

CORE organic

Piglet mortality in organic herds

Prunier A¹, Dippel S², Bochicchio D³, Bourgoin A¹, Goebel A⁴, Leeb C⁵, Lindgren K⁶, Wiberg S⁷, Sundrum³ A, Bonde M⁸

¹INRA, UMR SENAH, Saint-Gilles, France, contact: <u>armelle.prunier@rennes.inra.fr</u>,

²FLI, Celle, Germany; ³CRA, San Cesario sul Panaro (MO), Italy; ⁴University of Kassel, Germany; ⁵ BOKU, Vienna, Austria; ⁶SIAEE, Uppsala, Sweden; ⁷Swedish University of Agricultural Sciences, Skara, Sweden; ⁸FAS, Aarhus university, Denmark

Introduction

Productive performance of organic pig farms is lower compared to conventional farms, but only very few data exist. Better knowledge of the productivity of organic herds regarding litter size at birth, piglet losses around birth and during lactation, as well as housing and management conditions should help to identify critical points and hence to improve the situation.

Objectives

- Describe productive data, housing and management characteristics in 100 organic farms from 6 EU countries (Austria, Denmark, France, Italy, Germany, Sweden).
- Identify critical points for piglet mortality.

Methods

Interview of the farm manager

Background, performances, management...

Observations on the farm

Housing and animals

Farmers' records

Live born, still born, fostered (+ & -) and weaned piglets/litter

During 3-11 months, starting between January and July 2008

Analyses

No epidemiological analyses possible

Descriptive analyses

Threshold of ≥ 10 litters/farm, records of stillborn

→ 38 farms in 4 countries (France: 14, Germany: 12, Austria: 7, Sweden: 5) with a mean of 69 (10 to 713) litters/farm.

Classification of the farms according to their housing and management, using multiple correspondence analysis (MCA) and subsequent hierarchical classification, variables transformed in binary variables

→ 49 "indoor" and 33 "outdoor" farms

Comparison of the performances between farm types

Results

Table 1. Performances (38 farms)

Total littersize at birth, mLSB	12.9	1.6
Mean littersize at weaning, mLSW	9.2	12
Percentage of losses, pLOSS	26.7	7.1
Duration of lactation, days	45.3	5.9

Losses increased with mLSB ($2.1 \pm 0.7\%$ additional loss per piglet, P < 0.01) and with sdLSB ($3.9 \pm 1.6\%$ additional loss per unit of SDLS. mLSB was correlated with sdLSB (r = 0.44, P < 0.01).

Fig 1. MCA for indoor (left) and indoor (right) farms

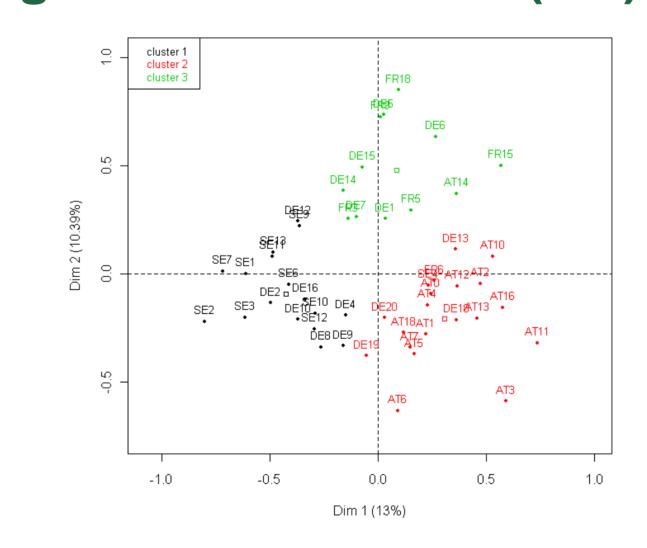
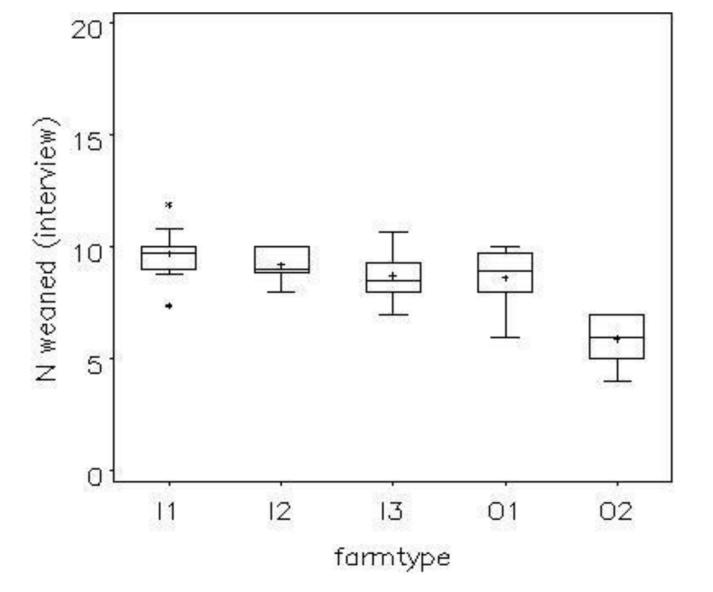
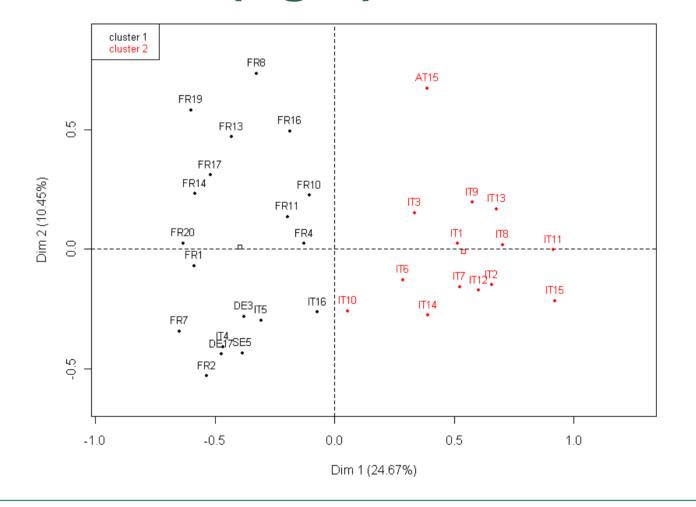




Fig 2. Littersize at weaning (from interviews) according to farm type

- I1: bigger farms, batch farrowing, cross fostering, vaccination program, no outdoor run, large lying area, no group suckling, lameness rare
- I2: cleaning and disinfection rare, small lying area, group suckling
- I3: no batch farrowing, no cross fostering, fat sows, group suckling, no vaccination program
- O1 vs O2: more batch farrowing & crossbred sows, larger herds, specific feed ratio during lactation

Conclusions

- □ Detrimental influence of litter size at birth on piglet mortality (more competition & higher proportion of piglets with low birth weight), high standard deviation in litter size may exacerbate these problems.
- □ No clear difference between all indoor and O1 farms. O2 farms more "traditional", lower performances.

Acknowledgements

We thank all the farmers for their participation, as well as for providing access to their animals. The presented data are part of CORE organic project no. 1904 "Prevention of selected diseases and parasites in organic pig herds - by means of a HACCP based management and surveillance program (CorePig)"