Manure – an agronomic and environmental challenge

5-6 September 2005
Nils Holgerssongymnasiet, Skurup, Sweden

Maria Stenberg, Hans Nilsson, Rikhard Brynjolfsson, Petri Kapuinen, John Morken, Torkild Søndergaard Birkmose (eds.)
Influence of slurry and mineral fertiliser application technique on N\textsubscript{2}O and CH\textsubscript{4} fluxes from a barley field

Paula Perälä1, Petri Kapuinen2, Martti Esala1, Sanna Tyynelä2 and Kristiina Regina1

1MTT Agrifood Research Finland, Environmental Research, Soils and Environment, FIN- 31600 Jokioinen, Finland, 2MTT Agrifood Research Finland, Agricultural Engineering, Vakolantie 55, FIN-03400 Vihti, Finland, tel +358 / 3 4188 2412, fax + 358 / 3 4188 2437, e-mail paula.perala@mtt.fi

Nitrous oxide (N\textsubscript{2}O) and methane (CH\textsubscript{4}) are greenhouse gases influencing on global warming and destruction of ozone layer (Houghton et al., 2001; Crutzen, 1981). The application of livestock manure and mineral fertilisers is an important source of greenhouse gases in agriculture (Bouwman, 1996; Mosier et al, 1998). The emissions of N\textsubscript{2}O originate from nitrification and denitrification processes which are strongly influenced by soil temperature, moisture, pH and availability of soluble organic matter (Granli & Bøckman, 1994). Currently, there is lack of knowledge about the effect of different application techniques on fluxes from agricultural soils.

In this study, the effects of different application techniques on emissions of these gases from a barley field were compared. During a five-month period, slurry injection in combination with sowing produced the most N\textsubscript{2}O, cumulative N\textsubscript{2}O flux (\textit{SE}) being 1100 \(\pm\) 169 g N ha-1.

When slurry was injected and mineral fertiliser placed in combination with sowing, the cumulative N\textsubscript{2}O emissions were 660 \(\pm\) 70 g N ha-1. Cumulative N\textsubscript{2}O flux was 400 \(\pm\) 37 g N ha-1 from slurry incorporated one hour after band spreading followed by combined placement of mineral fertiliser and sowing. N\textsubscript{2}O emissions were the lowest (290 \(\pm\) 27 g N ha-1) when mineral fertiliser without slurry was placed in combination with sowing. The proportion of applied N lost as N\textsubscript{2}O during the five-month period was the highest (0.8\%) in the treatment where only slurry was injected, and the lowest (0.3\%), when mineral fertiliser was placed. Cumulative CH\textsubscript{4} fluxes ranged from -290 g ha-1 to 50 g ha-1 in the treatments and no significant effect of the application technique was detected. The results suggest that separate emission factors should be developed for N\textsubscript{2}O emissions resulting from different application techniques.

