Greenhouse screening for Fusarium wilt resistance in lupine

N. Kupstou, J.L. Christiansen, S. Raza and B. Joernsgaard The Royal Veterinary and Agricultural University, Copenhagen Denmark, (bjo@kvl.dk)

Abstract

Fusarium wilt can cause total crop failure. Evaluation of Ffusarium resistance in heavily infected soil were performed in a grenhouse where the dominant fusarium species in the soil in descending order was *F. oxysporum then F. avenaceum, F. culmorum, F. solani, F. gibbosum.* Large fusarium wilt presure was observed and fully susceptible lines were completely destroyed by Fusarium wilt caused by *F. oxisporum.* Segregation in F2 and F3 in *L. angustifolius* showed that resistant genotypes have two dominant non-allelic resistance genes to wilt. We call this gene Relation to fusarium oxisporum (Rfo1,Rfo2). Susceptible genotypes have either two wild genes (++ ++) or one wild and one dominant resistant gene (++ Rfo2 Rfo2, or Rfo1Rfo1 ++). Crossing '++ Rfo2Rfo2' to 'Rfo1Rfo1 ++' segregates in 9:7 resistant to susceptible in F2, respectively. The same segregation was observed by crossing 'Rfo1Rfo1 Rfo2Rfo2' to '++ ++'. We recommend the use of these resistant genes in breeding in areas with potential Fusarium wilt problems.

Keywords

Fusarium resistance, Lupin angustifolius, albus and luteus, inheritance.

Introduction

Fusarium problems has been reported from all major lupin growing areas (Debelyi et al 1991; Lewartowska et al 1994; Sweetingham et al 1998). The interest in growing *L. angustifolius* is increasing in humid maritime areas in northern Europe due to new earlier and higher yielding varieties. However, these conditions favor Fusarium root rot and Fusarium late wilt development, which could be accentuated by a short rotation of grain legumes in organic fields. Thus fusarium resistance is also highly important in these conditions. Breeding resistant lines for different environment has been reported (Kurlovich et al 1995; Kuptsov 2000), however, only little information about genetics has been provided. For successful breeding the understanding of the genetic control of the Fusarium wilt resistance is highly important, and for this purpose this experiment was carried out.

Material and methods

To evaluate the resistance, susceptible and resistant genotypes and F2 and F3 populations were grown in greenhouse in a sandy soil which 2 years before was taken from a lupin field. Where the resistant genotypes yielded a low frequency of susceptible scores the segregation ratio in of their F2 and F3 were corrected for this error (table1). The precedent crop in the greenhouse was also lupin. The dominant fusarium species in the soil was in descending order *F. oxysporum then F. avenaceum, F. culmorum, F. solani, F. gibbosum.* Irrigation was frequent and the soil was kept near field capacity. The day temperature ranged from 18°C to 24°C and the minimum night temperature varied from 8°C to 12°C. Large Fusarium wilt presure was observed and fully susceptible lines were completely destroyed by fusarium wilt caused by *F. oxisporum.* Suceptible plants did not formed pods and had typical stem symptoms. The susceptible angustifolius variety Prima was used as a control of the homogeneity of Fusarium fungi pressure.

Results and Discussion

In *L. angustifolius* total resistance to wilt was among others observed in Crystal (Russia), Mitan (Belarus), Rose, E104, E105, E106 (Denmark), Tanjil (Australia). In *L. albus* Giza (Egypt) and MA (Denmark). All tested *L. luteus* were resistant in these conditions, Mortiv-369, WAL-196 etc.

Very susceptible *L. angustifolius* lines were Prima (Denmark), Sonet (Poland), Borweta (Belarus), Kalya (Australia). The larger part of the *L. albus* lines was 100 % destroyed eg. Lublanch (France), E1 and P1 (Denmark). These results correlate well to known resistance under field conditions in various countries (Debelyi et al 1991; Kuptsov 2000).

Single pod descent F2 and F3 hybrid populations in *L. angustifolius* showed that resistant genotypes have two dominant non-allelic resistance genes to wilt. We call this gene Relation to Fusarium oxisporum (Rfo1,Rfo2). Susceptible genotypes have either two wild genes (++ ++) or one wild and one dominant resistant gene (++ Rfo2Rfo2, or Rfo1Rfo1 ++). Crossing '++ Rfo2Rfo2' to 'Rfo1Rfo1 ++' segregates in 9:7 resistant to susceptible in F2, the same segregation was observed by crossing 'Rfo1Rfo1 Rfo2 Rfo2' to '++ ++' (Table 1, figs. 1,2).

