasse der Koppelprodukte
	DMbp	Trockenmasse der Koppelprodukte
	K _{res}	ertragsunabhängige N-Menge der Ernte- und Wurzelrückstände
	F _{res}	ertragsabhängige N-Menge der Ernte- und Wurzelrückstände
	HI	Haupt-Nebenprodukt-Verhältnis
- organische Dünger	CC _{oa}	C-Gehalt in der Trockenmasse der organischen Dünger
	DM_{oa}	Trockenmasse der organischen Dünger
	N _{cont}	N-Gehalt
- Boden	$k_{a,}k_{s,}k_{m,}k_{\text{fom}}$	Umsatzkoeffizienten 1. Ordnung
	γ	C/N-Verhältnis eines definierten Pools oder Substrates
	η	substratspezifischer Wirkungskoeffizient der SOM-Synthese
	C _{org}	organischer Kohlenstoff (Humus = 1,724 x C _{org})
	N _t	Gesamt-Stickstoff
- Fehleranalyse	ME	mittlerer Fehler
	ME, MErel	Mittlerer Fehler (mean error)
	mME	mittlerer ME über die Varianten eines Versuches
	mRMSE	mittlerer RMSE über die Varianten eines Versuches
	MR ²	multiples Bestimmtheitsmaß
	n	Anzahl Messungen
	Oi	gemessener Wert zum Zeitschritt i
	Pi	modellierter Wert zum Zeitschritt i
	r	Pearson´sche Korrelationskoeffizienten
	R	Korrelationskoeffizient
	RMSE	mittlerer quadratischer Fehler
	RMSE, RMSErel	Mittlerer quadrat. Fehler (root mean square error)
	R²	Bestimmtheitsmaß
	S	Standardabweichung
	SEM	Standardfehler der mittleren Differenz (standard error of the mean
		difference)
	SS	Summe der quadrierten Abweichungen
	σ	Standardabweichung der Differenz O-P

1 Einleitung

Der organische Kohlenstoff (C_{org}) ist Hauptbestandteil des Humus und wird als Maß für den Humusgehalt eines Bodens verwendet. Der Humusgehalt des Bodens ist für die Bodenstruktur, für das Bodenleben und für die Nährstoffspeicherung bedeutend. Der Humusumsatz eines Standortes ist vom Klima, vom Boden und der Bewirtschaftung abhängig. Das Ausmaß des Humusaufbaus oder -abbaus und auch der Umfang der Nährstoffmineralisation durch die landwirtschaftliche Bewirtschaftung werden daher maßgeblich durch die Standorteigenschaften geprägt.

Gegenwärtig existieren verschiedene Verfahren, mit denen eine Berechnung der Humusreproduktion und auch des Nährstoffumsatzes (Stickstoff) durchgeführt werden können. Das sind zum einen Prozessmodelle, die aber für einen praktischen Einsatz in der Regel zu umfangreich und kompliziert sind. Zum anderen gibt es heuristische Methoden, deren Anwendung in unterschiedlichen Umgebungsbedingungen nicht mit gleicher Sicherheit gewährleistet werden kann.

Hinsichtlich einer Verwendung von Prozessmodellen in Anbauverfahren unterschiedlicher Intensität sind diese Methoden wenig geprüft und z. B. noch nicht für die Belange der landwirtschaftlichen Praxis des ökologischen und konventionellen Landbaus angepasst. Dies gab den Anlass, im Rahmen einer Forschungskooperation die Vorteile dieser Methoden zu nutzen, um Grundlagen für eine vereinfachte modellgestützte Quantifizierung der Humusreproduktion und der N-Mineralisation zu entwickeln, die im praktischen Einsatz sowohl zur generellen Kontrolle und Lenkung der Bodenfruchtbarkeit als auch zur Verbesserung der Düngebedarfsermittlung Verwendung finden können.

2 Zielstellungen

Unter den Gegebenheiten der Praxis kann eine Berechnung der Humusreproduktion mit verschiedenen Verfahren durchgeführt werden (z. B. ASMUS & HERRMANN 1977; LEITHOLD et al. 1997; HÜLSBERGEN 2003; VDLUFA 2004; BROCK et al. 2008; KOLBE 2010). Diese Verfahren berücksichtigen jedoch messbare C_{org}-Gehalte im Boden nicht und beinhalten nur partiell eine Standortwirkung. Bei Arbeiten zur vergleichenden Gegenüberstellung von Methoden zur Humusbilanzierung konnte aufgezeigt werden, dass es bei Aufnahme wichtiger Einflussfaktoren des Standortes zu einer deutlichen Verbesserung der Verlässlichkeit und Genauigkeit der Methoden kommen kann (KOLBE 2012).

Aktuelle Prozessmodelle zur Bodenkohlenstoffdynamik, z. B. Roth C (COLEMAN & JENKINSON 2005) oder CANDY (FRANKO 1989) auf der Grundlage von CIPS nach KUKA et al. (2007) erfordern von den Nutzern spezifische Fachkenntnisse und haben in der Regel einen hohen Eingangsdatenbedarf. Für den Einsatz unter Praxisbedingungen mit der dort gewöhnlich anzutreffenden reduzierten Datengrundlage bestand daher zunächst die Aufgabe, aus einem geeigneten Prozessmodell eine stark vereinfachte Variante abzuleiten. Das im Umweltforschungszentrum Leipzig-Halle (UFZ) bereits bestehende Modell CANDY Carbon Balance (CCB) sollte Standorteffekte quantitativ berücksichtigen und einen Bezug zum Kohlenstoff und zum Stickstoff im Boden besitzen. Bezüglich der potenziellen Anwendergruppe liegt der Fokus auf Landwirten und der Landwirtschaftsberatung sowie im administrativen Bereich der Verwaltung. Das Minimum an Eingabedaten wurde für die grundlegenden Steuerbereiche des C- und N-Umsatzes wie folgt definiert (Abb. 1).

Boden (0-30 cm)	Bewirtschaftung	Klima
 Ton 	Fruchtart, Ertrag	■ ø Niederschlag
 Bodenart nach RBS 	■ organ. Düngung	 ø Lufttemperatur
 Skelett 	 Beregnung 	

Abbildung 1: Umfang an Eingabedaten für das Modell CCB

Im Bereich des Kohlenstoffumsatzes bestand darüber hinaus die Aufgabe, durch Erweiterung auf die Standortfaktoren des Bodens, des Klimas bzw. der Witterung sowie eine verbesserte Berücksichtigung von Bewirtschaftungseinflüssen (Ertrag der Fruchtarten, Qualität der Ernte- und Wurzelrückstände und der organischen Materialien) ein Genauigkeitsniveau zu erreichen, das weit über das gewöhnlich mit den statischen Methoden anzutreffende Niveau hinausgeht. Zu der Genauigkeit sollte auch beitragen, dass die Berechnungen nicht mehr im Durchschnitt der Fruchtfolgen, sondern in chronologischer Abfolge von Jahresscheiben und mit einer Option auf Monatsscheiben durchzuführen sind.

Weil die Umsetzungsdynamik an Humus und Nährstoffen stark von den Standortbedingungen abhängig ist, sollte zudem ein breites Spektrum an Dauerversuchen mit günstiger Verteilung über das Anwendungsgebiet des Modells hinaus für Validierungsarbeiten Verwendung finden.

Der Kohlenstoffumsatz sollte dann für nachfolgend genannte Beispiele zur Beurteilung des Versorgungsgrades mit organischer Substanz als auch zur Veränderung der C_{org} -Gehalte bzw. der -Mengen des Bodens quantitativ eingesetzt werden können:

- Unterschiede zwischen Boden- und Klimaverhältnissen bis hin zum Einfluss des Klimawandels
- Auswirkungen stark unterschiedlicher Versorgungsgrade mit organischer Substanz aus der Zuführung von organischen Materialien unterschiedlicher Zusammensetzung und Mengen
- Auswirkungen stark unterschiedlicher Ertragspotenziale der Fruchtarten und Fruchtfolgen mit einjährigen und mehrjährigen Kulturen
- Auswirkungen von Landnutzungssystemen des Ackerbaus (konventioneller und ökologischer Landbau) sowie von Landnutzungsänderungen z. B. in Richtung Dauergrünland
- Taxierung von unteren und oberen Belastungsgrenzen sowie von optimalen Versorgungsgraden eines Landnutzungssystems mit organischer Substanz
- Ausgehend von bestimmten Ist-Zuständen der Bewirtschaftung sollten Szenario-Berechnungen von Bewirtschaftungsalternativen in einzelnen Betrieben oder ganzen Regionen zur Abschätzung der Veränderung der Humusversorgung vorgenommen werden können.
- Berechnung von standortgerechten Abfuhrpotenzialen (z. B. Stroh)

Mit dem Umsatz der organischen Substanz des Bodens ist die Mineralisation von Nährstoffen eng verbunden. Dies trifft nicht nur für den ökologischen Landbau zu, bei dem fast ausschließlich die Zufuhr und der Nährstoffumsatz aus organischen Materialien erfolgen. Nach einer Zusammenstellung von ALBERT (2010) sind die Zufuhren an organischen Quellen im Durchschnitt von Deutschland so hoch, dass heute z. B. zwischen 65-85 % der Zufuhren an P- und K-Nährstoffen aus der organischen Düngung stammen.

Obwohl die organischen Quellen in beiden Landnutzungsverfahren für die Pflanzenernährung heute eine hohe Bedeutung haben, aber auch aus Gründen der Ressourcenschonung und des Wasserschutzes, gibt es bisher weitgehend keine verlässlichen Methoden, mit denen unter praktischen Bedingungen der Nährstoffumsatz berechnet werden kann. Dies trifft besonders für die absolute Höhe und die zeitliche Abfolge der Stickstoffmineralisation zu.

Der Humusumsatz und die Prozesse der Mineralisation bzw. Festlegung von Nährstoffen werden weitgehend von den gleichen Einflussgrößen des Bodens, des Klimas und der Bewirtschaftung gelenkt. Daher werden deutliche Vorteile davon erwartet, beide Ansätze in einem Modell abzubilden. Es bestand deshalb als weitere Zielstellung des Projektes, zunächst die Dynamik des Nährstoffs Stickstoff in das Modell aufzunehmen. In späteren Arbeitsschritten können prinzipiell noch weitere Hauptnährstoffe quantitativ abgebildet werden.

In den bisherigen Verfahren zur Düngungsbemessung, z. B. auf Basis der N_{min}-Methode (WEHRMANN & SCHARPF 1979), konnten zur Berücksichtigung der N-Mineralisation lediglich die Wirkungen der direkten Vorfrüchte und Düngungsmaßnahmen zur Berechnung der Düngungshöhe für die Nachfrucht in schematischer Weise durch Zuoder Abschläge einbezogen werden (siehe als Beispiel ALBERT et al. 2006). Weitere Nachwirkungen, z. B. in den anschließenden Jahren, können in der Regel nicht mehr angerechnet werden. Der langfristige Einfluss des Mineralisationspotenzials in den N_{min}-Werten des Frühjahres kann weder direkt und weitgehend auch nicht indirekt abgebildet werden, weil wesentliche Anteile der Jahresmineralisation erst nach dem Bodenuntersuchungstermin im Verlauf des Frühjahres und des Sommers erfolgen.

Es sollte daher geklärt werden, ob bei Nutzung eines vereinfachten Prozessmodells eine genauere Berechnung der Mineralisation erfolgen kann. Hierzu ist zunächst auf Ebene der Dauerversuche in chronologischer Abfolge die Nutzung von Ergebnissen der Bewirtschaftung, Fruchtfolge und Düngung vorgesehen. Die Berechnung des Mineralisationsumfangs sollte entsprechend der standörtlichen Gegebenheiten des Bodens und der Witterungsbedingungen erfolgen. Diese Informationen über die zu erwartende Mineralisation sollten dann zur Verbesserung von in der Praxis angewendeter Verfahren zur Düngungsbemessung, zur Fruchtfolgegestaltung oder für andere Ziele des Nährstoffmanagements und der Umweltsicherung Verwendung finden.

3 Material und Methoden

3.1 Charakteristik der Datensammlung "Dauerversuche"

Aufbauend auf den vorangegangenen Projekten zur Weiterentwicklung des CCB-Modells (LIEß & FRANKO 2006; 2008) wurde eine Datensammlung "Dauerversuche" angelegt. Diese Datensammlung (MS Access Datenbank) umfasst gegenwärtig 41 Standorte (Abb. 2) mit 65 Versuchen und insgesamt 598 Versuchsvarianten (Bezeichnung: Gesamtdatensatz, siehe Tab. A1, Anhang).

Die zur Validierung des CCB-Modells verwendete Datenbasis umfasst unterschiedlich große Teile der Datensammlung "Dauerversuche" (Bezeichnung: Validierungsdatensatz). Ein Datenumfang aus 40 Langzeitversuchen mit 391 Versuchsvarianten ist ausführlich in FRANKO et al. (2011) beschrieben worden. Bezüglich der Verwendung zur Modellvalidierung wurden definierte Kriterien an die Datensätze gelegt: mindestens drei C_{org}-Messwerte sowie genau eruierte Bewirtschaftungs- und Klimadaten.

Die Datenbasis stammt vorwiegend aus dem gemäßigten Klima (6-11 °C, 350-950 mm Jahresniederschlag) für Böden mit einem Tongehalt < 30 % in der Krumenschicht (0-30 cm). Der Hauptteil der verwendeten Daten aus den Dauerversuchen wurde aus der Literatur bzw. direkt vom jeweiligen Versuchsansteller übernommen. Nach verschiedenen Plausibilitätsprüfungen wurden die Daten in die "Soil Organic Matter" – Datenbank EURO-SOMNET (FRANKO et al. 2002; SMITH et al. 2002) über eine Internetschnittstelle (http:// www.ufz.de/somnet) übernommen und stehen für eine koordinierte Datenweitergabe durch die Versuchsansteller zur Verfügung. Alle wesentlichen Literaturquellen für die Dauerversuche wurden in eine Datenbank überführt (Abb. 3). Die einzelnen Quellen (z. Zt. 104 Literaturangaben) wurden als pdf-Dateien abgelegt und mit einer Kodierung versehen. Das Projekt "Literatur-datenbank" (Dateiname.enl) kann mit der Software EndNote (THOMSON REUTERS 2008) unter jeweiliger Beachtung der Copyrights genutzt werden. Aus der Datenbank können die aufgelisteten Quellen in die CCB-Datenbank exportiert werden. Auf diese Weise kann die Dokumentation der Daten gepflegt werden.

