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Abstract

Agricultural innovation is an essential component in the transition to more sustainable and

resilient farming systems across the world. Innovations generally emerge from collective

intelligence and action, but innovation systems are often poorly understood. This study

explores the properties of innovation systems and their contribution to increased eco-effi-

ciency in agriculture. Using aggregate data and econometric methods, the eco-efficiency of

79 countries was computed and a range of factors relating to research, extension, business

and policy was examined. Despite data limitations, the analysis produced some interesting

insights. For instance public research spending has a positive significant effect for emerging

economies, while no statistically significant effect was found for foreign aid for research.

However, foreign aid for extension is important in less developed economies. These and

other results suggest the importance of context-specific interventions rather than a “one size

fits all” approach. Overall, the analysis illustrated the potential of a macro-level diagnostic

approach for assessing the role of innovation systems for sustainability in agriculture.

1. Introduction

High-yielding crop varieties, advanced animal breeding, mechanisation, use of agrochemicals

and modern management practices have led to large increases in food production and produc-

tivity, while slowing the conversion of natural ecosystems to arable land. At the same time,

intensive agricultural production puts pressures on the environment in terms of soil degrada-

tion, depletion of aquifers, biodiversity loss, nutrient pollution and pesticide contamination

[1–3]. Ecology and productivity in food systems thus feature prominently in the Sustainable

Development Goals.

The UN Food and Agriculture Organization, in its vision for sustainable food and agricul-

ture, sets out clear principles for improving resource use efficiency, agro-ecosystems, liveli-

hoods, resilience and governance [4], placing strong emphasis on the complementarities

among the economic, social and environmental dimensions of sustainability. However, trade-

offs across these dimensions and over time are not easy to overcome. Innovative solutions are
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required to maximise synergies that raise agricultural productivity, reduce food loss, improve

the ways with which inputs are converted into outputs and conserve scarce resources [5]. “The

present paradigm of intensive crop production cannot meet the challenges of the new millen-

nium. In order to grow, agriculture must learn to save” [6]. This requires a focus on reducing

external input use and environmental impacts of agriculture. There is thus a need to go beyond

increasing technical efficiency or land, labour and total factor productivity (TFP) in agricul-

ture, focusing rather on eco-efficiency gains. TFP, as the ratio between total outputs and total

inputs, allows analysing the rate of technical change. Growth in TFP is interpreted as increased

efficiency of input use [7]. However, it does not account for environmental aspects. Eco-effi-

ciency is defined as the ratio between economic value added and a composite indicator of envi-

ronmental pressures [8]. It can thus serve as a complementary efficiency or productivity

measure, avoiding the shortfalls of TFP.

In addition to increased investments, streamlined policies and enhanced farming and natu-

ral resource management practices, a successful strategy for agricultural efficiency and produc-

tivity increases in developing countries involves strengthening agricultural innovation systems

(AIS) [9–11]. An AIS is a network of actors (organisations and individuals) together with sup-

porting institutions (formal and informal) and policies in the agricultural sector that bring

existing or new products, processes, and forms of organisation into social and economic use

[12]. Over the last 20 years, a widely recognised AIS concept has evolved [13]. Adopting an

AIS perspective for agricultural development activities is gaining traction beyond the academic

community with international agencies and fora, donors, governments, and research and

extension organisations [9–10, 14–15]. Based on a conceptual model proposed by Arnold and

Bell [16] and further refined by Spielman and Birner [17], four main domains characterise an

AIS: (1) Research and education, involving private and public research institutes, universities

and vocational training centres; (2) Business and enterprise, involving various value chain

actors, agribusiness, producers and consumers; (3) Bridging institutions, involving stakeholder

platforms, contractual arrangements and various types of rural advisory services; (4) Enabling

environment, involving governance and policies as well as behaviours, mind-sets and attitudes.

Moving towards sustainable growth in the food and agriculture sectors needs a strong evidence

base on what works and what does not [5]. However, the complex nature of the AIS concept

and innovation processes poses challenges for analytical work in terms of data availability and

methodology.

