

Status og nye udfordringer: Biologisk bekæmpelse af skadedyr

- AF JØRGEN EILENBERG OG JØRGEN B. JESPERSEN

Den var en succes, da metoden blev introduceret i 1880erne - men biologisk bekæmpelse og et samspil med de naturlige kræfter, der regulerer skadedyr, er mere n \varnothing dvendigt end nogen sinde f \not r. I dag er anvendelsen af biologisk bekæmpelse pả globalt plan meget beskeden.
Biologisk bekæmpelse i dens moderne form slog igennem med et brag. I Californien var en skjoldlus i 1880erne ved totalt at ϕd delægge cirrusproduktionen.

Der var panik på, og man valgte at sende ekspeditioner af sted til eksotiske steder for at finde nyttige insekter, der kunne bekæmpe skjoldlusene.
Det var fyr biler og andet moderne transportudstyr, men trods dette lykkedes det at fá indsamlet en mariehoneart iAustralien og sende nogle fả eksemplarer til Californien for derefrer at sette dem ud.
Miraklet skete: Billerne bredte sig, spiste l \varnothing s af skjoldlusene, og i løbet af få ar var problemet løst.

Svampen Metarhizium anisopliae er et eksempel pả en organisme, der har et bredt anvendelsespotentiale fremover. Den er således effektiv til at bekæmpe bảde grâsnuder i klippegront og skovfläter (ille foto).

Derved opstod visionen om biologisk bekæmpelse som »den gode historie": Man søger efter en nytteorganisme, sætter den ud og far derved genoprettet en balance mellem afgrode, skadedyr og nytteorga, nisme uden yderligere initiativer.
Et af koryfæerne inden for biologisk bekæmpelse, Paul deBach, formulerede i 1964 visionen således:
"We would point out that people fortunate enough to have witnessed a striking example of biological control taking place usually become 'true believers', but some of those, who happen later to see only the final result can be umimpressed if not downright sceptical" (1).
Danmark var faktisk tidligt med, idet daværende
professor ved Landhohojskolen, J.E.V. Boas, allerede i 1890 erne importerede en svamp, Beaweria, fra Frankrig.

Boas afprovede svampen til at bekempe omfattende angreb af oldenborrer, men desværre lykkedes det ham ikke at få en sikker effekt.

Udviklingen kom rigtigi igang i 1970erne - bide med projekter i vaeksthuse og på friland, og Danmark har placeret sig ganske flot internationalt. I en standardlærehog om biologisk bekempelse omtales biologisk bekampelse i Danmark i sin egen klumme (2).

Hvad er biologisk bekæmpelse?

Biologisk bekampelse af skadedyr er brugen af levende organismer, dvs. rovdyr (prædatorer), snyttehvepse, nematoder og insektpatogene mikroorganismer (bakterier, svampe, virus m.m.). Brugen af planteekstrakter er ikke biologisk bekiempelse, ej heller GMO planter med toxingener over for insekter.

Biologisk bekxmpelse af skadedyr kan inddeles i fre forskellige strategier (3):

- Klassisk biologisk bekæmpelse
- Inokulativ biologisk bekæmpelse
- Massiv udsætning (inundation)
- Naturlig regulering (conservation)

Eksemplet med citrus er klassisk biologisk bekæmpelse, ogs siden de fyrste succeser har der vaeret andre eksempler - især fra områder med indslæbte skadedyr.

Inokulation bygger på, at man udbringer en mindre mæengde organismer, som så opformeres i begrænset omfang. Det sker fx med mikroorganismer til bekæmpelse af skadedyr i jord, hvor man kan inokulcre med insektpatogene svampe. Pointen er, at den inokulerede organisme opformerer sig og på den måde bekæmper skadedyret.

Massive udsxeninger af nytteorganismer til bekæmpelse af skadedyr sker fx , når bakterien Bacillus thuringiensis sprojtes ud til bekrmpelse af sommerfuglelarver. Strategien er, at man massivt bringer organismen ud, når der dokumenterbart er brug for en hurtig indsats. Det samme er tilfaeldet ved massiv udsæerning af $f x$ snyltehvepse.

Naturlig regulering bygger på, at der ikke udbringes noget, men at man i stedet optimerer virkningen af de naturligr forekommende fjender af skadedyrene.

- Bacillus thuringiensis
- Andre bakterier
- Virus
\square Svampe
- Nematoder

Figur. Den relative fordeling af forbruget af mikroorganismer til biologisk bekæmpelse pà verdensplan (fra Lisansky, 2007, omtegnet). Udover de viste anvendes en begrænset mængde mikrosporidier.

Der er kun strategierne »inokulation" og »massive udseetninger", der er interessante for firmaer, som producerer nytteorganismer, ligesom det ofte er det, man umiddelbart tanker ved biologisk bekampelse: Man kober en nytteorganisme og bringer/ sprojiter den ud.
Det folgende bygger derfor på data om salg og forbrug af biologisk bekampelse (Biological Control Agent, BCA) til inokulation eller massive udsætninger.