Abbildung 2: Lage der Versuchsstandorte (Gesamtdatensatz) in Europa

Bit Aber 1937 Aber 1937 Produktization of Dirigung - mineralisch, organisch, Staffward forthereite des Ban. Book 0.911 2009 Traih (0) Abert 2001 Winking einstringsförig differenzisten mineralisch. Charlen des Ban. Book 0.911 2009 Custem Groups Abert 2001 Winking oprissicher Kinking oprissicher Binking oprissicher Bink	Extension Abele 1997 Produktquatuta und Cungung - mineralisci, organics. Schnitzer sh 101 Abeir 1997 Veranderungen der Aurund Neine der organischen. Schnitzer Custem Groups Abeir 2001 Winding einer langibring differenzisten minneralisci. Arch. Ack. Smart Groups Artil 2005 Long tarm direkts of croppedivirs. Releva and fertilizer. J Plant N Smart Groups Bachinger 1993 Einfull organischer Diregravits freiderber organischer. Direkter Schwarter Schwarte	RetType	U Last Updater-
math (I) Alvest 1957 Veranderungen der kit und Menge der organischen Gottingen Boderkundte. Bown Alricle 0011 2009 Custom Groups Anni 2005 Long term tefects of croppod vs. falsw and tertitier Janna Alricle 0011 2009 Simart Groups Anni 2005 Long term tefects of croppod vs. falsw and tertitier Janna Alricle 0011 2009 Simart Groups Berkinger 1396 Derive term tefects of croppod vs. falsw and tertitier Janna Alricle 0011 2009 Chrine Search Berkinger 1396 Derive term tefects of croppod vs. falsw and tertitier Janna Alricle 0011 2009 Chrine Search Berkinger 1396 Derive term tefest of troppod vs. falsw and tertitier Janna Alricle 0011 2009 Disko for term term term term term term term ter	eth (I) AM 1987 Veranderungen der Att und Menge der regarischen — Göttinger I. Custem Groups Antil 2005 Wirking einer angehtig differenzistem minneralisten. Antil. 2005 Custem Groups Antil 2005 Longstem röckst of croppedivis. Falow and fertiliser. J. Platt N. Smart Groups Arnis 1984 Verauch M.4 förd. Kreuz- Wisung organischer und. Deuerfals Smart Groups Bechnige 1996 Der Enflaß unsterschreicher Durgan gart. Biodennige J. Platt N. Colles Search Bechnige 1996 Der Enflaß unsterschreichher Durgan gart. Biodennige J. Blatt N. Lintary or Corganiss (I) Bischoft 1996 Der filtermänne Braganischer Stokstötsbesträuger. Attisklöster M.4. Lintary or Corganiss (I) Bischoft 1997 Der filtermänne Braganische Stokstötsbesträuger. Attisklöster M.4. Vieb of Science () Bissbört Die Provinsing Stokstötsbesträuger. Attisklöster M.4. Attisklöster M.4. EndNote Web Die Artikang verschedener organische Stokstötsbesträuger. Attisklöster M.4. Attisklöster M.4. Attisklöster M.4. </th <th>the des Burt. Book</th> <th>09.11.2009</th>	the des Burt. Book	09.11.2009
Mark Mark 2001 Witking einsteiningsfrig differenzisten mineralisch. Ark. Akter PE Boden. Journal Article 0.911.2009 Custom Groups Annis 2005 Longsterm effects of cropped vs. falsw and fertilizer. Jaurnal Article 0.911.2009 Simart Groups Bischinger 1963 Eindu organische Druger and Ering, Humusgheit. Deareffalsweithe die Bode. Bode. Section 0.911.2009 Online Search Bischind 1987 C.Optiansk der Boden sowie Einzgestmuktking im. Deareffalsweithe al. die Note Section Deareffalsweithe al. die Note Section 0.911.2009 Distra vor Congress Bischoff 1987 Deareffalsweithe im Tsyro Deareffalsweithe and Bischoff 0.911.2009 USTA (EBSCO) Distra vor Tsore Deareffalsweithe im Tsyro Conference Procee. 0.911.2009 Weise Gistein C	Abert 2001 Winding einer langibing differenzieten minneralisch. Arch Ack Artil 2005 Longibin websich der oppedivisite falle wahr der langibing Artil 2005 Longibin websich der oppedivisite falle wahr der langibing Annue 1994 Versich Mit der Kenzt. Winding orgenstehen L. Plant Ni Amus 1994 Versich Mit der Kenzt. Winding orgenstehen L. Despehilte Bachnige 1997 Comarki der Böden sowie Erragserwicklang im . Bachnige 1997 Comarki der Böden sowie Erragserwicklang im . Utstahr der Sowie Strasserwicklang im . Bachnige 1997 Deur fehlte weichen Thatow Bachnige 1997 Deur fehlte weichen Thatow Bachnige 1997 Deur fehlte weichen Thatow Bachnige 1997 Deur fehlte weichen Thatow Deur Beitweichen 1997 Deur fehlte weichen Strasser Mehlten Deur Beitweichen 1997 Deur Beitweichen 1997 Deur fehlte weichen 1997 Deur Beitweichen 1997 Deur Beitweichen 2000 Der treesteine Organische Stockobbaserdung. Arch Arde Deutsche 1997 Der treesteine Organische Stockobbaserdung. Arch Arde Beitweich 1997 Der treesteine Organische Stockobbaserdung. Arch Arde Beitweich 1997 Der treesteine Organische Stockobbaserdung. Arch Arde Beitweich 1997 Der Mehlten Organische Dargen der Beitweichen Arthone Versiehen einer Stockobbaserdung. Arch Arde Beitweich 1997 Untersteinung der das maximale Landwetz Beitweich 1997 Untersteinung der das maximale Landwetz Beitweich 1997 Verlanderung der der der der Beitweichen Fehltbeitweich Beitweichen Arbeitweichen Beitweich Beitweich Beitweichen Beitweichen Beitwe	Bodenkundlic Book	09.11.2009
Artil 2005 Long-term affects of cropped vs. false and tritter Jean Har Nar. Soll Sci. Journal Article 0.011 2009 Smart Groups Armis 1984 Versuch M Groups Hart Nar. Soll Sci. Journal Article 0.011 2009 Smart Groups Armis 1984 Versuch M Groups Hart Nar. Soll Sci. Journal Article 0.011 2009 Online Search Backinger 1996 Der Einflik üsterschreidicher Clungungsstein (miner. Hart Nar. Soll Sci. Journal Article 0.011 2009 Dinks Search Baumelker 1997 Der Hemäinsher Zurgersstein 0.011 2009 Maskingen der Deutsc. Der Kenningen Groupstein (Miner. Maskingen der Deutsc. Journal Article 0.011 2009 Library Crangross (II) Bischnof 1996 Der Hemäinne Grigmisch StecktofBaserdangu. Maskingen der Deutsc. Deutscheine Process. Onterence Process.<	Artil 2005 Longsterm effects of cropped: is. falow and fertilizer: J. Flart M. Arrus. Smart Groups Arrui. 2005 Longsterm effects of cropped: is. falow and fertilizer: J. Plant M. Arrus. 1984 Smart Groups Bachingel 1986 Versuch M.4 ferd. Kreuz: Wisking organischer and. Bouerfeld. Colles Search Bachingel 1996 Der Erfuß organischer Durger auf Errag, Hamusgehalten Order auf Errag, Hamusgehalten Order auf Errag, Hamusgehalten Order auf Errage Hamusgehalten Order Errage Hamusgehalten Erage H	er Pft Boden Journal Art	ticle 09.11.2009
Cutom Groups Antil 2005 Longterm affects of cropped vs. falses and feritizer Jaumal Aincice 0.011.2009 Simart Groups Simart Groups Simart Groups Simart Groups Dear Fisher and Groups and Ering, Humis optiest, Ering and Humis optiest, Eri	Custem Groups Artil 2005 Longterm affects of cropped is, falow and fartilizer — J. Plant N Armus 1984 Einful organischer Durger auf Ernag, Honusgehöt, Bedninger Bedninger 1997 Cugnamk der Edden sowie Ernagserwickling im Bedninger 1997 Cugnamk der Edden sowie Ernagserwickling im Dauerfahlu Library of Congrass (II) Bischoft 1987 Auswichniger affectivet in ffavor Bischoft 1987 Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (II) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (III) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (III) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (III) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (III) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (III) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Configure Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIIII) Der findlis under Groupse Schedoldbauerdung. Arth Ads Store (IIIII) Der findlis under Groupse Schedoldbauerdung and Planten Apticol Der findlis under Groupse Schedoldbauerdung der Groupse Schedoldbauerdung. Arth Ads Configure Der Schedol 2007 Store (IIIII) Der findlis under Groupse Schedoldbauerdung der Groupse Schedoldbauerdung Arth Ads Store (IIIII) Der findlis under Groupse Schedoldbauerdung der Groupse Schedoldbauerdung Aptistor Der Schedol 2007 Store	tr. Soil Sci. Journal Art	ticle 09.11.2009
Smart Groups Amms 1984 Versuch M & Groß Keartz - Wirking orgenscher und. Beichinger Bordinger	Smart Groups Asmus 1984 Verauch M4 Groß Freuzz- Wikung organischer und. Diauefold Bachinger 1996 Der fund, organischer Dunger auf, Bauefold, Bodamus- Bachinger 1996 Der fund, organischer Dunger auf, Bauefold, Bodamus- Bachinger 1997 Deuefold Der fund, organischer Dunger auf, Bauefold, Bodamus- Bauefold Bischoft 1997 Deuefold They organischer under Steakoft- Steakoft 1997 Deuefold Steakoft- Bauefold Library of Corganisa (III) Bischoft 1997 Deuefold Steakoft- Bauefold 1995 Der fremdionale Organische Steikobft- Bauefold 1997 Attistäufter USTA (EBSCO) Mitsleinigue USSC view Attistäufter USSC view Attistäufter	tr Soil Sci. Journal Art	ticle 09.11.2009
Simart Groups Annus 1903 Einfül organische Übriger all Etnag, Humusgheit, Bachinger 1967 Bonk Section 00 11 2009 Thesis Online Search Buchinger 1967 C.Oparank der Boden sowie Einzgestmuktung im. Bischoff Maskungen der Deutst. Conference Procee. Offen Search Bischoff Bischoff 09 11 2009 Thesis Deuter fühlwarte Bischoff Deuter fühlwarte Bischoff Offen Search Bischoff Deuter fühlwarte Bischoff Deute	Smart Groups Einful organischer Durger auf Errag, Horusgehol, Biodennur Colles Search Bechinger 1963 Einful organischer Durger auf Errag, Horusgehol, Biodennur Colles Search Bechinger 1967 C.Quramik der Böden sowie Erragserwickling im- Dauerfelbager underscher Biother Durgengesten immer Dauerfelbager Ungerschein Thytory Library of Cangnass (II) Bischoft 1967 Deuerfelbager underscher Biother Straßgerenkliking immer Dauerfelbager Ungerschein Thytory Library of Cangnass (III) Bischoft 1967 Deuerfelbager Biother Ungerscher Durger und Freidieher orgenischen Dauerfelbager Ungerscher Durger und Freidieher orgenischen Dauerfelbager Ungerscher Durger und Freidieher orgenischen Durger und Hammen Andere Library	versuche der . Book Sect	tion 09.11.2009
Backinger 1966 Der Einflik unterschreidlicher Dungungsarten (miner. Baumeicker Thesis 0 f1 2009 Online Search Baumeicker 1970 Cohursek för Bragssmönklung inn. Baumeicker Thesis 0 f1 2009 Uhrang of Cangrossi (II) Bischoff 1987 Deverfekkversuche in Throw Matekungen der Deuts Bischoff 0 f1 2009 USTA (EBSCO) III Bischoff 1995 Der Intemationale Organische Sticktoffbauerdungu. Abdelstoff ed Bischoff 0 f1 2009 Prückked INLM III Bischoff 1997 Der Intemationale Organische Sticktoffbauerdungu. Christenke Jungen Antele 0 f1 2009 Veid of Science (L. (III) III Bischoff 1997 Der Intemationale Organische Sticktoffbauerdungu. Christenke Jungen Antele 0 f1 2009 more. Begudatwisia 1997 Der Winking von sich Forman der organischen Dunger and more organischen Dunger and Hore organischen Dunger and Hore organischen Dung	annum outgots Bachinger 1996 Der Emthis unterschedicher Durgungssten minner. Beininger Beininger 1997 Deuerfold Deuerfold Chins Search Beininger 1997 Deuerfold Deuerfold Deuerfold Libray of Cargenss (in) Bischoff 1997 Deuerfold Deuerfold </td <td>ung und Bod. Book Sect</td> <td>tion 09.11.2009</td>	ung und Bod. Book Sect	tion 09.11.2009
Bachinger 1907 C-Optimisk der Boden sowie Etraggerbacklung im	Beckninger Dear C.Orgamik der Edden sowie Ertragsermikklung im	Thesis	09.11.2009
Ontions of carefickiers (in provide in the start) Baumerkier 1987 Deserfectiversuche and start Bownerkier (in provide in provide	Omine Search Baumekker 1997 Deverfeldersuche in Tystor Deverfeldersuche in Tystor Libray of Carges (II) Bischoff 1995 Der tremsdonale Organische Stokatoffsberdung. Att/4518001 LISTA (EBSCO) (II) Bischoff 1995 Der tremsdonale Organische Stokatoffsberdung. Att/4518001 Publikel (IILM) (II) Bischoff 2000 Der tremsdonale Organische Stokatoffsberdung. Att/4518001 Web of Science () (II) Bogastawich 1997 Der tremsdonale Organische Stokatoffsberdung. Att/4 Att Web of Science () (II) Bogastawich 1997 Der Visiang verschedener organischer Dunger auf. Umwetas Bogastawich 1997 Die Visiang verschedener organischer Dunger auf. Limwetas Bogastawich 1997 Die Visiang inder Kompostingung auf das mesimal e. Landwets Configure Debruck 1970 Vertrauschungen über gerördeserte Fluchtogen ander Bistokatoff. Att/4 Atd Configure Die Z 1977 Vertrauschungen über gerördeserte Fluchtogen ander Bistokatoff. Bistokatoff Bistokatoff Bistokatoff	en der Deutsc Conferenc	e Procee 09.11.2009
Library of Cargess (n) Bischoff 1987 Auswinkungen lengäninger differendeler organisch. Aufwinkungen lengäninger differendeler organisch. Aufwinkungen lengäninger differendeler organisch. Conference Phonoee. 09 11 2009 LISTA (EBSCO) 00 Bischoff 2000 Der Internationale Organische Sickstoffdauerdungu. Anth. Acke. File Doden Bord Science (IIII) Bord Science (IIII) Bord Science (IIIII) Bord Science (IIIIII) Bord Science (IIIIIIIII) Bord Science (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Libray of Cangrass (n) Eischoff 1967 Auswirkongen lang ähriger affereraleiter orgenisch. AttAlstoff USTA (EBSCO) (0) Eischoff 2000 Der themationale Organische Stokatoff.aserdangu. ArtA. Ack USTA (EBSCO) (0) Eischoff 2000 Der themationale Organische Stokatoff.aserdangu. Kitz Ack Web of Sterice ((0) Eligitative (versuche an d. Eo ok Sect	tion 09.11.2009
LISTA (EBSCO) 00 Bichoff 1995 Der Internärionele Organische Sticktofbauerdungu. Auf die NLM (00) Bichoff 2000 Der Internärionele Organische Sticktofbauerdungu. Auf die NLM (00) Bichoff 2000 Jaumel Africle 09 11 2009 Veite of Science (L. more. (00) Bichoff 1997 Der Internärionele Organische Sticktofbauerdung. Auf die NLM (01) Bichoff 1997 Der Internärionele Organische Sticktofbauerdung. Auf die NLM (01) Bickoff (01) Bickoff (01)	LISTA (EBSCO) Elschoff 1995 Der thermationale Organische Stokatoffaberodingu. Arch. Ack. Publikel (PLM) (0) Bischoff 2000 Der thermationale Organische Stokatoffaberodingu. Arch. Ack. Web of Storace (0) (0) Bischoff 2000 Der thermationale Organische Stokatoffaberoding. Arch. Ack. Web of Storace (0) Bogastawich 1997 Der thermationale Organische Stokatoffaberoding. Z. Acket- Bogastawich 1997 Der Virklang verschriedemer organischer Dunger auf. Umwettas Bogastawich 1997 Die Virklang verschriedemer angenischer Dunger auf. Umwettas Bogastawich 1997 Die Virklang verschriedemer angenischer Dunger auf. Umwettas Configure . Dokruck 1976 Untersuchnagen über genotischer alle Publichogan. Eindelite Ackets Configure . Die Z. 1997 Verlandenungen ehr Bokatorparameter im Internet. Arth. Ack Die Z. 1997 Verlandenungen ehr Bokatorparameter im Internet. Stotabel Dunger and Parameter. Bischoff Die Z. 1997 Verlandenungen ehr Bokatorparameter im Internet. Stotabel Dunger and Parameter.	e als Dinger Conferenc	e Procee 09.11.2009
List Arebsol Bischaft 2000 Der Internationale Organische Stecktoffbauerdungu. Other Method Bischaft Bischaft <thbischaft< th=""> Bischaft Bi</thbischaft<>	List ArcBox.01 (10) Bischoff 2000 Der thermationale Organische Stockstoft.Bauerdung	er- Pft Boden Journal Art	ticle 09.11.2009
PubMed (1%LM) (I) Bischaft 1997 Der Internationale Organische Stadistad-Dawenting	Public (PULM) (0) Bischoff 1997 Der Intermationale Organische Stockstoft-Dauendung. And. Adv. Web of Science (emationale or Book Sect	50n 09.11.2009
Web of Science () Bogsalawsis 1976 Engebrase sus dem langsingen Staffmats-Schatz, Universative soft of Tier. Journal Ancie 09 11 2009 Bogsalawsis 1997 Ele Winking vorsite/ter Formen der organischer Daue, Kontes und Fanzenburg, and Schatz,	Web of Science () Bogatawolo 1976 Engetnisse aus dem lingdingen Staffinst-Schafz, Z. Acker- more. Acker- Bogatawolo Die Wisung von seche Formen der organischer Dunger auf. Umwebale Umwebale EndNote Web Configure Die Aus 1997 Die Wisung von seche Formen der organischer Dunger auf. Umwebale Lingdinger auf. Die Science (Lingdinger Aussischer Dunger auf der massing auf der	er- Pft Boden Journal An	ticle 09.11.2009
more Begudawisis 1991 Die Winkung verscheferen Gargenscher Danger auf. Kongressbad um BPL Le. Book Section 0.9.11.2009 EndNote Web Ober Kangen Status Die Winkung verschef German der oganischer Danger auf. Un Kongressbad um BPL Le. Book Section 0.9.11.2009 Configure_ Debrucht 1976 Einthäum einer Status Die Kongressbad um BPL Le. Kongressbad um BPL Le. Kongressbad um BPL Le. Kongressbad um BPL Le. Nongressbad um BPL Le. Journal Ancie 0.9.11.2009 Configure_ Die Z. 1907 Verlandenungen der Bockreparameter im termston. Ark Aler PE Boden Journal Ancie 0.9.11.2009 Die Z. 1907 Winkung longänniger Kompedstingung auf Pfarcen. Aphitol Fires Journal Ancie 0.9.11.2009 Die Z. 1907 Winkung longänniger Kompedstingung auf Pfarcen. Sol Degredation Proc. Book Section 0.9.11.2009 Die K. 2006 Gure Hamus um di Kakentong bei der landwirschlitt. Hold Fires Journal Ancie 0.9.11.2009 Die K. 2007 Statisscher Nahrstoffmangeheersuch Book Section 0.9.11.2009 Einer	mere. Bogustavidi 1991 Die Virklaurg verscheidener organischer Danger auf. Umweltas Endhöte Web Bogustavidi 1997 Die Virklaurg verscheidener eingerscher Danger auf. Umweltas Endhöte Web Dokruck 1976 Einflukt von organischer Danger auf. Umweltas Configure Dokruck 1976 Einflukt von organischer Danger auf.	and Pflanzenb. Journal Art	ticle 09.11.2009
Begudawsia 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de Haan 1997 Die Wirkung von sicht Formen der organischen Du., de V. Die Z.	Begustaweis 1997 Die Virkung von seche Formen der organischen Durjumg af dar missente lauben Bendholse Web Gerhäuse Veb Gerhäuse Veb Debruck 1976 Untersuchungen über getreidersiche Fruchtidgen um. FB 16 An Debruck 1976 Untersuchungen der Bockgreisenker Instandeligen um. FB 16 An Diez 1997 Weindung langtinger könne oditigung auf Plansen. Anfräche Diez 1997 Statischer Nathrafförmig Arbeite der derkentigt. Michole Ellerer 1997 Statischer Nathrafförmig Arbeite der derkentigt. Michole Ellerer 1997 Statischer Nathrafförmig Arbeite der derkentigt. Michole Ellerer 1997 Die Daverbeite um 8 diegenungsversichen Baserfelde Ellerer 1997 Die Daverbeiter Statischer Nathrafförmig Arbeiter Geldeben 2007 Vindeld wich Russen Instan. Reg Emm Gerz 1996 Die Die Daverbeiter Diesenschen Formen der organischen. Figstebert Geldeben 2007 Vanstatung von Saustardmacher. Diesenschen Geldeben 2001 Varientiger Statischer Plansen beiter auf beitogeneter Diesenschen Geldeben 2001 Varientiger Statischer Plansen beiter auf beitogeneter. Baserfelde Die zweiter Statischer Plansen beiter auf beitogeneter Jehren der organischen. Filterbeiter Geldeben 2001 Varientiger Statischer Plansen der organischen – Fälterbeiter Geldeben 2001 Varientiger Statischer Plansen beiterbeiter beiterbeiter Plansen Haus 2007 Varientiger Statischer Plansen der Beiterbeiter beiterbeiter Plansen Haus 2007 Varientiger Statischer Plansen der Beiterbeiter beiterbeiter beiterbeiter Geldeben 2001 Varientiger Beiterbeiter beiterbeiter beiterbeiter beiterbeiter Plansen Haus 2007 Varientiger Beiterbeiter beiterbeiter beiterbeiter Plansen er Beiter 2007	pelde der Tier Book Sect	bon 09.11.2009
Behan 1979 Einthä von organischer Dunging auf die meimelle Linder	Endhole Web Configure endhole Web Configure	and 1997 Le Book Sect	tion 09.11.2009
Enclose Debruck 1976 Urteranzchungen über getrodieriche Pruchtokgen un. File Angewande Bit. Thesis 0.011.2009 configure_ Diez 1977 Weindemung der Boderparenter im Interanen. Arch. Adser PE. Boden Journal Ancle 0.011.2009 Diez 1907 Writung inngänniger Kompostilunging all Pfarzen. Apibiol Fies Journal Ancle 0.011.2009 Diez 1907 Writung inngänniger Kompostilunging all Pfarzen. Apibiol Fies Journal Ancle 0.011.2009 Diez 1907 Writung inngänniger Kompostilunging all Pfarzen. Apibiol Fies Journal Ancle 0.011.2009 V 2006 Gule Humay und Kalker Mito Denst der Bundes. Book Section 0.011.2009 Einh 1982 Entiggerefricklung der Getates an. Diederfektweische and. Book Section 0.011.2009 Einher 1987 Statischer Dingurgs, und Bergarungsversich Diederfektweische and. Book Section 0.011.2009 Gestra 2007 Validation efter CAND/model with Russen kngite. Agnuckture. Excepterm. Journal Ancle 0.011.2009 Gestra <td>Endhold Web Debruck 1076 Urterarusthingen über getreideriche Frankfolgen um. FEI 14. An configure Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding aug auf reakter auf reakter auf Reiser B Diez 1007 Veinding aug auf reakter auf Reiser B Diez 1007 Diez 1007 Ellerer 1997 Statischer Nethrafter Mahager auf Bereignangssersuch D Daserfeld Ellerer 1997 Die Diezenbargersersuch H Daserfeld Ellerer 1997 Die Diezenbargersersuch H Baserfeld Ellerer 1997 Veindig aug aug generative H Bereigen Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Diez Diezenbargersersuch H Baserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbarger Franko 2007 Vereintig vein Statischer Nethrafter Diagenbarger Franko 2007 Vereintig vein Statischer Noter Dister Berner Franko 2007 Vereintig vein Statischer</td> <td>chaftliche For. Journal An</td> <td>ticle 09.11.2009</td>	Endhold Web Debruck 1076 Urterarusthingen über getreideriche Frankfolgen um. FEI 14. An configure Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Weinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding lang ähriger Kompostingung auf Planten. Aptikol F Diez 1007 Veinding aug auf reakter auf reakter auf Reiser B Diez 1007 Veinding aug auf reakter auf Reiser B Diez 1007 Diez 1007 Ellerer 1997 Statischer Nethrafter Mahager auf Bereignangssersuch D Daserfeld Ellerer 1997 Die Diezenbargersersuch H Daserfeld Ellerer 1997 Die Diezenbargersersuch H Baserfeld Ellerer 1997 Veindig aug aug generative H Bereigen Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Diez Diezenbargersersuch H Baserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbargerstatung H Daserfeld Ellerer 1997 Vereintig vein Statischer Nethrafter Abritischer Diagenbarger Franko 2007 Vereintig vein Statischer Nethrafter Diagenbarger Franko 2007 Vereintig vein Statischer Noter Dister Berner Franko 2007 Vereintig vein Statischer	chaftliche For. Journal An	ticle 09.11.2009
Configure Dies 1907 Verlanderungen der Böckrapatemeter im Internation. Ar. Alder Pf. Boden Journal Aricle 0.011.2009 Dies 1907 Verlanderungen der Böckrapatemeter im Internation. Ar. Alder Pf. Boden Journal Aricle 0.011.2009 Dies 1907 Verlang langleringe Kompostingung auf Pfanzen. Agrituit Teos Journal Aricle 0.011.2009 Diese 1907 Verlang langleringe Kompostingung auf Pfanzen. Soll Degradation Proc. Book Section 0.911.2009 Eich 9962 Eth aggerteffelds of officent verlagen systems of traggerteffeldersschert Verl. Book Section 0.911.2009 Einner 1997 Stässischer Nehrstoffnangeleversuch Deserfeldersschert Verl. Book Section 0.911.2009 Fineblach 2007 Sol organic metter and biological sol quality indicat. Agge Environ Change Journal Aricle 0.911.2009 Godra 1999 Der Daserdingungsversuch en the Nake. Reg Environ Change Journal Aricle 0.911.2009 Godra 1999 Der Daserdingungsversuch en the Discoper in die sol. Sol Alers Stassen Change Sol Alers Stassen Change Sol Hochs	Configure Diez 1007 Varianderungien der Böckriperameter im Intamiten. Arth. Arch. Arch. Arch. Arch. Arch. 2015 Diez 1007 Wirking lengitringer Kompostingung auf Pharen. Apticol. F. Diez 1007 Wirking lengitringer Kompostingung auf Pharen. Apticol. F. Diez 1007 Wirking lengitringer Kompostingung auf Pharen. Apticol. F. Divolven 1982 Long term effects of different systems of organic mass. Soil Deep. e, V. 2006 Gute Humas. und Kalkwritung bei der landwrits/hat. Hio. Clens Elmer 1997 Statischer Diugrage. und Bergerungssersuch Bauefold Elmer 1997 Statischer Diugrage. und Bergerungssersuch Dauefold Frankton 2007 Soil organic mätter and biological soil quality indicet. Annochume. Grazz 1998 Der Binfluw sechhodener Forme der organichten. Föchberei Goldhach 2001 Variedunder Binderanderschülbüngerin der La. 52. Hechte Goldhach 2001 Variedunder Binderanderschülbüngerin der La. 52. Hechte Goldhach 2001 Variedunder Binderandersch	gewandte Ei. Thesis	09.11.2009
Ciez 1907 Wirkung iong/athriger Kompostingung ad Pflanzen. Aprihol Fies Journal Ancie 00 11 2009 Diversen 1992 Long term effects of different systems of voganic ma. Aprihol Fies Journal Ancie 00 11 2009 eV 2006 Gue Human, und Kalkerkong Aprihol Fies Journal Ancie 00 11 2009 eV 2006 Gue Human, und Kalkerkong 60 ff 12009 Bito Stell Bito Stell Bito Stell 00 11 2009 Einh 1992 Entiggenthicking und Einhacklung der Greates an. Bito Stell Bito Stell <td>Diez 1997 Wirking lang kinniger Kompositikungung auf Planten. Apticio E Diez 1997 Wirking lang kinniger Kompositikungung auf Planten. Apticio E Drowen 1992 Long Jerm effects of direvert systems of organic ma. Soi Deap e, V. 2006 Cate Humay. und Kalokrangung auf Plantant. Into Come E Lich 1992 Ernsgeretreickung und Einschlung der Gentete an. 80 Juarte 4 Einer 1997 Statischer Norstendter auf bringer das der Aufwahrstät. Into Come Franko 2007 Variabatier of the CANDY model with Plantasen Insta- Gente 1997 Die Daverfehle Franko 2007 Variabation of the CANDY model with Russen Insta Agricultur Gestra 1999 Die Daverfehle mitter auf bringer das durch Human. Agricultur Gestra 1999 Die Daverfehle Betr Gestra 1999 Die Betr Gestra 1999 Die Betr Gestra 1997 Die Aberen Betransiensenhaften des Dianosten Gestra 1999 Die Betransenhen Betransiensenhaften des Dianosten Histen für E Erner 1997 Die Aberen Betransiensenhaften des Dianosten Betransenheiten des Bundesministeriums für Emistrung, Landertschaft und Forste City: Minnissen-Hitting 25 S</td> <td>er Pfl. Boden Journal An</td> <td>ticle 09.11.2009</td>	Diez 1997 Wirking lang kinniger Kompositikungung auf Planten. Apticio E Diez 1997 Wirking lang kinniger Kompositikungung auf Planten. Apticio E Drowen 1992 Long Jerm effects of direvert systems of organic ma. Soi Deap e, V. 2006 Cate Humay. und Kalokrangung auf Plantant. Into Come E Lich 1992 Ernsgeretreickung und Einschlung der Gentete an. 80 Juarte 4 Einer 1997 Statischer Norstendter auf bringer das der Aufwahrstät. Into Come Franko 2007 Variabatier of the CANDY model with Plantasen Insta- Gente 1997 Die Daverfehle Franko 2007 Variabation of the CANDY model with Russen Insta Agricultur Gestra 1999 Die Daverfehle mitter auf bringer das durch Human. Agricultur Gestra 1999 Die Daverfehle Betr Gestra 1999 Die Betr Gestra 1999 Die Betr Gestra 1997 Die Aberen Betransiensenhaften des Dianosten Gestra 1999 Die Betransenhen Betransiensenhaften des Dianosten Histen für E Erner 1997 Die Aberen Betransiensenhaften des Dianosten Betransenheiten des Bundesministeriums für Emistrung, Landertschaft und Forste City: Minnissen-Hitting 25 S	er Pfl. Boden Journal An	ticle 09.11.2009
Clez 1907 Wirkung lengileringer kompostdingung auf Pflanzen. Journal Ancie 0.011.2009 Diversen 1992 Long term effects of offeren registering systems of registering. Soil Degradation Proc. Book Section 0.911.2009 e.V 2006 Guip Hamus und Kalkwritung bei der landwritschat. Holdersteiner 0.911.2009 Einfer 1997 Stässicher Nehrstoffmangehversuch Bol Jergredation Proc. Book Section 0.911.2009 Einner 1997 Stässicher Nehrstoffmangehversuch Deserfeldwersuch en d. Book Section 0.911.2009 Finelbach 2007 Soil organic metter and briological soil quarkt indicat. Apgetmetral. Journal Ancie 0.911.2009 Goldsach 1999 Der Dazendingungsversuch en hiel falle (Sastek) Beitr. Sozialere, Ecseptern Journal Ancie 0.911.2009 Goldsach 2001 Verwentug wors SekkindamhotzbeDungen in der La. 52. Hochschultung eing Journal Ancie 0.911.2009 Goldsach 2001 Verwentug wors SekkindamhotzbeDungen in der La. 52. Hochschultung eing Conference Procee. 0.911.2009 Goldsach 2001 Verwentug wors SekkindamhotzbeDungen in der La. 52. Hochschultungen (Verw	Diez 1997 Wildung langjärniger Kompostilungung auf Pfartene Apitole F Drokeven 1982 Long term effects of different systems of organic me. Soil Deep e.V. 2006 Gute Humas- und Kalkwrisung bei der landwrischaft. Intio Ceres Eich 1983 Entragsserbicklung und Erthickkung der Greite m. 300 Jahres Elthere 1997 Statischer Nahrstoffmangelversuch Dauerfeld Fließbach 2007 Soil organic matter and broigs of soil austry indice. Annotäus Franko 2007 Validation of the CANDY model with Russan Indice. Reg Entra Graz 1999 Der Binflus versichedener Formen der organichten. Franko- Reg 1999 Der Binflus versichedener Formen der organischen. Franken der Goldach 2001 Validation of Biotecharten der Binderbeiten. Franken der Goldach 2001 Validation of Biotechartensteht-Dingemin der La. 52. Hechte Goldach 2001 Validation der Binderbeiten. Franken tilt in Franken 1997 Thie Freinschein Binderbeitensteht-Dingemin der La. 52. Hechte Griffes 1987 Thie Freinschein Binderbeitensteht. Disologisch-dynamisch Bierles Title: Schritteriche des Bundssministen, biologisch-dynamisch Bierles Title: Schritteriche des Bundssministen, biologisch-dynamisch Bierles Title: Schritteriche des Bundssministen zur Emplitung, Landertischett und Forste Citig: Minisch-Hitting 258 S	les Journal Art	ticle 09.11.2009
Drowen 1982 Long term effects of different systems of organic mail Biol Degradation Proc. Biok Section 09.11.2009 eV 2006 Cup Homus und Kalkwindups de dis fandwinduit. Into Direct of termine Biok Section 09.11.2009 Eich 1982 Ethagjerthildking und Einwicklang der Gerates an. Biok Section 09.11.2009 Einmer 1997 Statischer Dingungs- und Bereghungsweisch Deuerfeldweische and. Biok Section 09.11.2009 Franko 2007 Validation of the CANDY model with Russian knight. Agnicubier, Ecosystem. Journal Anticle 09.11.2009 Gara 1996 Die Die Die offer offer ongangsweisch Dealer feldweische and. Biok Section 09.11.2009 Gara 1996 Die Die Die offer offer ongangsweisch Dealer feldweische angestem. Journal Anticle 09.11.2009 Gara 1996 Die Die Die offer offer ongangsweische Beart. 20.21 Die Die Die Offer offer Offer of 19.2009 Gara 1998 Die Einfeld verschiedener Former der organische. Padiation die die National and die Die Die Die Offer Off	Droeven 1982 Long term effects of different systems of organic mail. Soil Degn e. V. 2006 Gute Humay, and Kalwinkaya be de tradiversitat. Into Circle Eich 1982 Ernsperteinklung und Einwicklung der Genete an 80 Judre 5 Einer 1997 Statischer Nahrstoffmangehersuch Daserfeld Eilmer 1997 Statischer Nahrstoffmangehersuch Daserfeld Freikbard 2007 Varietation of the CANDY model with Russen Iong-te. Reg Einst Gestract 1999 Die Daserfeld Die Deserfeld Betr Gestract 1999 Die Daserfeld Die Deserfeld Betr Gestract 1999 Die Daserfeld Betr Gestract 1997 Die Daserfeld Betr Gestract 1997 Die Daserfeld Betr Gestract 1998 Die Daserfeld Betr Gestract 1998 Die Nahrstenbergener Formen der organischen – Fachberei Gestract 1999 Die Abereit Statisticht Betr Gestract 1997 Die Abereit Statisticht Betr Hereit 1987 Their Freuklagustätz und Dangung – minorelisch, organisch, biologisch-dynamisch Serles Title; Schritteriche des Bundesministeriums für Emännung, Landeritschaft und Forste Citty: Minisch-Hillung Gritbel Publisher: Landvirtschaftswarting Gritbel Namer of Pages; 25 S	les. Journal An	ticle 09.11.2009
e.V. 2006 Guide Hamus und Kakwartang bei der fandwinstricht, Informationale, Michael Berner, 1997 Statischer Drugungs, und Bergungsversuche in Hale (Saak) Ber- Einner 1997 Statischer Drugungs, und Bergungsversuche in Kaller (Saak) Ber- Finelbach 2007 Soil organic matter and bringord soil quarki mideat. Agramist. Hong Arbeit 1209 Garz 1999 Die Dasentingungsversuche in Hale (Saak) Ber- Goldbach 2001 Verwertung von Sekundamindezt-Dungen in der La. Schlasscher Matter und Arbeit 2007 Soil organic matter and bringord soil quarki mideat. Agramist 1209 Garz 1999 Die Dasentingungsversuche in Hale (Saak) Ber- Goldbach 2001 Verwertung von Sekundamindezt-Dungen in der La. Schlasscher Matter und Arbeit 2007 Viersen der angemäter in Processon der Statischer Versionen der angemäter Goldbach 2001 Verwertung von Sekundamindezt-Dungen in der La. Schlasscher Mitter Schlingen der Statischer Versionen der angemäter Verst: 1997 The chemischen Reinferschert der Schlingen in der La. Seiter Titter Schriftentreite des Bundoeminisch-ungen schlassing der Versionen der Schlingen der Schlingen der Schlingen der Versionen der Schlingen	e.V. 2006 Gute Humas- und Kalkwrisung bei der landwirtiginatt. Intik Outere Entragsserbricking und Erthärkköning der Greite Beitre 80 Jahre 5 Eitherer 1997 Statischer Nahrstoffmangekersuch Dasarfeld Ellmer 1997 Statischer Dangrags- und Bergrangssersuch Dasarfeld Filekbach 2007 Solt organic matter and briogical sol quady indicet. Annotäus Graz 1999 Der Bintlus versichedener Formen der organichten. Frachberei Goldbach 2001 Variedbund für Graz 1999 Der Bintlus versichedener Formen der organichten. Frachberei Goldbach 2001 Variedbund für Graz 1993 Der Bintlus versichedener Formen der organichten. Frachberei Goldbach 2001 Variedbund Finderschaftschlüngen in der La. 52. Hoche Griffes 1987 Thier Produktigaetist und Dangring - mineralisch, organisch, biologisch-dynamisch Steffen Eller Erfluszeichen Beschlichten Einschlicht Bertein Berteilter Berteil	adation Proc. Book Sect	tion 09.11.2009
Eich 1982 Emagerethickung und Ernikrickung der Geralts an	Eich 1982 Entragserbricklung und Entwicklung der Gehette an 80 Jahr Eilmer 1997 Statischer Nahrstoffmangehersuch Dauerfeld Eilmer 1997 Statischer Nahrstoffmangehersuch Dauerfeld Fieldbard 2007 Variablander Offmangesersuch Dauerfeld Franko 2007 Variablander Offmangesersuch Agrochter Gest 1998 Die Dauerfeld Agrochter Gest 1999 Die Dauerfeld Agrochter Gest 1999 Die Dauerfeld Agrochter Gest 1999 Die Dauerfeld Beit Gest 1999 Die Dauerfeld Beit Gest 1999 Die Dauerfeld Beit Gynse 1993 Die anderschargereterschen Halle (Saade) Beit Agrochter Freis 1993 Pil anderschar Beitragereterscharten des Diagenschartschen Statebare Mitter 1993 Pil anderschartschartschartschartschartschart Beitragereter Mitter 1993 Pil anderschart	t der Bundes. Generic	09.11.2009
Einer 1997 Stäsischer Nährstoffmangeheesuch Deserfeldwesuch and Book Section 09.11.2009 Einer 1997 Stäsischer Nährstoffmangeheesuch Deserfeldwesuch and Book Section 09.11.2009 Finalise 2007 Soil organic matter and bringord soil quarki mideat. Agriculture, Ecseptem Journal Africle 09.11.2009 Garz 1999 Die Deserfungungsversuche in Halle (Sastek) Betr. Soldhach 2001 Verwentung von Sekundaminatotie-Dungen in der La. Soldhach 2002 Verwentung von Sekundaminatotie-Dungen in der La. Soldhach 2003 Verwentung von Sekundaminatotie-Dungen in der Sekundaminatotie Verwentung von Sekundaminatotie-Dungen in der Sekundaminatotie Verwentung von Sek	Elmeir 1997 Statischer Nahrstoffmagekersuch Dauerfeld Elmeir 1997 Statischer Nahrstoffmagekersuch Dauerfeld Filedbach 2007 Sol organic matter and bridgiod sol audity indicet. Agnotuber Graz 1999 Dire Dauerdingungsversuche in Hale (Saak), Beit Elmei Goldbach 2001 Der Binflu versichedener Formen der organischen. Flachberei Goldbach 2001 Vereichung von Sekandarnitzet/Dingem in der La. 52. Heche Griefen 1997 Teile Preimischer Bertemscher Bertemscher Franken, Flachberei Goldbach 2001 Vereichung von Sekandarnitzet/Dingem in der La. 52. Heche Griefen 1997 Teile Preimischer Bertemscher Bertemscher Britemscher Mitter Preisen 1997 Tittle: Preukligungstatz und Dangung - minereilsch, organisch, biologisch-dynamisch Seites Titte: Schritteriche des Bundssministerums für Emährung, Landertschaft und Forste Citig: Minasch-Hittig Publisher: Landvrischaftsweitig Gritt-H Number of Pagea: 225 S	Statischer Ver Book Sect	tion 09.11.2009
Elmer 1997 Statischer Düngungs, und Beregnungsversich Deuerfeldweisuche an d., Bork/Section 09.11.2009 Friedbach 2007 Variation mitter and briodig of sig auship index. Agriculture, Excession Journal Africe 09.11.2009 Garz 1996 Dre Dauerdungungsversuchen Halle (Saele) Berr. Borken 2007 Variation of Sakadamfanderbellengen index an. 52. Hortschlatung d. Conference Procee. 9193 Die Deuterdungungsversuchen der La. 52. Hortschlatung d. 2007 Theols 09.11.2009 Goldste 2001 Verweiting von Sakadamfanderbellengen index an. 52. Hortschlatung d. 2007 Theols 09.11.2009 Grinse 1983 Die chemischen Bortenerschaften für Die Networkschlatung d. 2007 Theols 09.11.2009 Theols 09.11.2009 1983 Die chemischen Bortenerschaften für Die Networkschlatung d. 2007 Theols 09.11.2009 Theols 09.11.2009 Theols 09.11.2009 Theols 09.11.2009 1983 Die chemischen Bortenerschaften für Die Networkschlatung d. 2007 Theols 09.11.2009 Theols 09.11.2009 Theols 09.11.2009 Theols 09.11.2009 1983 Die chemischen Bortenerschaften für Die Networkschlatung d. 2007 Theols 09.11.2009 Theols 09.11.2009 Theols 09.11.2009 Theols 09.11.2009 1983 Die chemischen Bortenerschaften für Die Networkschlatung d. 2007 Theols 09.11.2009 Theols 09.11.2009 Theols 09.11.2009 1983 Die chemischen Bortenerschaften für Die Networkschlatung d. 2007 Theols 09.11.2009 1983 Die chemischen Bortenerschaften für Die Schlarensch. Series Title: Schriftenreih odes Bundommisternums für Emährung Landwirtschaft und Forsten, Reihe A: Angewandte Wissenschaft, Heft 345 Citty: Nimiter-Hittigs OmbH Number Of Pages: 225 S Shert Title: Produktgualität und Dingung - mineralisch, organisch, biologisch-dynamisch	Ellmer 1997 Statischer Dingungs- und Beregrungssersuch Deuterhalt Friedban 2007 Sol organic matter and bridger davig davig under Market Franko 2007 Variadation of the CANDY model with Russen Iong-te. Reg Emm Gestra 1999 Die Dauendungswersuch ein Halle (Saels) Betr. Gestra 1999 Die Dauendungswersuchen Halle (Saels) Betr. Gestra 1999 Die Fullus verscheidener Formen der organischen Frachener Geldbach 2001 Varientige von Saudardmitskerbichungen in der La. 52 Heben gives 1987 Pile nehmen Ferfanzissenchaften iste Fillenebe Institut für I Prear: 1987 Tittle: Preduktigualität und Dingung – minorelisch, organisch, biologisch-dynamisch Serles Title, Schritternehe des Bundesministeriums für Emithrung, Landeritschaft und Forste City: Minora-Hilling Publisher: Landwitschaftswartig Gritt-H Number of Pages: 225 S	versuche an d. Book Sect	tion 09.11.2009
Fireblach 2007 Sol organic matter and biological sol quarky indicat. Agriculture, Ecosystem. Journal Africle 0.911.2009 Garz 1999 Die Daverdingungsversuche in Halle (Saski) Beitr. Reg Environ Change. Book 0.911.2009 Goldna 1999 Die Daverdingungsversuche in Halle (Saski) Beitr. Fachbersich. Fachbersich. Book 0.911.2009 Goldna 1999 Die Daverdingungsversuche in Halle (Saski) Beitr. Fachbersich. Fachbersich. Fachbersich. Fachbersich. Book 0.911.2009 Goldnach 2001 Verwertung von Sakandamhatoht-Dungen in der La. 52. Hochschultungung. Conference Procee. 0.911.2009 Verwert 1983 Tie orbernschott Burdensnerschultung Fürlungsbeitr. Harten für Pflanzschultur. Conference Procee. 0.911.2009 Verwert 1983 Tie orbernschott Burdensnerschultung. Die fürlung Verwertung. 0.911.2009 Theorie 0.911.2009 Verwert 1983 Tie orbernschott Burdensnerschultung. Die fürlung Verwertung. 0.911.2009 Theorie 0.911.2009 Verwert 1983 Tie orbeitige Grade Burdensnerschultung. Die gurdensnerschultung. Die gurdensnerschultung. 0.911.2009	Filedbach 2007 Soit organic matter and bridgicd soit quality indiced. Aproxibus Franko 2007 Variation of the CANDY model with Russen incigate. Reg Emmi Gistra 1999 Diserbidingungsversuche in Hale (Saak); Beitr. Gistra 1999 Der Birtlu versichedener Formen der organischen. Flachberei Gistrabisch 2001 Vereichung von Sekandarontsch-Düngen in der La. 52. Heche Gistrabisch 2001 Vereichung von Sekandarontsch-Düngen in der La. 52. Heche Gistrabisch 2001 Vereichung von Sekandarontsch-Düngen in der La. 52. Heche Gistrabisch 2001 Vereichung von Sekandarontsch-Düngen in der La. 52. Heche Giffer 1997 The Freinrichung auf Burdenschen Britanisch, biologisch-dynamisch Stefen Title: Schritteriche des Bundssministerums für Emährung, Landertschaft und Forste City: Minisch-Hung Publisher: Landvrischaftsweitig GmbH Number of Pagea: 225 S	versuche an d. Book Sect	tion 09.11.2009
Franko 2007 Validation of the CANDY model with Russen kng-te. Reg. Entroin Change Journal Africle 0.911.2009 Gerz 1999 Der Einfluß verschiedener Formen der organischen. F-Aberench Arganists. Thesis 0.911.2009 Goldra 1999 Der Einfluß verschiedener Formen der organischen. F-Aberench Arganists. Thesis 0.911.2009 Goldra 1993 Der Einfluß verschiedener Formen der organischen. F-Aberench Arganists. Thesis 0.911.2009 Goldra 1993 Der Einfluß verschiedener Formen der organischen. Institut mit in Pitanzenham. Thesis 0.911.2009 Grinse 1993 Prai chemischen Bridenerschaften der Elkinnehe. Institut mit in Pitanzenham. Thesis 0.911.2009 Vereit 1983 Prai chemischen Bridenerschaften der Elkinnehe. Institut mit Pitanzenham. 7.911.2009 Vereit 1983 Prai chemischen Bridenerschaften der Elkinnehe. Institut mit Pitanzenham. 7.911.2009 Vereit 1983 Prai chemischen Bridenerschaften der Elkinnehe. Institut mit Pitanzenham. 7.911.2009 Vereit 1983 Prai chemisch. Institut mit Pitanzenham. 7.911.2009 Vereit 1983 Prai chemisch. 1.911.2009 1.911.2009 Vereit 1983	Franko 2007 Variation of the CANDY model with Russien torgate. Brig Envir Gestate Tore Discretifying growshow in Hale (Sadek) Betr. Gestate 1989 Der Discretifying growshow in Hale (Sadek) Betr. Gestate Gestate 1989 Der Einfluß verschodener Formen der organischen Fachberei Gestate 1989 Der Einfluß verschodener Formen der organischen Fachberei Gynes 1983 Die chemischen Beitenansenschaften des Dialonebe Instruct im Einfluß Preiser 1983 Die chemischen Beitenansenschaften des Dialonebe Instruct für Einfluß Preiser 1987 Title: Nocklidgualität und Dingung - minoralisch, organisch, biologisch-dynamisch Selese Title; Schritterische des Bundesministeriums für Emithrung, Landwirtschaft und Forste City: Minisch-Humschaft und Forste Publisher: Landwirtschaftswardsg GmbH Number of Pages: 225 S S	Ecosystem Journal An	ticle 09.11.2009
Gerz 1999 Dre Daterdingungsterstuche in Halfe (Saale), Berz Book 0.911.2009 Goldbach 1990 Der Einfalls werschodener Formen der organischen. Fachbereich Agraviss. Thesis 0.911.2009 Goldbach 2001 Verwertung von Sekandarinhade/Dungern in der La. 52. Hochschultagung d. Conference Procee. 0.911.2009 Verwertung von Sekandarinhade/Dungern in der La. 52. Hochschultagung d. Conference Procee. 0.911.2009 Verwert 1997 Teiler, bernerschen Bundenenenschulten nie Divingelse Mitten für Pflanzschaur. Thesis 0.911.2009 Verwert 1997 Teiler, beroduldgaaltet und Dungung - mineralisch, organisch, biologisch-dynamisch Serlee Titte: Schriftenreihe des Bundestreinsternums für Einstrung, Landvertischet und Forsten, Reihe A. Angewandte Wassenschaft, Heit 345. City, Minaser-Hitup. Publisher 1. Landverschaftswingt Gritt-H Number of Pages: 225.3 Shert Title: Produktgalität und Dungung - mineralisch, organisch, biologisch-dynamisch.	Garz Die Dizertifungungsversiche im Hale (Saabk) Beitr. Goldstein 1999 Der Bindlus versichederner Formel der organischen	on Change Journal Art	ticle 09.11.2009
Goldrine 1999 Der Einfluß verschiedener Formen der organischen	Goldhe 1989 Der Einfluß verschiedener Formen der organischen Foldener Goldbeit 2001 Verventung von Sekundernsteck-Dungen in der La. 53. Hebere ginnes 1983 Pie nemerschen Beitenerschenten des Dieleneten Preisen 1987 Trittle: Preduktigualität und Düngung - minoralisch, organisch, biologisch-dynamisch Serles Title: Schritternehe des Bundesministeriums für Emithrung, Landerinschaft und Forste City: Minora-Hilling Publishen: Landwritschaftswarting GmbH Number of Pages: 25 S	Book	09.11.2009
Goldbach 2001 Verwertung von Sekandamotech/Dungerin in der La. 52. Hochschultagung d. Conference Procee 09.11.2009 Synce 1983 Die chemischen Bordenannenschulten nie Dikknoch. Interin für Pitarschlut 09.11.2009 Weise 1983 Die chemischen Bordenannenschulten nie Dikknoch. Interin für Pitarschlut 09.11.2009 Weise 1983 Die chemischen Bordenannenschulten nie Dikknoch. Interin für Pitarschlut 09.11.2009 Weise 1983 Die chemischen Bordenannenschulten nie Dikknoch. Interin für Pitarschlut 09.11.2009 Weise 1983 Die chemischen Bordenannenschulten nie Dikknoch. Interin für Pitarschlut 10.000 Weise 1983 Die chemischen Bordenannenschulten nie Dischoch. Interin für Pitarschlut 10.000 Weise 1983 Die chemischen Bundsenstraterums für Emilitung, Landwittschet und Forsten, Reihe A: Angewandte Wassenschet, Heit 345 Die chemischen Bordenannenschulten Pitarschlut 10.000 Publisher L. andwittschaftschaftschaftschaft und Diegung - mineralisch, organisch, biologisch-dynamisch 3 3 3 Short Title: Produktgultist und Diegung - mineralisch, organisch, biologisch-dynamisch 3 3 Short Title: <td< td=""><td>Goldbach 2001 Vereindrug von Sekundartotsch-Dungem in der La. 52 Hichs ginnes 1983 Pierchemischen Beitransinschaften des Dilandete Internet für J Pierchemischen Beitransinschaften des Dilandete Internet für J Yeier: 1997 Tittle: Phoduligastität und Dungung - mineralisch, organisch, biologisch-dynamisch Serles Tittle: Schriftennehe des Bundseministeriums für Emährung, Landertschaft und Forste City: Münzler-Hitrup Publisher: Landvrischaftsweitig GmbH Number of Pages: 225 S</td><td>ch Agranviss</td><td>09.11.2009</td></td<>	Goldbach 2001 Vereindrug von Sekundartotsch-Dungem in der La. 52 Hichs ginnes 1983 Pierchemischen Beitransinschaften des Dilandete Internet für J Pierchemischen Beitransinschaften des Dilandete Internet für J Yeier: 1997 Tittle: Phoduligastität und Dungung - mineralisch, organisch, biologisch-dynamisch Serles Tittle: Schriftennehe des Bundseministeriums für Emährung, Landertschaft und Forste City: Münzler-Hitrup Publisher: Landvrischaftsweitig GmbH Number of Pages: 225 S	ch Agranviss	09.11.2009
Opene 1983 Dischemischen Berdenersenderfen fles Diskneiten ihre Pitanzeichen Theols 03 (1 2009) Veer: 1967 Title: Produktguelität und Düngung - minorealisch, organisch, biologisch-dynamisch. 2 2 2 Series Title: Schriftenzeiche Bundsemmisteriums für Emailtrung, Landwirtschaft und Porsten, Reihe A: Angewandte Wissenschaft, Heft 345 2 2 Die Unterschaftsberlag GmbH Number of Pages: 225.5 5	Grines 1983 Dia chemischen Bortaneinenschaften dies Dianebo Institut für Preim [seue] Yrear: 1987 Title: Produktgueitet und Düngung - minorelisch, organisch, biologisch-dynamisch, Serles Title: Schritterreihe des Bundesministeriums für Emethrung, Landerinscheit und Forste City: Winnsch-Hittung Publisher: Landerinschaftsweiteg GritbH Number of Pages: 25 S	chuitagung d. Conference	e Procee 09 11 2089
Prevent Second Year: 1937 THE: Produktgualität und Düngung - minoralisch, organisch, biologisch-dynamisch Series: Title: Schriftentele des Bundosministeriums für Emithrung, Landvertischeit und Forsten, Reihe A: Angewandte Wassenschaft, Heit 345. City: Minoseri-Htup: Publisher: Landverschaftswing GmbH Number of Pages: 225.5 Shert Title: Produktgualität und Düngung - mineralisch, organisch, biologisch-dynamisch.	Period [sead] Year: 1987 Title: Producting lattict and Dungung - minorealisch, organisch, biologisch-dynamisch, Series Title: Schrittenrehe des Bundosmenstenums für Emährung, Landvertschaft und Forste Citly: Munsker-Hittig: Publisher: Landvertschaftsweitige GmbH Number of Pages: 225 S	Pflamzenhau Thosis	00.11.2000
Year: 1997 2 Year: 1997 1997 Title: Produktionalist und Düngung - mineralisch, organisch, biologisch-dynamisch 2 Series: Title: Schlieterehe des Bundommsternums für Emährung, Landwirtscheit und Forsten, Reihe A: Angewandte Wassenscheit, Heit 345 2 Chy: Minister-Hamp 2 Publisher: Landwirtschetsweiteg GmbH 1 Number of Pages: 2,25 S. 3 Shert Title: Produktgulatit und Düngung - mineratisch, organisch, biologisch-dynamisch 3	Veen Jewen J Yeer: 1937 Title: Produktas and Dangung - mineralisch, organisch, biologisch-dynamisch Serles Title: Schriftennehe des Bundseministeriums für Emilitrung, Landwirtschaft und Forste Citly: Manater-Hitrup Publisher: Landwirtschaftswirtige GmbH Number of Pages 225 S		2
Title: Produktqualität und Düngung - mineralisch, organisch, biologisch-dynamisch. Series Title: Schriftentehe des Bundommisternums für Emistrung, Landvertischaft und Forsten, Reihe A: Angewandle Wissenschaft, Heft 345 City: Minister-Hittig: Landverschaftsbunding GmbH Publishert Landverschaftsbunding GmbH Number of Pages: 225 S. Shert Title: Produktqualität und Düngung - mineralisch, organisch, biologisch-dynamisch	Title: Produktgualität und Düngung - minoralisch, organisch, biologisch-dynamisch Series Title: Schritteriche des Bundesministieriums für Emährung, Landwirtschaft und Forste City: Minosch-Hitury Publisher: Landwirtschaftswartigg GmbH Number of Pages: 225 S		
The Friedulgustrat und Lingung - mineralisch, organisch, biologisch-olynamisch Seriet The: Schriberiehe des Bundesmiristeriums für Emahrung, Landvertschaft und Forsten, Reihe A: Angewandle Wissenschaft, Heft 345 City: Minister-Hanp Publisher Landverschaftsweiseg GmbH Number of Pages: 225 S Shert Title: Freduldqualität und Düngung - mineralisch, organisch, biologisch-dynamisch	Time: Producting and can be using a - minorearison, regarding, biologison-ophamion. Series Title: Schriftsteinen des Bundosministeriums für Emährung, Landertschaft und Forste City: Minosch-Hitup Publisher: Landertschaftswirtige GmbH Number of Pages: 225 S		-
Series Title: Schmertene des Bundsemmisternums nur Emainung, Landwinschaft und Forsten, Neine A. Angewandte Wasanschaft, Heit 345 Publishert Landwitschaftsweisig GmbH Number of Pages 225.5 Shert Title: Produktquaktat und Düngung - mineraitisch, organisch, biologisch-dynamisch	Issense Titte: Schmantone ose subosaministeriums nur Emantung, Landwinschaft und Horste City: Minasch-Hitturg Publisher: Landwinschaftswartisg GmbH Number of Pages: 225 S		
Citry: Munster-I timp Publisher: Landwitschaftsverlag GmbH Number of Pages: 225 S Short Title: Produktquaktat und Düngung - mineralisch, organisch, biologisch-dynamisch	Publisher: Landwitschaftsverlag GmbH Number of Pages: 225 S	in, Heine A: Angewandle W	issenschaft, Hoft 345
Publisher Landverschaftsking Gritter Namber of Pages 225 S Short Title: Produkcjusktat und Düngung - minenäisch, organisch, biologisch-dynamisch	Number of Pages: 225 S		
Fourmour of Plages (2):5 5. Short Title: Produktqualität und Düngung - minenäisch, organisch, biologisch-dynamisch.	Number of Pages: 225 S		
Short The: Produkquaturus Uungung - minerarisch, organisch, blobgisch-dynamisch	B. C. M.		
	short Title: Produkquartat und Lungung - mineraisch, organisch, biologisch-dynamisch		
1			_

Abbildung 3: Literaturdatenbank (Screenshot) zu den Dauerversuchen

Nach folgenden Kriterien wurden Güteklassen für die einzelnen Versuchsvarianten im Gesamtdatensatz für die weitere Verwendungsmöglichkeit der Daten festgelegt:

Güteklasse KI1:

Hier ist die Datenherkunft zweifelsfrei klar und alle Werte liegen als Jahreswert vor. Diese Datensätze sind f
ür die Parameterbestimmung geeignet.