It is recommended to use these resistant varieties as a source of resistance genes for breeding in areas with potential fusarium wilt problems. <u>a)</u> PP: Rfo1 Rfo2 = = Rfo1 Rfo2 Resistant F1: Rfo1 Rfo2 = =

+

+

Resistant

Rfo1 + + Rfo2 = = X = = Rfo1 + + Rfo2 Susceptible Susceptible Rfo1 + = = + Rfo2 Resistant

Gameter F1:

P 27	<u>+</u>	<u>+</u>	<u>Rfo1</u>	<u>+</u>	<u>+</u>	<u>Rfo2</u>	<u>Rfo1</u>	<u>Rfo2</u>
	+	+	+	+	+	+	+	+
<u>+ +</u>	=	=	=	=	=	=	=	=
	+	+	Rfo1	+	+	Rfo2	Rfo1	Rfo2
	Rfo1	+	Rfo1	+	Rfo1	+	Rfo1	+
<u>Rfo1 +</u>	=	=	=	=	=	=	=	=
	+	+	Rfo1	+	+	Rfo2	Rfo1	Rfo2
	+	Rfo2	+	Rfo2	+	Rfo2	+	Rfo2
<u>+ Rfo2</u>	=	=	=	=	=	=	=	=
	+	+	Rfo1	+	+	Rfo2	Rfo1	Rfo2
	Rfo1	Rfo2	Rfo1	Rfo2	Rfo1	Rfo2	Rfo1	Rfo2
<u>Rfo1</u> Rfo2	=	=	=	=	=	=	=	=
	+	+	Rfo1	+	+	Rfo2	Rfo1	Rfo2

b)

PP:

F1

+

=

+

Susceptible

+

=

+

Х

F2: 9 resistant: 7 susceptible

Figure 1. Inheritance of Fusarium wilt resistance in L. angustifolius by two dominant non-allelic genes. a) resistant x susceptible cross. b) Susceptible line x to non-allelic susceptible cross. White indicates resistance and gray pattern indicate susceptibility.

Gameter F1:

P 22	<u>Rfo1</u>	<u>+</u>	<u>Rfo1</u>	<u>+</u>	<u>Rfo1</u>	<u>Rfo2</u>	<u>Rfo1</u>	<u>Rfo2</u>
	Rfo1	+	Rfo1	+	Rfo1	+	Rfo1	+
<u>Rfo1 +</u>	=	=	=	=	=	=	=	=
	Rfo1	+	Rfo1	+	Rfo1	Rfo2	Rfo1	Rfo2
	Rfo1	+	Rfo1	+	Rfo1	+	Rfo1	+
<u>Rfo1 +</u>	=	=	=	=	=	=	=	=
	Rfo1	+	Rfo1	+	Rfo1	Rfo2	Rfo1	Rfo2
	Rfo1	Rfo2	Rfo1	Rfo2	Rfo1	Rfo2	Rfo1	Rfo2
<u>Rfo1</u> Rfo2	=	=	=	=	=	=	=	=
	Rfo1	+	Rfo1	+	Rfo1	Rfo2	Rfo1	Rfo2
	Rfo1	Rfo2	Rfo1	Rfo2	Rfo1	Rfo2	Rfo1	Rfo2
<u>Rfo1</u> Rfo2	=	=	=	=	=	=	=	=
	Rfo1	+	Rfo1	+	Rfo1	Rfo2	Rfo1	Rfo2

Figure 2. Inheritance of Fusarium wilt resistance in L. *angustifolius* by two dominant non-allelic genes. a) Cross resistant line to susceptible with one dominant resistance gene. White indicate resistance and gray pattern indicate susceptibility

	Number of studied plants									
Cross	P ₁		P ₂		F ₂		F _{2 corrected}		ted	X ²
-	R	S	R	S	R	S	R	S	ratio	
LAG28/LAG24	32	3	165	10	65	3	69,9	-1,86	n.s.	-
LAW12/LAG24	0	67	165	10	54	21	57,2	17,8	3:1	0,07***
LAW12/LAW14	0	67	0	35	0	71	0	71,0	n.s.	-
LAW12/LAF6	0	67	0	74	41	36	41,0	36,0	9:7	0,28***
LAF6/LAG24	0	74	165	10	55	22	58,3	18,7	3:1	0,02***
LAG26/LAG24	0	38	165	10	56	21	59,3	17,7	3:1	0,17***
LAG36/LAG24	0	33	165	10	38	34	40,3	31,7	9:7	0,002***

Table 1. : Segregation ratios in F2 hybrids for Ffusarium wilt resistance in *L. angustifolius*.

(R indicate resistant, S - susceptible, n.s. – non segregation,)

References

Debelyi G.A., E.E. Grishina, and V.I Derbenskii. 1991. Forms of Lupinus angustifolius resistant to Fusarium. Selektsiya I Semenovodstvo Moskva, 6:24-25.

Kuptsov V. 2000. Breeding for complex disease resistance in Lupin angustifolius. In: E van Santen, M. Wink, S Weissmann, and P. Römer (eds.). Lupin, An ancient Crop for the New Millenium. Proc. of the 9th international Lupin conference, Klink/Müritz, 20-24 June 1999. International lupin Association, Canterbury, New Zealand. 2000.

Kurlovich B., N.S. Korneichuk, and I.I. Kiselev. 1995. Breeding Fusarium resistant lupin forms for agricultural environment of Russia based on ecologico-geographical approach. Journal of applied genetics. 36:241-249.

Lewartowska E., M. Jedryczka, I. Frencel, and J. Pieczyrak. 1994. Seed borne fungi of Lupinus angustifolius L. cultivar. Phytopathologia Polonica, 19:123-130.

Sweetingham M.W., R.A.C. Jones, A.G.P. Brown J.S. Gladstones, C. Atkins, and J. Hamblin. 1998. Diseases and pests. 263-289. IN: J.S. Gladstones, and C. Atkins (eds.). Lupin as a crop plant: biology, production and utilization. CAB international, Wallingford UK.