Det globale marked

Biologisk bekæmpelse udgør på verdensplan desværre stadig en meget beskeden del af det samlede marked af bekæmpelsesmidler, der i 2007 vurderedes til 30,4 mia. USD for plantebeskyttelsesmidler og $5,2 \mathrm{mia}$. USD for andre områder. Guillon vurderer, at verdenssalget af biologisk bekrempelse i 2008 forventeligt vil se sådan ud (4):
$\begin{array}{ll}\text { Nyttedyr } & 243 \mathrm{mio} . \text { USD } \\ \text { Mikroorganismer } & 330 \mathrm{mio} . \text { USD }\end{array}$
Det fremgar, at gode 40 pct. af al biologisk bekæmpelse er brug af nyttedyr til biologisk bekampelse, mens knap 60 pet. er hrug af mikroorganismer.

Nyttedyr til brug i biologisk bekaempelse af skadedyr rummer bade globalt anvendte nyttedyr i veeksthuse og lokalt producerede og lokalt anvendre arter. I begge tilfalde er der tale om baide rovdyr (fx mariehons og rovmider) og snyltehvepse ($f x$ mellus snyltehveps (Encarsia formosa).

Guillon (4) skelner ikke mellem brug af mikroorganismer til bekampelse af henholdsvis skadedyr, plantesygdomme og ukrudt. På figuren ses, at den overvejende del af forbruget af mikroorganismer skyldes Bacillus thuningiensis (5).

Særligt tungt i statistikken vejer forbruget af denne bakterie til bekæmpelse af sommerfuglelarver i bl.a. skovbrug samt på soja og bomuld i Nordamerika. Mindre dele af forbruget udgøres af virus og nema-

- Kun en meget beskeden del af den pulje af arter og former, der kan bruges til biologisk bekæmpelse, er blevet undersøgt nærmere. Bare i danske undersøgelser er der fx flere gange beskrevet helt nye arter af mikroorganismer, der inficerer insekter

toder - i begge tilfelde er alle produkrer retter mod skadedyr. Svampe på figuren kan være produkter rettet mod enten skadedyr, plantesygdomme eller ukrudt.

I det samlede billede er den altovervejende del af biologisk bekæmpelse under alle omstandigheder retter mod skadedyr.

Biologisk bekæmpelse en nødvendighed

Biologisk bekempelise af skadedyr er i stigning, set pà verdensplan. Denne konklusion understøtes af, at markedet har varet stabilt og voksende.

Blandt de hastigt voksende markeder er Kina, Rusland og lignende omader, heor der er en stor produktionsvackst og samtidig fokus på at dyrke afgroderne ud fra beredygtige principper. I Europa er der et stigende forbrug til vaeksthuse, bla. i Sydeuropa.

Paf friland er der lokalt omfattende brug af biologisk bekæmpelse i visse hyjvaerdiafgryder - fx frugtavl i Mellemeuropa, mens biologisk bekampelse af ska, dedyr paide store udendørs afgrøder endnu ikke er slatet igennem : Europa.

Det er desvarre fortsat således, at anvendelsen af kemisk bekampelse med deraf folgende miljoproblemer langt overstiger de mere miljovenlige metoder. Forureningsproblemerne, som skyldes toksiske kemiske stoffer i naturen, er på ingen måde hlever mindre, heerken i ilande eller i ulande.

I ulande er der samtidig der ekstra aspekt, at produkrion af biologiske bekampelsesmidler til en vis grad kan ske lokalt.

Endelig, i forbindelse med den ogede globalisering og klimaforandringer, er der grund til at forventc, at vi Danmark - samt resten af Europa - farr et oget tryk af skadedyr. Både arter, der netop kan komme herop fra Mellemeuropa pga. varmere klima samt atter, der indslæhes. Biologisk hekæmpelse og et samspil med
de naturlige krefter, der regulerer skadedyr, er dermed mere nodvendigt end nogen sinde fyr.

Hvide pletter på kortet

Der mangler forskning oog produktudvikling. Mere specifikt er det sådan, at kun en meget beskeden del af den pulje af arter og former, der kan bruges til biologisk bekempelse, er blever undershot neermere.

En meget stor undforsker biodiversitet er slet ikke inddrager endnu. Bare idanske undersogelser er der fx flere gange beskrevet helt nye arter af mikroorganismer, der inficerer insekter.

Der er altsai masser af grund til "hare" at gå helt basalt frem: Undersoge skadedyrets biologi og sam. spil med vartsplante og omgivelser, dokumentere de naturlige fjenders virkning og effekt, selektere de mest effektive arter til mere detaljerede undersøgelser for endelig at afprove egnede kandidater under felfforhold.

Kilder:

1. DeBach, Г. (1964): Biological Control by Natural

Enemies. Cambridge Univ, Press, 323 pp
2. Hajck, A. (2004): Naturil Enemies: An Introduction to Biological Control. Cambridge Universiry Press.
3. Eilenberg, J; Hajek, A. \& Lomer, C. (2001): Sugestions for unifying the rerminology in bielogical control. Biocontrol 46.
4. Guillon, M. (2004): Current World Situation on Acceptance and Marketing of Biological Control Agents (BCAS).
5. Lisansky, S, (2007): The World Market of Biopesticides. Vol I. CDL Business Consultants
$C A B$ International Centre.

Professor Jorgen Eilenberg er ansat ved KU LIFE, og Jorgen B. Jespersen er forskningschef ved Det Jordbrugsvidenskabelige Fakultet,

Aarhus Universitet.