Güteklasse Kl2:

Hier existieren Unklarheiten in den Datengrundlagen und/oder nur Mittelwerte z. B. bei der Angabe der Erträge.

Güteklasse Kl3:

Dies betrifft Datensätze, die wegen vorliegender Unklarheiten nicht zur Parameterableitung geeignet sind.

Die Datenbasis "Gesamtdatensatz" repräsentiert folgende Güteklassen (Abb. 4) und Bodenarten (0-30 cm Bodentiefe, Abb. 5).

Abbildung 4: Gruppierung der Versuchsvarianten (n = 598) in Güteklassen in Abhängigkeit von der Qualität der Eingangsdaten und der Messwerte

Abbildung 5: Gruppierung der Versuchsvarianten (n = 598) nach Bodenarten in 0-30 cm Tiefe gemäß Reichsbodenschätzung (RBS)

Aus der Abbildung 4 wird deutlich, dass 90 % der Versuchsvarianten in die Güteklasse Kl 1 fallen. Die Verteilung der Versuchsvarianten über die Bodenarten der Reichsbodenschätzung ist ungleichmäßig (Abb. 5). Während der Hauptteil der Versuchsvarianten die Bodenarten anlehmiger Sand (SI) oder Lehm (L) aufweist, sind die Tonböden (T) mit acht Versuchsvarianten nur marginal vertreten. Alle acht Versuchsvarianten mit Tonböden gehören zum Versuchsstandort Järna in Schweden.

Für die Modellierung des C-N-Bodenhaushaltes mit dem Modell CCB war eine unterschiedliche Anzahl an C_{org} und N_t -Messwerten für die 41 Standorte verfügbar (Tab. 1). Mit je ca. 600 Messwerten waren für die Versuche Methau_DV und Spröda_DV die meisten C_{org} - und N_t -Messwerte verfügbar. Für 22 Versuche waren keine N_t -Messwerte vorhanden.

Tabelle 1: Anzahl der verfügbaren C_{org} - und N_t -Messwerte für die Bodentiefe 0-30 cm nach Versuchen

Versuch	Anzahl C _{org} -Messwerte	Anzahl N _t -Messwerte	Versuch	Anzahl C _{org} -Messwerte	Anzahl N _t -Messwerte
Bad Lauchstädt	183		Müncheberg125	24	24
Barybino (Russ)	50		Noord-Brabant201	4	
Berlin-Dahlem	12	12	Noordoostpolder197	4	
Darmstadt (Öko)	135	81	Pforzheim	24	
Darmstadt (Öko)14	18		Prag	121	
Dikopshof	24	24	Puch127	4	4
Dülmen	12	12	Puch26	100	100
Ellwangen	72	84	Puch28	8	4
Forchheim	110	108	Rauischholzhausen74	36	36
Gembloux	84		Rauischholzhausen75	12	12
Göttingen	6	4	Rauischholzhausen78	24	24
Grakov (Ukr)	27		Rauischholzhausen84	175	180
Groß Kreutz M04	425	450	Roda	30	24
Groß Kreutz M70	143	150	Schädtbek	12	12
Groß Kreutz P60	328	349	Seehausen140	32	
Güterfelde öko FF	8	4	Seehausen143	60	
Halle	83	4	Seehausen144	14	14
Halle91	6	6	Seehausen148	16	16
Halle96	14	12	Speyer153	18	18
Heidenheim	78	84	Speyer154	45	29
Heino195	15		Spröda	46	
Heino200	4		spröda_b17	144	144
Järna	32	32	Spröda_DV	594	594
Järna	32	32	Stockach	108	108
Keszthely	12		Therwil öko (CH)	64	28
Lauterbach	6		Thyrow	72	
Lentföhrden 12 12		12	Thyrow165	56	16
Meckenheim53	29	28	Thyrow168	49	
Meckenheim54	27	27	Thyrow170	24	16
methau_b17	144	144	Völkenrode	10	
Methau_DV	612	594	Weierbach	104	108
Müncheberg	42		Wildeshausen	6	
Müncheberg118	336		Yachenka (BelaRuss)	12	

Werden die in Tabelle 1 dargestellten Versuche nach Versuchsvarianten aufgegliedert, die weniger als drei C_{org} -Messwerte besitzen, wird ersichtlich, dass dies 217 der 598 Versuchsvarianten betrifft. Dies entspricht 36 % der Versuchsvarianten. Für jede Versuchsvariante waren mindestens zwei Messwerte (außer die Variante Spröda 156 var. 2.4) vorhanden. Beim N_t waren für 25 % der Versuchsvarianten weniger als drei N_t-Messwerte und für 29 % der Versuchsvarianten keine N_t-Messwerte verfügbar.

In der Abbildung 6 wurde die Verteilung der $C_{org^{-}}$ und N_{t} -Messwerte nach Bodenarten (0-30 cm, RBS) dargestellt. Für jede Bodenart standen Messwerte zur Verfügung. Für die Bodenarten L und SI lagen die meisten Messwerte vor. Nur für die Bodenart lehmiger Sand war eine höhere Anzahl an $N_{t^{-}}$ als an C_{org} -Messwerten verfügbar.

Abbildung 6: Anzahl der verfügbaren C_{org}- und N_t-Messwerte (Gesamtdatensatz) für die Bodentiefe 0-30 cm nach Bodenarten (RBS)

3.2 Beschreibung des Modells CCB zur Abbildung der C- und N-Dynamik

3.2.1 Datenmodell und Modellalgorithmen

Als Basis für die Entwicklung des Verfahrens **C**ANDY **C**arbon **B**alance (CCB) diente das C-N-Prozessmodell CANDY (FRANKO 1989). Für die Abbildung der Umsatzbedingungen unter Praxisvoraussetzungen wird im Modell CCB die standorttypische biologische Aktivität (BAT) nach FRANKO & OELSCHLÄGEL (1995) durch eine Gleichung aus einfach zugänglichen Standortgrunddaten der Reichsbodenschätzung (RBS) und aus den Klimadaten (Abb. 1) berechnet. Stoffflüsse hinsichtlich Kohlenstoff und Stickstoff werden in Jahresschritten modelliert.

Das Modell ermöglicht die Prozesssimulation in Jahresschritten, beginnend mit einem C_{org}- und N_t-Startwert, letzterer fakultativ. Als Antrieb dienen die aus den Klima- und Bodenparametern berechnete BAT, die Fruchtfolge sowie die C- und N-Zufuhr über die organischen und mineralischen Düngemittel. Die Eingabe des N-Entzuges ist möglich. Alle Daten sind in einer Datenbank abgelegt. Diese können dort direkt oder über die Anwenderoberfläche bearbeitet werden. Die Simulation des C-N-Umsatzes verlangt grundlegende physikalische Bodenparameter. CCB erfordert aber keine vollständige Angabe dieser intern benutzten bodenphysikalischen Parameter. Ausgehend von einem minimalen Datenumfang (Abb. 1) werden weitere, von den Modellalgorithmen benutzte Parameter mittels Pedotransferfunktionen bestimmt, falls diese nicht durch den Anwender eingegeben wurden. Das dem CCB-Modell zugrunde liegende Datenmodell (Tabellenstruktur der Access-Datenbank) ist in der Abbildung 7 dargestellt worden. Das Datenmodell zeigt die Verknüpfung der Basisdaten (Boden, Klima, Bewirtschaftung) mit den Versuchsvarianten oder landwirtschaftlichen Praxisschlägen. Zusätzlich können den Versuchsvarianten auch Messwerte zugeordnet werden. Die verwendeten Kulturarten werden über die Tabellen der Pflanzenparameter, der organischen Dünger, sowie der Ernte- und Wurzelrückstände näher beschrieben. In Abbildung 8 ist die Berechnung des C-Umsatzes (Pools und Flüsse) im Modell CCB zusammenfassend dargestellt. Die Modellalgorithmen sowie alle Parameter der Fruchtarten und organischen Materialien sind in FRANKO et al. (2011) ausführlich dokumentiert worden.

Abbildung 7: Das grundlegende CCB-Datenmodell

Abbildung 8: Genereller Aufbau des Modells CCB (Abkürzungen siehe Verzeichnis)

3.2.2 Modellstart

Zum Modellstart werden die aktuellen Mengen für die verschiedenen C-Pools (Active SOM, Stabile SOM, LTS-SOM) ausgehend vom vorgegebenen C_{org} -Wert zum Zeitschritt 0 berechnet. Die jetzige Programmversion ermöglicht die Prozesssimulation in Jahresschritten, beginnend mit einem gemessenen C_{org} - und N_t-Startwert (fakultativ). Als Antrieb dienen die aus den Klima- und Bodenparametern berechnete BAT (biologische aktive Zeit), die Fruchtfolge inklusive Ertrag sowie die C- und N-Zufuhr über organische und mineralische Düngemittel. Als zusätzliche Eingabegröße können in der aktuellen Version auch N_t-Messwerte des Bodens verarbeitet werden. Alle Daten sind in einer ACCESS-Datenbank abgelegt. Diese können direkt in der Datenbank oder über die Anwenderoberfläche gepflegt werden.

Es gibt zwei Varianten, das CCB-Modell für Modellierungen zu nutzen – den Praxis- und den Expertenmodus. Für die Nutzung des CCB-Modells im Praxismodus wurde ein ausführliches Nutzerhandbuch verfasst.

Zur Versuchsdokumentation und erleichterten Dateneingabe bzw. -kontrolle wurde im Expertenmodus eine Schnittstelle des CCB zur Literaturverwaltung eingerichtet. Hier können beliebige Dokumente (z. B. Veröffentlichungen, Versuchsberichte) in digitaler Form mit dem entsprechenden Versuch verknüpft werden. Es können auch Datensätze aus Literaturdatenbanken (z. B. Endnote, Reference, Manager etc.) im RIS-Format importiert werden. Die Modellversion im Expertenmodus bietet auch die Möglichkeit, zwischen verschiedenen Gleichungen zur Berechnung der biologisch aktiven Zeit (BAT) umzuschalten. Weiterhin wurde im Expertenmodus eine Schnittstelle zur statistischen Datenauswertung mit dem freien Statistikprogramm "R" (http://cran.r-project.org) geschaffen. Somit kann eine große Breite von Verfahren der statistischen Datenanalyse genutzt werden.

CCB bietet die Möglichkeit von Szenariorechnungen. Hier können Effekte von Änderungen der Klimadaten sowie von Fruchtfolge- und Düngungsanpassungen auf die Humusreproduktion und N-Mineralisation studiert werden. Das Modell inklusive Handbuch und einer Beispielsdatei kann unter http://www.ufz.de/ccb heruntergeladen werden. Die R-Scripte aus der Modellvalidierung sind als Anregung auf der gleichen Internetseite zusammengestellt worden.

3.2.3 Berechnung des C-Umsatzes

Die Menge des anfallenden Kohlenstoffs aus der organischen Primärsubstanz (OPS) ergibt sich einmal aus den angegebenen Mengen organischer Dünger und andererseits ertragsabhängig aus den Ernte- und Wurzelrückständen. Diese Mengenberechnungen erfolgen modellintern.

Die Berechnung der Umsätze für die einzelnen Pools der OPS (anfallendes organisches Material aufgeteilt nach Qualität) erfolgt in Jahresschritten, könnte aber in zukünfigen Modellversionen bei Vorlage höher aufgelöster Daten auch auf Monatsebene berechnet werden. Voraussetzung ist hierfür die Berechnung der BAT in Monatsschritten. Dazu ist eine Verteilung der Jahressumme auf die einzelnen Monate vorzunehmen. Dies ist nach entsprechenden Erfahrungen (FRANKO 1989) standortabhängig.

Die N-Mineralisierung wird in Jahresscheiben aufgezeichnet. Für die Saldoberechnung wird auf die in der Tabelle der Bewirtschaftungsdaten (cultivation) eingegebenen Erträge der Fruchtarten (Voraussetzung für die Bestimmung der N-Entzüge) und Mineral-N-Düngungswerte zurückgegriffen. Um Störungen zu vermeiden, ist zu empfehlen, in den Varianten ohne N-Mineraldüngung mindestens einen Datensatz mit der Düngermenge 0 anzugeben, um zwischen "keine Information" und "keine N-Düngung" zu unterscheiden. In der Tabelle CDYPFLAN sind die N-Gehalte der Kulturarten nach CCB (Standardeinstellung) und des Programms BEFU (FÖRSTER et al. 2011) enthalten.

3.2.4 Faktor zur Definition der langzeitstabilen organischen Bodensubstanz

Der CIPS-basierte Ansatz (Kuka et al. 2007) mit Berücksichtigung der Bodenphysik wird als Standard im CCB verwendet, weil geprüfte alternative Ansätze (nach FALLOON et al. 1998; nach KÖRSCHENS et al. 1980) als nicht effektiv im Sinne der Modellanpassung bewertet wurden. Für spezielle Vorhaben kann in den Bodenparametern ein anders bestimmter Faktor (F_{Its}) direkt angegeben werden.

3.3 Berechnung verschiedener Stufen der N-Bilanz

3.3.1 Berechnung der klassischen Schlagbilanz

In einer Bilanz werden die Zu- und Abgänge eines Stoffes in einem zeitlich und räumlich abgegrenzten System verrechnet. Insgesamt standen 598 Datensätze (Gesamtdatensatz) für die Berechnung von N-Salden aus N-Mineralisierung, Mineraldüngung/organische Düngung, legume/nichtlegume N-Bindung sowie N-Entzug zur Verfügung. Die Flächen- bzw. Schlagbilanzierung folgt dem Prinzip der Bruttosaldierung (siehe Kolbe & Köhler 2008). Möglichst alle Zufuhr- und Abfuhrgrößen werden erfasst (Tab. 2, Gl. 1).

Tabelle 2: Komponenten der Schlagbilanz

Nr.	Bilanz-Komponenten im CCB	Erklärung
А	n_abfuhr	N-Abfuhr mit Hauptprodukt, ggf. Koppelprodukt der Fruchtarten
Z1	n_mindg_inp	Zufuhr N-Mineraldünger
Z2	n_orgdg_inp	N-Zufuhr organischer Dünger, Koppelprodukte, die auf dem Acker verbleiben
Z3	n_leg_inp	Zufuhr symbiotische N-Bindung
Z4	n_asym_inp	Zufuhr asymbiotische N-Bindung
Z5	n_depos_inp	Zufuhr N-Deposition
Z6	n_saat_inp	N-Zufuhr mit Saat- und Pflanzgut
Z	N-Zufuhr (ges.)	N-Gesamt-Zufuhr = Z1 + Z2 + Z3 + Z4 + Z5 + Z6
Z2 Z3 Z4 Z5 Z6 Z	n_orgdg_inp n_leg_inp n_asym_inp n_depos_inp n_saat_inp N-Zufuhr (ges.)	N-Zufuhr organischer Dünger, Koppelprodukte, die auf dem Acker verbleiben Zufuhr symbiotische N-Bindung Zufuhr asymbiotische N-Bindung Zufuhr N-Deposition N-Zufuhr mit Saat- und Pflanzgut N-Gesamt-Zufuhr = Z1 + Z2 + Z3 + Z4 + Z5 + Z6

 $N - Saldo_{Fläche} = Z - A$

(GI. 1)

3.3.2 Berechnung unter Einbeziehung der N-Mineralisation

Der praxisgerecht vereinfachte Modellansatz von CCB kann keine direkten Veränderungen im N_{min}-Vorrat simulieren, ermöglicht aber Aussagen zur N-Wechselwirkung (Freisetzung bzw. Festlegung) mit der organischen Bodensubstanz. Bei der Modellierung der Umsatzprozesse für C und N im Boden wird die Mineralisierung bzw. Immobilisierung von Stickstoff berechnet. Im Ergebnis dieser Rechnung erhält man einen Stickstofffluss, der zusätzlich zu den übrigen N-Quellen (Mineraldüngung, Immission, biologische N-Fixierung, N_{min}-Untersuchung) für die Ertragsbildung zur Verfügung steht.

Bei hohen Aufwandmengen an N-armen organischen Düngern wird die zur Humusbildung benötigte N-Menge als negative N-Mineralisierung ausgewiesen. Bei der Interpretation dieser Daten ist zu beachten, dass das CCB nicht den Pool an mineralisiertem N im Boden behandelt, sondern nur die Änderungspotenziale für diesen Pool ausweist. Bei einer ausgewiesenen Immobilisierung wird also unterstellt, dass diese N-Menge auch tatsächlich zur Verfügung steht. Falls dies nicht der Fall wäre, würde die Umsetzung der organischen Primärsubstanz durch den Stickstoffmangel gehemmt.

Für eine Reihe praktischer Bewertungen ist die Kenntnis der mit dem Humusumsatz verbundenen N-Flüsse eine wichtige Kenngröße. Betrachtet man eine gesamte Fruchtfolge, so werden in einzelnen Jahren Überhänge an Stickstoff entstehen, die je nach den standort- und jahresspezifischen Verlusten in der vegetationslosen Zeit, der Folgefrucht anteilig zur Verfügung stehen. Der jeweilige N-Saldo eines Wirtschaftsjahres liefert dazu eine wichtige Information. Durch die bereits erwähnten Verluste zwischen zwei Vegetationsperioden wird dieser Betrag jedoch verringert. Diese Verluste entstehen durch Auswaschung und auch durch mikrobiell induzierte Bildung von Spurengasen und sind, vereinfacht ausgedrückt, der Größe des vorhandenen Pools an mineralisiertem N proportional. Die Berechnung der N-Mineralisierung (N_m) wird im CCB in Jahresscheiben vorgenommen. Hierbei dient die N-Mineralisation als Basis zur Optimierung von Verfahren zur Fruchtfolgeplanung und N-Düngungsbemessung. Die Komponenten können aber auch für den Gesamtdatensatz der Dauerversuche im Durchschnitt der Versuchsjahre berechnet werden, wobei wiederum eine Form der Flächenbilanzierung (N-Saldo_{Boden}) erstellt werden kann (Tab. 3; Gl. 2).

Nr.	Bilanz-Komponenten im CCB	Erklärung
А	n_pflanze_out	N-Aufnahme in die Pflanze = N-EWR + N-Koppel- + N-Hauptprodukt der Fruchtarten
Z1	n_mindg_inp	Zufuhr N-Mineraldünger
Z2	n_mos_inp	Zufuhr N-Mineralisierung (Nm)
Z3	n_leg_inp	Zufuhr symbiotische N-Bindung
Z4	n_asym_inp	Zufuhr asymbiotische N-Bindung
Z5	n_depos_inp	Zufuhr N-Deposition
Z6	n_saat_inp	N-Zufuhr mit Saat- und Pflanzgut
Z(incl. Nm)	N-Zufuhr (ges.)	N-Gesamt-Zufuhr = x1 + x2 + x3 + x4 + x5 + x6

 $N - Saldo_{Boden} = Z_{(incl.Nm)} - A$

(GI. 2)

Die Komponente N-Mineralisation stellt dabei die Summe der N-Freisetzung aus der zugeführten organischen Substanz aus EWR der Fruchtarten, der organischen Dünger sowie des Humusumsatzes des Bodens dar. Die N-Gesamtzufuhr ist die Summe aus allen aufgeführten N-Quellen. Hierbei ist zu beachten, dass nur in den Fällen eine symbiotische N-Zufuhr für die Jahre angerechnet wird, in denen diese Leguminosen als Haupt- oder Zwischenfrucht auch angebaut worden sind. Die N-Aufnahme stellt die N-Summen aus Haupt- und Nebenprodukten sowie den Ernte- und Wurzelrückständen (EWR) der Fruchtarten und Zwischenfrüchte dar. Im Gegensatz zu den Schlagbilanzen, bei denen nur die von der Fläche abgeführten N-Mengen in Haupt- und Nebenprodukten angerechnet werden (vgl. Tab. 2), werden hier die gesamten von einem heranwachsenden Pflanzenbestand eines Jahres aufgenommenen N-Mengen angerechnet.

3.4 Methodik zur Fehleranalyse

3.4.1 Grundsätzliche Überlegungen

Die quantitative Einschätzung der Modellgenauigkeit (goodness of fit) basiert auf dem Vergleich der beobachteten und simulierten Werte mittels eines oder mehrerer Gütemaße. Hierdurch kann bestimmt werden, mit welcher quantitativen Genauigkeit ein Modell arbeitet. Dies stellt einen wesentlichen Bestandteil der Modellvalidierung dar (KIR-BY et al. 1993). Im Allgemeinen kann zwischen absoluten und relativen Gütemaßen unterschieden werden. Relative Gütemaße haben aufgrund ihrer Dimensionslosigkeit den Vorteil, dass sie einfach auf andere Modelle und räumliche Gebiete übertragen werden können und somit eine gute Vergleichbarkeit gegeben ist. Absolute Gütemaße stellen den Fehler in den Einheiten der Modellvariablen dar. Die Einschätzung des Modellverhaltes sollte immer absolute und relative Gütemaße enthalten. Dabei sollte die Anzahl der verwendeten Gütemaße gering sein (ASCE 2009). Zusätzlich zur quantitativen Beurteilung der Modellgüte ist eine qualitative Modelleinschätzung anhand einer visuellen Analyse der Übereinstimmung in der Darstellung der gemessenen und simulierten Werte hilfreich. Dadurch kann der Modellanwender sich einen Überblick über das generelle Modellverhalten schaffen und die Möglichkeiten des Modells abschätzen.

Im vorliegenden Fall verfolgen die Modellierarbeiten letztlich das Ziel, eine Prognose der Humusdynamik und der Mineralisierungsprozesse im Boden zu berechnen. Dabei muss man prinzipiell von der Hypothese ausgehen, dass die vorliegende Variation in den vorhandenen Datenreihen durch die Modellantriebe den in der Zukunft zu erwartenden Veränderungen entspricht und auch die modellierten Zustandsgrößen in dem beobachteten Bereich bleiben. Grundsätzliche Systemveränderungen (z. B. Bodenverlust durch Erosionsabtrag) und deren Wirkung auf die Zustandsgröße C_{org} können natürlich nicht vorhergesagt werden, wenn diese Prozesse nicht einbezogen sind bzw. auch zuvor nicht beobachtet wurden.

Änderungen im Anbau, in der Düngung und im Wetterablauf sollten dagegen in ihrer Wirkung auf die betrachtete Zustandsgröße prognostiziert werden. Man bezeichnet diese Größen, deren Wirkung das Modell beschreiben soll, als Modellantrieb oder "driver". Voraussetzung für die Prognosefähigkeit ist es, dass die jeweilige Auswirkung eines "drivers" auf die betrachtete Zustandsgröße (hier Mineralisierung bzw. Humusgehalt) richtig abgebildet wird. Durch die hohe Komplexität des betrachteten Systems ist es nicht immer ausreichend, die "driver" über den Beobachtungszeitraum als Mittelwerte zu betrachten. Um die richtige Abbildung der "driver" auf das Systemverhalten zu bewerten, ist es besser, den zeitlichen Ablauf im Detail zu analysieren. Bezogen auf die hier verfolgte Zielstellung ist es also erforderlich, bei der Gütebewertung das Zeitverhalten des Modells zu berücksichtigen. Dies erfolgt am besten über eine möglichst dichte und gleichmäßig über die Zeit verteilte Reihe von Beobachtungswerten. Hierzu kann die Reduktion der Betrachtung auf nur einen Anfangs- und Endwert zu unzureichenden Aussagen über die Prognosequalität eines Modells führen (Abb. 9).

Abbildung 9: Fiktive Anpassung verschiedener Modelle an zwei Beobachtungspunkte

Kennt man zu zwei Zeitpunkten den Wert einer dynamischen Zustandsgröße (Abb. 9), so lassen sich nahezu beliebige Modelle an diese Daten anpassen. Wie das Beispiel zeigt, haben alle diese Modelle die gleiche Güte (ME = 0, RMSE = 0) bei der Abbildung der zwei Beobachtungswerte (Anfangs- und Endwert, die exakt getroffen werden). Sie unterscheiden sich aber gravierend im Zeitverhalten und liefern sehr unterschiedliche Prognosewerte. Erst weitere Beobachtungen erhöhen die Wahrscheinlichkeit der Prognosefähigkeit (M1, M2, M3, M4 = theoretische Modellläufe). Davon ausgehend, dass das zukünftige Systemverhalten durch die gleiche Wirkung der "driver" wie im Beobachtungszeitraum bestimmt ist, wird also die Prognosegüte durch die Anpassung des Modells an den beobachteten Verlauf der jeweils betrachteten Zustandsgröße bestimmt.

Bei der Bewertung dieser Anpassung gibt es das grundsätzliche Problem, dass alle Beobachtungswerte mit einem Fehler behaftet sind, so dass der wahre Systemzustand sich in einem Intervall um den Beobachtungswert befindet. Würde man fordern, jeden Beobachtungswert mit einem Modell exakt zu berechnen, bezieht man eine scheinbare, durch die Fehlerstreuung verursachte Dynamik in die Systembeschreibung ein, was zu den bekannten überparametrisierten Modellen führen würde, deren Prognosefähigkeit wieder ungenügend sein kann. Das Wissen um die Güte der Beobachtung ist also essentiell bei der Modellkalibrierung.

Neben diesen theoretischen Grundsätzen kommt es bei der praktischen Umsetzung jedoch oft zu fließenden Übergängen, die die o. a. absolute Gültigkeit der Aussagen wieder einschränken. So können in der Regel von den in Abbildung 9 aufgeführten theoretischen Modellläufen die meisten von vornherein ausgeschlossen werden. Zudem soll durch die statistische Prüfung oft nicht ein in der Regel fixierter Verlauf der Prognose bewertet werden, sondern lediglich eine Bewertung der Abweichung des Endpunktes erfolgen. Auch die Feststellung, dass der Endpunkt der Beobachtung einer Streuung unterliegt, ist oft nur von untergeordneter Bedeutung. Je höher die Anzahl (vergleichbarer) Varianten in der zu tätigenden statistischen Analyse ist, umso unbedeutender ist die zufällige Abweichung einer Variante. Um diesen Fehler so klein wie möglich zu halten, ist in den vorliegenden Auswertungen eine möglichst große Anzahl an Standorten und Versuchsvarianten eingeflossen.

3.4.2 Klassische Verfahren zur Fehleranalyse

Für die statistischen Analysen wurde die Statistiksoftware R Version 2.7.1 genutzt (R Development Core Team, 2008). Teile der verwendeten Scripte können unter http://www.ufz.de/ccb heruntergeladen werden. Hinsichtlich der Bewertung von Modellergebnissen existiert in der Literatur eine Vielzahl von Indizes (vgl. LOAGUE & GREEN 1991; SMITH et al. 1997). Für die Bewertung des CCB Modellverhaltes wurden der root mean square error (RMSE, Gl. 3), der mean error (ME, Gl. 5), der standard error of mean (SEM, Gl. 7) und der Pearson'sche Korrelationskoeffizient (r, Gl. 8) für gemessene (O) und modellierte (P) C_{org}-Werte für eine Anzahl (n) von Messwerten verwendet (Tab. 4).

Größe	Beschreibung	Inhalt
Oi	gemessener Wert zum Zeitschritt i	M%
Pi	modellierter Wert zum Zeitschritt i	Μ%
n	Anzahl Messungen	-
RMSE, RMSErel	Mittlerer quadrat. Fehler (root mean square error)	M% oder %
ME, MErel	Mittlerer Fehler (mean error)	M% oder %
SEM	Standardfehler der mittleren Differenz (standard error of the mean difference)	Μ%
σ	Standardabweichung der Differenz O-P	M%
r	Pearson'sche Korrelationskoeffizienten	-

Tabelle 4: Genutzte Gütemaße zur Fehlerbewertung	g und deren Bezeichnung im Modell
--	-----------------------------------

Aufgrund der Vorzeichen bei der Betrachtung des mittleren Fehlers ME (auch als MED bezeichnet) kann eine generelle Über- oder Unterschätzung erkannt werden. Die Wurzel aus dem mittleren quadratischen Fehler RMSE (root mean square error) wird als klassisches Gütemaß bezeichnet. Hierbei werden die größeren Differenzen zwischen den gemessenen und simulierten Werten überproportional hoch bewertet (Gl. 3). Die Einheit des ME und des RMSE ergibt sich aus den Einheiten der Eingangswerte. Die Güte der simulierten Werte hängt von der zeitlichen Auflösung der Eingangsdaten und deren Fehlerbereich ab.

Die Entscheidung über das Vorliegen einer systematischen signifikanten Abweichung (bias) erfolgt in Abhängigkeit von den Werten für SEM und ME, wenn SEM < ME. Eine systematische Abweichung kann nicht festgestellt werden, wenn die Streuung s den Wert des mittleren Fehlers überschreitet.

Der Pearson'sche Korrelationskoeffizienten r beschreibt den Grad der Kollinearität zwischen gemessenen und simulierten Werten. Dieses Fehlermaß variiert zwischen -1 bis +1. Es hat allerdings für die Beurteilung des Modellverhaltens nur einen begrenzten Wert, weil hier nur die linearen Beziehungen zwischen den Variablen bewertet werden. Es ist unsensitiv gegenüber zusätzlichen und proportionalen Unterschieden zwischen den Modellsimulationen und den Messungen.

Hinsichtlich der Berücksichtigung verschiedener C_{org} -Niveaus der Böden wurden auch relative Werte verwendet RMSE_{rel} and ME_{rel} (Gl. 4; Gl. 6). Allgemeine Grenzwerte für eine erfolgreiche Modellvalidierung von C-Modellen gibt es nicht. Eine gute Übereinstimmung von Mess- und Modellwerten ist erreicht, wenn die Werte für RMSE, RMSE_{rel}, ME, ME_{rel}, SEM und der Wert (1 - r) möglichst nahe 0 liegen.

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (O_i - P_i)^2}{n}}$$
(GI. 3)
$$RMSE_{rel} = \frac{100}{\overline{O}} \sqrt{\frac{\sum_{i=1}^{n} (O_i - P_i)^2}{n}}$$
(GI. 4)

$$ME = \frac{\sum_{i=1}^{i=n} (O_i - P_i)}{n}$$
(GI. 5)

$$ME_{rel} = \frac{100}{\overline{O}} \frac{\sum_{i=1}^{i=n} (O_i - P_i)}{n}$$
(GI. 6)

$$SEM = \sqrt{\frac{\sigma^2}{n}}$$
(GI. 7)

$$r = \frac{\sum O_i P_i - \frac{1}{n} (\sum O_i) \cdot (\sum P_i)}{\sqrt{\left[\sum O_i^2 - \frac{1}{n} (\sum O_i)^2\right] \left[\sum P_i^2 - \frac{1}{n} (\sum P_i)^2\right]}}$$
(Gl. 8)

Die Korrelation zwischen O_i und P_i ist signifikant, wenn der Wert für T_0 (Gl. 9) nicht niedriger als der kritische Wert (rechtsschief) der Student's T-Verteilung (p=0.95, f=n-2) ist.

$$T_0(r) = \left| r \right| \frac{\sqrt{(n-2)}}{\sqrt{1-r^2}}$$
(GI. 9)

3.4.3 Ergänzende Verfahren zur Fehleranalyse

Wenn die Anfangswerte für C_{org} und N_t aus den Versuchen direkt oder indirekt als mittlere Ausgangwerte für die Modellsimulationen festgelegt wurden, waren in der Regel die statistischen Parameter ME und RMSE bei Verrechnung der den Anfangswerten (zeitlich) folgenden Werte sehr niedrig. Im Idealfall war keine Variation festzustellen, weil zwischen den Anfangswerten und den nachfolgenden experimentellen Werten kaum Unterschiede bestanden. Dagegen wurden bei Verrechnung vom Anfangswert (zeitlich) weiter entfernter Ergebnisse die statistischen Unterschiede größer. Auf diese Weise entstand bei Verwendung der gesamten Ergebnisse in den statistischen Parametern der Versuchsvarianten eine gewisse Verzerrung indem die statistischen Parameter relativ niedrige Werte annahmen. Dieser Nachteil tritt auch dann besonders stark hervor, wenn in der Anfangsphase des Versuches eine hohe Anzahl an Messwerten vorliegt, in der Endphase jedoch nicht.

Hierdurch entstand der Eindruck, dass im Vergleich zur Wirklichkeit eine zu gute Anpassung der Modellwerte an die Versuchsdaten impliziert wurde. Oft wurden durchschnittliche Werte ermittelt, die z. T. deutlich unter der Fehlerstreuung der Feldversuche lagen. Damit eine möglichst gleichwertige Bewertung der Varianten und zudem eine

bessere Vergleichbarkeit der erlangten Ergebnisse mit anderen Analysen hergestellt werden konnte, wurde nach Wegen gesucht, diese Nachteile der bisherigen Verrechnung zu korrigieren. Hierzu wurden für die Berechnung der statistischen Parameter MED und RMSE nachfolgend genannte Erfassungsmethoden vergleichend gegenübergestellt:

- **M1-Alles** (in die Bewertung werden alle Versuchsjahre einbezogen: Modellwert minus Experimentwert für jeden dokumentierten Jahreswert, X Werte für jede Variante)
- **M1-1.Hälfte** (in die Bewertung werden nur Jahre der ersten Hälfte des Versuches einbezogen)
- **M1-2.Hälfte** (in die Bewertung werden nur Versuchsjahre der zweiten Hälfte einbezogen)
- **M2-Genau** (Anpassung durch Schätzung eines Versuchs-Endwertes durch Regression oder subjektiv, Modellwert minus geschätzter Endwert, 1 Wert für jede Variante, hoher Zeitaufwand)
- M3-Ab15 (wie unter 1. beschrieben, zur Fixierung der ersten Hälfte der Versuche wurden die ersten 14 Jahre nicht berücksichtigt, wenn die Laufzeit kürzer ist, werden nur die letzten drei Jahre in die Auswertung übernommen, sonst werden alle Werte ab dem 15. Versuchsjahr einbezogen, X Werte für jede Variante, hoher Zeitaufwand).

