Bevar naturens egen regulering

Biologisk bekæmpelse omfatter bl.a. direkte bekæmpelse ved udsætninger af nytteorganismer på kritiske tidspunkter. Men initiativer, der målrettet fremmer skadedyrenes naturligt forekommende fjender på deres levesteder, er også biologisk bekæmpelse

- AF NICOLAIV. MEYLING OG LENE SIGSGAARD

Naturlig regulering af skadedyrshestande i naturen foregar hele tiden. Derfor bliver langt fra alle potenticlle skadedyr til virkelige skadedyr et givet air chler sted.

Planteredende insekter reguleres bla. via fodekieden: Nedefra gennem planten og oppefra ved deres naturlige fjender. Blandr skadedyrenes naturlige fjender er rovinsekter, edderkopper og rovmider, snyltehvepse (samlet kaldet nyttedyr) samt sygdomme af storst betydning for den naturlige regulering.
Den intensive landhrugspraksis i det moderne jordbrug har dog reduceret effekten af de planteredende insekters naturlige fjender. Den manglende regule-
ring medvirker til de skadedyrangreb, som opleves i forskellige afyryder.

I de seneste arr er der skabt en oget interesse for at forsta og anvende disse naturlige reguleringsmekanismer for at holde skadedyrene i skak. Det kraver viden om planternes, de planteredende insekters og nytteorganismernes hiologi og samspil for at wige effekten af den naturlige regulering.

En bekæmpelsesstrategi

Funktione! biodiversitet er den del af biodiversiteten, som er gavnlig i forhold til reguleringen af skadegめrere, bestsonning af kulturplanter m.m.

Striber af efterafgrode bevares i den efterfolgende dyrkningssæson i okologisk gransagsdyrkning i forskningsprojektet VegQure. Striberne kan fungere som levested for nyttedyr og insektsygdomme samt som kilde til alternativ fode for nyttedyrene.

Man kan fremme funktionel biodiversiter ved målrettet at forbedre nytteorganismernes levevilkår i dyrkningssystemet og dets omgivelser - fx ved at ctablere plantesamfund iog omkring marken som bidrager til overtevelse og onformering af nytteorganismer. Strategien kaldes på engelsk conservation biological control eller funktionel biologisk bekampelse.

Fysiske forhold som mikroklima, gemmesteder og overvintringsteder er af stor betydning for de naturlige fjender. En strategi, som skaber varierende habitater inden for og inellem marker, er derfor nodvendig for at maksimere reproduktionen af naturlige fjender og yge den naturlige regulering.

Samtidig skal sikres tilstrexkelig adgang tilalternativ fyde. Hos nytredyr afhenger sundthed, frugtbarhed og diversitet af fyden. En vigtigs supplerende foxdekilde er pollen og nektar. I forsog, hvor bade diversitet af nyttedyr, skadedyr og planter indgàr, ser man ofte positive effekter af suget nyttedyrs diversitet.

Frugt og bær - naturlig regulering

I visse dyrkningssystemer er der allerede hyj biodiversitet. Det geelder isier for flerårige kulturer som frugt og ber. I en usprojtet tysk cebleplantage fandt man 1.000 forskellige arter. Som tommelfingerregel regner man med, at en fjerdedel af dyrene kam vare skadelige, en fjerdedel er nyttedyr og resten er harmlose.
Vigtige naturlige fjender omfatter blandt andet rovlevende treger, edderkopper, rovmider, ørentviste, snyttehvense, mariehsns, svirrefluer, guldøjer samt insekteedende fugle . Nyttedyrene kan i mange tilfailde holdc skadedyrsangreb på et acceptabelt niveau, sia anden bekrmpelse kan bruges begrenset,

Kalfluers pupper (overst) angribes af snyltehvepse (tv.) og rovbiller (th.). I okologisk kaldyrkning ses færre overvintrende kälfluepupper end i konventionel dyrkning, og nyttedyrene bidrager til den forbedrede naturlige regulering.
og nyttedyrene skines for de negative effekter af pesticider. Nyttedyr kan fremmes, ved at skabe gode overvintringsmuligheder og levesteder iogomkring plantagen $f x$ ved plantning af levende hegn.
Nyttedyrssamfundene er forskellige fra hegn til hegn. I fremtiden bsяr plantens væerdi for nytredyr overvejes, năr der plantes hegn om ableplantager.
1 projektet »Skadedyrsbekermpelse, biologisk bekampelse i jordbare, stentet af Direktoratet for FodevareErhverv og Brancheudvalget for Frugt og Gront, undersigerer vi bla, den naturlige regulering af de vigtigste skadegorere; jordbarvikler, hindbærsnudebiller, vazksthussnudebiller, spidemider og dvargmider.
Den kemiske bekempelse af viklere og hindbæersnudebiller foregar med pyrethroider, der er skade-

Svampesygdomme er blandt skadedyrenes naturlige fjender. Her er en voksen flue angrebet af svampen Beauveria bassiana.
lige for naturligt forekommende nyttedyr - herunder rovmider. I fravar af rovmider opformeres dvaerg- og spindemider med tab til folge. En dyrkningstrategi, der frommer og skåner naturlig regulering, forudsæetter derfor, at alle centrale skadedyr tankes ind. I foråret er markrande kilder til nyttedyr som lybebiller og edderkopper, der siden spreder sig ind i markerne.

Vi sid den hajeste akriviret af disse nyttedyr idet ridlige forir ved markrande langs vand. Et igangvæerende specialeprojekt har fundet en vaesentlig andel jordbarviklerlarver drabt af en ag-larvesnyltehveps.

