

Lifestock production systems and future food security?

Gillian Butler, Julia Cooper, Steve Wilcockson and Carlo Leifert

Food Security Network
Newcastle Institute for Sustainability Research (NIReS)
NEWCASTLE UNIVERSITY

Food security

"The ability to provide access to enough food of high quality for humans through sustainable methods of production, processing, storage, transport, distribution, trading and retailing"

Sustainability in this context means without

- > negative impacts on the environment,
- > reliance on non-renewable resources,
- > an erosion of current ethical standards

while ensuring

- > fair economic returns to all food chain stakeholders
- flexibility to meet the challenges of global change

		Nafferton Ecological Farming Group		
(Gellings and Par	menter 2004)			
Energy required in KJ/kg	ment in agri	cultural system	(world average	
	Nitrogen	Phosphate	Potash	
Production	69,530	7,700	6,400	
Packaging	2,600	2,600	1,800	
Transportation	4,500	5,700	4,600	
Application	1,600	1,500	1,000	
Total	78,230	17,500	13,800	

Energy use $-CO_2$ emissions

Mineral N-Fertiliser

- 1 kg Nitrogen-fertiliser = 36,000kJ = 1 L fuel
- 1 kg nitrogen fertiliser (NH₃NO₃) results in
 = 2.38 kg CO₂ (equivalents of CO₂, CH₄ and N₂O)
- UK Farm level = 100 ha cereals x 200 kg N/ha/annum
 - = 20,000 Litre fuel used
 - = 47,600 kg CO₂ into the atmosphere
- European level = 11 Million t N/annum*
 - = 11,000 Million Litre fuel used
- * Fertiliser Europe (2009) Annual Forecast 2009. www.fertilizereurope.com

When Will Phosphorus Run Out?

- Numerous scientific studies conclude that phosphorus (phosphate rock) reserves-resources will be depleted in the 21st century
 - Pessimistic: in 30-40 yearsMore optimistic: in 70-80 years
- IFDC (International Fertilizer Development Centre) prediction: 300-400 years
 - > Figures disputed by the US geological survey
 - Does the fertiliser industry and its lobbying bodies just want business as usual?

What are the solutions?

The main approaches available are:

- 1. More efficient recycling of NPK via
 - animal and green manures,
 - > crop residues, food processing waste
 - > communal and domestic organic waste
 - human toilet waste/sewage
- 2. Reduction of losses of fertiliser from soils
- 3. Breeding/selection of more nutrient (especially N and P) efficient crop varieties

EU NUE-CROPS project

Open Questions?

Are there enough organic fertilisers and/or organic waste that can be processed and used as fertiliser available?

- ➤ Probably yes, if we get much more efficient in recycling organic waste
- Probably not, if we apply current EU-organic farming standards
 - which currently prohibits the use of night soil/sewage as fertiliser