3.5 Möglichkeiten der Optimierung der Startwerte für C_{org} und N_{t}

Aus den beschriebenen Modellalgorithmen wird ersichtlich, dass CCB für einen Modelllauf einen Startwert für C_{org} (und N_t) benötigt. Zur Festlegung der Startwerte kamen verschiedene Methoden zur Anwendung:

- **Erster Messwert:** Der erste verfügbare Messwert wurde als Startwert festgelegt.
- **Sichtprüfung:** Über eine Sichtprüfung wurde der Startwert von Hand festgelegt.
- Optimierungsalgorithmus: Zur Festlegung der Startwerte wurde ein Optimierungsverfahren angewendet: "Downhill Simplex Method in Multidimensions" (PRESS et al. 1989). Die Summe der quadratischen Abweichungen SS (GI. 10) zwischen berechneten und experimentell ermittelten Werten wird hierbei als Zielkriterium verwendet. Ziel ist die Minimierung dieser Größe durch die Optimierung des C_{org}-Startwertes, wobei alle anderen Parameter (siehe FRANKO et al. 2011) konstant gehalten werden.

$$SS = \sum (O_i - P_i)^2$$
 (GI. 10)

Regressionsauswertungen: Zur Festlegung der Startwerte kommen Methoden der Regressionsanalyse zur Anwendung. In der Regel wurde ein mittlerer Anfangswert zwischen den Ergebnissen der linearen und der quadratischen Regressionsanalyse der experimentellen Werte festgelegt.

4 Ergebnisse

4.1 Überblick zu Arbeitsschritten und Ergebnissen der einzelnen Projektphasen

Dieser Bericht vereint die Ergebnisse verschiedener Projektphasen (Tab. 5).

Tabelle 5: Projektphasen der CCB-Entwicklung und deren grundlegende Arbeitsergebnisse

Projektphase	Arbeitsergebnisse	Weiterführende Literatur
Projektphase I (2005-2007)	 Erstellung und Erweiterung der Datensammlung Dauerversuche auf Basis der Vorarbeiten von KOLBE (2005) (Datenbasis beinhaltet CAN- DY- und CCB-lauffähige Daten) Aufnahme von Bodendauerbeobachtungsflächen (BDF) und Dauertest- flächen (DTF) aus Sachsen u. a. Bundesländern (z. B. Niedersachsen) Aufnahme von Bodendaten (BÜK 200), Klimadaten und Bewirtschaf- tungsdaten aus der Agrarstatistik Sachsens Prüfung von vier Verfahren zur C_{inert}-Berechnung erste Anpassungen zur Biologisch Aktiven Zeit (BAT) für Sachsen durch CANDY-Simulation erste Validierungsarbeiten an BDF, DTF und Dauerversuchen 	FRANKO et al. (2005) Zwischenbericht, sowie FRANKO & LIEß (2006) (Abschlussbericht "Er- stellung und Prüfung von Verfahren des N- Umsatzes …") KOLBE & RINGE (2007) (Abschlussbericht "Er- stellung und Prüfung von Verfahren des N- Umsatzes …") FRANKO & LIEß (2007) (Zwischenbericht "Ab- schätzung des N-Umsatzes … Phase I")
Projektphase II (2007-2008)	 Änderung des Rechenkerns: Austausch der analytischen Näherungs- lösung gegen die numerische Lösung Parameteranpassung für Kompost Begrenzung der Poolgröße des umsetzbaren Kohlenstoffs zum Start- zeitpunkt auf max. 1 M % Skelettgehalt des Bodens wird bei der Umrechnung von Flächen- zu Masseanteilen verwendet Parameteränderung (für Lehmböden wird ein spezieller Radius für die Mesoporen angenommen) Berechnung der BAT aus jährlichen Klimadaten (soweit vorhanden) Integration der Beregnung in die BAT-Berechnung Einbeziehung der N-Umsätze Beendigung von Validierungsarbeiten anhand der BDF und DTF, weil deren Ergebnisse zu ungenau sind 	LIEß & FRANKO (2008) (Zwischenbericht "Abschätzung des N- Umsatzes … Phase II")

Projektphase	Arbeitsergebnisse	Weiterführende Literatur
Projektphase III (2008-2009)	 Die Gleichung zur Berechnung der Biologischen Aktivität (BAT) beruht auf einem statistischen Ansatz, der auf die sächsischen Verhältnisse angepasst wurde. Diese neu für die sächsischen Standorte angepass- te BAT-Gleichung wurde in die Version 2008 des CCB-Modells imple- mentiert. Die Prüfung ergab keine Modellverbesserung, sodass dieser Ansatz wieder verworfen wurde. Überprüfung aller Versuchsvarianten hinsichtlich Startjahre (Aktualisie- rung der Bewirtschaftungsdaten und Messwerte) Für die Standorte Thyrow, Forchheim, Weiherbach, Stockach, Ellwan- gen und Heidenheim wurden die jährlich aktuellen Klimadaten verwen- det und Daten zu den N-Düngungsmaßnahmen eingearbeitet. Die Zwi- schenfrucht- und Leguminosenerträge wurden geprüft und aktualisiert. Für die Versuche in Thyrow wurden die Beregnungsgaben extra er- fasst. Das Modellverhalten wurde anhand verschiedener Gütemaße geprüft. Für definierte Antriebs- und Steuergrößen wurden mögliche systemati- sche Abweichungen geprüft. Das CCB-Datenmodell wurde so erweitert, dass auch die N-Flüsse und die N_t-Gehalte abgebildet werden können. Dazu werden alle relevan- ten Größen ausgewiesen. Es wurde ein Ansatz zur Berechnung der legumen N-Bindung ins Modell integriert. Ebenso wurde eine Methode zur Integration der regional unterschiedlichen atmogenen N-Deposition eingebunden. Mit der Statistikumgebung R (R Development Core Team, 2008) wur- den Scripte verfasst und in die Modellumgebung von CCB eingebun- den, so dass die statistische Auswertung anhand vorgegebener Grö- ßen für alle Versuchsvarianten durchgeführt werden kann. 	FRANKO et al. (2009) (Zwischenbericht "Abschätzung des N- Umsatzes Phase III)
Projektphase IV (2009-2011)	 Erstellung einer wissenschaftlich begutachteten Publikation zu Modell- aufbau und Validierung Ergebnisse zur Berechnung der N-Nachlieferung aus dem Humusum- satz 	FRANKO et al. (2011)

4.2 Modellergebnisse – Teil Kohlenstoff

4.2.1 Ergebnisse der Corg-Modellierung und Validierung

Basis 65 Versuche mit 598 Varianten

Die nachfolgenden Auswertungen beziehen sich auf die Simulationen mit den über Regressionsauswertungen optimierten C_{org} -Startwerten auf der Basis von 65 Versuchen mit 598 Varianten. Obwohl das Modell CCB intern die SOM-Vorräte in der Einheit Masse pro Fläche berechnet, werden die Ergebnisse und zugehörigen Fehlergrößen nachfolgend in M.% dargestellt, weil dies die Originaleinheit in den entsprechenden Referenzen zu den Dauerversuchen ist. In der Abbildung 10 ist eine Häufigkeitsverteilung der verfügbaren 5.130 C_{org} -Messwerte der 65 Versuche dargestellt worden. Die höchste Anzahl der Messwerte liegt im Bereich von 0,6-1,2 M.% C_{org} . Der Median der Messwerte ist in der Abbildung 11 mit 0,97 M.% ausgewiesen worden. Das Bestimmtheitsmaß für den Vergleich zwischen gemessenen und mit dem CCB berechneten C_{org} -Werten beträgt R² = 0,986.

Abbildung 10: Häufigkeitsverteilung der C_{org} -Messwerte der 65 Versuche

Abbildung 11: Boxplotdarstellung aller Mess- und Simulationswerte (n = 5.130) der 65 Versuche

In der Abbildung 11 ist eine Gegenüberstellung der gemessenen und modellierten C_{org} -Werte aufgezeigt worden. Werden die zugehörigen Fehlergrößen als Mittelwerte aller Versuchsvarianten zusammengefasst, dann wird deutlich, dass das CCB-Modell mit einem RMSE von 0,12 M.% und eine ME von -0,01 M.% eine gute Modellgüte im Mittel der Versuche aufweist.

Eine detaillierte Darstellung der Modellfehler ME und RMSE findet sich für den organischen Kohlenstoff in der Abbildung 12 und der Abbildung 13. Die Häufigkeitsverteilung des ME (Abb. 12) weist darauf hin, dass bei Abweichungen vorwiegend eine Überschätzung der C_{org} -Werte durch das Modell CCB erfolgt.

Abbildung 12: Modellfehler ME für die Corg-Simulation

Abbildung 13: Modellfehler RMSE für die Corg-Simulation

Zur Orientierung wurde der Richtwert von RMSE 0,15 M.% C_{org}, als Hinweis auf ein ausreichendes Modellverhalten verwendet. Dieser Wert wurde ausgewählt, weil es wenig sinnvoll erschien, aufgrund der heterogenen Datenzusammensetzung des Validierungsdatensatzes, eine Modellgüte unter diesem Wert anzustreben. Generell sollte eine Güte für die Modellierungen des CCB-Modells erreicht werden, die keine Korrelationen mehr zwischen dem Modellfehler und den nachstehend angeführten Antriebsfaktoren aufweisen. Für die nachfolgenden Klasseneinteilungen wurde versucht, je Klasse eine annähernd gleich hohe Anzahl von Versuchen zu erhalten. Die Abbildungen beziehen sich auf die Mittelwerte (ΔC_{org} aus Messwert – Simulationswert) je Versuchsvariante (n = 598) über die entsprechende Versuchsdauer. Dies entspricht dem ME der jeweiligen Versuchsvariante. Es wurden Modellantriebsgrößen (sogenannte "driver") aus folgenden Kategorien bewertet: *Standort, Bewirtschaftung* und *Versuchseigenschaften* (Tab. 6). Es wurden ähnliche Ergebnisse für jede Klasse eines geprüften Faktors erwartet, wenn dieser gut im Modell berücksichtigt wurde.

Tabelle 6: Klasseneinteilung zur Prüfung eines Zusammenhanges verschiedener Faktoren mit den definierten Fehlergrößen (n = 598)

Kategorie	Klasse	Klassengrenzen	Anzahl Varianten
Standort			
Bodenart (RBS)"	BA 0	S: T (0-5); U (0-15)	79
	BA 1	SI: T (0-8); U (0-30)	183
	BA 2	IS: T (0-13); U (0-50)	74
	BA 3	L: T (18-30); U (0-82)	161
	BA 4	LT: T (30-50); U (0-72)	61
	BA 5	T: T (50-100); U (0-50)	8
BAT [d]	BAT 0	0 – 1	71
	BAT 1	1 – 30	262
	BAT 2	30 – 60	265
Niederschlag [mm]	KI_NIED 0	1 – 570	201
	KI_NIED 1	570 – 630	205
	KI_NIED 2	630 – 1000	192
Lufttemperatur [°C]	KI_TEMP 0	3 – 8.5	205
	KI_TEMP 1	8.5 – 9.5	202
	KI_TEMP 2	9.5 – 12	191
Bewirtschaftung			
C-Zufuhr über organische Dünger [dt ha a ⁻¹]	OD 0	0 – 1	180
	OD 1	1 – 20	206
	OD 2	20 – 600	212
C/-N-Verhältnis der organischen Dünger	ODA 0	0 – 15	102
	ODA 1	15 – 18	94
	ODA 2	18 – 35	154
	ODA 3	35 – 115	81
mineralische Düngermengen [kg ha-1 a-1]	MD 0	0 – 1	29
	MD 1	1 – 105	349
	MD 2	105 – 500	9
Leguminosenanteil in der Fruchtfolge [%]	LA 0	0 – 1	418
	LA 1	1 – 5	63
	LA 2	5 – 30	70
	LA 3	30 – 100	42
Getreideanteil in der Fruchtfolge [%]	GA 1	1 – 50	201
	GA 2	50 – 65	217
	GA 3	65 – 101	143
Versuchscharakteristik			
erster C _{org} -Messwert [M.%]	ersCorg 0	0 - 0.75	156
	ersCorg 1	0.75 – 1.1	240
	ersCorg 2	1.1 – 6	202
C _{org} -Differenz [M.%]	Corgdiff 0	-1.50.1	144
	Corgdiff 1	-0.1 - 0.1	303
	Corgdiff 2	0.1 - 1.5	151
Versuchsdauer [a]	VDau 0	1 – 15	261
	VDau 1	15 – 30	153
	VDau 2	30 – 130	184
Qualität der Bodendaten	KI_BI 0	T, Bodenart	278
	KI_BI 1	T, Bodenart, dB	40
	KI_BI 2	T, Bodenart, ρB, ρS, PV, FK, PWP	240

Abbildung 14: Differenz zwischen Mess- und Simulationswert in den einzelnen Bodenartenklassen (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 15: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen organischer Dünger (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 16: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen organischer Dünger unterteilt nach dem C/N-Verhältnis (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 17: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Getreideanteil in der Fruchtfolge (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 18: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Leguminosenanteil in der Fruchtfolge (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 19: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Höhe der Mineraldüngung in der Fruchtfolge (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 20: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach der Versuchsgüte (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 21: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach berechneter wirksamer Mineralisationszeit (BAT) (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Klasse Differenz letzter Corg-Wert - erster Corg-Wert

Abbildung 23: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach C_{org} -Differenz (Ende – Anfang) (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 24: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach Versuchsdauer in Jahren (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 25: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach der Qualität der Bodeninformationen (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 26: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach der Lufttemperatur (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien)

Abbildung 27: Differenz zwischen Mess- und Simulationswert in den einzelnen Klassen nach dem Jahresniederschlag (aus Tab. 6) incl. Abweichung von +/- 0,15 M.% C_{org} (grüne Linien) Für die Größe Mittelwerte ΔC_{org} (aus Messwert – Simulationswert je Versuchsvariante, n = 598) konnten geringe bis mittlere systematische Einflüsse der geprüften Faktoren: (a) Bodenart, (b) C-Zufuhr über organische Dünger, (c) Art der organischen Dünger, (d) Getreideanteil in der Fruchtfolge, e) Leguminosenanteil in der Fruchtfolge, (f) Mineraldüngung, (g) Versuchsgüte, (h) Wirksame Mineralisationszeit, (i) C_{org}-Anfangswert, (j) C_{org}-Endwert, (k) C_{org}- Differenz (End- minus Anfangswert) (I) Versuchsdauer, (m) Qualität der Bodeninformationen, (n) Lufttemperatur und (o) Niederschlag, ermittelt werden (Abb. 14 bis Abb. 27).

Basis 40 Versuche mit 391 Varianten

Eine weitere Modellvalidierung fand an 40 (statt 65) Dauerversuchen statt, bei denen der Optimierungsalgorithmus zur Fixierung der Startwerte verwendet worden ist. Nach der Modellanwendung und der anschließenden statistischen Analyse wurde die Modellgüte in verschiedenen Stufen hierarchisch bewertet:

- 1. Stufe: Einzelmesswerte
- 2. Stufe: Versuchsvariante (entspricht im Praxismodus einem Schlag)
- 3. Stufe: Versuch (entspricht im Praxismodus einem Betrieb)

Die durchgeführte Methodik der Validierung ist ausführlich in FRANKO et al. (2011) beschrieben. In der Kategorie *Standort* wurde für den Niederschlag, die Lufttemperatur und die BAT kein signifikanter Einfluss auf das Modellverhalten ermittelt (Abb. 28, Tab. 7). Dagegen stieg beim Faktor Bodenart der Fehler systematisch von der Klasse BA 3 zur Klasse BA 5 an. Durch die Tonböden (Klasse BA 5) wurde der gesetzte Grenzwert überschritten. In der Kategorie *Bewirtschaftung* wurde kein Nachweis für einen systemischen Modellfehler bezüglich der getesteten Einflussfaktoren ermittelt. Dabei wurden die organischen Dünger bezüglich der C-Zufuhr dem C/N-Verhältnis sowie der Leguminosen- und Getreideanteile in der Fruchtfolge geprüft. Die größeren Fehler in der Klasse LA 1 werden durch die Varianten der Versuche Spöda L28 und Methau L28 verursacht. Hier wies das Modell größere Fehler in der ersten Phase des Versuches auf und lieferte mit zunehmender Laufzeit bessere Ergebnisse. Daraus wurde geschlussfolgert, dass kein systematischer Einfluss gegeben war.

In der Kategorie *Versuchscharakteristik* wurde deutlich, das offensichtlich höhere C_{org}-Gehalte zu Versuchsbeginn zu größeren, aber tolerierbaren, Modellfehlern führen, wohingegen die geprüften Faktoren *Veränderung des C_{org}-Gehaltes während der Versuchsdauer* und die Versuchsdauer selbst keinen systematischen Einfluss aufwiesen. Entgegen der Erwartung zeigten die verschiedenen Klassen der Qualität der vorliegenden Bodendaten keinen systematischen Einfluss auf den Modellfehler. Insgesamt war das ermittelte Modellverhalten von CCB bezüglich der geprüften Fehlergrößen gut.

In Anlehnung an SCHLITTGEN (2000) wiesen die gemessenen und modellierten C_{org}-Werte mit einem Bestimmtheitsmaß von 0,948 eine starke Korrelation auf. Bezüglich der Annahme, dass niedrige ME-Werte ein Ergebnis des Optimierungsverfahrens sein können und dadurch mögliche Modellfehler überdecken, wurden die Modellfehler aus der ersten und zweiten Hälfte der jeweiligen Versuchslaufzeit verglichen. Die Ergebnisse aus beiden Intervallen waren ähnlich, mit einer leichten Abnahme des RMSE von 0,105 M.% C_{org} in der ersten Hälfte hin zu 0,089 M.% C_{org} in der zweiten Hälfte. Der ME lag im ersten Intervall bei -0,0034 M.% C_{org} und im zweiten Intervall bei -0,0083 M.% C_{org}. Für beide Fehlermaße wurden die ermittelten Unterschiede als nicht bedeutsam im Vergleich zu den generellen Messunsicherheiten einer C_{org}-Messung bewertet. Weil der C_{org}-Gehalt mit dem Tongehalt korreliert ist (vgl. KÖRSCHENS 1997), kann der ermittelte Einfluss der C_{org}-Klassen und Klassen der Bodenarten verschiedene Gründe haben. Es wurde diesbezüglich die Hypothese aufgestellt, dass der höhere Modellfehler eine Konsequenz aus größeren Messunsicherheiten bei höheren C_{org}-Werten ist. Um dies zu prüfen, wurden die relativen Werte für den RMSE für die definierten Klassen betrachtet (Abb. 29). Hier wird ersichtlich, dass die schweren Tonböden sowie die verschiedenen C_{org}-Versorgungsstufen keinen systematischen Einfluss aufweisen. Die Klassen OD 0 bis

OD 2 zeigen ähnliche Fehlermaße. Daraus wurde geschlussfolgert, dass es kein systematisches Fehlverhalten des Modells gibt.

Tabelle 7: Klasseneinteilung zur Prüfung eines Zusammenhanges verschiedener Faktoren mit dem Fehler RMSE (n = 391)

Kategorie	Klasse	Klassengrenzen	Anzahl Varianten
Standort			
Bodenart "soil type (RBS)"	ST 0 ST 1 ST 2 ST 3 ST 4 ST 5	S: T (0-5); U (0-15) SI: T (0-8); U (0-30) IS: T (0-13); U (0-50) L: T (18-30); U (0-82) LT: T (30-50); U (0-72) T: T (50-100); U (0-50)	11 108 83 122 59 8
BAT [d] "biological active time"	BAT 1 BAT 2	1 – 30 30 – 60	196 195
Niederschlag [mm] "precipitation"	PR 0 PR 1 PR 2	1 – 570 570 – 630 630 – 1000	97 166 128
Lufttemperatur [°C] "temperature"	TP 0 TP 1 TP 2	3 - 8.5 8.5 - 9.5 9.5 - 12	107 134 150
Bewirtschaftung			
C-Zufuhr über organische Dünger [dt ha ⁻¹ a ⁻¹] "C-input by organic amendment"	OF 0 OF 1 OF 2	0 – 1 1 – 20 20 – 600	114 128 149
C/-N-Verhältnis der organischen Dünger "C/N-ration of organic amendment"	OFR 0 OFR 1 OFR 2 OFR 3	0 – 15 15 – 18 18 – 35 35 – 115	52 92 99 53
mineralische Düngermengen [kg ha ⁻¹ a ⁻¹]	MD 0 MD 1 MD 2	0 – 1 1 – 105 105 – 500	29 349 9
Leguminosenanteil in der Fruchtfolge [%] "proportion of legumes in crop rotation"	LCR 0 LCR 1 LCR 2 LCR 3	0 - 1 1 - 5 5 - 30 30 - 100	246 57 49 39
Getreideanteil in der Fruchtfolge [%] "proportion of cereals in crop rotation"	CCR 1 CCR 2 CCR 3	1 – 50 50 – 65 65 – 101	123 167 101
Versuchscharakteristik			
erster C _{org} -Messwert [M.%] "first C _{org} measurement"	FM 0 FM 1 FM 2	0 - 0.75 0.75 – 1.1 1.1 – 6	111 109 171
C_{orq} -Differenz [M.%] C_{org} difference (last-first measurement)"	DIF 0 DIF 1 DIF 2	-1.50.1 -0.1 - 0.1 0.1 - 1.5	128 156 107
Versuchsdauer [a] "experiment duration"	ED 0 ED 1 ED 2	1 – 15 15 – 30 30 – 130	120 124 147
Qualität der Bodendaten "completeness of soil information"	QS 0 QS 1 QS 2	T, Bodenart T, Bodenart, d _B T, Bodenart, ρ_B , ρ_S , PV, FK, PWP	188 40 163

Standort (links): (a) Niederschlag "precipitation", (b) Lufttemperatur "air temperature", (c) Biologisch Aktive Zeit "biologic active time (BAT)", (d) Bodenart "soil type";

Bewirtschaftung (Mitte): (e) C-Zufuhr "C-Input by organic amendments", (f) C/N-Verhältnis der organischen Dünger "C/N ratio of applied organic amendments", (g) Leguminosenanteil "concentration of legumes", (h) Getreideanteil "concentration of cereals";

Versuchscharakteristik (rechts): (i) 1. C_{org}-Messwert "first C_{org} observation", (j) gemessene C_{org}-Veränderung über die Versuchslaufzeit "observed C_{org} change during experiment", (k) Versuchsdauer "duration of experiment", (l) Qualität der Bodeninformationen "quality of soil information"

Abbildung 28: Boxplots der Fehlergröße RMSE geprüft gegen verschiedene Einflussfaktoren (schwarze Linie 0,15 М. % С_{огд}; Klassenbezeichnungen nach Tab. 7) (aus FRANKO et al. 2011)

Abbildung 29: Boxplots des $RMSE_{rel}$ für die möglichen Einflussgrößen erster C_{org} -Messwert (a) und Bodenart (b)

4.2.2 Problemstandorte und Lösungsansätze

Für die nachstehend aufgeführten Versuche wurden Probleme identifiziert.

Methau_DV (Abb. 30) und Spröda_CV (Abb. 31):

Probleme resultieren aus den Startwerten bzw. der Cums-Berechnung

Abbildung 30: Modellergebnis Methau_DV Var 11 N0

Abbildung 31: Modellergebnis Spröda_DV

Ellwangen 3. Kompoststufe (Abb. 32):

■ Wie in diesem Versuch ist auch in anderen Fällen mit hoher Zufuhr organischer Düngung die Gültigkeit der standorttypischen physikalischen Parameter und die verwendeten Verfahren zur C_{org}-Messung zu prüfen.

Abbildung 32: Modellergebnis Ellwangen 4_1_N0_K3

Therwil öko CH (Abb. 33):

Dieser Standort hat offenbar einen deutlich geringeren C_{inert}-Pool.

Abbildung 33: Therwil öko (CH)

Eine Zusammenfassung der Fehler aller Versuchsvarianten eines Standortes hilft, die problembelasteten Fälle klarer zu identifizieren. Die Tabelle 8 enthält eine Zusammenstellung aller Standorte, deren Varianten im Durchschnitt mehr als drei Messwerte aufweisen und für die der über alle Varianten gemittelte quadratische Fehler RMSE Werte > 0.15 % C_{org} annimmt. Die farblich unterlegten Standorte weisen keine Variante mit einem Fehler kleiner als 0.15 % C_{org} auf, sodass diese klar als Problemstandorte zu identifizieren sind, wobei Methau_DV ein besonders gravierendes Beispiel darstellt.

Versuch	mME	abs_mMED	mRMSE	mN	Variantenzahl	Min von RMSE
Järna	-0,14921	0,14921	0,25262	4	8	0,04048
Speyer154	-0,04234	0,04234	0,15058	7,5	6	0,04292
Weierbach	0,05379	0,05379	0,15722	8,66667	12	0,08499
Heidenheim	0,17070	0,17070	0,22833	6,5	12	0,08684
Halle	0,10057	0,10057	0,15293	20,75	4	0,10141
Ellwangen	0,02939	0,02939	0,18986	6	12	0,10238
Lentföhrden	0,11226	0,11226	0,21675	5	2	0,12787
Pforzheim	-0,09830	0,09830	0,21178	6	4	0,13565
Spröda_DV	-0,20778	0,20778	0,26606	33	18	0,15544
Therwil öko (CH)	-0,22795	0,22795	0.25815	9,14286	7	0,15862
Grakov (Ukr)	-0,18129	0,18129	0,22982	9	3	0,19793
Methau_DV	-0,39220	0,39220	0,43560	34	18	0,26160

Tabelle 8: Liste der Problemstandorte

Wie die Abbildung 34 zeigt, ist hier der mittlere Fehler ME eng mit dem quadratischen Fehler RMSE korreliert, sodass man von einer systematischen Verschiebung infolge der gewählten Startwerte ausgehen kann. Dies kann sowohl den C_{org} -Wert selbst als auch den für die C-Dynamik relevanteren C_{ums} -Startwert betreffen.

Abbildung 34: Zusammenhang zwischen mittlerem und quadratischem Fehler an C_{org} für die Problemstandorte

Wie eine nähere Analyse ergab, liegt ein Teil des Problems in Modellveränderungen, die Ende 2008 vorgenommen wurden, um zu hohe Mineralisationsraten zu begrenzen. Während bei einer Reihe gut mit organischer Substanz versorgter Standorte eine obere Grenze für die Größe des umsetzbaren Pool sinnvoll war (C_{ums} max. 1,0 %), ergibt sich für andere Standorte wie z. B. Methau_DV ein umgekehrtes Bild. Je höher der anfängliche C_{ums}-Pool gewählt wird, umso besser werden die beobachteten C_{org}-Werte wiedergegeben.

Das unten dargestellte Beispiel (Abb. 35) zeigt den Verlauf für einen C_{ums} -Startwert von 1,6 % für die Variante STM N1, wobei ein befriedigender Fehler von RMSE = 0,126 % C_{org} erreicht wird. Die Ursache für dieses völlig abweichende Verhalten ist allerdings unklar. Die Fehlersuche bedarf hier weiterer Recherchen in den Originalquellen und Nachforschungen bei den Versuchsanstellern. Es sollte hier einwandfrei geklärt werden, welche Qualität die verwendeten Messwerte besitzen. Erst so kann ein "Fehlverhalten" des Modells endgültig kompensiert werden.

Der im Datensatz Methau_DV beobachtete Effekt trifft in geringerem Maße aber auch für andere Standorte zu. Auch für Grakov wird ein beträchtlicher Simulationsfehler durch die Begrenzung des umsetzbaren Anteils auf die Größe 1,0 % C_{ums} verursacht. Liegt die Grenze bei 1,6 %, werden sehr gute Ergebnisse erreicht.

Abbildung 35: Anpassung an die Messwerte bei sehr geringem C_{inert} Pool im Versuch Methau_DV

Tabelle 9: Liste der identifizierten Problemstandorte, wenn ohne I	Begrenzung des C _{ums} -Pools gerechnet
wird	

Versuch	mME (% C _{org})	mRMSE (% C _{org})
Therwil öko (CH)	-0,13032	0,15446
Järna	-0,07013	0,15802
Methau_DV	-0,04524	0,17905
Ellwangen	-0,00188	0,19804
methau_b17	0,12063	0,19984
Heidenheim	0,16241	0,21463
Pforzheim	-0,11664	0,22582
Spröda_DV	-0,21487	0,27253
Lentföhrden	0,22044	0,30373

Die generelle Rücknahme der Begrenzung des C_{ums} -Startwertes reduziert einen großen Teil des Problems (vgl. Tab. 9). In einigen Fällen werden die Fehler deutlich abgebaut. Folgende Standorte sind nach den o. g. Kriterien nicht mehr in der Problem-Liste: Grakov, Halle, Speyer, Weiherbach.

Die Standorte Bad Lauchstädt und Methau_B17 rücken allerdings jetzt in die Problemliste auf. Im Falle Bad Lauchstädt ist dies aber deutlich auf die Wahl der Startwerte zurückzuführen. Auf Grund der vorgeschlagenen Startwerte

wird im Durchschnitt des Experiments ein Fehler von MED = -0,18 und RMSE = 0,23 % C_{org} ermittelt. Nimmt man die ersten Messwerte als Startwert (eine immer noch suboptimale Lösung), erhält man geringere Fehler: MED = 0,06 und RMSE = 0,13 % C_{org} .

Für den Standort Therwil wird auch nach der o.g. Änderung offensichtlich ein zu hoher C_{inert} -Pool berechnet. Mit dem CIF-Wert = 0,73 erhält man MED = -0,129 und RMSE = 0,162 % C_{org} im Durchschnitt des Experiments. Die Reduktion des C_{inert} -Pools entsprechend CIF = 0,35 ergibt ein sehr gutes Resultat mit MED = 0,01 und RMSE = 0,066 % C_{org} . Eine Überprüfung der Standortdaten ist notwendig, um falsche Angaben im Bereich der Bodenphysik als Ursache auszuschließen.

Die nunmehr unbegrenzte Berechnung des C_{ums}-Startwertes bringt zwar insgesamt eine bessere Fehlerstatistik hervor, wirkt aber für die Standorte Ellwangen, Lentförden, Pforzheim, Spröda und Methau_b17 negativ. Dabei ist insbesondere Lentförden betroffen. Auch hier sind die Datengrundlagen nochmals zu überprüfen. Im Fall Methau_B17 werden neue Fragen dadurch aufgeworfen, dass die einzelnen Versuche auf diesem Standort entgegengesetzt auf die Modelländerungen reagieren.

Mit den aktuellen Sondereinstellungen

- Startwerte für Bad Lauchstädt = erster Messwert
- Methau_DV CIF = 0,05
- Therwil CIF = 0,35

wird im Durchschnitt der Varianten (nicht Einzelmesswerte) ein Fehler von MED = 0,006 und RMSE = 0,109 % C_{org} erzielt. Diese Vorgehensweise stellt einen Sonderfall dar, weil die Veränderungen "von Hand" vorgenommen worden sind. Der spätere Anwender hat aber in der Regel hierzu nicht die Spezialkenntnisse.

4.3 Modellergebnisse – Teil Stickstoff

4.3.1 Ergebnisse der N_t-Modellierung und Validierung

Alle nachfolgenden Grafiken beziehen sich auf die Simulationen mit den optimierten N_t -Startwerten nach den Regressionsauswertungen und umfassen alle 65 Versuche. In der Abbildung 36 sind die Modellergebnisse für den Stickstoff (N_t) dargestellt.

optimierter Wert nach Regression als Nt-Startwert [M.%]

Abbildung 36: Darstellung der Definition des 1. N_t-Startwertes (x-Achse = durch Regression optimierter N_t-Startwert; y-Achse = 1. Messwert als N_t-Startwert) mit Darstellung der 1:1-Linie (schwarz), Regressionsgeraden (grün) und Abweichung von +/- 0,015 M.% N_t (rot)

In den Abbildungen 37 und 38 sind die Fehlerauswertungen für die N_t-Simulationen aufgezeigt worden. In der Tabelle 10 wurden die zugehörigen Fehlergrößen als Mittelwerte aller Versuchsvarianten zusammengefasst. Es wird deutlich, dass das CCB-Modell mit einem RMSE von 0,012 M.% eine gute Modellgüte im Mittel der Versuche aufweist.

Tabelle 10: Mittelwert der Fehlergrößen für Nt [M %] über alle Versuchsvarianten

ME	RMSE	SEM	s	r
-0,004	0,012	0,004	0,010	0,137

Abbildung 37: Modellfehler ME für die N_t-Simulation

Abbildung 38: Modellfehler RMSE für die Nt-Simulation

Weil die N_t -Modellierung gemäß der CCB-Modellphilosophie analog zur C_{org} -Modellierung erfolgt, wird an dieser Stelle auf eine detaillierte Interpretation verzichtet.

4.3.2 Ergebnisse der N-Saldo-Berechnung

In der Abbildung 39 ist die Häufigkeitsverteilung der nach o. a. Methodik ermittelten N-Salden dargestellt worden. Demnach liegt die höchste Anzahl der ermittelten N-Salden im Bereich von +/-100 kg ha⁻¹.

Abbildung 39: Häufigkeitsverteilung N-Saldo

Die ermittelten N-Salden wurden auf systematische Einflüsse folgender Faktoren geprüft: (a) Bodenart, (b) Getreideanteil in der Fruchtfolge, (c) Leguminosenanteil in der Fruchtfolge, (d) Mineraldüngung, (e) Biologisch aktive Zeit, (f) Qualität der Bodeninformationen, (g) Lufttemperatur und (h) Niederschlag. Dabei wurden für die Bestimmung der N-Entzüge durch die Ernteprodukte Tabellenwerte benutzt, die für alle Versuchsvarianten eine identische N-Konzentration unterstellen. Dies kann insbesondere bei Versuchen mit gestaffelter N-Düngung zu Verzerrungen führen.

Abbildung 40: N-Saldo in Abhängigkeit von der Bodenart (Klasse siehe C_{org})

Abbildung 41: N-Saldo in Abhängigkeit vom Getreideanteil (Klasse siehe C_{org})

Abbildung 42: N-Saldo in Abhängigkeit vom Leguminosenanteil (Klasse siehe Corg)

Abbildung 43: N-Saldo in Abhängigkeit von der mineralischen N-Düngung (Klasse siehe Corg)

Abbildung 44: N-Saldo in Abhängigkeit von der BAT (Klasse siehe Corg)

Abbildung 45: N-Saldo in Abhängigkeit von der Qualität der Bodeninformationen (Klasse siehe C_{org})

Abbildung 46: N-Saldo in Abhängigkeit vom Jahresniederschlag (Klasse siehe Corg)

Abbildung 47: N-Saldo in Abhängigkeit von der Jahresmitteltemperatur (Klasse siehe Corg)

Anhand der Ergebnisse der Abbildungen 40 bis 47 wird deutlich, dass bei der Betrachtung des Medians

- die höchsten mit CCB berechneten N-Salden auf der Bodenart S und die niedrigsten auf den Bodenarten L und LT auftreten,
- mit zunehmendem Getreideanteil die N-Salden geringer werden (und reziprok mit zunehmendem Hackfruchtanteil die Salden zunehmen),
- mit zunehmendem Leguminosenanteil in der Fruchtfolge oder zunehmender Höhe der Mineraldüngung die N-Salden steigen,
- die Böden mit geringeren BAT-Werten höhere N-Salden aufweisen,
- mit zunehmenden Niederschlägen die N-Salden abnehmen.

Es ist zu beachten, dass die vielen Versuchsvarianten standortspezifische Unterschiede aufweisen, die eine kausale Interpretation der Zusammenhänge (z. B. zum Niederschlag) erschweren. Mit einer multiplen Regression (Tab. 11) wurden die Einflüsse folgender Faktoren auf das N-Saldo überprüft: Getreideanteil (at_ge), Leguminosenanteil (at_le), Niederschlag (nied), Gesamt N-Input (Ninput) und Ton (ton). Die multiple Regressionsauswertung wies für die Faktoren Niederschlag, Gesamt N-Input und den Tongehalt des Bodens einen höchst signifikanten Einfluss aus. Für die anderen Faktoren wurden keine signifikanten Einflüsse ermittelt. Als Standardfehler der Residuen der multiplen Regression wurde ein Wert von 53,6 ausgegeben.