Mere viden om snyltehvepsens biologi kan forhăbentlig give ledetråde til, hvordan den bedst beskyttes iog omkring marken. Måske er den afhangig af andre blomster som nektarkikler, nair jordbaer ikke blomstrer?
I hojvardiafgrøder som jordbar er det dog nodvendigt at have adgang til bekempelsesmeroder ud over naturlig regulering. Biologisk bekampelse med bakterien Bacillus thuringiensis (Bt), som ikke er skadelig for nyttedyrene, er en mulighed over for viklerlarven.

Kornmarker - biodiversitet i et fattigt landskab

Over de sidste 50 air er landtrugsarealerne aendret. Markerne er blevet storre, og smaihabitater som vaide lavninger, diger og skel er gaget tabt.

Sammen med disse strukturelle andringer har dyrkningssystemet mistet nogle af de naturlige reguleringsmekanismer.

I et nyt projekt størtet af Miljøstyrelsen ser vi på betydningen af usprojtede og ugøodede markrande for biodiversiteten og pả, hvor brede bufferzoner skal
vare for at give en forbedret biodiversiter og bedre livshetingelser for nyttige insckter.

I kornmarken melforer reduceret ghanings- og pesticidforbrug en forygelse af ukrudtsindtholdet i zonerne, hvilket isig selv oger biodiversiteten.

Landbrugsdriften påvirker ogsaí plantelivet på de ikke-dyrkede habitater - fx findes der flere plantearter i levende hegn på $\boldsymbol{o k}_{\mathrm{k}}$ ologiske bedrifter sammenholdt med konventionelle hegn.

Indtil videre har kun fa undersbgelser vist en udbyttemassig gevinst af funktionel biologisk bekempelse, og en del undersogelser har ikke pavist effekter - maiske pga. lave angreb i de âr, det blev undersygt.

En svensk underssygelse på ti fuldtidslandbrug i en saeson med stort bladlusangreb päviste, at rovinsekter reducerede udbyttetabet fra bladlus med 50 pct .

De seneste ärs forskning har vist, at det ikke blot er vigtigt at studere, had der sker i den enkelte mark, men ogsia hvordan systemet i marken paivir. kes af det omgivende landskab. En strukturel diversitet pal landskabsniveau har stor berydning for det grundlag af naturlige fjender, som kan rekrutteres ind i marken. Derfor inddrager stadigt flere forskningsprojekter landskabsniveauet som en parameter for effekten af funktionel biologisk bekampelse i de dyrkede marker.

Naturlig regulering

Det ligger i definitionen af skologisk dyrkning, at man vil inddrage den naturlige regulering af skadedyr. Sporgsmålet er, om reguleringen kan måles.

I et markforsng med \wp kologisk gronsagsdyrkning i Årslev (projektet VegQure finansieret gen-
> - Over de sidste 50 år er landbrugsarealerne ændret. Småhabitater som våde lavninger, diger og skel er gået tabt. Sammen med disse strukturelle ændringer har dyrkningssystemet mistet nogle af de naturlige reguleringsmekanismer

nem Forskningscentret for Okologisk Jordbrug og Fodevaresystemer) undersuger vi effekterne af kiddyrkningen på skadedyr, nyttedyr og svampe.

Vi sonsker at forstå nogle af de naturlige reguleringsmekanismer, som kan begraense skadedyrenes antal. Svampesygdomme hos insekterne bidrager til at regulere antallet af skadedyr bl.a. sammen med nytredyrene.

Forskningsprojektet fokuserer bl.a. pa, onn svampenes mengle sges ved wkologisk dyrkning generelt samt specifikt ved at efterlade gronne striber af efterafgrosten i den folgende dyrkningsseson i et økologisk system. Efter den forste vackstsason havde svampene hojere tetheder i den gronne stribe end i den omgivende jord, og den videre effekt af striberne undersøges i de kommende seesoner. Striberne kan også komme nyttedyrene til gode som skjulestedog som kilde til alternativt bytte.
Den lille kålflue er et alvorligt skadedyr i kål,
hvor larverne lever pà plantens rodder. Larverne selv angribes af snyltehvepse og rovbiller samt af svampesygdomme. Kilfluens æg ved plantens basis bliver adt af loxhe-og rovbiller. Efter to sesoner er det tydeligt, at kålfluerne klarer sig dårligere i de økologiske kålmarker end i den konventionelt dyrkede kontrolmark. Der er altsia en forbedret naturlig regulering i de \varnothing kologiske kalmarker, og vi søger at afdække, hvilken rolle kilfluernes forskellige fjender spiller for reguleringen.

Videnskrævende bekæmpelsesstrategi

Bevaring af naturens egen regulering af skadedyr stiller forskellige krav til marken, dens umiddelbare omgivelser og landskabet. I marken er det vasentligt at skåne nytteorganismerne og deres levesteder og vartplanter.

Økologisk dyrkning er et gode eksempel på dette. Grasvolde eller blomsterbremmer skaber levesteder for nytteorganismerne inde i marken. Markens direkte omgivelser, markrande og hegn giver nytteorganismer overvintringsmuligheder og skjul.

Et diverst landskab betyder også meget for, i hvor $\mathrm{h} s \mathrm{j}$ grad den naturlige regulering vil fungere.

Det kraver dog fortsat forskning og et godt kendskah til skadedyrenes og deres fjenders biologi og skologi at kunne videreudvikle og optimere funk. tioncl biologisk bekampelse.

Ny viden vil i fremtiden give planteavleren bedre muligheder for at inddrage den naturlige regulering af skadedyr i produktionen og for at age biodiversiteten i landskaber.

Nicolai V. Meyling og Lene Sigsgaard er ansat ved Institut for Økologi, KU LIFE.