	Koeffizient	Standardfehler	t Wert	Signifikanz
Interzept	20,19206	13,06152	1,546	
Getreideanteil	0,25636	0,14911	1,719	
Leguminosenanteil	0,37860	0,21334	1,775	
Niederschlag	-0,09717	0,01826	5,323	***
Gesamt N-Input	0,69345	0,02426	28,586	***
Ton	2,09619	0,33017	6,349	***

Weiterhin wurde der Einfluss der Verwendung verschiedener N-Gehalte der modellierten Kulturarten auf die Berechnung des N-Saldos geprüft. Dabei wurden zum einen die N-Gehalte des Modells CANDY (FRANKO 1989) und zum anderen die N-Gehalte des Modells BEFU jeweils für den ökologischen bzw. konventionellen Landbau nach (ALBERT et al. 2007) verwendet.

Abbildung 48: Häufigkeitsverteilung (n = 598) des berechneten N-Saldos mit N-Gehalten nach CANDY

Abbildung 50: Häufigkeitsverteilung (n = 598) des berechneten N-Saldos mit N-Gehalten nach BEFU (ökologisch)

Der Median der N-Saldenermittlung liegt für die Häufigkeitsverteilungen (Abb. 48 bis Abb. 50) mit N-Gehalten nach CANDY bei 0,03 kg ha⁻¹, für die N-Gehalte nach BEFU (konventionell) bei 12,4 kg ha⁻¹ und für die N-Gehalte nach BEFU (ökologisch) bei 22,5 kg ha⁻¹. Weil die N-Gehalte der Fruchtarten variiert wurden, werden die veränderten Salden nur durch die N-Entzüge der Fruchtarten geprägt. Die Ergebnisse zeigen, dass die N-Gehalte und somit auch die N-Entzüge nach CANDY die höchsten und nach BEFU (ökologisch) die geringsten Werte aufweisen. Hierdurch weisen dann die N-Salden nach CANDY etwas niedrigere und nach BEFU (ökologisch) etwas höhere Werte auf als im Vergleich zu den N-Salden nach BEFU (konventionell). Es ist zu erkennen, dass der Faktor N-Gehalte der Fruchtarten nur einen geringen Einfluss auf den Median der Saldenergebnisse (Gesamtdatensatz) aufweist.

Als weitere Fehlerquelle, die jedoch aufgrund unzureichender Datenlage nicht weiter analysiert werden konnte, kommen von den verwendeten Parametern abweichende N-Gehalte (bzw. C/N-Verhältnisse) der organischen Dünger in Betracht. Auf die hier im Modell nicht behandelte Wechselwirkung zwischen C-Umsatz und Pool des mineralisierten N wurde als mögliche Fehlerquelle bereits hingewiesen. Für die Detailuntersuchung einzelner Versuchsvarianten oder landwirtschaftlicher Schläge besteht hier Forschungsbedarf zur Abstimmung der Parametersätze zwischen den Modellen CCB und BEFU.

4.4 Ergänzende Bewertungen der C_{org} - und N_{t} -Dynamik (H. KOLBE)

4.4.1 Startwertfestlegungen

Sichtprüfung

Beispielhaft wurde eine Sichtprüfung der simulierten C_{org} -Werte (Trends) durchgeführt. In den Versuchsvarianten, deren Verhalten tendenziell vom Modell nachgebildet wird, wurde eine Festlegung der C_{org} -Startwerte per Hand angeschlossen. In der Abbildung 51 ist der Zusammenhang der über die Sichtprüfung ermittelten C_{org} -Startwerte zu den vorher verwendeten Startwerten (erster verfügbarer Messwert) dargestellt. Es wird deutlich, dass durch die Sichtprüfung nur geringe Verschiebungen in den C_{org} -Startwerten ermittelt wurden.

optimierter Wert als Corg-Startwert [M.%]

Abbildung 51: Darstellung der Definition des 1. Startwertes (x-Achse = durch Sichtprüfung bestimmter C_{org} -Startwert; y-Achse = 1. Messwert als C_{org} -Startwert verwendet) durch lineare Regression (n= 246; nur Versuche, deren Trend richtig nachgebildet wird und Startwertänderung notwendig erschien) mit Darstellung der 1:1-Linie (schwarz), Regressionsgeraden (grün) und Abweichung von +/- 0,15 M.% C_{org} (rot)

Optimierungsalgorithmus

Verwendet man als Startwerte jeweils den ersten verfügbaren Wert, wird diesem im Vergleich zu den weiteren Werten eine höhere Gewichtung verliehen. Weiterhin würde ein Fehler beim ersten Messwert sich auf das Modellergebnis der Folgejahre auswirken. Um diese Nachteile auszuschließen, wurde für den Zeitpunkt t = 0 ein "virtueller" C_{org} -Wert verwendet, welcher durch ein Optimierungsverfahren ermittelt wurde.

Bei der Anwendung der beschriebenen Optimierungsmethode nach PRESS et al. (1989) zur Festlegung der Startwerte wird für den Zeitpunkt t = 0 ein Wert so festgelegt, dass die Summe der Abweichungen zwischen den berechneten und experimentell ermittelten C_{org} - und N_t-Werten ein Minimum annehmen. Dieser Wert stellt dann den Startwert dar (Abb. 52). An dem Beispiel des Dauerversuches aus Barybino (Var. 3NPK) ist zu erkennen, dass bei Anwendung der Optimierungsmethode die ermittelten Werte so durch die experimentell ermittelten Werte gelegt werden, dass sich in diesem Fall die Kurvenverläufe überkreuzen. Durch Anwendung dieser Methode werden die Abweichungen zwischen Experiment und Modell minimiert, wodurch positive und negative Abweichungen dann immer weitgehend ausgeglichen werden. In diesem Beispiel wurden folgende Werte ermittelt:

- Anfangswert: 0,927 % C_{org}
- ME: -0,014 C_{org}

RMSE: 0,0551 C_{org}.

Abbildung 52: Zeitlicher Verlauf der Punkteschare von experimentell (Exp) und berechneten (Mod) C_{org}-Werten einer Variante des Dauerversuches in Barybino nach Anwendung des Optimierungsalgorithmus (Kap. 3.5.2) zur Festlegung der C_{org}-Anfangswerte

Der Vorteil dieser Methode ist, dass im Durchschnitt eine möglichst genaue Anpassung der Modellwerte an die Felddaten erfolgt. Der Ausgangspunkt dieser Tätigkeiten ist es aber, dass sich eine statistische Prüfung der Übereinstimmung zwischen Modell- und Felddaten anschließen soll. Auf der anderen Seite sind daher mit dieser Vorgehensweise entscheidende Nachteile verbunden:

- Die Werte des Prüfkriteriums ME tendieren gegen Null und verlieren dadurch ihre statistische Aussagefähigkeit.
- Hierdurch kann auch der Verlauf der Abweichung (ob positiv oder negativ) nicht mehr beurteilt werden.
- Das Prüfkriterium RMSE wird in der Regel ebenfalls deutlich verringert (und weist oft geringere Streuungen auf als die experimentell ermittelte Feldstreuung).
- Die ermittelte Genauigkeit hat für den Anwender eine verringerte Gültigkeit, weil er in der Regel nur einen Ausgangswert für seine Berechnungen nutzen kann, die aus einer Analyse oder aus einer Mittelwertbildung aus wenigen Bodenuntersuchungen stammen.

Regressionsanalyse

Eine weitere Möglichkeit besteht darin, experimentell ermittelte Anfangswerte aus den Versuchen als Startwerte zu verwenden. Weil diese Werte aber auch einer oft nicht unerheblichen Streuung unterliegen, wurden zur Umgehung der geschilderten Nachteile Methoden der Regressionsanalyse zur Auffindung der Anfangswerte eingesetzt (Abb. 53):

Anfangswert: 0,950 % C_{org}

- ME: -0,036 C_{org}
- RMSE: 0,0641 C_{org}.

Abbildung 53: Zeitlicher Verlauf der Punkteschare von experimentell (Exp) und berechneten (Mod) C_{org}-Werten einer Variante des Dauerversuches in Barybino nach Anwendung des Regressionsverfahrens zur Festlegung der C_{org}-Anfangswerte

Entsprechend den Ergebnissen der linearen und quadratischen Regression wurde ein mittlerer Anfangswert von 0,95 % C_{org} festgelegt. Wie aus dem Kurvenverlauf der C_{org}-Werte zu ersehen ist, ist jetzt eine andere Zuordnung der Werte zwischen Modell und Feld zu erkennen. Dafür ist in der ersten Hälfte des Versuches eine weitgehende Übereinstimmung der Werte festzustellen, während im zweiten Zeitabschnitt die Abstände zwischen beiden Kurvenverläufen immer größer werden. Ein Nachteil der Methode ist es, dass ein höherer Zeitaufwand für die meistens letztlich manuelle Festsetzung der Anfangswerte (und Endwerte) zu erbringen ist. Die Vorteile können folgendermaßen zusammengefasst werden:

- Die Werte des Prüfkriteriums ME weisen eine hohe statistische Aussagefähigkeit auf.
- Der Verlauf der Abweichung wird realistisch dargestellt, sodass aus der Steigung (b) die Umsatzgeschwindigkeit für die C_{ora}- und N_t-Prozesse im Vergleich zu denen im Feld gut abgeschätzt werden kann.
- Die Werte des Pr
 üfkriteriums RMSE steigen in der Regel an, auf Grund des typischen Kurvenverlaufs der zeitlichen C_{org}- und N_t-Entwicklung der Varianten liegt die Streuung allerdings in der ersten Versuchshälfte meistens niedriger und in der zweiten Hälfte höher als im Durchschnitt der gesamten Versuchszeit.
- Die statistische Prüfung erfolgt in der Weise der späteren Anwendung, sodass der Anwender weitgehend der Realität entsprechende Validierungsdaten erhält.
- Unter der Voraussetzung einer ausreichend langen Beobachtungsreihe können systematische Fehler des Modells besser erkannt werden.

In der geschilderten Weise wurden daraufhin mit Hilfe verschiedener Regressionsfunktionen die Startwerte und die mittleren Werte zu Versuchsende für C_{org} und N_t für alle Versuchsvarianten definiert, die für die abschließenden Modellierungen und Fehlerauswertungen verwendet worden sind. In der Abbildung 54 ist der Zusammenhang der über die Regressionsgleichungen ermittelten C_{org} -Startwerte zu den Startwerten aus dem ersten verfügbaren Messwert (vgl. Abb. 51) dargestellt. Die Verwendung der über Regressionsauswertungen ermittelten C_{org} -Startwerte weist eine höhere Übereinstimmung mit den experimentellen Werten auf.

Abbildung 54: Darstellung der Definition des 1. Startwertes (x-Achse = durch Regressionen optimierter C_{org} -Startwert; y-Achse = 1. Messwert als C_{org} -Startwert) durch lineare Regression mit Darstellung der 1:1-Linie (schwarz), Regressionsgeraden (grün) und Abweichung von +/- 0,15 M.% C_{org} (rot)

4.4.2 Validierungsergebnisse

Unter der Verwendung gleicher methodischer Bedingungen zur statistischen Fehlerberechnung ist die Übereinstimmung zwischen den berechneten und experimentell ermittelten C_{org} -Werten mit der Zeit deutlich besser geworden (Tab. 12). Durch Fortschritte in der Modellentwicklung konnte besonders die statistische Streuung von RMSE-Werten um 0,47 im Jahr 2004 auf deutlich unter 0,20 % C_{org} im Jahr 2010 verringert werden.

Es ist weiterhin zu erkennen, dass bei Verwendung des Optimierungsalgorithmus an Stelle der Regressionsmethode zur Generierung der Startwerte es zu einer weitgehenden Nivellierung der Differenzen zwischen Modell und Experiment auf den Wert Null kommt. Dadurch kann der ME nicht mehr als Bewertungskriterium verwendet werden (vgl. Kap. 4.2.1). Dagegen wird das RMSE offensichtlich kaum verändert. Darüber hinaus werden in Tabelle 12 verschiedene Methoden der Datenerfassung und des Datenumfangs zur statistischen Analyse miteinander verglichen (siehe Kap. 3.4 und Kap. 3.5). Zunächst wurden zu zwei verschiedenen Zeitpunkten nach der Verrechnungsweise M1-Alles alle verfügbaren berechneten und gemessenen C_{org} - und N_t -Werte in die statistische Bewertung einbezogen. Es besteht eine hohe Übereinstimmung zwischen den beiden Analysen. Wird jedoch nur die erste Versuchshälfte in die Bewertung einbezogen (M1-1.Hälfte), so werden deutlich niedrigere Werte für C_{org} und N_t ermittelt, was besonders beim RMSE in Erscheinung tritt. Bei singulärer Einbeziehung der 2. Versuchshälfte (M1-2.Hälfte) werden dagegen RMSE-Werte ermittelt, die deutlich über den Werten liegen, die im Durchschnitt bei Einbeziehung aller Daten (M1-Alles) ermittelt werden.

Tabelle 12: Zeitliche Entwicklung der Modellgenauigkeit sowie Vergleich von verschiedenen Erfassungsmethoden (M1 – M3) zur ME- und RMSE-Statistikanalyse über den Vergleich zwischen Experiment- und Modellwerten für C_{org} und N_t

Entwicklungsabschnitt/ Erfassungsmethode	Festlegung Startwert	C _{org} ME	RMSE	N _t ME	RMSE	
KOLBE & PRUTZER (2004) (n = 407; M2- Genau)	R	-0,0237	0,47007	-	-	
KOLBE & RINGE (2007) (n = 501; M2-Genau)	R	0,0848	0,28884	-	-	
M1-Alles (Ende 2009; n = 598)	R	-0,0168	0,11314	-0,0059	0,01502	
M1-Alles (Okt. 2010, = VerglBasis; n = 598)	R	-0,0171	0,11885	-0,0064	0,01715	
FRANKO et al. (2011) (n = 391; M1-Alles)	0	-0,0010	0,11900	-	ł	
M1-1.Hälfte	R	-0,0183	0,06436	-0,0019	0,00752	
M1-2.Hälfte	R	-0,0204	0,14046	-0,0100	0,02071	
M2-Genau	R	-0,0041	0,15689	-0,0108	0,02462	
M3-Ab15	R	-0,0016	0,14411	-0,0101	0,02188	
Zum Vergleich (KOLBE & KÖHLER 2008; n = 328; M2-Genau)						
LUFA obere Werte	R	0,1060	0,19100	-	·	
LUFA untere Werte	R	0,0016	0,18390	-	-	
Standortangepasste Methode	R	0,0591	0,11310	-	-	

R = Regression oder 1. experimenteller Wert, O = Optimierungsalgorithmus

Die weiteren aufgeführten Verrechnungsmethoden (M2-Genau, M3-Ab15) wurden manuell bestimmt, wozu allerdings ein deutlicher Zeitaufwand erforderlich ist. Mit der Methode M2-Genau wurde mit Hilfe der Regressionsanalyse für jede Variante in den Dauerversuchen auch ein jeweiliger mittlerer Endwert für die beiden Bodenparameter C_{org} und N_t ermittelt. Hierdurch standen dann je Variante nur ein Anfangs- und ein Endwert für die statistischen Berechnungen zur Verfügung, wie dies in vorausgehenden Untersuchungen z. B. von KOLBE & PRUTZER (2004) beschrieben worden ist. Bei der Methode M3-Ab15 wurden die ersten 14 Jahre der Versuchsdauer nicht in die Analysen einbezogen. Wie aus dem Vergleich der Methoden M1-2.Hälfte, M2-Genau und M3-Ab15 hervorgeht, sind kaum Unterschiede in den Ergebnissen festzustellen, sodass diese Methoden sich gleichermaßen für die Modellbewertung eignen. Auf Grund dieser Ergebnisse konnte insbesondere die Methode M1-2.Hälfte zur weiteren Anwendung empfohlen werden, weil sie leicht in die CCB-Software implementiert werden konnte und keines zusätzlichen Zeitanspruchs bedurfte.

Auf Grund dieser Ergebnisse kann jetzt eine genauere Einordnung der gefundenen Fehlergrößen erfolgen, sodass sie auch mit anderen Untersuchungen verglichen werden können. Die mittleren RMSE-Werte des CCB-Verfahrens können somit auf 0,141-0,157 % C_{org} fixiert werden (M1-2.Hälfte, M2-Genau, M3-Ab15). Damit liegt die Anpassung der berechneten Werte des CCB-Verfahrens genau zwischen denen der VDLUFA-Methode (0,184-0,191) und der standortangepassten Methode, die RMSE-Werte von 0,113 % C_{org} aufweist (Tab. 12).

Hinweise zur Modell-Optimierung können abgeleitet werden, wenn zwischen diesen erlangten statistischen Parametern und den untersuchten Einflussgrößen systematische Beziehungen bestehen. Die Abweichungen zwischen den berechneten und experimentell ermittelten Werten sind hierfür insbesondere geeignet, weil sie neben der Streuung auch die Richtung von systematischen Abweichungen zu erkennen geben. Daher wurden mit Hilfe einfacher und multipler Regressionen einige exemplarische Fehleranalysen für das ME durchgeführt und die signifikanten Ergebnisse in den nachfolgenden Tabellen vorgestellt (T-Test für p \leq 0,05). Als Datengrundlage dienten die mit Hilfe der Regressionsanalyse ermittelten C_{org}- und N_t-Anfangswerte sowie die Methoden M1-2.Hälfte und M2-Genau, wodurch Unterschiede zwischen Modell- und Versuchsergebnissen möglichst genau ermittelt werden können und es nach den bisherigen Erfahrungen zu keiner Nivellierung von Unterschieden kommen kann.

In Tabelle 13 werden die Ergebnisse aller Varianten (n = 598) der Fehleranalyse für das ME der C_{org} -Differenzen aufgeführt. Es bestehen gerichtete Einflüsse von etlichen Einflussfaktoren des Bodens, des Klimas und der Bewirtschaftung. Von den aufgeführten Faktoren sind als wichtigste Größen zu nennen: Temperatur, C_{org} -Gehalt, C/N-Verhältnis sowie C-Input organischer Düngemittel, N_t-Gehalt, Ton, C/N-Verhältnis Boden. Insgesamt können 59 % der Streuung durch die aufgeführten Faktoren erklärt werden.

Tabelle 13: Statistische Analyse des Fehlers (Grundgesamtheit der untersuchten Varianten) für ME C_{org} mit Hilfe der Regressionsanalyse (n = 598)

Merkmal	M1-2.Hälfte b	MR² (%)	M2-Genau b	MR² (%)	Summen je Fak- tor MR² (%)	(%)
Temperatur Temperatur ² *	0,281 -0,014	18,1 1,9	0,455 -0,021	1,3 22,9	22,1	37,6
C _{org} C _{org} ² *	-0,704 0,081	1,3 5,8	-1,063 0,129	2,5 3,4	6,5	11,1
C/N-Verhältnis organische Düngemit- tel	-0,002	6,9	-0,003	5,4	6,2	10,5
C-Input organische Düngemittel C-Input organische Düngemittel ² *	0,002 -4,31E-005	1,6 3,3	0,004 -8,22E-005	2,9 4,0	5,9	10,0
N _t N _t ²	3,996	4,6 -	6,395	4,3 -	4,5	7,7
Ton ² *	0,0002	4,6	0,0002	4,1	4,4	7,5
C/N-Verhältnis Boden C/N-Verhältnis Boden ² *	0,058	5,0 -	0,083	2,5 -	3,8	6,5
Anteil Hackfrucht	-0,002	2,8	-0,003	1,6	2,2	3,7
Anteil Leguminosen	-0,001	1,7	-0,003	1,6	1,7	2,9
Niederschlag Niederschlag² *	-0,001 8,07E-007	2,5 0,4		-	1,5	2,6
Summe		60,5		56,6	58,8	100,0

* quadrat. Gleichungsglieder; b = Steigung; MR² = multiples Bestimmtheitsmaß

Von den Haupteinflussgrößen sind exemplarisch die Wirkungen der Temperatur (Abb. 55) und der C_{org} -Gehalte (Abb. 56) auf die ME-Werte abgebildet worden. Es ist deutlich zu sehen, dass die durchschnittlichen ME mit ansteigenden Temperaturen ausgehend von Minuswerten nach positiven Werten hin ansteigen (b = positiver Wert). Hieraus kann abgeleitet werden, das im Verhältnis zu den experimentell ermittelten C_{org} -Werten bei niedrigen Temperaturen ein zu geringer und bei hohen Temperaturen ein etwas zu hoher Abbau an C_{org} mit dem Modell berechnet wird (C_{org} -Experiment – C_{org} -Modell). In Folge steigender C_{org} -Gehalte wird demgegenüber ein umgekehrter Trend ermittelt (b = negativer Wert). Bei sehr niedrigen C_{org} -Werten wird die Veränderung der C_{org} -Gehalte noch etwas unterschätzt und bei hohen C_{org} -Werten jedoch, bei Zunahme der Streuung, immer deutlicher überschätzt.

Abbildung 55: Einfluss von Temperatur in den Dauerversuchen auf die berechneten ME-Werte für C_{org} (n = 598; Temperatur $R^2 = 0,131^{**}$)

Abbildung 56: Einfluss des C_{org}-Gehaltes in den Dauerversuchen auf die berechneten ME-Werte für C_{org} (n = 598; C_{org} R^2 = 0,0849*)

In Tabelle 14 wurden von der Grundgesamtheit nur die Standardvarianten der Versuche, bei denen keine organischen Materialien und keine organische Düngung zugeführt wurden, einer Analyse unterzogen (n = 167). Es findet eine etwas andere Gewichtung der Einflussfaktoren statt, ohne dass deren selektive Wirkungen sich wesentlich ändern (b = rel. stabil). Zu den hauptsächlichen Einflussgrößen mit hohen Erklärungsanteilen gehören folgende Merkmale: C_{org-}Gehalt, Ton, C/N-Verhältnis Boden. Insgesamt können mit diesem Regressionsansatz 79 % der ME-Streuung erklärt werden.

Tabelle 14: Statistische Analyse des Fehlers der Standardvarianten (ohne organische Materialien) für ME C_{org} mit Hilfe der Regressionsanalyse (n = 167)

Merkmal	M1-2.Hälfte b	MR² (%)	M2-Genau b	MR² (%)	Summen je Fak- tor MR ² (%)	(%)
C _{org} C _{org} ² *	-0,746	35,9 -	-0,359	- 38,2	37,1	47,1
Ton Ton ²	0,009	16,0 -	0,0003	- 13,6	14,8	18,8
C/N-Verhältnis Boden C/N-Verhältnis Boden ²	0,063	10,4 -	0,003	- 11,1	10,8	13,7
N _t N _t ² *	5,826 -7,390	10,6 1,9	19,525	- 3,7	8,1	10,3
Niederschlag Niederschlag²	-0,001 1,10E-006	1,9 1,8	-0,002 1,40E-006	1,8 2,5	4,0	5,1
Temperatur Temperatur²	0,483 -0,025	0,4 0,9	0,939	2,1 -0,048	3,6 3,7	4,6
Anteil Leguminosen		0,7		-	0,4	0,5
Summe		80,2		76,7	78,8	100,0

* quadrat. Gleichungsglieder; b = Steigung; MR² = multiples Bestimmtheitsmaß

Die statistischen Analysen der ME N_t-Werte sind in den folgenden Tabellen 15 und 16 dargestellt worden. Die Haupteinflussgrößen sind C-Input organische Düngemittel, Temperatur, C/N-Verhältnis Boden und Niederschläge. Insgesamt werden 72 % der Gesamtstreuung einer Klärung zugeführt.

Tabelle 15: Statistische Analyse des Fehlers (gesamt) für ME Nt mit Hilfe der Regressionsanalyse (n = 421)

Merkmal	M1-2.Hälfte b	MR² (%)	M2-Genau b	MR² (%)	Summen je Fak- tor MR² (%)	(%)
C-Input organische Düngemittel C-Input organische Düngemittel ² *	0,0003 -6,77E-0,006	2,2 20,2	0,0007 -1,26E-005	5,3 15,6	21,7	30,3
Temperatur Temperatur ² *	0,028 -0,001	14,8 1,9	0,051 -0,0026	16,1 3,3	18,1	25,3
C/N-Verhältnis Boden C/N-Verhältnis Boden ² *	0,003 -0,0003	5,9 3,4	0,014 -0,0008	0,8 2,9	6,5	9,1
Niederschlag Niederschlag ² *	-9,23E-005 8,89E-0,008	1,1 9,1	3,48E-008	- 2,1	6,2	8,7
Anteil Leguminosen	-0,0002	1,5	-0,0002	8,3	4,9	6,8
C/N-Verhältnis organische Düngemit- tel	-0,0002	3,3	-0,0003	6,0	4,7	6,6
C _{org} C _{org²} *	0,045	0,6 -	0,045 0,0054	2,2 4,1	3,5	4,9
N _t N _t ² *	-0,723 0,516	4,8 0,2	-0,758	1,4 -	3,2	4,5
Anteil Hackfrucht	-0,0002	1,4	-0,0002	1,3	1,4	2,0
N-Düngung	2,05E-005	0,9	3,27E-005	0,5	0,7	1,0
N-Entzug	-	0,9		-	0,4	0,6
Ton Ton ² *	1,07E-005	- 0,6		-	0,3	0,4
Summe		72,7		69,9	71,6	100,0

* quadrat. Gleichungsglieder; b = Steigung; MR² = multiples Bestimmtheitsmaß

Werden nur die Standardvarianten einer Analyse unterzogen, so gelangt N_t als größter Einflussfaktor an die erste Stelle. Es folgen die Faktoren Niederschläge, C_{org} und Ton. Insgesamt werden mit diesem Regressionsansatz 65 % der Streuung durch die analysierten Faktoren erklärt.

Tabelle 16: Statistische Analyse des Fehlers der Standardvarianten (ohne organische Materialien) für ME N_t mit Hilfe der Regressionsanalyse (n = 96)

Merkmal	M1-2.Hälfte b	MR² (%)	M2-Genau b	MR² (%)	Summen je Fak- tor MR² (%)	(%)
N _t N _t ² *	-1,008 1,804	32,2 1,4	-0,647	37,2 -	35,4	54,1
Niederschlag Niederschlag² *	-0,000 1,37E-007	0,7 20,4	5,46E-005	13,7 -	17,4	26,6
C _{org} C _{org} ² *	0,074 -0,022	2,7 1,0	0,055 -0,013	7,2 2,3	6,6	10,1
Ton Ton ² *	0,001	6,5 -	1,19E-005	- 1,2	3,9	6,0
Anteil Leguminosen	8,40E-005	2,0	0,0001	1,0	1,5	2,3
C/N-Verhältnis Boden C/N-Verhältnis Boden ² *	-6,54E-005	- 1,1		-	0,6	0,9
Summe		68,0		62,6	65,4	100,0

* quadrat. Gleichungsglieder; b = Steigung; MR² = multiples Bestimmtheitsmaß

Insgesamt lassen diese statistischen Auswertungen erkennen, dass es durch eine sorgfältige Analyse der Fehler, Diskussion der Veränderungsmöglichkeiten im Modell und Umsetzung sowie einer wiederholten Validierung nochmals möglich erscheint, eine deutliche Verbesserung der Methodengenauigkeit für die Bestimmung von C_{org} und N_t zu bewirken.

4.5 Berechnung der N-Nachlieferung aus dem Humusumsatz (H. Kolbe)

4.5.1 Schlagbilanz

Für die zur Verfügung stehenden 65 Versuche (Gesamtdatensatz) wurden entsprechende Bilanzierungen im Durchschnitt der Versuchsdauer durchgeführt. Die kalkulierten Abfuhren (Abb. 57 bis Abb. 59) auf den insgesamt auswertbaren 589 Versuchsvarianten unterliegen einer sehr hohen Streuung. Je nach Standort, Fruchtart und Anbaubedingungen können bei einer Gesamt-Zufuhrhöhe von z. B. 200 kg N ha⁻¹ Abfuhren zwischen unter 100 kg N ha⁻¹ und von über 225 kg N ha⁻¹ erreicht werden. In Folge steigender Zufuhr ist der Einfluss des abnehmenden Ertragsanstiegs zu erkennen. Daher steigen die N-Salden in überproportionaler Weise an. Die statistischen Zusammenhänge zwischen steigender Zufuhr und den Salden bzw. der Nährstoffeffizienz (Zufuhr = 100 %) sind relativ eng ausgeprägt.

Trotz Einbeziehung weitgehend aller N-Zufuhren werden negative N-Salden in einem erheblichen Ausmaß ermittelt. Ungefähr bei 1/3 der Versuchsvarianten im Bereich 0 kg N ha⁻¹ bis über 200 kg N ha⁻¹ N-Gesamt-Zufuhr werden negative Salden (sowie entsprechend hohe N-Effizienzen) ermittelt, die zwischen 0 kg N ha⁻¹ und -175 kg N ha⁻¹ liegen können. Abgesehen von kleineren Fehlern z. B. bei der Bestimmung der N-Gehalte der Fruchtarten und organischen Düngemitteln sind die aus diesen Dauerversuchen ermittelten Daten als ausgesprochen sicher zu bezeichnen. Somit finden sich auch durch diese Ergebnisse Hinweise, dass im unteren Versorgungsbereich die Pflanzen noch weitere N-Quellen erschließen können, die bei der üblichen Flächenbilanzierung bisher nicht berücksichtigt werden. Diese N-Quellen stammen u. a. auch aus N-Entnahmen aus dem Untergrund der Versuchsparzellen. Das Vorkommen negativer N-Salden ist bei der Aufstellung von Düngungsbemessungsverfahren zu berücksichtigen, was besonders für extensivere Anbauverfahren wichtig ist.

Abbildung 57: Zusammenhang zwischen steigender N-Zufuhr und den N-Abfuhren bei der Schlagbilanz ermittelt aus 65 Dauerversuchen

Abbildung 58: Zusammenhang zwischen steigender N-Zufuhr und den N-Salden bei der Schlagbilanz ermittelt aus 65 Dauerversuchen

Abbildung 59: Zusammenhang zwischen steigender N-Zufuhr und der N-Effizienz (unten) bei der Schlagbilanz ermittelt aus 65 Dauerversuchen

Durch die Berechnung der Veränderung der N_t-Mengen bzw. der N_t-Konzentrationen im Boden kann eine weitere Komponente in die Schlagbilanz aufgenommen werden. Auch in Folge steigender N-Gesamt-Zufuhr ist eine Zunahme der N_t-Differenz im Boden zu verzeichnen, allerdings von einer großen Streuung begleitet (Abb. 60). Bei Zufuhrhöhen von 0 kg bis ca. 150 kg Stickstoff werden negative N_t-Bilanzen des Bodens vorgefunden (Mittelwert = $4,42 \text{ kg N ha}^{-1}$, Standardabweichung = $45,40 \text{ kg N ha}^{-1}$, Abb. 61).

Abbildung 60: Einfluss steigender N-Gesamt-Zufuhr auf die berechnete Nt-Differenz im Boden

Abbildung 61: Boxplot über die berechneten Nt-Differenzen des Bodens von 589 Versuchsvarianten

Die Verrechnung in der Bilanz kann auf verschiedenem Wege erfolgen (vgl. Kap. 3.3). Zunächst werden die Veränderungen nur mit der Zufuhr-Komponente verrechnet. Hierbei erfolgt bei einer positiven N_t-Bodenbilanz eine entsprechende Verringerung der Gesamt-Zufuhr und bei einer negativen N_t-Bilanz eine Erhöhung der Gesamt-Zufuhren (Abb. 62 bis Abb. 64). Durch diese gewählte Form der Einbeziehung der N_t-Bodenbilanz erfolgt bei allen drei Bilanz-Merkmalen eine Abnahme der statistischen Sicherheit der Verrechnung.

Eine positive N_t-Bodenbilanz kann auch als eine Erhöhung der N-Abfuhr und eine negative Bilanz als eine zusätzliche Komponente bei den N-Zufuhren angesehen werden (Abb. 65 bis Abb. 67). Hierdurch erhöht sich das Bestimmtheitsmaß bei dem Zusammenhang zwischen N-Zufuhr und N-Abfuhr. Dagegen fallen die statistischen Sicherheiten bei den entsprechenden Zusammenhängen zum N-Saldo und zur N-Effizienz z. T. deutlich ab und erreichen von allen getesteten Kombinationen die niedrigsten Werte.

Abbildung 62: Zusammenhang zwischen steigender N-Zufuhr und den N-Abfuhren bei der Schlagbilanz unter Einbeziehung der Veränderung der N_t-Bodenbilanz in die N-Zufuhr

Abbildung 63: Zusammenhang zwischen steigender N-Zufuhr und den N-Salden bei der Schlagbilanz unter Einbeziehung der Veränderung der Nt-Bodenbilanz in die N-Zufuhr

Abbildung 64: Zusammenhang zwischen steigender N-Zufuhr und der N-Effizienz bei der Schlagbilanz unter Einbeziehung der Veränderung der N $_t$ -Bodenbilanz in die N-Zufuhr

Abbildung 65: Zusammenhang zwischen steigender N-Zufuhr (incl. negativer N_t-Differenzen) und den N-Abfuhren (incl. positiver N_t-Differenzen) bei der Schlagbilanz unter Einbeziehung der Veränderung der N_t-Bodenbilanz

Abbildung 66: Zusammenhang zwischen steigender N-Zufuhr (incl. negativer N_t-Differenzen) und den N-Salden bei der Schlagbilanz unter Einbeziehung der Veränderung der N_t-Bodenbilanz

Abbildung 67: Zusammenhang zwischen steigender N-Zufuhr (incl. negativer N_t -Differenzen) und der N-Effizienz bei der Schlagbilanz unter Einbeziehung der Veränderung der N_t -Bodenbilanz

4.5.2 N-Mineralisation

Die N-Mineralisation (N_m) wird aus der N-Freisetzung folgender Komponenten gebildet:

- NH₄-N-Anteil der organischen Düngemittel und der EWR-Rückstände der Fruchtarten bzw. entsprechend dem C/N-Verhältnis als rel. kurzfristige N-Freisetzung (C/N ≤ 20) bzw. N-Festlegung (C/N ≥ 20)
- Mineralisation aus der sich umsetzenden zugeführten organischen Substanz bzw. der aktiven organischen Substanz des Bodens

In Folge steigender N-Gesamt-Zufuhr ist eine Zunahme der N-Mineralisation zu erkennen (Abb. 68). Die überwiegende Menge an Stickstoff aus der zugeführten organischen Substanz wird im Verlauf der Dauerversuche auch wieder einer Mineralisation zugeführt. Im Bereich zwischen 0 kg und 200 kg ha⁻¹ Zufuhr erhöht sich die mittlere N-Mineralisation von 0 kg auf ca. 90 kg N ha⁻¹ und Jahr. Insgesamt wird eine mittlere N-Mineralisation von 90,3 kg ha⁻¹ ermittelt, die durch eine Standardabweichung von 90,4 kg ha⁻¹ und Jahr gekennzeichnet ist (Abb. 69).

Abbildung 68: Einfluss steigender N-Gesamt-Zufuhr auf die berechnete N-Mineralisation

N-Mineralisation (berechnet)

Abbildung 69: Boxplot über die berechnete N-Mineralisation von 589 Versuchsvarianten

Durch multiple Regressionsanalysen wurden die signifikanten relativen Einflüsse einzelner Merkmale auf die N-Mineralisation abgeschätzt (MR² in %):

1 N-Gesamt-Zufuhr	76,9
2 N-Mineraldüngung	9,6
3 Leguminosen-Anteil i. d. Fruchtfolge	1,7
4 C/N-Verhältnis Boden	1,2
■ 5 C _{org} -Gehalt des Bodens	0,3
6 Feinanteil, Temperatur & Niederschlag jeweils	0,1

Ein großer Anteil der N-Gesamt-Zufuhr besteht aus der Zufuhr organischer Dünger und der EWR. Diese Merkmale tragen deutlich zur N-Mineralisation bei (Steigung b = positiv). Während die N-Mineraldüngung sowie die Leguminosen die N-Mineralisation etwas reduzieren, führen weite C/N-Verhältnisse und hohe C_{org} -Gehalte zu einer geringen Erhöhung der Mineralisation (Steigung b = negativ).

Um den Ablauf von Einzelmaßnahmen des Anbaus und der Düngung genau analysieren zu können, wurde zunächst in Anlehnung an eine mit organischer Substanz relativ gering versorgten Variante eines Versuches aus Groß Kreutz auf Sandboden (Asmus 1990) eine Vorbewirtschaftung definiert. In der weiteren zeitlichen Abfolge wurde dann eine Schwarzbrache simuliert, bei der keine Zufuhr an organischer Substanz erfolgt. Diese Variante kann somit als eine Standardvariante angesehen werden. Im Vergleich zu dieser Variante wurden dann jeweils ab einem Zeitpunkt (Testjahr) weitere definierte Veränderungen im Anbau vorgenommen, sodass ein Vergleich der Mineralisation zwischen diesem Standard und den anderen meistens einmalig durchgeführten Behandlungsvarianten hergestellt werden kann.

In den Abbildungen 70 bis 72 sind einige Szenarien des Anbaus verschiedener Fruchtarten auf den chronologischen Verlauf der N-Mineralisation dargestellt worden. So erfolgt bei einjährigem Anbau von Kleegras (Aberntung der Aufwüchse) eine geringere N-Freisetzung als bei einem zweijährigen Anbau. Die höchste N-Bereitstellung erfolgt im jeweils anschließenden Jahr. Danach ist eine immer geringer werdende Abnahme parallel zum Verlauf des Standards zu erkennen, bis in vielen Jahren das Niveau des Standards wieder erreicht wird.

Die N-Freisetzung aus den hinterlassenen EWR-Mengen des Kleegrases ist größer als die bei den anderen Fruchtarten. Je nach Höhe des C/N-Verhältnisses der EWR erfolgt eine sofortige N-Freisetzung, wie bei Kleegras oder Zuckerrüben (ohne Blatt), oder es erfolgt eine zwischenzeitliche Herabsetzung der N-Mineralisation auf Grund der relativ weiten C/N-Verhältnisse der EWR bei den anderen geprüften Arten. Je nach den spezifischen Bedingungen kommt es auch bei verschiedenen Gründüngungsvarianten im Zwischenfruchtanbau zu einer durch N-Festlegung bedingten zwischenzeitlichen Verringerung der N-Mineralisation. Es ist an der Ausprägung der Herabsetzung der N-Mineralisation zu erkennen, dass diese wohl bisher noch etwas zu drastisch und zu kurzfristig angerechnet wird. Die Festlegungsphase erfolgt offenbar auch zeitlich etwas zu früh. So kommt es z. B. nach NIE-DER & RICHTER (1989) nach einer Strohdüngung von 80 dt ha⁻¹ im Jahr der Zufuhr zunächst zu einer Immobilisierung sowie zu einer anschließenden Mineralisation im folgenden Jahr von jeweils nicht ganz 40 kg N ha⁻¹. Auf Basis entsprechender experimenteller Ergebnisse besteht hier also noch ein gewisser Aufwand an Nachjustierungen, die in den nächsten Modellversionen des CCB vorzunehmen sind.

Abbildung 70: Simulierter Einfluss des Kleegrasanbaus auf die N-Mineralisation bei Zugrundelegung eines Sandbodens

Abbildung 71: Simulierter Einfluss des Anbaus von Mais, Zuckerrüben, Weizen, Kartoffeln und einer legumen Zwischenfrucht (bei Aberntung der Koppelprodukte) auf die N-Mineralisation bei Zugrundelegung eines Sandbodens

Abbildung 72: Simulierter Einfluss von Zwischenfruchtszenarien auf die N-Mineralisation bei Zugrundelegung eines Sandbodens

In den Abbildungen 73 bis 75 werden gegenüber dem Standard verschiedene Düngerarten und zwei verschiedene Standorte miteinander in der N-Mineralisation verglichen. Bei den Stroh-Szenarien ist zu erkennen, dass je nach Höhe und Qualität des Strohs bzw. der EWR des Getreideanbaus zunächst eine mehr oder weniger stark ausgeprägte Verringerung der Mineralisation durch die zwischenzeitliche N-Festlegung erfolgt. Ein ähnlicher Einfluss ist auch gegeben, wenn Stalldung mit weitem C/N-Verhältnis verabreicht wird, während bei engeren C/N-Verhältnissen es bereits zu einer N-Freisetzung im Jahr der Anwendung kommt, die dem NH₄-N-Anteil der Düngemittel entspricht und in der Höhe im Vergleich zu entsprechenden Erfahrungswerten bereits relativ gut fixiert worden ist (vgl. ALBERT et al. 2006).

Aus der Abbildung 75 geht hervor, dass bei einer deutlichen Absenkung der Durchschnittstemperaturen es über einen reduzierten Abbau der organischen Substanz zu einer geringeren Freisetzung an Stickstoff kommt als bei

höheren Temperaturen. Auf gleiche Weise reagiert ein Lehmboden, wenn sein C_{org} -Ausgangsniveau auf das sehr niedrige Niveau des Sandbodens fixiert worden ist. Ein so niedriger C_{org} -Gehalt kommt allerdings auf einem Lehmboden nicht vor. Wird dagegen der Lehmboden mit einem durchschnittlichen C_{org} -Ausgangsniveau angegeben und mit der N-Freisetzung des Sandbodens verglichen, dann wird zunächst das Ausgangsniveau der N-Mineralisation deutlich erhöht. Auf der Schwarzbrache ist dann der zeitliche Rückgang in der N-Mineralisation auf dem Lehmboden wesentlich deutlicher ausgeprägt als auf dem Sandboden.

Abbildung 73: Simulierter Einfluss verschiedener Szenarien der Strohdüngung auf die N-Mineralisation

Abbildung 74: Simulierter Einfluss von Szenarien der Düngung mit Stalldung verschiedener C/N-Zusammensetzung und von Rindergülle auf die N-Mineralisation

Abbildung 75: Simulierter Einfluss von Szenarien unterschiedlicher klimatischer Bedingungen und Bodenarten auf die N-Mineralisation

An einem Versuch aus Sachsen (Methau, Öko-Versuch B 17, Var. 7002: 1 DE ha⁻¹ Stallmist, Futterbau, vielfältige Fruchtfolge, Lössboden) soll die genaue jährliche Nachwirkung der Anbauabfolge über einen längeren Zeitraum auf einem Lehmboden abgebildet werden (Abb. 76). Nach dem Anbau von vier Jahren Kleegras als Vorbewirtschaftung wurden jeweils Szenarien abgebildet, in denen ab dem jeweils nachfolgenden Jahr 1997 eine Schwarzbrache dargestellt worden ist. Hierdurch wurden insgesamt 11 Szenarien simuliert in denen jeweils ein Jahr später eine Schwarzbrache eingeführt wurde, die dann bis zum Versuchsende (2007) konstant beibehalten worden ist.

Bei sehr früher Integration der Schwarzbrache (1997, blaues Karo) wird die N-Mineralisation durch die niedrigsten Werte gekennzeichnet, während in der Szenarienvariante ohne Schwarzbrache (schwarz, Viereck), bei der der gesamte Anbau der Fruchtarten und alle Düngungsmaßnahmen entsprechend des Versuchsplanes beibehalten worden sind, die höchsten Werte in der N-Mineralisation berechnet worden sind.

Aus den Ergebnissen wird deutlich, dass auch bei weiter zurückliegender Einführung der Schwarzbrache noch eine erhebliche Nachwirkung in der N-Mineralisation besteht. In der Regel kommt es in dem vorausgehenden Anbaujahr zu einer etwas höheren Mineralisation als in dem jeweils nachfolgenden Jahr. Bei der Einführung der Schwarzbrache im Jahr 1997 an Stelle des Anbaus von So.-Weizen wird z. B. im Jahr 2007 immer noch eine Nachwirkung in der N-Mineralisation von 3,2 kg ha⁻¹ berechnet. Werden alle Bewirtschaftungsmaßnahmen beibehalten, ist die N-Mineralisation um 87,4 kg ha⁻¹ höher.

Weil an Stelle von Durchschnittswerten in diesem Versuch die jahresgenauen Wetterdaten über die gesamte Versuchsdauer zur Verfügung standen, konnten auch die Jahreseffekte der Witterung auf die N-Mineralisation dargestellt werden (Abb. 76). So war das Jahr 2003 auf Grund der hohen Durchschnittstemperaturen und niedrigen Niederschlagsmengen durch hohe Werte in der N-Mineralisation gekennzeichnet. In den darauf folgenden Jahren waren dagegen höhere Niederschläge und relativ niedrige Durchschnittstemperaturen dafür verantwortlich, dass verhältnismäßig niedrige Werte in der N-Mineralisation berechnet worden sind.

Abbildung 76: Einfluss von Bewirtschaftungsszenarien mit jeweils um ein Jahr verzögerter Einführung der Schwarzbrache (SB) einer Variante des Ökoversuches auf Lössboden auf die N-Mineralisation (Erläuterung siehe Text)

Aus diesen Beispielkalkulationen geht hervor, dass die Anfangsbedingungen für den jeweiligen Standort möglichst genau angegeben werden müssen (Klima, Boden, Bewirtschaftung). So ist es auch erforderlich, einen Anfangsgehalt an C_{org} und N_t einzugeben. Nach Möglichkeit sollten hierfür eigene Untersuchungsergebnisse von den Schlägen Verwendung finden. Wenn keine Analysen vorliegen, so können standorttypische Schätzwerte eingesetzt werden, die aus Tabellenwerken stammen oder unter Nutzung z. B. der multiplen Regressionsanalyse berechnet worden sind.

Die berechneten Ergebnisse aus der N-Mineralisation und den dazugehörenden weiteren N-Komponenten zeigen ein ähnliches Bild wie bei der im vorherigen Kapitel dargestellten Schlagbilanzierung (Abb. 77-Abb. 79). Nach der Aggregierung der Daten im Jahresdurchschnitt nähern sich die Bilanzergebnisse aus der Berechnung der N-Mineralisation und der Schlagbilanzierung immer weiter an. Hieraus kann auch eine Kontrolle der jährlich durchzuführenden Berechnungen der N-Mineralisation über die Zeit erfolgen, wodurch teilweise die Größenordnungen der N_t-Bodenbilanz sowie die Verwertung der organischen Düngemittel und der EWR-Komponenten einbezogen werden können.

Eine Gegenüberstellung der mit beiden Methoden ermittelten N-Salden zeigt, dass gegenüber der normalen Schlagbilanzierung eine relativ geringe Übereinstimmung besteht (Abb. 80-Abb. 82). Dagegen sind die Übereinstimmungen bei Anrechnung der N_t-Bodenbilanz in der Schlagbilanzierung sehr hoch (Bestimmtheitsmaße zwischen 92-93 %). Hieraus kann die Schlussfolgerung gezogen werden, dass die N-Mineralisation im Durchschnitt der Versuchsjahre mit hoher Genauigkeit berechnet wird.

Abbildung 77: Zusammenhang zwischen steigender N-Zufuhr und der N-Aufnahme durch die Fruchtarten bei der N_m-Flächenbilanzierung unter Einbeziehung der berechneten N-Mineralisierung aus 65 Dauerversuchen

Abbildung 78: Zusammenhang zwischen steigender N-Zufuhr und den N-Salden bei der N_m-Flächenbilanzierung unter Einbeziehung der berechneten N-Mineralisierung aus 65 Dauerversuchen

Abbildung 79: Zusammenhang zwischen steigender N-Zufuhr und der N-Effizienz bei der N_m-Flächenbilanzierung unter Einbeziehung der berechneten N-Mineralisierung aus 65 Dauerversuchen

Abbildung 80: Gegenüberstellung der berechneten N_m-Salden (unter Einbeziehung der N-Mineralisation) und den Salden berechnet auf Basis der üblichen Schlagbilanzierung

Abbildung 81: Gegenüberstellung der berechneten N_m-Salden (unter Einbeziehung der N-Mineralisation) und den Salden berechnet auf Basis der Schlagbilanzierung unter Einbeziehung der N_t-Bodendifferenzen in die N-Zufuhren

Abbildung 82: Gegenüberstellung der berechneten N_m -Salden (unter Einbeziehung der N-Mineralisation) und den Salden berechnet auf Basis der Schlagbilanzierung unter Einbeziehung der positiven N_t -Differenzen zu den N-Abfuhren und der negativen Differenzen in die N-Gesamt-Zufuhr

4.5.3 Potenzielle N-Bereitstellung und Düngebedarfsermittlung

Das Modell kann nur realistische Berechnungen hervorbringen, wenn eine Konditionierung oder Kalibrierung an Hand der Vorbewirtschaftung erfolgt ist. Hierzu können sowohl Daten aus entsprechend ausgesuchten Dauerversuchen als auch aktuelle Standortdaten von mindestens einem vorausgehenden Jahr, besser aus einer durchschnittlichen vorausgehenden Fruchtfolgerotation verwendet werden. Je präziser die Angaben über die Standortbedingungen und je höher die Anzahl an Jahren mit derselben Fruchtart bzw. der Anbauabfolge sind, umso genauer werden die Prognosen für die Düngebedarfsermittlung ausfallen. Auf Grund der vorausgehenden Auswertungen in Kap. 4.5.1 und Kap. 4.5.2 konnte aufgezeigt werden, dass die Ermittlung des Saldos eine z. T. deutlich höhere statistische Sicherheit ergab als die Ermittlung der N-Aufnahme (der jeweiligen Fruchtart). Auf der Basis entsprechender N-Gesamt-Zufuhren, die die N-Mengen der N-Mineralisation enthalten, können die abzuleitenden N-Salden auf verschiedenen Wegen ermittelt werden.

Nutzung von Ergebnissen aus allen 65 Dauerversuchen

Auf Grund der relativ engen Beziehungen zwischen der N-Zufuhr und den N-Salden auf der Basis der über die einzelnen Versuchsjahre aggregierten Mittelwerte der Varianten der hier zur Verfügung stehenden 65 Dauerversuche konnten unter Nutzung des gesamten Merkmalkataloges (Klima, Boden, Bewirtschaftung) Gleichungen mit Hilfe der multiplen Regressionsanalyse ermittelt werden (Tab. 17). Es wurden zwei Gleichungssysteme unter Beteiligung des Ton- oder des Feinanteils des Bodens mit relativ hoher statistischer Sicherheit ermittelt. Bei den Analysen wurden allerdings die Wirkungen der Fruchtfolgeanteile an Getreide und Hackfrüchten nicht berücksichtigt (keine Signifikanz).

Merkmal	Regressionskoeffizienten b incl. Tongehalt (MR² = 76,1 %, Standardfehler = ± 43,2 kg N ha ^{:1})	Regressionskoeffizienten b incl. Feinanteil (MR² = 78,5 %, Standardfehler = ± 41,1 kg N ha ^{:1})
(Konstante)	75,78386	267,71832
N-Gesamt-Zufuhr (kg ha ⁻¹)	0,55096	0,56528
Tongehalt (%)	-2,84835	
Feinanteil ^{2 *)} (%)		-0,04303
N-Zufuhr-Rest (kg ha ⁻¹)**)	-0,45074	-0,48143
N-Mineralisation ² (kg ha ⁻¹)	0,00023	0,00024
C _{org} -Anfangsgehalt (%) C _{org} -Anfangsgehalt² (%)	-25,32634 15,05530	10,91260
Niederschlag (mm) Niederschlag² (mm)	-0,26299 0,00014	-0,00012
C/N-Verhältnis Boden C/N-Verhältnis Boden ²	-0,22273	-9,31711
Temperatur (°C) Temperatur² (°C)	0,27639	-54,96165 3,74541
Anteil Leguminosen i.d. FFolge (%) Anteil Leguminosen i.d. FFolge ² (%)		-1,15435 0,01736

Tabelle 17: Multiple Regressionsgleichungen zur Bestimmung des Saldos ermittelt aus den 65 Dauerversuchen bei Verwendung der Mittelwerte über die Varianten (n = 591)

*): quadrat. Glieder; **): Summe aus symbiot. u. asymbiot. N-Bindung, N-Deposition, N-Saat- u. Pflanzgut

Aus der Gegenüberstellung von mit diesen Gleichungen berechneten und gemessenen N-Salden und N-Aufnahmen geht hervor, dass insgesamt eine recht gute Übereinstimmung gegeben ist. Niedrige Werte werden durch das Gleichungssystem etwas überbewertet und hohe Werte unterbewertet. Das Gleichungssystem unter Nutzung der Tongehalte ist offenbar etwas besser geeignet als das System unter Nutzung der Feinanteile des Bodens (Abb. 83-Abb. 86).

Abbildung 83: Gegenüberstellung von mit dem Gleichungssystem incl. des Merkmals Tongehalt berechneten und aus den Dauerversuchen ermittelten Werten für die N-Aufnahme

Abbildung 85: Gegenüberstellung von mit dem Gleichungssystem incl. des Merkmals Feinanteil berechneten und aus den Dauerversuchen ermittelten Werten für die N-Aufnahme

Abbildung 84: Gegenüberstellung von mit dem Gleichungssystem incl. des Merkmals Tongehalt berechneten und aus den Dauerversuchen ermittelten Werten für den N-Saldo

Abbildung 86: Gegenüberstellung von mit dem Gleichungssystem incl. des Merkmals Feinanteil berechneten und aus den Dauerversuchen ermittelten Werten für den N-Saldo

Nutzung von Ergebnissen aus Einzelversuchen

In Anlehnung an die Standortdaten des Versuches aus Groß Kreutz auf Sandboden (ASMUS 1990; ZIMMER 2003) werden an Hand einer sehr großen fiktiven Faktorenkombination zwischen Fruchtarten, organischer Düngung und N-Mineraldüngung weitere Möglichkeiten der Quantifizierung aufgezeigt. Wie aus den nachfolgenden Abbildungen 87 bis 92 hervorgeht, ist eine große Variationsbreite der aufgeführten N-Werte der Bilanz-Komponenten vorhanden. Hierdurch wird eine Quantifizierung deutlich erschwert. In den meisten Fällen können durch quadratische bis S-förmige kubische Gleichungen die Zusammenhänge am besten beschrieben werden.

Abbildung 87: Zusammenhang zwischen den berechneten Werten an N-Gesamt-Zufuhr, N-Aufnahme und N-Saldo im Beispielsversuch auf Sandboden (aggregierte Werte, n = 25)

Abbildung 88: Zusammenhang zwischen berechneten Werten der N-Gesamt-Zufuhr, N-Aufnahme und N-Salden (Einzelwerte, n = 1.000)

Abbildung 89: Zusammenhang zwischen simulierten Werten der N-Gesamt-Zufuhr, N-Aufnahme und N-Salden der Fruchtarten

Es ist eine deutliche Unterscheidung zwischen den Fruchtarten gegeben. So weist in der Regel in Folge steigender Gesamt-Zufuhr die Sommergerste die höchsten Salden und die geringste Nährstoffeffizienz für Stickstoff auf, während die Zuckerrübe die geringsten Salden und die höchste Effizienz aufweist. Unterschiede in der genetischen Veranlagung zur Nährstoffaufnahme sowie auch die Wachstumsdauer der Fruchtarten sind hierfür als Ursachen zu nennen. Während zwischen steigender Zufuhr und der Nährstoffaufnahme nur geringe statistische Bestimmtheitsmaße bzw. zwischen der Aufnahme und der Effizienz (ohne Abb.) gar keine statistischen Beziehungen bestanden, waren sehr hohe Bestimmtheitsmaße zwischen der Gesamt-Zufuhr und den Salden bzw. der Nährstoffeffizienz zu verzeichnen (Abb. 87-Abb. 92).

Auf Grund dieser Ergebnisse erscheinen die Verwendung der Gleichungen der verschiedenen Fruchtarten zwischen den Gesamt-Zufuhren und den Salden sowie die Beziehungen zwischen den Salden und der Nährstoffeffizienz am besten geeignet zu sein. Bei direkter Verwendung dieser Gleichungen werden dann mittlere Werte z. B. für die Salden in Anrechnung gestellt, um ein mittleres Niveau der N-Aufnahme bzw. der Erträge der Fruchtarten zu berechnen. Wie aus der Streubreite z. B. der N-Salden in Abhängigkeit von einer steigenden Zufuhr an Stickstoff zu erkennen ist (Abb. 90-Abb. 92), wäre eine Verringerung der Konstante (a) der Fruchtarten-Gleichungen um ca. 40-50 kg N ha⁻¹ geeignet, um das potenziell vorkommende untere Niveau der Salden zu bestimmen. Diese Vorgehensweise ist am Beispiel der Kartoffeln in Abbildung 93 dargestellt worden. Bei Verwendung der hier erhaltenen Gleichung kann dann ein durchschnittliches oberes potenziell mögliches Niveau der N-Aufnahme und Erträge berechnet werden.

Abbildung 90: Zusammenhang zwischen simulierten Werten der N-Gesamt-Zufuhr sowie der N-Salden der Fruchtarten im Versuch auf Sandboden

Abbildung 91: Zusammenhang zwischen N-Gesamt-Zufuhr und der N-Effizienz

Abbildung 92: Zusammenhang zwischen N-Saldo und der N-Effizienz

Abbildung 93: Zusammenhang zwischen den berechneten Werten der N-Gesamt-Zufuhr und N-Salden bei Kartoffeln bei Absenkung des Achsenabschnitts (a) der Gleichung um 45 kg N ha⁻¹ im Versuch auf Sandboden

In Systemen mit stark unterschiedlich hoher Zufuhr an Stickstoff kann daher nur eine befriedigende Lösung für die Fixierung eines betreffenden Saldos erfolgen, wenn die Nutzung eines der beschriebenen Gleichungssysteme erfolgt, weil die N-Salden je nach Versorgungsniveau sehr stark unterschiedliche Werte annehmen können. In dem beschriebenen Beispiel liegen die N-Salden bei niedriger N-Zufuhr bei bis zu -150 kg N ha⁻¹ und bei hoher Zufuhr können die N-Salden auch +250 kg N ha⁻¹ überschreiten (siehe Abb. 90). Auch eine einfache Begrenzung auf 0 kg N ha⁻¹ ist nicht sinnvoll, weil quasi in allen untersuchten Versuchen bei niedriger Zufuhrhöhe an löslichem Stickstoff es noch zu z. T. deutlich negativen Salden kommen kann (siehe u. a. Abb. 58).

Im Gegensatz hierzu ist in Systemen mit nicht deutlich unterschiedlicher Variation der Fruchtart abhängigen N-Zufuhr eine andere Vorgehensweise möglich, um realistische Werte der N-Salden zu bestimmen. Hierzu wurde

bei dem Beispielsversuch auf Sandboden eine Anbaufolge einer mittelhoch versorgten Variante (N-Düngung ca. 100 kg ha⁻¹) zusammengestellt und die Simulationsergebnisse in Jahresschritten dargestellt (Abb. 94). Für die einzelnen Fruchtarten sind die berechneten Werte für die N-Mineralisation, die N-Gesamt-Zufuhr, die N-Aufnahme und die N-Salden in chronologischer Folge abgebildet worden. Zunächst ist zu erkennen, dass von Jahr zu Jahr eine erhebliche Fluktuation der aufgeführten Werte gegeben ist.

Abbildung 94: Anbauabfolge sowie berechnete Werte der N-Mineralisation und weiterer wichtiger N-Komponenten in chronologischer Abfolge einer Beispielsvariante auf Sandboden

So streuen auch die N-Salden zwischen unter -50 kg und über +150 kg N ha⁻¹. Unter diesen fixierten Standort- und Bewirtschaftungsbedingungen stellen sich aber nur geringfügig differenzierte N-Salden zwischen den angebauten Fruchtarten ein, wenn deren mittlere Werte betrachtet werden (Tab. 18). Auch auf diese Weise können fruchtarttypische N-Salden ermittelt werden. Werden sie zusätzlich in chronologischer Folge geordnet, können auch Effekte der Fruchtfolge bei der Festlegung unterer Saldengrenzen berücksichtigt werden (z. B. wichtig im ökologischen Landbau).

Fruchtart	Mittelwert (kg N ha ⁻¹)	Mittelwert (korrigiert f. Extremwerte) (kg N ha ⁻¹)
Kartoffeln	76,8	63,0
ZRüben	16,8	-5,0
SMais	50,4	50,4
WWeizen	21,8	21,8
WRoggen	-14,9	8,6
SGerste	38,8	38,8
Mittelwert	31,6	29,6

Tabelle [•]	18: Mi	ttelwerte	der	berechneten	N-Salden	für	die	Fruchtar	ten
rabelle	10. 1011		uei	Delecimeten	N-Saluell	IUI	uie	i i uciitai	ten

An zwei konkreten Beispielen des ökologischen Dauerversuchs B17 mit 1 DE ha⁻¹ Stallmist-Zuführung (80 kg N ha⁻¹) aus Methau auf Lösslehm in Sachsen sollen die Wirkungen der Anbauabfolge auf die Mineralisierung dargestellt werden. In der Variante 7002 sind alle Koppelprodukte sowie die Kleegras-Aufwüchse abgefahren worden (System Futterbau, Abb. 95). In Variante 7010 sind die Koppelprodukte und die Kleegrasaufwüchse auf der Fläche belassen worden (System Marktfrucht, Abb. 96). Deutlich treten die Mineralisierungsschübe durch das Verbleiben des Kleegrasaufwuchses im System Marktfrucht hervor, während in den Jahren nach dem Kleegrasanbau die Mineralisierung jeweils periodisch abnimmt. Die Erhöhung der Mineralisation durch das Anbauglied Kleegras ist bei Abfuhr der Aufwüchse wesentlich geringer, auch ist der Abfall in den Zwischenjahren geringer, weil das Stroh ebenfalls abgefahren wurde. Im Marktfruchtsystem ist das Stroh dagegen verblieben, wodurch teilweise dann eine deutliche Verringerung der Mineralisation z. B. durch Anbau von Getreide und Körnermais eingetreten ist.

Abbildung 95: Chronologische Abfolge der N-Mineralisation und weiterer N-Komponenten eines Ökoversuches auf Lössboden: Variante 7002 System Futterbau

Abbildung 96: Chronologische Abfolge der N-Mineralisation und weiterer N-Komponenten im Ökoversuch auf Lössboden: Variante 7010 System Marktfrucht

Die zusammengefassten Einzelergebnisse der Bilanzierung zeigt folgendes Bild. Kennzeichen dieser ökologischen Versuche ist es, dass in Folge steigender Nährstoffzufuhr keine deutliche Abnahme der N-Aufnahme und keine starke überproportionale Zunahme der erzielten N-Salden zu verzeichnen sind (noch weitgehend linearer Bereich der Ertragskurve; Abb. 97). Außerdem ist zwischen dem Anbau von Futterpflanzen z. B. in Form von Kleegras und den anderen Fruchtarten zu unterscheiden (Abb. 98). Für das Kleegras wird in der Regel keine N-Düngungsbemessung zu berechnen sein, daher beziehen sich die nachfolgenden Ausführungen auf die anderen ausgewiesenen Fruchtarten (Abb. 99). Zwischen den einzelnen Fruchtarten bestehen keine so ausgeprägten Unterschiede in den Relationen zwischen der N-Gesamt-Zufuhr und den N-Salden. Außerdem besteht zwischen den quantifizierten Komponenten noch eine weitgehend lineare Beziehung. Aus der Verteilung der Punkte für die einzelnen Fruchtarten ist zu erkennen, dass die Getreidearten Hafer und Sommerweizen mit ihren Punkten meistens über der eingezeichneten mittleren Gleichungsgeraden liegen. Daraus kann abgeleitet werden, dass diese Gleichung auch genommen werden kann, um das obere Potenzial der Nährstoffaufnahme dieser Sommer-Getreidearten zu fixieren, während für die anderen Fruchtarten eher ein mittleres Aufnahmeniveau fixiert wird.

Bei Reduzierung des Achsenabschnitts (a) um 45 kg N ha⁻¹ wird deutlich, dass mit der dann erhaltenen Gleichung das maximale Potenzial der Fruchtarten berechnet werden kann (Abb. 100). Zwischen dem Saldo und der N-Effizienz besteht wiederum eine verhältnismäßig enge und typische Beziehung (Abb. 101).

Abbildung 97: Zusammenhang zwischen steigender N-Gesamt-Zufuhr und der berechneten N-Aufnahme durch die Fruchtarten eines ökologischen Versuches auf Lössboden

Abbildung 98: Zusammenhang zwischen steigender N-Gesamt-Zufuhr und den N-Salden in den Einzelvarianten des ökologischen Versuches auf Lössboden

Abbildung 99: Zusammenhang zwischen steigender N-Gesamt-Zufuhr und den N-Salden der angebauten Fruchtarten incl. mittlerer Regressionsgeraden des ökologischen Versuches auf Lössboden

Abbildung 100: Zusammenhang zwischen steigender N-Gesamt-Zufuhr und der Regressionsgeraden bei Absenkung des Achsenabschnitts (a) um 45 kg N ha⁻¹ des ökologischen Versuches auf Lössboden

Abbildung 101: Zusammenhang zwischen steigenden N-Salden und der Nährstoff-Effizienz (Zufuhr = 1) der Einzelvarianten des Ökoversuchs auf Lössboden

Berechnungsbeispiele zur Düngebedarfsermittlung

Am Beispiel der berechneten Ergebnisse der zwei aufgeführten Versuche sollen nun verschiedene Kalkulationsmöglichkeiten erläutert werden. Die Konditionierung des Modells erfolgte, indem der o. a. implizierte Ablauf der Versuchsvarianten übernommen worden ist. Zum Anbau von Kartoffeln ergibt sich folgender Rechengang:

Tabelle 19: Berechnungsabfolge zur Ermittlung der N-Bereitstellung für den Kartoffelanbau am Beispiel eines Versuches auf Sandboden (Ø 167 dt Stalldung, 100 kg N-Mineraldüngung ha⁻¹)

Nr.	Gleichung	Bilanz-Komponenten	Beispiel (kg N ha ⁻¹)
x0	+/-	N _{min} -Basiswert Frühjahr (aktueller durchschnittl. Wert minus Mittelwert entspr. Bodenart und Fruchtfolgestellung)	0
x1	+	Zufuhr N-Mineraldünger	120
x2	+	Zufuhr N-Mineralisierung	56
x3	+	Zufuhr symbiotische N-Bindung	0
x4	+	Zufuhr asymbiotische N-Bindung	5
x5	+	Zufuhr N-Deposition	15
x6	+	N-Zufuhr mit Saat- und Pflanzgut	8
x7		N-Gesamt-Zufuhr an pflanzenverfügbarem N (= x0 + x1 + x2 + x3 + x4 + x5 + x6)	204
x8	F	N-Saldo (minimaler Wert, ermittelt aus entspr. Versuchen oder eigenen Aufzeichnungen d. Schlag- kartei)	36
x9	=	N-Bereitstellung zur potenziell möglichen Aufnahme (EWR, Koppel-, Hauptprodukt) und Ertragsbildung (Hauptprodukt) der Fruchtart	168
x10	\rightarrow \rightarrow	N-Entzug Knollenertrag: 130 kg N ha ⁻¹ / 0,35 kg N/dt FM = 372 dt ha ⁻¹ FM	130

Für den N_{min} -Basiswert wurde keine Korrektur angenommen, sodass der Wert Null einzusetzen ist. Als N-Saldo wurde in diesem Fall der aus dem Versuch berechnete Wert angenommen. Mit einer N-Mineraldüngung von 120 kg N ha⁻¹, einer berechneten N-Mineralisation von 56 kg N ha⁻¹ und den weiteren Komponenten wurde eine N-Gesamt-Zufuhr von 204 kg ha⁻¹ ermittelt, mit der eine N-Aufnahme durch den Anbau der Kartoffeln von 168 kg ha⁻¹ realisiert werden konnte. Von der insgesamt aufgenommenen N-Menge erfolgte eine berechnete N-Abfuhr von 130 kg ha⁻¹ (N-Effizienz = 64 %), was einem Knollenertrag von 372 dt ha⁻¹ entsprach.

Die Vorgehensweise ist zunächst etwas abgestimmt für einen Einsatz im ökologischen Landbau. Hierbei kann aufbauend auf der Konditionierungsphase dann das Ertragspotenzial der anzubauenden Fruchtart für das nächste Anbaujahr abgeschätzt werden. Auf Grund von erhaltenen Disproportionen zwischen berechnetem N-Angebot und der zu erwartenden N-Aufnahme kann an dieser Fruchtfolgeposition eine andere Fruchtart gewählt oder eine veränderte (zusätzliche) Düngung als Alternativvariante zur Verbesserung der Übereinstimmung zwischen Angebot und Aufnahme durchgerechnet werden. Entsprechend diesem Schema wurden zunächst für beide Versuche die N-Salden nach fünf verschiedenen Methoden ermittelt:

- 1. Generelle multiple Gleichung, ermittelt aus allen 65 Versuchen incl. Tongehalt (Ton) entsprechend Tabelle 17
- 2. Generelle multiple Gleichung, ermittelt aus allen 65 Versuchen incl. Feinanteil (Fein) entsprechend Tabelle 17
- 3. Nutzung von linearen oder quadratischen Gleichungen singulär für jede Fruchtart (oder Fruchtart-Gruppe) ermittelt aus einzelnen Versuchen (GL-Art), z. B. entsprechend Abb. 87, 90, 99
- 4. Nutzung von Mittelwerten der Fruchtart (oder Fruchtart-Gruppe) aus vorausgehender Versuchsperiode (MW-Art), z. B. entsprechend Tabelle 18
- 5. Nutzung von Mittelwerten aus vorausgehender Versuchsperiode für die Nachbauphase nach (mehrjährigen) Leguminosen (Ökolandbau, MW-F.-Folge-Pos)

Jede Methode wurde genutzt, um ein mittleres Niveau (MW) und ein unteres Niveau an Salden (POT) zu generieren. Danach wurden die aus den vorausgehenden Versuchsjahren zur Verfügung stehenden N-Mengen für die Berechnung der Mineralisation des jeweils nachfolgenden Versuchsjahres verwendet. Zur Ermittlung der N-Gesamt-Aufnahme der Pflanzenarten wurden anschließend entsprechend dem oben angegebenen Beispiel (Tab. 19) die N-Gesamt-Zufuhren ermittelt und davon die N-Salden abgezogen. Auf diese Weise wurden von jeder der beiden Varianten für die untersuchten Fruchtarten jeweils ein mittleres Niveau (MW) und ein potenziell maximales Niveau (POT) der N-Aufnahme berechnet und den in den Versuchen ermittelten Werten (Experiment) gegenübergestellt (Tab. 20).

Tabelle 20: Mögliche Varianten der Berechnung der N-Gesamt-Aufnahme (kg N ha⁻¹) verschiedener Fruchtarten im Vergleich zu experimentell ermittelten Werten für den Versuch auf Sandboden und auf Lössboden (Erläuterung siehe Text)

Methode	Niveau	Versuch auf 9 ZRübe 1989	Sandboden SGerste 1990	Kartoffeln 1991	WWeizen 1992	SMais 1993	Versuch auf I WWeizen 2002, 1. NBJ*	₋ößboden SMais 2003, 2. NBJ*	Kartoffeln 2004, 3. NBJ*
Experiment		257,0	109,0	168,0	97,0	124,0	149,0	135,0	203,0
Ton	MW	179,5	120,0	153,2	135,7	153,2	143,6	150,4	135,4
	POT	224,5	165,0	198,2	180,7	198,2	188,6	195,4	180,4
Fein	MW	156,9	99,5	131,5	114,2	131,5	146,4	153,0	138,8
	POT	201,9	144,5	176,5	159,2	176,5	191,4	198,0	183,8
GL-Art	MW	266,6	104,1	129,1	141,2	157,8	160,8	161,9	159,2
	POT	311,6	149,1	174,1	186,2	202,8	205,8	206,9	204,2
MW-Art	MW	257,9	99,1	127,3	148,9	162,1	169,5	186,7	145,9
	POT	302,9	144,1	172,3	193,9	207,1	214,5	231,7	190,9
MW.F Folge-Pos.	MW POT						153,5 198,5	191,9 236,9	156,5 201,5

* NBJ = Nachbaujahr nach Leguminosen

Der Unterschied zwischen dem Niveau MW und POT beträgt 45 kg N ha⁻¹. Es ist zu erkennen, dass unterschiedliche Genauigkeiten zur Ermittlung der N-Aufnahmen zwischen den gewählten Methoden bestehen. Je genereller der methodische Ansatz zur Berechnung gewählt wurde, umso ungenauer wurden die N-Aufnahmen für die Fruchtarten ermittelt. Hierbei wurden im Vergleich zu den Experimentwerten die Werte für die N-Aufnahme bei einigen Getreidearten und Silomais überschätzt, während bei den Hackfrüchten Kartoffeln und besonders bei Zuckerrüben eine Unterschätzung vorlag.

Diese unterschiedliche Genauigkeit kann auch sehr gut aus der folgenden Abbildung entnommen werden, in der diese berechneten Werte den aus den Versuchen stammenden Werten in der N-Aufnahme gegenübergestellt worden sind (Abb. 102 und Abb. 103). Es ergab sich folgende Rangordnung in der Genauigkeit der angewendeten Methoden zur Ermittlung der N-Salden: Fein \leq Ton \leq GL-Art = MW-Art. Es wird deutlich, dass mit den Methoden die genauesten Ergebnisse erlangt wurden, bei denen Informationen aus vorausgehenden Versuchsjahren individuell für möglichst jede Fruchtart für die Berechnungen zur Verfügung standen und für die Bildung der N-Salden genutzt werden konnten.

Abbildung 102: Gegenüberstellung von berechneten Mittelwerten (MW) und aus den Versuchen ermittelten Werten (Exp.) der N-Gesamt-Aufnahme verschiedener Fruchtarten der Beispielsversuche

Abbildung 103: Gegenüberstellung von potenziellen Werten (POT) und aus den Versuchen ermittelten Werten (Exp.) der N-Gesamt-Aufnahme verschiedener Fruchtarten der Beispielsversuche Für den Einsatz zur direkten Düngebedarfsermittlung kann auch eine Erweiterung des Verfahrens durch Integration in die übliche N_{min}-Methode erfolgen, sodass ein Einsatz für bestimmte Fruchtarten im ökologischen Landbau (Feldgemüse, Kartoffeln, Raps) und vor allem im konventionellen Anbau erfolgversprechend sein dürfte. Hierbei kann die über das Modell ermittelte N-Mineralisation auf verschiedenen Wegen in den Verfahren der heute gebräuchlichen N_{min}-Methode Verwendung finden. Allen Verfahren ist gemeinsam, dass von einem Zielertrag bzw. einer Gesamt-Menge an verfügbarem Stickstoff, die zu einem optimalen Ertrag führt, die Beträge der N_{min}-Gehalte im Frühjahr sowie weitere Korrekturbeträge durch organische Düngung etc. abgezogen werden, wodurch dann die Höhe der N-Düngung ermittelt wird.

Die geringste Ergänzung eines bestehenden Verfahrens besteht durch die Einbeziehung der vom Modell berechneten N-Mineralisation in die Gesamtrechnung. Hierbei ist jedoch zu bedenken, dass realistische Werte in der N-Mineralisation nur erhalten werden können, wenn wesentliche Standortmerkmale (Boden, Klima) sowie die genauen Anbaubedingungen aus einigen vorausgehenden Jahren des betreffenden Ackerschlages berücksichtigt werden.

Eine weitere Möglichkeit besteht darin, dass, entsprechend dem in der nachfolgenden Tabelle 21 aufgeführten Schema, eine weiter entwickelte Variante der N_{min} -Methode zur Anwendung kommt. Bei den hier vorgestellten Versuchen wurden in gewisser Weise die jeweils vorherrschenden N_{min} -Gehalte des Frühjahres schon berücksichtigt. Somit müsste noch ein System entwickelt werden, um ausgehend von einem mittleren Niveau jeweils nur besonders niedrige N_{min} -Werte durch Abzüge und hohe Werte durch entsprechende Hinzufügung anrechnen zu können. Aus entsprechenden Versuchen könnten aber auch Verfahren zur direkten Anrechnung entwickelt werden.

Tabelle 21: Berechnungsbeispiel zur Ermittlung der Höhe der N-Düngung für den Anbau von Kartoffeln für ein anzustrebendes Ertragspotenzial auf der Basis des Versuches auf Sandboden (Ø 167 dt Stalldung, 100 kg N-Mineraldüngung ha⁻¹)

Nr.	Gleichung	Bilanz-Komponenten	Beispiel (kg N ha⁻¹)
x9		N-Bereitstellung (EWR, Koppel-, Hauptprodukt) für ein anvisiertes Ertragspotenzial von 372 dt ha ⁻¹ (Hauptprodukt) der Fruchtart	168
x0	+/-	N _{min} -Basiswert Frühjahr (aktueller durchschnittl. Wert minus Mittelwert entspr. Bodenart u. Fruchtfolgestellung)	0
x2	-	Zufuhr N-Mineralisierung	56
x3	-	Zufuhr symbiotische N-Bindung	0
x4	-	Zufuhr asymbiotische N-Bindung	5
x5	-	Zufuhr N-Deposition	15
x6	-	N-Zufuhr mit Saat- und Pflanzgut	8
x8	+	N-Saldo (minimaler Wert, ermittelt aus entspr. Versuchen oder eigenen Aufzeichnungen d. Schlagkartei)	36
x1	=	Zufuhr N-Mineraldünger	120
x10	\rightarrow \rightarrow	N-Entzug Knollenertrag: 130 kg N ha-1 / 0,35 kg N/dt FM = 372 dt ha ⁻¹ FM	130

In dem aufgeführten Variantenbeispiel wird ein Knollenertragspotenzial von 372 dt ha⁻¹ angestrebt. Hierfür ist eine N-Aufnahme von 168 kg ha⁻¹ erforderlich. Von dieser Menge an Stickstoff werden nun alle N-Mengen der bekannten Komponenten abgezogen inklusive der N-Mineralisierung (in dieser Variante und Fruchtfolgeposition 56 kg ha⁻¹). Demgegenüber wird der wiederum über verschiedene Methoden zu ermittelnde N-Saldo der Summe hinzugezogen. Auf diese Weise kann der Betrag der N-Düngung ermittelt werden, der für die Produktion des anvisierten Knollenertrages erforderlich ist. In gleicher Weise kann (auch z. B. im Ökolandbau) noch eine weitere Düngung mit organischen Düngemitteln veranschlagt werden, um das Ertragspotenzial abzusichern.

In der geschilderten Weise wurden nun für verschiedene Fruchtarten und Anbaujahre die N-Düngermengen berechnet und in Tabelle 22 niedergelegt sowie grafisch den im Versuch verabreichten mineralischen N-Mengen gegenübergestellt (Abb. 104). Zur Bestimmung der N-Salden wurde das Niveau MW verwendet. Außer für Zuckerrüben, wobei durch die Methoden Ton und Fein deutlich zu hohe N-Mengen berechnet worden sind, können nach den bisherigen Erfahrungen alle aufgeführten Berechnungswege zur Generierung der N-Salden angewendet werden, um N-Mengen zu berechnen, die eine ähnliche Höhe aufweisen wie die in den Feldversuchen verabreichten Mengen. Hierbei ist zu bedenken, dass die zu den einzelnen Fruchtarten verabreichten N-Mengen in der Regel Pauschalbeträge sind. Die Versuche wurden nicht durchgeführt, um die N-Düngung zu verschiedenen Fruchtarten zu optimieren.

Tabelle 22: Mögliche Varianten zur Berechnung der Höhe der N-Mineraldüngung (kg N ha⁻¹) auf Basis einer erweiterten N_{min}-Methode für verschiedene Fruchtarten im Versuch auf Sandboden

Methode	Niveau	Fruchtart ZRübe 1989	SGerste 1990	Kartoffeln 1991	WWeizen 1992	SMais 1993
Experiment		150	50	120	80	150
Ton	MW	227	39	135	42	99
Fein	MW	249	60	157	63	121
GL-Art	MW	139	55	159	36	95
MW-Art	MW	148	60	161	28	91

Abbildung 104: Gegenüberstellung von berechneten und verabreichten Mengen der N-Düngung verschiedener Fruchtarten im Versuch auf Sandboden

Die Düngungsbemessung wurde bisher für eine Fruchtart weitgehend nur auf Basis einer N_{min}-Probe im zeitigen Frühjahr veranschlagt. Weitere Komponenten wurden nur am Rande mit in die Rechnung einbezogen oder konnten auf Grund zu geringer Kenntnis von der Service-Stelle, z. B. einem Untersuchungslabor, nicht einbezogen werden. Bei der Anwendung des CCB in den beschriebenen Formen zur N-Bedarfsprognose und zur Ermittlung der potenziell möglichen N-Gesamt-Aufnahme der Fruchtarten kann zusammenfassend angemerkt werden, dass hierdurch ein gewisses Systemdenken angeregt wird, wobei auch eine zeitliche Abfolge mit einbezogen wird. Auf Schlagebene werden so auf Grund vieler Informationen optimale Bedarfsprognosen ermittelt.

Auf Grund der dargelegten Ergebnisse tritt die Bedeutung von Standortfaktoren und von chronologisch verabfolgten Bewirtschaftungseinflüssen auf die N-Mineralisation hervor. Die ermittelten Werte der N-Mineralisation sind hiervon in entscheidendem Ausmaß abhängig. So können auf Grund verschiedener Faktorkombinationen von Jahr zu Jahr stark unterschiedliche Werte in der N-Mineralisation in ein und derselben Variante auftreten. Bei genauer Berücksichtigung dieser wichtigen Faktoren des Anbausystems erscheint daher eine deutliche Verbesserung der Methoden zur Düngungsbemessung möglich. Dies kann z. B. durch Einbeziehung von Schlagkarteiaufzeichnungen über vorausgehende Anbaujahre erfolgen, wobei mit Hinzufügung weiterer Anbaujahre eine stetige Verbesserung der Prognosen erwartet werden kann.

Diese Konditionierung kann daher als ein sich selbst verbesserndes und hinzulernendes System angesehen werden. Darüber hinaus können auch für den Nutzer durch fortgeschriebene Informationen über die Entwicklung der Nährstoffbilanzen sowohl jährliche als auch mittlere Bilanz- und Effizienzwerte über den Nährstoff Stickstoff vermittelt werden. Neben den aktuellen Informationen zur Düngebedarfsprognose werden hierdurch für das Anbauverfahren weitere wichtige Elemente der Nachhaltigkeit und des Wasserschutzes zur Verfügung gestellt, die wiederum zur Anbauoptimierung verwendet werden können.

5 Ergebnisausgabe im Modell CCB

Die Ergebnisse der Simulationen des Modells CCB werden dem Anwender in einer grafischen Oberfläche angezeigt (Abb. 105-Abb. 109). Zusätzlich zur Veränderung der C_{org} -Gehalte im Boden wird die C-Bilanz in t ha⁻¹ ausgewiesen (Abb. 105). Hierbei sind die Mengen für die Prozesse Auf- und Abbau, CO₂- und das C-Saldo einzeln ausgewiesen. Diese Ergebnisse zur Beurteilung der Humusreproduktion im Boden können für weitere Datenanalysen nach MS Excel exportiert werden.

Abbildung 105: Ergebnis der CCB-Modellierung am Beispiel Corg-Gehalt

E- G Schläge	_		aten Bewirtsch	aftung Messwert	e Ergebnisse	: Corg Humusbilanz	N-Bilanz	
		Jahr H	Hum.aufb[kgC/ha/a]	Hum.abb[kgC/ha/a]	Saldo[kgC/ha/a]	CO2-Prod. [kgC/ha/a]	C im Boden [t/ha]	T
4test_kolbe		2002	2072,3	1026,2	1046	3188,3	49,5	5
- 🗈 Testschlag		2003	1829,5	1104,4	725,1	2836,7	50,4	4
		2004	1912,5	1186,3	726,1	2980,3	51,1	1
		2005	2203,1	1299	904,1	3577,6	51,9	9
		2006	1841,2	1347,7	493,4	3089,9	52,5	5
		2007	1913,7	1399,3	514,3	3194,2	53	3
							Auswahl	
		53,5 53,0]					Auswahl C Humus-Auf	Ъа
	[euo	53,5 53,0 52,5					Auswahl C Humus-Auf	ba
	he [t/ha]	53,5 53,0 52,5 52,0					Auswahl C Humus-Auf C Humus-Abb	ba
	Krume [t/ha]	53,5 53,0 52,5 52,0 52,0				-	Auswahl C Humus-Auf C Humus-Abb C C02-Produ	iba bau
	der Krume [t/ha]	53,5 53,0 52,5 52,0 51,5 51,0					Auswahl C Humus-Auf C Humus-Abb C C02-Produ	iba Dau
	brrat der Krume [t/ha]	53,5 53,0 52,5 52,0 51,5 51,0 50,5					Auswahl Humus-Auf Humus-Abb C C02-Produ C CVorrat (to	iba Dau Ikti Dtal
	C-Vonat der Krume [t/ha]	53,5 53,0 52,5 52,0 51,5 51,0 50,5 50,0 49,5		_		_	Auswahl Humus-Auf Humus-Abb CO2-Produ CO2-Produ Humussald	iba Dau Ikti Intal
								unlal

Abbildung 106: Ergebnisdarstellung der Humusreproduktion

Über eine extra Schaltfläche wird die Menge der N-Mineralisierung aus der organischen Bodensubstanz ausgewiesen (Abb. 107). Weitere Ausführungen hierzu finden sich in Kap. 4.5.

Abbildung 107: Ausweisung der N-Mineralisierung

Abbildung 108: Ausweisung der Komponenten der N-Schlagbilanz

In Tabelle 23 ist der Merkmalskatalog für die CCB-Ausgabe zusammengefasst. Die behandelten Elemente zum Kohlenstoff und Stickstoff können in differenzierter Weise ausgegeben werden. Hierbei stehen sowohl Bilanzierungen auf Basis der Schlag- und Flächenbilanz im Vordergrund, aber auch Informationen über Einzelgrößen der N_t-Bodenbilanz und die N-Komponenten zur Düngungsbemessung können abgerufen werden. Teilweise befindet sich der Katalog noch im Aufbau, wie z. B. das Bewertungssystem zur Humusbilanzierung.

Tabelle 23: Ausgabemerkmalskatalog des Modells CCB (teilweise noch im Aufbau)

Merkmalsbeschreibung	Kohlensto	off			Stickstof				
	C _{org} - Boden- Gehalt (% TM)	C _{org} - Boden- Menge (kg ha ⁻¹)	C- Fläche (kg ha ⁻¹)	C- Fläche + Boden (kg ha ⁻¹)	N _t - Boden- Gehalt (% TM)	N _t - Boden- Menge (kg ha ⁻¹)	N- Fläche (kg ha ⁻¹)	N- Fläche + Boden (kg ha ⁻¹)	N _m - Fläche + Boden (kg ha ⁻¹)
Zeitl. Verlauf einer Variante (als Abb., auch mit exp. Werten u. Angabe d. Statistik)	x	(x)	(X)	(X)	x	(x)	(x)	(X)	(X)
Flächenbilanz (in Jahresscheiben, FFolge)		x	x	x		x	x	x	x
Flächenbilanz (MW, zeitabh. FFolge		x	x	x		x	x	x	x
Aggegierte Flächenbilanz (MW f. Zeitabschnitt, FFolge f. mehrere Flächen bzw. Betrieb, Hof- tor)		x	x	x		x	x	x	x
Bewertungssystem (Ergebnisausgabe auf 20 – 25 Jahre + A-E-Bewertung)	x	x			(x)	(x)			
Bewertungssystem (MW Flächen-Bilanz f. Zeitabschnitt, FFolge, A-E-Bewertg.)				(x)				(x)	
Mineralisation				(x)					x
Gesamtzufuhr (m. Aufgliederung)				(x)				x	x
Aufnahme (Pflanzen)				(x)					x
Abfuhr (Pflanzen)				(x)				x	(x)
Saldo				(x)				x	x
Gesamtzufuhr (f. folgend. Anbaujahr, Aufgliederung)									x
MW bzw. potenziell mögliche Auf- nahme (d. gewählten Fruchtart)									x
MW bzw. potenziell möglicher Ertrag (HP f. gewählte Fruchtart)									x
Höhe N-Düngung (entspr. gewähltem Ertragsniveau d. FArten = N _{min} -Methode									х

x = Ausgabe vorgesehen, (x) = potenziell vorgesehen

6 Schlussfolgerungen

Hauptanteile wichtiger Grundnährstoffe des Bodens (N, P, S) sind im Humus gebunden. Der Umsatz der organischen Substanz ist daher eng mit der Mineralisierung dieser Nährstoffe verbunden. Auf beide Bestandteile wirkt auch ein ähnliches Spektrum an Einflussfaktoren ein. Die wichtigsten beteiligten Prozesse sind bekannt und es gibt sowohl für die organische Substanz als auch für den Nährstoff Stickstoff seit einigen Jahrzehnten bewährte Ansätze zur Modellierung (siehe Überblick in BENBI & NIEDER 2003).

Die so genannten Prozessmodelle sind dadurch gekennzeichnet, dass die grundlegenden biologischen Abläufe direkt abgebildet werden, sodass eine hohe Genauigkeit für alle Standortgegebenheiten erwartet werden kann. Es ist allerdings zu bedenken, dass zwischen den beiden Komponenten (Humus und Stickstoff) zwar deutliche Ähnlichkeiten im Wirkungszusammenhang bestehen, gleichzeitig aber eine große standörtliche Differenzierung in der Merkmalsausprägung vorliegt (KARLSSON 2012). Hierdurch steigt gewöhnlich der für jede Standortgegebenheit zu erbringende manuelle Aufwand an Parameterabstimmung auch für diese Modelle an, bis eine jeweils gute Standortanpassung erreicht wird, sodass die dann zu erwartenden Berechnungsergebnisse auch einen hohen Realitätswert einnehmen.

Prozessmodelle werden aus diesen Gründen bisher fast ausschließlich im wissenschaftlichen Bereich angewendet, weil sie z. T. einen sehr hohen Eingangsdatenbestand bedürfen, der in der Regel unter praktischen Verhältnissen nicht zur Verfügung steht. Unter den gewöhnlichen Bedingungen der Praxis liegen weder Kenntnisse über spezielle Eingangsmerkmale vor, noch kann eine jeweils individuelle Parameteranpassung vorgenommen werden.

In dem Forschungsvorhaben galt es daher zunächst die Frage zu klären, ob es gelingen kann, die Vorteile der Prozessmodelle unter den heutigen technischen Möglichkeiten auch für einen Einsatz in der breiten landwirtschaftlichen Praxis zu gewährleisten (landwirtschaftliche Betriebe, Beratungseinrichtungen, Verwaltung, Schule und Studium). Ausgehend von dem einzigen Ansatz im mitteleuropäischen Bereich, zu dem im Umweltforschungszentrum (UFZ) Leipzig-Halle ein erster Entwurf zur Vereinfachung des Modells CANDY vorlag, wurden am Beginn einer langjährigen Zusammenarbeit zwischen UFZ und LfULG zunächst Möglichkeiten zur Reduktion des erforderlichen Umfangs der Dateneingabe geprüft.

Unter Verwendung des Konzepts der Biologisch Aktiven Zeit (BAT) von FRANKO & OELSCHLÄGEL (1995) für die Bestimmung der Aktivität der Umsetzung der organischen Substanz durch Temperatur, Niederschlag und Bodentextur, Reduktion der erforderlichen Bodenparameter auf die Bodenart und den Tongehalt sowie durch Nutzung von Pedotransferfunktionen konnte der erforderliche Dateninput auf ein in der breiten Praxis verfügbares Maß fixiert werden. Durch Austausch des Rechenkerns unter Nutzung numerischer Lösungen und der Fixierung des Berechnungszyklus auf die Zeiteinheit eines Jahres (mit der Option einer Erweiterung auf Monatsschritte) wurde auch der Rechenaufwand erheblich reduziert.

Von Seiten der Modellentwickler erfolgt in der Regel ein hoher fachlicher Aufwand zum Modellaufbau; Arbeiten zur Validierung erscheinen demgegenüber nicht so attraktiv und werden daher oft vernachlässigt (siehe BENBI & NIE-DER 2003). Daher wurde im Rahmen der Zusammenarbeit eine hohe Aufmerksamkeit auf die Prüfung der Verlässlichkeit und Genauigkeit der Modellberechnungen gelegt. In einer frühen Phase wurden hierzu Arbeiten zur Aufnahme von regionalen Datensätzen aus Dauertestflächen sowie Boden-, Klima- und Bewirtschaftungsdaten aus der Agrarstatistik zur Anpassung der BAT an die Verhältnisse in Sachsen getätigt. Diese Versuche mussten schließlich im Wesentlichen aufgegeben werden, weil offensichtlich die geforderte Datenqualität nicht den Anforderungen entsprechen konnte.

Generell ist zu betonen, dass Dauerversuche eine enorme Bedeutung für die Untersuchung der C-Langzeitdynamik besitzen (vgl. SOUTHWOOD 1994). Aber auch Dauerversuche weisen eigene "Schwächen" auf, besonders wenn C_{org} -Messungen über längere Zeiträume ausgewertet werden. Hier sollte man sich bewusst sein, dass Probenahme- und/oder C_{org} -Bestimmungsmethoden sich im Laufe des Versuches geändert haben können. Auch veränderte Bodenbearbeitungstiefen können das Ergebnis beeinflussen.

Insgesamt war die Verwendung von Daten aus exakt geführten Dauerversuchen als vielversprechend anzusehen. Daher wurden Datensammlungen über Merkmale des Bodens und des Klimas sowie des gesamten Bewirtschaftungsspektrums, inklusive der angebauten Fruchtarten und der Düngung sowie der C_{org}- und N_t-Gehalte der Böden, möglichst in chronologischer Abfolge der Versuchsdauer aufgenommen. Es mussten erhebliche Anstrengungen unternommen werden, um Versuche hoher Qualität und einer Versuchsdauer von mindestens zehn Jahren aus einem möglichst breiten Standortspektrum Mitteleuropas zu erhalten.

Im Rahmen dieses Forschungsvorhabens konnte auf diese Weise eine Datenbasis aufbereitet werden, die für das entwickelte Modell CCB rechenfähige Daten beinhaltet. Der so entstandene Datenpool enthält eine Vielzahl von Standorten mit unterschiedlichen Bodenformen, Klimadaten und Bewirtschaftung. Durch die einheitliche Aufbereitung der Daten aus den Dauerversuchen und die Verfügbarmachung über die EURO-SOMNET-Datenbank, wurde ein wichtiger Schritt getan, um die Daten zusammenzuführen und zugänglich zu halten. Mit der vorliegenden Zusammenstellung in Form einer Datenbank und der damit verbundenen Dokumentation der Daten wurde auch für künftige Arbeiten eine wichtige Basis mit einem sehr umfangreichen Datensatz von über 65 Dauerversuchen geschaffen, wobei die Nutzungsrechte an den Daten im Einzelfall zu beachten sind.

Die vorliegende CCB-Software integriert alle erforderlichen Tools zur Bearbeitung der Datenbank sowie zur Durchführung und Auswertung von Modellrechnungen. Die Schnittstellen zu MS ACCESS ermöglichen bei entsprechender Einarbeitung eine flexible und effiziente Nutzung der Modellsoftware. Für die statistische Analyse wurde mit der Schnittstelle zum "R"-Statistikpaket, einer lizenzfreien Statistiksoftware mit sehr hoher Aktualität, eine gute Basis für individuelle Auswertungen gelegt. Auch die Integration der Literatur hat sich als Hilfsmittel zur Klärung von aufkommenden Fragen bestens bewährt.

Weil der potenzielle Nutzer des Modells außer dem vorgegebenen minimalen Datensatz keine weiteren speziellen Eingaben für eine eventuelle singuläre Standortanpassung tätigen kann, musste die Genauigkeit des Modells jeweils gleichzeitig an einem möglichst breiten Dauerversuchsspektrum geprüft werden, damit verlässliche Ergebnisse zur Validierung erhalten werden konnten. Bei der Beurteilung der zu verwendenden Anwendungs- und Prüfungsszenarien wurde daher vorzugsweise die Sichtweise des potenziellen Nutzers in den Vordergrund gestellt.

Ein wichtiger Abschnitt der Modellarbeiten bestand in der Fixierung des Anteils am C_{org} -Gehalt, der als weitgehend inert anzusehen und daher nicht am Umsatz beteiligt ist. Hierzu wurden vier verschiedene Verfahren getestet. Die Methode von KUKA et al. (2007), in dem der inerte C_{org} -Anteil durch Bestimmung des physikalischen Porenraums ausgewiesen wird, erwies sich als überlegen, was durch Verwendung von Ergebnissen der Dauerversuche nachgewiesen werden konnte.

Ein weiterer kritischer Punkt war die Auswahl geeigneter Methoden zur Festlegung der C_{org}- und N_t-Startwerte, die erforderlich sind, um im Modell den Ausgangspunkt der Versorgungslage mit organischer Substanz in Relation

zum inerten Anteil zu fixieren. Unter den Bedingungen der praktischen Anwendung sollte mindestens ein Messwert für C_{org} und potenziell auch für N_t vorliegen, notfalls können auch Schätzwerte verwendet werden. Für die Validierungsarbeiten waren unter Nutzung von Ergebnissen aus den Dauerversuchen ebenfalls verschiedene Möglichkeiten gegeben: erster Messwert, Schätzung mit Hilfe der Regressionsanalyse, Anwendung eines Optimierungsalgorithmus.

Weil die einzelnen Messwerte ebenfalls einer Schwankung unterliegen, war die Nutzung des ersten Messwertes mit Nachteilen verbunden. Daher kam zunächst die Anwendung eines Optimierungsverfahrens in die engere Wahl. Unter Nutzung des Optimierungsalgorithmus werden z. B. die berechneten Werte so über die in chronologischer Abfolge gemessenen C_{org}-Gehalte des Versuches gelegt, dass die Abstände zwischen Berechnung und Messung minimiert werden. Das Verfahren wird genutzt, um eine möglichst gute Anpassung (Kalibrierung) des Modells an die Versuchsdaten, z. B. C_{org}, zu erreichen. Dies ist erforderlich, wenn aufbauend auf den konkreten Gegebenheiten eines Versuches eine Berechnung weiterer Szenarien vorgenommen werden soll. So wurde ein Optimierungsverfahren z. B. von HERBST (2010) verwendet, um die Auswirkungen von Klimaszenarien auf die zukünftige Entwicklung der C_{org}-Gehalte eines bestimmten Dauerversuches (Dikopshof) zu simulieren.

In den eigenen Untersuchungen konnte bestätigt werden, dass die Anwendung des Verfahrens zu einer optimalen Anpassung der berechneten C_{org}-Werte an die in den Versuchen ermittelten Werten führt. Eine Analyse der erhaltenen Ergebnisse zeigte jedoch, dass dann Unterschiede zwischen Modellberechnungen und den Versuchsergebnissen sozusagen verwischen, sodass das Verfahren zur Beurteilung der Validierung nicht ausreicht. So sind die Ergebnisse über die mittlere Abweichung (ME) zwischen den berechneten und den experimentell ermittelten Werten nicht mehr nutzbar, um Unterschiede und die Abweichungsrichtung zu einzelnen Einflussgrößen zu erkennen (durch Minimierung der Abweichungsquadrate zwischen Modell- und Versuchsergebnissen tendiert ME gegen 0). Hinzu kommt noch, dass im Rahmen einer unabhängigen Validierung der Verlauf der C_{org}-Werte in den verwendeten Versuchen nicht bekannt sein darf.

Es wurde auch deutlich, dass die Ergebnisse der statistischen Prüfung vom gewählten C_{org}-Startwert abhängen. Weil die Wahl des ersten verfügbaren Messwertes als C_{org}-Startwert den möglichen Messfehler durch den gesamten Modelllauf weitergeben würde, sollten möglichst alle anderen Messwerte in die Startwertfindung integriert werden. Unsicherheitsanalysen (POST et al. 2008; JUSTON et al. 2010) und andere statistische Verfahren wie die einfache und multiple Regression stellen weitere anwendbare Verfahren zur Startwertfindung dar. Die Anwendung der linearen und quadratischen Regression zur Auffindung geeigneter Startwerte sowie zur Fixierung von Endwerten hat sich in dieser Arbeit gut bewährt, weil sie auch unabhängig vom verwendeten Bilanzierungsverfahren genutzt werden können.

Durch die akribisch durchgeführten Arbeiten mit wiederholten Validierungen, Diskussionen und Veranlassungen zu weiteren Verbesserungsschritten konnte die Modellgüte laufend gesteigert werden. Im Verlauf der Modellentwicklung wurde die mittlere Abweichung (ME) auf annähernd 0,0 % C_{org} fixiert und das RMSE um mehr als den dreifachen Wert verringert, sodass die Genauigkeit z. B. der VDLUFA-Methode zur Humusbilanzierung jetzt eindeutig übertroffen wird (zur weiteren Diskussion über die Validierung von Bilanzierungsmethoden siehe KOLBE 2012).

Auf Grund des engen Zusammenhangs zwischen Humus- und Nährstoffumsatz kam es parallel zu den Verbesserungen zur Abbildung der C_{org}-Wirkung auch in der Regel zu einer genaueren Mineralisation an Stickstoff, die an Hand der zeitlichen Veränderung der N_t-Gehalte des Bodens geprüft wurde. Durch Erfassung dieses Merkmals aus den Dauerversuchen besteht also eine weitere Möglichkeit der Kontrolle der Berechnungsgenauigkeit.
Auch im Vergleich mit anderen komplexeren C-Modellen (vgl. SMITH et al. 1997) kann das ermittelte Modellverhalten von CCB bezüglich der geprüften Fehlergrößen als gut eingeschätzt werden. In Anlehnung an SCHLITTGEN (2000) wiesen die gemessenen und modellierten C_{org}-Werte eine enge Korrelation auf. Die Reihenfolge der Güte Kohlenstoff besser als Stickstoff besser als N-Saldo entspricht den Erwartungen.

Wie beschrieben, weist die statistische Fehleranalyse auf einige Effekte im Bereich der Leguminosenanteile in den Fruchtfolgen und einen deutlichen Hinweis auf Probleme bei schweren Tonböden sowie bei hohen C_{org}-Versorgungsstufen. Das Problem der Leguminosenanteile wurde durch zwei Dauerversuche in der Klasse LC2 geprägt. Hier ist noch Arbeit über die genaue Vorgeschichte des Versuches notwendig, um das sehr spezielle Verhalten der C_{org}-Dynamik eindeutig zu klären.

Weil in gewisser Weise der C_{org} -Gehalt mit dem Tongehalt korreliert ist (vgl. KÖRSCHENS 1997), kann der ermittelte Einfluss der C_{org} -Gehalte und der Bodenarten auf die Modellgüte verschiedene Gründe haben. Es wurde diesbezüglich einerseits die Hypothese aufgestellt, dass der höhere Modellfehler als eine Konsequenz aus größeren Messunsicherheiten bei höheren C_{org} -Werten anzusehen ist. Andererseits wurde auch nachgewiesen, dass noch systematische Einflüsse zu verschiedenen Faktoren wie den C_{org} -Gehalten, den C/N-Verhältnissen des Bodens, den Durchschnittstemperaturen und einigen Bewirtschaftungsfaktoren wie z. B. dem Hackfruchtanteil der Fruchtfolge vorliegen, die durch weitere Korrekturarbeiten zu begleichen sind.

Wie in den Auswertungen erkennbar wurde, war für die identifizierten Problemstandorte der mittlere Fehler ME eng mit dem quadratischen Fehler RMSE korreliert, sodass man von einer systematischen Verschiebung infolge der gewählten Startwerte ausgehen kann. Dies kann sowohl den C_{org} -Wert selbst als auch den für die C-Dynamik relevanteren C_{ums} -Startwert betreffen. Wie eine nähere Analyse ergab, liegt ein Teil des Problems in Modellveränderungen, die vorgenommen wurden, um zu hohe Mineralisationsraten zu begrenzen. Während bei einer Reihe hoch mit organischer Substanz versorgter Standorte eine obere Grenze für die Größe des umsetzbaren Pool sinnvoll war (C_{ums} max. 1.0 %), ergibt sich für andere Standorte wie z. B. Methau_DV ein umgekehrtes Bild. Je höher der anfängliche C_{ums} -Pool gewählt wird, umso besser werden die beobachteten C_{org} -Werte wiedergegeben.

Die Fehlersuche bedarf hier weiterer Recherchen in den Originalquellen und Nachforschungen bei den Versuchsanstellern. Es sollte einwandfrei geklärt werden, welche Qualität die verwendeten Messwerte besitzen. Erst so kann ein "Fehlverhalten" des Modells endgültig kompensiert werden. Die generelle Rücknahme der Begrenzung des C_{ums}-Startwertes reduziert einen großen Teil des Problems. In einigen Fällen werden die Fehler deutlich abgebaut.

Auch im Bereich der Abbildung der N-Dynamik gibt es noch Klärungsbedarf für spezielle Fragen. So sind die ermittelten N-Salden aus den Dauerversuchen über einen sehr großen Wertebereich verteilt. Insbesondere die berechneten stark negativen Werte sind natürlich zu hinterfragen. Einerseits kann man davon ausgehen, dass die Werte für die N-Immission eher zu gering sind, wie ein exemplarischer Vergleich der mit dem ITNI-System (Russow & BöHME 2005) gemessenen und der nach GAUGER et al. (2008) ermittelten Werte für drei Standorte in Mitteldeutschland zeigte. Die hier festgestellte Differenz von ca. 50 kg N ha⁻¹ a⁻¹ kann jedoch auch nicht alle beobachteten Negativsalden erklären. Weitere Ursachen sind hier die Abweichung der realen N-Gehalte der Fruchtarten und der organischen Dünger von den hier verwendeten Tabellenwerten. Dazu wurden einige Vergleiche bei der Darstellung der Ergebnisse vorgelegt.

Eine nochmalige Überprüfung der Eingabedaten hinsichtlich der N-Düngung scheint in einigen Fällen sinnvoll. Beispielsweise wird in der Dokumentation für den Pforzheimer-Versuch auf Varianten mit N-Düngung verwiesen, wohingegen in den Bewirtschaftungsdaten gegenwärtig diese Datensätze nicht aufgenommen sind. Allerdings bezieht sich das Modell auf die Behandlung des Humusumsatzes, sodass in allen Fällen, bei denen die negativen N-Salden mit Sicherheit in der Größenordnung von -50 kg ha⁻¹ und kleiner liegen, auch eine ungenaue Abbildung der C-Umsetzung vorliegen könnte, weil die Begrenzung des C-Umsatzes durch N_m-Mangel nicht mit der vorliegenden Modellstruktur abzubilden ist. Die Anwendung für die direkte Prognose der N-Verfügbarkeit ist daher durch weitere Untersuchungen zu prüfen.

Bei hohen Aufwandmengen an N-armen organischen Materialien (z. B. Stroh) wird die zur Humusbildung benötigte N-Menge als negative N-Mineralisierung ausgewiesen. Bei der Interpretation dieser Daten ist zu beachten, dass das CCB nicht den Pool an mineralischen N im Boden behandelt, sondern nur die Änderungspotenziale für diesen Pool berechnet. Bei einer ausgewiesenen Immobilisierung wird also unterstellt, dass diese N-Menge auch tatsächlich zur Verfügung steht. Falls dies nicht der Fall wäre, würde die Umsetzung der organischen Primärsubstanz durch den Stickstoffmangel gehemmt. Für die praktische Nutzung könnten Ergebnisse eigener N_{min}-Untersuchungen im zeitigen Frühjahr oder die jährlich erfassten und veröffentlichten Frühjahrs-N_{min}-Werte z. B. aus Dauertestflächen Verwendung finden (KURZER 2005):

http://www.landwirtschaft.sachsen.de/Landwirtschaft/1868.htm

Verfahren, die unter den Gegebenheiten der Praxis das Mineralisationspotenzial in der zeitlichen Auflösung von Monats- oder Jahresschritten mit relativ hoher Verlässlichkeit berechnen können, sind bisher weitgehend unbekannt. In aktuellen Entwicklungen, wie z. B. dem Projekt "Neue internetgestützte Wege zur Optimierung der N-Düngeberatung" (http://www.isip.de/coremedia/generator/isip/Start,nodeld=5715.html), wird u. a. an Hand von Ergebnissen aus Testflächen versucht, lediglich über ein Bestandesmonitoring und Modellierung des Anbauzyklus der jeweils betreffenden Fruchtart (z. B. Winterweizen) zu einer treffgenauen N-Düngung zu gelangen.

Der Vorteil des Modells CCB besteht jedoch darin, dass die jährlichen Mineralisationsmengen nicht an kurzfristigen Versuchen oder einem Testflächennetz, sondern an den über einen langen Zeitraum sich vollziehenden Veränderungen der N-Menge im Boden der zu bewertenden Anbaufläche selbst ausgerichtet bzw. kalibriert sind. Hierdurch werden Fehler, die sich bei einer relativ kurzzeitigen Verrechnungsweise über die Jahre anhäufen können oder die an Hand von Vergleichsflächen entstehen, die meistens die Standortbedingungen der aktuellen Anbaufläche nicht repräsentieren, weitgehend vermieden.

Durch die ersten Erfahrungen mit dem CCB lassen sich Rückschlüsse ziehen, welches innovative Potenzial durch die Nutzung des Modells nicht nur zur direkten Berechnung der Mineralisation, sondern insbesondere auch zur Verbesserung von Verfahren der Düngungsbemessung, von Bilanzierungsverfahren und Effizienzberechnungen entstehen könnte. So konnte herausgearbeitet werden, dass unter Nutzung der Ergebnisse aus Dauerversuchen die Verlässlichkeit der Berechnungen zum Freisetzungspotenzial an Stickstoff mit der Anzahl an Jahren und Vollständigkeit der Eingabe an Daten des Bodens, des Klimas und der Bewirtschaftung deutlich ansteigt. Hierin wird die enorme Bedeutung der zurückliegenden Aktionen und Maßnahmen zur Bewirtschaftung, der tatsächlich erreichten Ertragsniveaus und das damit zusammenhänge N-Abfuhrpotenzial sowie der jährlich anders verlaufenden Witterung auf das Ausmaß der zukünftigen N-Mineralisation sichtbar.

Diese Vielfalt konnte in den bisher üblichen Bemessungsverfahren weitgehend nicht berücksichtigt werden. Das Verfahren ist so ausgelegt, dass unter praktischen Verhältnissen diese Informationen z. B. aus den Schlagkarteien der zurückliegenden Zeitabschnitte modellintern als Jahresscheiben in die Verrechnungen eingehen. Mit der Eingabe eines jeden weiteren Jahres an Bewirtschaftungsdaten wird die Berechnungsgenauigkeit zunehmen. Gleichzeitig können aus der Vergangenheit auf Schlagebene für jede Fruchtart bzw. im Durchschnitt der Fruchtfolge je-

weils vollständige N-Bilanzen und N-Effizienzberechnungen zur Optimierung der Düngungsbemessung oder Fruchtfolgeplanung mit einbezogen werden.

Aus der Vergangenheit kann auch für jede Fruchtart das potenziell mögliche durchschnittliche Ertragsniveau ermittelt werden, was wiederum an Stelle eines anvisierten Ertragsniveaus für die Düngungsbemessung eingesetzt werden kann. Hierdurch könnten die immer noch relativ hohen Überdüngungsmengen, die auf Grund der Angabe von zu hohen Ertragserwartungen je nach Fruchtart zwischen 2-12 % betragen (ERNST & FÖRSTER 2010), reduziert werden.

Die Ausweisung der N-Mineralisierung aus der organischen Bodensubstanz bietet weiterhin Möglichkeiten zur optimierten N-Düngung und Verminderung von N-Salden im Hinblick auf Gewässerschutzziele. Eine Kreuzvalidierung der N-Mineralisierung mit den Entwicklern des Modells STOFFBILANZ (GEBEL et al. 2010) wird für ausgewählte sächsische Standorte derzeit angestrebt.

Durch die Verbindung von Humus- und Nährstoffumsatz in chronologischer Abfolge werden daher zusammenfassend mit dem CCB deutliche Verbesserungen in der standortangepassten Fruchtfolgeplanung (Ökolandbau) und Düngungsbemessung (konventioneller und ökologischer Landbau) erwartet. Auf Grund des geringen Inputbedarfs kann das Verfahren sowohl in der landwirtschaftlichen Praxis und Beratung als auch in Verwaltung und wissenschaftlichen Tätigkeiten z. B. für Szenarienrechnungen zum Klimawandel, zur Ermittlung von Abfuhrpotenzialen, zur Nährstoffbilanzierung im Wasserschutz und zur Ermittlung der Ressourceneffizienz angewendet werden.

Für einzelne Standorte (,Problemstandorte') besteht allerdings weiterer Klärungsbedarf, der auch zusätzliche Bodenuntersuchungen einschließen kann. Für alle verbleibenden Problemfälle wäre auch die Behandlung mit einem komplexeren Modell sinnvoll, um die Ursachen besser herauszuarbeiten und Fehlstellen in der Prozessabbildung sicher zu erkennen. Dies erfordert jedoch eine Vervollständigung der Datenbasis.

Trotz des großen Umfangs an verarbeiteten Versuchsdaten ist allerdings die Breite der überprüften Parameter vor allem hinsichtlich des Fruchtartenumfangs im Vergleich zu den in der Praxis vorkommenden Fällen noch zu gering. Es besteht daher noch ein gewisser Handlungsbedarf zur Abgleichung der Datenlisten mit dem in der Praxis vorkommenden Umfang.

An einem Ausbau der Datenbasis durch die Aufnahme neuer Dauerversuche wird weiterhin gearbeitet. Ebenso werden Kopplungen mit anderen Modellen, u. a. mit STOFFBILANZ (GEBEL et al. 2010) und BEFU (FÖRSTER et al. 2011) und Schnittstellen zu elektronischen Schlagkarteien vorbereitet. Zur Erweiterung der Versuchsbasis wird die Aufnahme und Verwendung der Daten (Boden, Klima, Bewirtschaftung, C_{org}- und N_t-Messwerte) von Bodendauerbeobachtungsflächen verschiedener Bundesländer angestrebt. Diese Testflächen stellen keine Dauerversuche mit verschiedenen Düngestufen dar. Die Daten können für Plausibilitätsprüfungen und Praxistests des CCB verwendet werden.

7 Zusammenfassung

Der Humusumsatz und damit die Nährstoffdynamik werden durch die landwirtschaftliche Bewirtschaftung und durch die Standorteigenschaften geprägt. Die unter praktischen Verhältnissen anwendbaren Berechnungsmethoden beinhalten allerdings nur partiell eine Standortwirkung. Aktuelle Prozessmodelle zur Bodenkohlenstoffdynamik erfordern spezielle Fachkenntnisse und haben in der Regel einen hohen Eingangsdatenbedarf, sodass sie bisher nur im wissenschaftlichen Bereich eingesetzt werden konnten. Um die Vorteile dieser Verfahren auch für den Einsatz unter Praxisbedingungen mit der dort gewöhnlich anzutreffenden reduzierten Datengrundlage nutzen zu können, wurde aus einem geeigneten Prozessmodell CANDY (FRANKO 1989) eine stark vereinfachte Variante abgeleitet. Das Modell CANDY Carbon Balance (CCB) berücksichtigt Standorteffekte und besitzt einen Bezug zum Kohlenstoff und zum Stickstoff im Boden. Bezüglich der potenziellen Anwendergruppe liegt der Fokus auf der Landwirtschaftsberatung und -verwaltung des konventionellen und ökologischen Ackerbaus.

Die zur Validierung des CCB-Modells verwendete Datenbasis besteht aus insgesamt 65 Langzeitversuchen mit 598 Versuchsvarianten, vorwiegend aus dem gemäßigten Klimabereich Mitteleuropas (6-11 °C, 350-950 mm Jahresniederschlag) mit einem Tongehalt < 30 % in der Krumenschicht (0-30 cm Bodentiefe). Die mittlere Abweichung (ME) zwischen berechneten und experimentell ermittelten Werten beträgt max. -0,01 % C_{org} bzw. N_t mit einer statistischen Streuung (RMSE) um 0,15 % C_{org} und etwas über 0,02 % N_t.

Es gibt mehrere Varianten, das CCB-Modell zu nutzen. Zum einen besitzt das CCB eine Anwenderoberfläche und es wurde ein ausführliches Nutzerhandbuch verfasst. Die Nutzung des Modells über die Anwenderoberfläche kann über einen Expertenmodus und einen Praxismodus (voreingestellt) erfolgen. Zum anderen kann das Modell für umfangreiche Modelläufe in einem so genannten Batchmodus gestartet werden.

Zur Dokumentation und erleichterten Dateneingabe bzw. -kontrolle von Ergebnissen aus Dauerversuchen wurde im Expertenmodus eine Schnittstelle des CCB zur Literaturverwaltung eingerichtet. Hier können beliebige Dokumente (z. B. Veröffentlichungen, Versuchsberichte) in digitaler Form mit dem entsprechenden Versuch verknüpft werden. Weiterhin wurde im Expertenmodus eine Schnittstelle zur statistischen Datenauswertung mit dem freien Statistikprogramm "R" geschaffen. Somit kann eine große Breite von Verfahren der statistischen Datenanalyse genutzt werden. Das Modell inklusive Handbuch und einer Beispielsdatei kann aus dem Internet frei heruntergeladen werden (http://www.ufz.de/ccb). CCB ist unter dem Betriebssystemen Windows XP, Vista und Windows 7 lauffähig. Es kann direkt ohne Installation gestartet werden.

Stoffflüsse hinsichtlich Kohlenstoff und Stickstoff werden vom CCB in Jahresschritten modelliert und als Ergebnis, z. B. in MS Excel, ausgegeben. Das Modell CCB ist anwendungsbereit zur Nutzung für die standortangepasste Prognose von Humusveränderungen im Boden. Es bietet z. B. die Möglichkeit, die chronologische Wirkung verschiedener Fruchtfolgekonstellationen inklusive des Ertragsniveaus der Fruchtarten, Düngestrategien und Koppelprodukte verschiedener Höhe und Qualität auf die Humusentwicklung und den N-Umsatz des Bodens abzuschätzen. Die Ausweisung der N-Mineralisierung aus der organischen Düngung und der organischen Bodensubstanz bietet weiterhin ein großes Potenzial u. a. unter Nutzung von Schlagkarteiaufzeichnungen zur Optimierung der N-Düngung und Verminderung von N-Salden im Hinblick auf Ziele des Gewässerschutzes. Über die Möglichkeit von Szenariorechnungen können Effekte des Bodens und des Klimas sowie von Fruchtfolge und Düngung eines Ackerschlages oder ganzer Regionen auf die Humusreproduktion und die N-Mineralisation studiert werden. Eine Modellversion zum praktischen Einsatz ist in der Vorbereitung.

8 Literatur

- ALBERT, E. (2010): Alternativen zur mineralischen Phosphor- und Kaliumdüngung unter besonderer Berücksichtigung von Sekundärrohstoffen. In: Phosphor- und Kaliumdüngung – brauchen wir neue Düngekonzepte? Bundesarbeitskreis Düngung (BAD), Frankfurt/Main, 63–78.
- ALBERT, E.; FÖRSTER, F.; ERNST, H.; KOLBE, H.; DITTRICH, B.; LABER, H.; HANDSCHACK, M.; KRIEGHOFF, G.; HEIDEN-REICH, T.; RIEHL, G.; HEINRICH, S. & ZORN, W. (2006): Umsetzung der Düngeverordnung. Hinweise und Richtwerte für die Praxis. Broschüre, Sächsische Landesanstalt f. Landwirtschaft, Dresden.
- ASCE (2009): Criteria for evaluation of watershed models. Journal of irrigation and drainage engineering. American Society of Civil Engineers, 119, 429-442.
- ASMUS, F. (2000): Versuch M4 Groß Kreutz Wirkung organischer und mineralischer Düngung und ihrer Kombination auf Pflanzenertrag und Bodeneigenschaften. Dauerfeldversuche. 2. Auflage, Akademie d. Landwirtschaftswiss., Berlin, 245-250.
- ASMUS, F. & HERRMANN, V. (1977): Reproduktion der organischen Substanz des Bodens. Akademie der Landwirtschaftswissenschaften der DDR, Institut für Landwirtschaftliche Information und Dokumentation, Berlin.
- BACKHAUS, K.; ERICHSON, B.; PLINKE, W. & WEIBER, R. (2003): Multivariate Analysemethoden. Eine anwendungsorientierte Einführung. Springer, Berlin, Heidelberg, New York. 818.
- BASE, F. (2005): Beurteilung der Parametersensitivität und der Vorhersagesicherheit am Beispiel des hydrologischen Modells J2000. Friedrich-Schiller Universität Jena, Geographisches Institut, Ph.D. Thesis, 102.
- BENBI, D. K. & NIEDER, R. (2003): Handbook of Processes and Modeling in the Soil-Plant System. Food Products Press, New York.
- BMU (2003): Hydrologischer Atlas von Deutschland HAD. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Bonn.
- BROCK, C.; HOYER, U.; LEITHOLD, G. & HÜLSBERGEN, K.-J. (2008): A New Approach to Humus Balancing in Organic Farming. Conference of the International Society of Organic Agriculture Research ISOFAR, Modena, Italy, June 18-20, 2008.
- COLEMAN, K. & JENKINSON, D. S. (2005): Roth C-26.3 A model for the turnover of carbon in soil: Model description and windows user guide, 2nd ed. http://www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htm .
- ERNST, H. & FÖRSTER, F. (2010): Ausgewählte Ergebnisse zur Anwendung des Düngungsmodells BEFU im Freistaat Sachsen 1997 – 2009. Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie. http://www.landwirtschaft.sachsen.de/landwirtschaft/download/Ergebnisse_BEFU_1997_2009.pdf .
- FALLOON, P.; SMITH, P.; COLEMAN, K. & MARSHALL, S. (1998): Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the rothamsted carbon model. Soil Biology and Biochemistry, 30, 1207-1211.
- FÖRSTER, F.; ERNST, H. & ALBERT, E. (2011): BEFU Version 2011. Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, http://www.landwirtschaft.sachsen.de/befu, Leipzig.
- FRANKO, U. (1989): C- und N-Dynamik beim Umsatz organischer Substanz im Boden. Akademie der Landwirtschaftswissenschaften der DDR, Berlin (Dissertation).
- FRANKO, U. & OELSCHLÄGEL, B. (1995): Einfluss von Klima und Textur auf die biologische Aktivität beim Umsatz der organischen Bodensubstanz. Archives of Agronomy and Soil Science, 39, 155-163.

- FRANKO, U. & LIEß, E. (2006): Erstellung und Prüfung von Verfahren zur Abschätzung des N-Umsatzes im Rahmen der Humusproduktion im Ökologischen Landbau. Abschlussbericht, 1-87. Anhang, 1-89. Helmholtz-Zentrum für Umweltforschung (UFZ), Halle.
- FRANKO, U. & LIEß, E. (2007): Abschätzung des N-Umsatzes im ökologischen Landbau als Grundlage für eine effiziente Düngebedarfsermittlung – Phase I. Zwischenbericht, 1-54. Helmholtz Zentrum für Umweltforschung (UFZ), Halle.
- FRANKO, U. & LIEß, E. (2008): Abschätzung des N-Umsatzes im ökologischen Landbau als Grundlage für eine effiziente Düngebedarfsermittlung – Phase II. Zwischenbericht, 1-21. Helmholtz Zentrum für Umweltforschung (UFZ), Halle.
- FRANKO, U.; THIEL, E. & LIEB, E. (2009): Abschätzung des N-Umsatzes im ökologischen Landbau als Grundlage für eine effiziente Düngebedarfsermittlung – Phase III. Zwischenbericht, 1-166. Helmholtz Zentrum für Umweltforschung (UFZ), Halle.
- FRANKO, U.; LIEß, E.; PRUTZER, I. & PETERSOHN, P. (2005): Erstellung und Pr
 üfung von Verfahren zur Absch
 ätzung des N-Umsatzes im Rahmen der Humusreproduktion im ökologischen Landbau. Zwischenbericht, 1-38. Helmholtz Zentrum f
 ür Umweltforschung (UFZ), Halle.
- FRANKO, U.; KOLBE, H.; THIEL, E. & LIEß, E. (2011): Multi-site validation of a soil organic matter model for arable fields based on generally available input data. GEODERMA 166 (1), 119-134.
- FRANKO, U.; SCHRAMM, G.; RODIONOVA, V.; KÖRSCHENS, M.; SMITH, P.; COLEMAN, K.; ROMANENKO, V. & SHEVTSOVA, L. (2002): EuroSOMNET – a database for lang-term experiments on soil organic matter in Europe. Computers and Electronics in Agriculture 33, 233-239.
- FREDE, H.-G. & DABBERT, S. (1998): Handbuch zum Gewässerschutz in der Landwirtschaft. E-comed, Landsberg. 449.
- GAUGER, T.; HAENEL, H.-D.; RÖSEMANN, C.; DÄMMGEN, U. B.; LEEKER, A.; ERISMAN, J. W.; VERMEULEN, A. T.; SCHAAP,
 M.; TIMMERMANNS, R. M. A.; BUILTJES, P. J. H.; DUYZER, J. H.; NAGEL, H.-D.; BECKER, R.; KRAFT, P.; SCHLUTOW,
 A.; SCHÜTZE, G.; WEIGELT-KIRCHNER, R. & ANSHELM, F. (2008): Erfüllung der Zielvorgaben der UNECE-Luftreinhaltekonvention (Wirkungen). Abschlussbericht FKZ 204 63 252. Umweltbundesamt (UBA), Dessau-Roßlau.
- GEBEL, M.; HALBFAß, S. & BÜRGER, S. (2009): STOFFBILANZ Modellerläuterung. Gesellschaft für Angewandte Landschaftsforschung, Dresden. http://www.galf-dresden.de/s1/index.php?lang=de&m=modell
- GEBEL, M.; HALBFAß, S.; BÜRGER, S.; FRIESE, H. & NAUMANN, S. (2010): Modelling of nitrogen turnover and leaching in Saxony. Adv. Geosci. 27, 139-144.
- HERBST, M. (2010): Pilotstudie zur Kohlenstoffmodellierung der Dauerversuchsfläche Bonn/Dikopshof. Modellierung der landwirtschaftlich genutzten Dauerversuchsflächen in NRW. Zwischenbericht Arbeitspaket I, Institut für Bio- und Geowissenschaften 3, Jülich, 1–13.
- HÜLSBERGEN, K.-J. (2003): Entwicklung und Anwendung eines Bilanzmodells zur Bewertung der Nachhaltigkeit landwirtschaftlicher Systeme. Shaker, Halle.
- KARLSSON, T. (2012): Corbon and Nitrogen Dynamics in Agricultural Soils. Doctoral Thesis, University of Agricultural Sciences, Uppsala.
- KIRBY, M. J.; NADEN, P. S.; BURT, T. S. & BUTCHER, D. P. (1993): Model calibration and verification. In: Kirby MJ, Naden PS Burt TP and Butcher DP Computer simulation in physical geography. John Wiley & Sons Ltd, Weinheim, 155-176.
- KOLBE, H. (2000): Landnutzung und Wasserschutz. Land use and water protection. Effects of nitrogen budget, N_{min}-values, nitrate content and leaching in Germany. Wissenschaftliches Lektorat & Verlag, Leipzig.

- KOLBE, H. (2005): Prüfung der VDLUFA-Bilanzierungsmethode für Humus durch langjährige Dauerversuche. Archives Agron. Soil Sci. 51, 221-239.
- KOLBE, H. (2010): Site-adjusted organic matter-balance method for use in arable farming systems. Z. Pflanzenernähr. Bodenk. 173 (5), 678-691.
- KOLBE, H. (2012): Zusammenführende Untersuchungen zur Genauigkeit und Anwendung von Methoden der Humusbilanzierung im konventionellen und ökologischen Landbau. In: Bilanzierungsmethoden und Versorgungsniveau für Humus. Schriftenreihe des Landesamtes für Umwelt, Landwirtschaft und Geologie, Heft 19, 3-82. https://publikationen.sachsen.de/bdb/artikel/13615
- KOLBE, H. & PRUTZER, I. (2004): Überprüfung und Anpassung von Bilanzierungsmodellen für Humus und Stickstoff an Hand von Daten aus Langzeitversuchen zur Sicherung der Bodenfruchtbarkeit und Produktqualität. Abschlussbericht Projekt-Nr. 04204005. Sächsische Landesanstalt für Landwirtschaft, Leipzig, 1-112. http://orgprints.org/3130/
- KOLBE, H. & RINGE, H. (2007): Erstellung und Prüfung von Verfahren zur Abschätzung des N-Umsatzes im Rahmen der Humusreproduktion im Ökologischen Landbau. Abschlussbericht zum Teilprojekt sowie Schlussfolgerungen für den nachfolgenden Projektabschnitt, 1-26. Sächsische Landesanstalt für Landwirtschaft, Leipzig.
- KOLBE, H. & KÖHLER, B. (2008): Erstellung und Beschreibung des PC-Programms BEFU, Teil Ökologischer Landbau. Verfahren der Grunddüngung, legumen N-Bindung, Nährstoff- und Humusbilanzierung, 1-260. http://orgprints.org/15101/
- KORTLEVEN, J. (1963): Kwantitative Aspecten van Humusopbouw en Humusafbraak. Verslagen van landbouwkundige oderzoekingen, Wageningen, 109.
- KUKA, K. (2005): Modellierung des Kohlenstoffhaushaltes in Ackerböden auf der Grundlage bodenstrukturabhängiger Umsatzprozesse. Universität Halle-Wittenberg, Halle (Dissertation).
- KUKA, K.; FRANKO, U. & RÜHLMANN, J. (2007): Modelling the impact of pore space distribution on carbon turnover. Ecological Modelling 208 (2-4), 295-306.
- KURZER, H. (2005): Nitratbericht 2004 LfL Schriftenreihe 17, 10. Jg., Sächsische Landesanstalt für Landwirtschaft, Dresden.
- LEITHOLD, G.; HÜLSBERGEN, K.-J.; MICHEL, D. & SCHÖNMEIERM, H. (1997): Humusbilanzierung Methoden und Anwendung als Agrar-Indikator. Zeller Verlag, Osnabrück.
- LfL (2003): BEFU 2004. N, P, K, Mg, Kalk-Düngungsempfehlung. N, P, K-Nährstoffbilanzen. Sächsische Landesanstalt für Landwirtschaft, Dresden, 1-53.
- LfUG (2007): Bodenatlas des Freistaates Sachsen. Sächsisches Landesamt für Umwelt und Geologie, Dresden.
- LIEß, E. & FRANKO, U. (2008): Ergebnisse der Modellierung des Datensatzes der LfL Sachsen mit dem CCB-System CCB 6.0. Helmholtz-Zentrum für Umweltforschung (UFZ), Halle, 1-35.
- LOAGUE, K. & GREEN, R. E. (1991): Statistical and graphical methods for evaluating solute trans-port models: Overview and application. Journal of Contaminant Hydrology 7, 51-73.
- LOZÁN, J. L. & KAUSCH, H. (1998): Angewandte Statistik für Naturwissenschaftler. Parey, Berlin, 287.
- NIEDER, R. & RICHTER, J. (1989): Die Bedeutung der Umsetzung von Weizenstroh im Hinblick auf den C- und N-Haushalt von Löß-Ackerböden. Pflanzenernähr. Bodenk. 152, 405-458.
- PRESS, W. H.; FLANNERY, B. P.; TEUKOLSKY, S. A.; VETTERLING, W. T. (1989): Numerical Recipes in Pascal. Cambridge University Press, Cambridge.
- R Development Core Team (2008) R: A language and environment for statistical computing. Vienna. http://www.rproject.org/

- RUSSOW, R. & BÖHME, F. (2005): Determination of the total nitrogen deposition by the 15N isotope dilution method and problems in extrapolating results to field scale. Geoderma, Volume 127, 62-70.
- SMITH, J. & SMITH, P. (2007): Environmental modelling. Oxford University Press, New York, 180.
- SMITH, P.; SMITH, J. U.; POWLSON, D. S.; MCGILL, W. B.; ARAH, J. R. M.; CHERTOV, O. G.; COLEMAN, K.; FRANKO, U.; FROLKING, S.; JENKINSON, D. S.; JENSEN, L. S., KELLY, R. H.; KLEIN-GUNNEWIEK, H.; KOMAROV, A. S.; LI, C.; MOLINA, J. A. E.; MUELLER, T.; PARTON, W. J.; THORNLEY, J. H. M. & WHITMORE, A. P. (1997): A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153-225.
- SMITH, P.; FALLON, P. D.; KÖRSCHENS, M.; SHEVTSOVA, L. K.; FRANKO, U.; ROMANENKOV, V.; COLEMAN, K.; RODIONOVA, V.; SMITH, J. U. & SCHRAMM, G. (2002): EuroSOMNET – a European database of long-term experiments on soil organic matter: the WWW metadatabase. Journal of Agricultural Science 138, 123-134.
- Thomson Reuters (2008): EndNote X2. Thomson Reuters.
- Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA) (Hrsg.) (2004): VDLUFA-Standpunkt "Humusbilanzierung" - Methode zur Beurteilung und Bemessung der Humusversorgung von Ackerland. VDLUFA-Selbstverlag, Bonn, 1-12.
- WEHRMANN, J. & SCHARPF, H. C. (1979): Der Mineralstickstoffgehalt des Bodens als Maßstab für den Stickstoffdüngebedarf (N_{min}-Methode). Plant and Soil 52, 109-126.
- WENDLAND, F. (1993): Atlas zum Nitratstrom in der Bundesrepublik Deutschland: Rasterkarten zu geowissenschaftlichen Grundlagen, Stickstoffbilanzgrößen und Modellergebnissen. Springer, Berlin. 96.
- ZIMMER, J. (2003): Landesamt f. Verbraucherschutz u. Landwirtschaft, Güterfelde (persönl. Mitteilung).

9 Anhang

Tabelle A 1: Charakteristik des "Gesamtdatensatzes" an Dauerversuchen

Versuche (*ökologischer Landbau)	Land	Vari-	т		Bodenart	05	PV	FK	PWP	Ø Tempe-	Ø Nieder-
[-]	[-]	[n]	[%]	[%]	[-]	[g cm ⁻³]	[Vol, %]	[Vol, %]	[Vol, %]	[°C]	[mm]
Bad Lauchstädt	<u>п</u>	6	21.0	68.0	1	1 37	46.5	33.0	18.7	80	481.0
Barybino (Russ)	RUS	5	19.0	69.0	L	1 49	45 1	25.2	5.6	5.2	622.8
Berlin-Dahlem	D	6	4.3	22.9	S	1,40	40,1	24.2	4.6	9.3	550.0
Darmstadt (Öko)*	D	9	5.3	15.8	S	1 52		_ ., _	1,0	9.5	590.0
Darmstadt (Öko)14*	ם	9	53	15.8	S	1,52				9.5	590.0
Dikonshof	ם	12	12 5	10,0	sl	1 48				9.8	635 0
Dülmen	ם	4	8.0		S	1,40				9,0 9,1	750.0
Fllwangen	ם	12	29.0		IT	1,00				10.0	990.7
Forchheim	ם	12	10.0	25.0	IS	1 4 5	43.2	21.4	55	11 1	731 1
Gembloux	B	4	16,0	20,0	I	1,40	40,2	21,4	0,0	99	820.0
Göttingen	ם	3	21.0		L	1,40				8.7	613.0
Grakov (Llkr)		3	39.0	54 0	1 T	1,41	59.0	30.0	13.5	6.7	405.3
Groß Kreutz M04	П	25	6.0	44 O	IS	1,00	37.0	20.2	7.8	10.4	586 5
Groß Kreutz M70	ם	16	6,0	44 0	IS	1,66	37.0	20,2	7.8	10,4	586 5
Groß Kreutz P60	ם	18	6.0	44 0	IS	1,66	37.0	20,2	7.8	10,4	586 5
Güterfelde öko EE*	р	2	4.0	- - ,0	5	0.00	57,0	20,2	7,0	8 Q	545 0
Halle	р	2	4,0 8.0	23.0	51	1.57	30.6	26.3	8.2	0,9	503 4
	р	7	12.0	23,0 12.0	51	1,57	40 0	20,0	12.0	0.2	503.4
Halle96	р	7	12,0	42,0	SI	1,47	40,0	20,0	12,0	0.2	503.4
Heidenheim	р	12	27.0	42,0	UT UT	1,47	40,0	20,0	12,0	9,2 8.4	505,4 754 1
Heino195	NI	5	27,0		EI S	1 38				0,4	800.0
Heino 200		2	2,0		5	1,30				9,5	800,0
	INL C	~	2,0	70.0	З Т	1,30				9,3	550.0
Jama	о Ц	0 2	20,2 17.0	70,0 02.0	। ९।	1 45	44.2	20 5	12 1	0,0 10.4	550,0 617.0
Reszüllery		3 2	14.0	02,0	3L	1,40	44,2	30,5	13,1	6.2	867.0
Lauleinach		3 2	14,9 5 0	5.0	L	1,55				0,3	759.0
Lentioniden Maakanhaim52		2	5,0 17.0	5,9 76 0	5					7,0	756,0
Meckenheim53		0	17,0	70,5	L					0,9	025,0
methou b17*		9	11,0	70,5	L	1 51	12.0			0,9	625,0
Methau DV		10	14,0		L	1,01	43,0			9,2	600.0
Memau_DV		10	14,0	01.0	L	1,44	42.0	00.0	2.0	0,0	600,0
Müncheberg	D	21	3,9	21,0	SI	1,58	43,0	22,0	2,0	8,2	521,0
Müncheberg 118	D	21	3,9	21,0	SI	1,58	43,0	22,0	2,0	8,2	521,0
Muncheberg 125		12	3,9	21,0	SI	1,58	43,0	22,0	2,0	8,2	521,0
Noord-Brabant201		2	2,8		5	1,38				9,3	800,0
Noordoostpoider 197		2	20,0	74.0		1,41	45 4	07.0	00.4	9,3	800,0
Ptorzneim		4	23,0	74,0		1,32	45,4	37,0	20,4	10,0	881,0
Prag		4	31,0	58,0	LI	1,18	52,8	36,0	14,0	8,4	504,9
Puch_V520	D	21	18,0		L	4 4 4				8,0	852,6
Puch127	D	2	15,0		L	1,44				7,9	927,0
Puch26	D	29	15,0		L	1,40				7,9	922,0
Pucnza	D	4	15,0		L	1,46				7,9	922,0
Rauischholzhausen/4	D	12	17,0		L .	1,45				8,0	580,0
Rauischholzhausen/5	D	6	17,0		L .	1,45				8,0	580,0
Rauischnolzhausen78	D	4	17,0		L .	1,45				8,0	580,0
Rauischholzhausen84	D	15	17,0		L	1,45				7,9	590,0
Roda*	D	3	12,3		L	0,00				9,5	644,0
Schädtbek	D -	2	11,4	. = -	sL	1,48				8,6	741,0
Seehausen140	D	16	8,1	45,0	sL	1,55		41,4		8,7	558,0
Seehausen143	D	15	8,1	45,0	sL	1,55		41,4		8,7	558,0
Seehausen144	D	7	8,1	45,0	sL	1,55		41,4		8,7	558,0

Tabelle A 1: (Fortsetzung)

Versuche	Land	Vari-	Т	U	Bodenart	ρ _в	PV	FK	PWP	Ø Tempe-	Ø Nieder-
(*ökologischer Landbau)		anten			(0 – 30 cm, RBS)					ratur	schlagssumme
[-]	[-]	[n]	[%]	[%]	[-]	[g cm ^{-s}]	[Vol, %]	[Vol, %]	[Vol, %]	[°C]	[mm]
Seehausen148	D	8	8,1	45,0	sL	1,55		41,4		8,7	558,0
Speyer153	D	9	7,1	10,9	S	1,55	40,7	20,3	4,4	9,8	583,0
Speyer154	D	6	7,1	10,9	S	1,55	40,7	20,3	4,4	9,8	583,0
Spröda	D	24	6,3		SI	1,54				8,8	547,0
spröda_b17*	D	16	6,0	27,0	SI	1,67	23,0			9,2	354,0
Spröda_DV	D	18	6,3		SI	1,54				8,8	547,0
Stockach	D	12	26,0	40,0	LT	1,42	43,9	33,7	22,5	10,0	830,9
Therwil öko (CH)*	СН	7	15,0	37,0	L	1,43	54,8	35,3	19,0	9,0	792,0
Thyrow	D	2	3,0	14,0	S	1,43	43,9	16,1	4,5	9,7	588,8
Thyrow165	D	8	2,7	14,0	S	1,58	42,2	34,2	2,1	9,7	588,8
Thyrow168	D	7	2,7	14,0	S	1,58	42,2	34,2	2,1	9,7	588,8
Thyrow170	D	8	2,7	14,0	S	1,58	42,2	34,2	2,1	9,7	588,8
Völkenrode	D	5	5,0	46,0	SI	1,55	45,0	33,0	12,0	8,7	648,0
Weierbach	D	12	27,0		LT					10,8	736,1
Wildeshausen	D	3	4,5	14,0	SI	1,20	53,2	30,5	7,6	9,0	715,0
Yachenka (BelaRuss)	BY	3	5,0	37,0	IS	1,44	39,0	24,6	1,8	6,1	586,0

Herausgeber:

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG) Pillnitzer Platz 3, 01326 Dresden Telefon: + 49 351 2612-0 Telefax: + 49 351 2612-1099 E-Mail: Ifulg@smul.sachsen.de www.smul.sachsen.de/Ifulg

Autoren:

Dr. Hartmut Kolbe LfULG, Abteilung Pflanzliche Erzeugung/Referat Pflanzenbau Dr. Uwe Franko, Dr. Enrico Thiel, Ekkehard Ließ Helmholtz-Zentrum für Umweltforschung (UFZ)

Redaktion:

Dr. Hartmut Kolbe LfULG, Abteilung Pflanzliche Erzeugung/Referat Pflanzenbau Waldheimer Str. 219 01683 Nossen Telefon: + 49 35242 631-7103 Telefax: + 49 35242 631-7199 E-Mail: Hartmut.Kolbe@smul.sachsen.de

Redaktionsschluss:

21.12.2012

ISSN:

1867-2868

Hinweis:

Die Broschüre steht nicht als Printmedium zur Verfügung, kann aber als PDF-Datei unter https://publikationen.sachsen.de/bdb/ heruntergeladen werden.

Verteilerhinweis

Diese Informationsschrift wird von der Sächsischen Staatsregierung im Rahmen ihrer verfassungsmäßigen Verpflichtung zur Information der Öffentlichkeit herausgegeben. Sie darf weder von Parteien noch von deren Kandidaten oder Helfern im Zeitraum von sechs Monaten vor einer Wahl zum Zwecke der Wahlwerbung verwendet werden. Dies gilt für alle Wahlen.

Missbräuchlich ist insbesondere die Verteilung auf Wahlveranstaltungen, an Informationsständen der Parteien sowie das Einlegen, Aufdrucken oder Aufkleben parteipolitischer Informationen oder Werbemittel. Untersagt ist auch die Weitergabe an Dritte zur Verwendung bei der Wahlwerbung. Auch ohne zeitlichen Bezug zu einer bevorstehenden Wahl darf die vorliegende Druckschrift nicht so verwendet werden, dass dies als Parteinahme des Herausgebers zugunsten einzelner politischer Gruppen verstanden werden könnte.

Diese Beschränkungen gelten unabhängig vom Vertriebsweg, also unabhängig davon, auf welchem Wege und in welcher Anzahl diese Informationsschrift dem Empfänger zugegangen ist. Erlaubt ist jedoch den Parteien, diese Informationsschrift zur Unterrichtung ihrer Mitglieder zu verwenden.