The importance of AIS for efficiency and productivity gains motivates this investigation

into whether AIS may also play an important role in strategies for increasing eco-efficiency.

From the literature, there is so far little evidence on whether and what type of AIS properties

can contribute to increased eco-efficiency. This paper addresses this gap by econometrically

estimating the influence of various AIS characteristics on eco-efficiency in agriculture for a

sample of low- and middle-income developing and transition countries.

The literature on innovation systems in agriculture largely focuses on descriptive methods

and avoids the use of formal models (e.g. [18–21]). The same applies to studies taking an inno-

vation systems perspective towards sustainability issues (e.g. [22–24]). Besides combining eco-

efficiency and AIS analysis for the first time, we also add to previous assessments in methodo-

logical terms by using an econometric model to explore the question of how innovation sys-

tems can contribute to increased eco-efficiency. For this, we adopt and extend the approach

proposed by Mekonnen et al. [11].

The next section gives an overview of the key concepts used in the analysis. Subsequently,

the data, and methods are explained (sections 3 and 4). Section 5 presents the efficiency scores

by country and shows the determinants of technical and eco-efficiency. In section 6, the
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findings are then further scrutinised and discussed in terms of their relevance for policy-mak-

ing, while also pointing out some limitations of the analysis.

2. Conceptual frame

While eco-efficiency clearly relates to sustainability, improvements in eco-efficiency do not

guarantee sustainability [25]. Pollution levels might still be beyond the carrying capacity of the

agro-ecosystems. Nevertheless, their interpretation in relative terms allows for comparison of

performance across time and space. It must also be underlined that measures used for eco-effi-

ciency analysis do not attempt to represent environmental impact of agricultural production

in a given country, but rather the environmental pressures associated with it. Following the

eco-efficiency definition provided by Kuosmanen and Kortelainen [8], a country in our study

is considered eco-efficient if it is impossible to decrease any environmental pressure without

simultaneously increasing another pressure or decreasing the economic value added.

Data Envelopment Analysis (DEA) is widely used for eco-efficiency analysis and has been

applied to assess eco-efficiency at the farm level [26–27]. It is a non-parametric approach that

uses linear programming techniques to envelop observed input–output vectors for estimating

the underlying frontier and efficiency (distance from the frontier). We use DEA in order to

obtain eco-efficiency scores for agriculture across low and middle-income countries. Subse-

quently, we analyse the relationship between innovation system properties and eco-efficiency.

While the properties are expected to have a positive effect on technical efficiency, their impact

on eco-efficiency is less clear. Therefore, this exploratory analysis aims at shedding light on the

characteristics of an AIS that can contribute to or may rather hinder a transition towards more

eco-efficient production. By computing technical efficiency scores to complement the assess-

ment of eco-efficiency, it is then possible to distinguish key differences in what drives either

type of efficiency.

More precisely, the overall approach taken in this study can be described as Latent Class

Data Envelopment Analysis (LCDEA). We enhance the standard DEA method because coun-

tries in our dataset are heterogeneous in terms of technological choice and AIS characteristics.

It cannot necessarily be assumed that all Decision-Making Units (DMUs) operate under simi-

lar technological circumstances and share a single efficiency frontier. For example, Brazil and

China tend to use more machinery, capital and fertiliser compared with countries in sub-Saha-

ran Africa, such as Rwanda and Uganda. The use of a latent class model allows us to focus on

within class differences by estimating class-specific eco-efficiency and technical efficiency

scores. Thereby countries are classified in terms of technology choice rather than geographic

location or any other a priori criteria unrelated to the analysis. Such arbitrary categorisation

has been widely criticised (e.g. [8, 26–28]) because it fails to capture adequately within and

between region differences in technology choice and use [11]. Through the LCDEA approach

groups can be created that are more homogeneous in the level and type of technology use.

Such classification is appropriate because production technologies and environmental pres-

sures are closely related. Comparing results between groups is valuable for identifying relevant

policy implications.

3. Data

The availability of comprehensive aggregate data posed a substantial challenge for this type of

cross-country analysis. A range of data sources was used to create a dataset with the necessary

information on environmental pressures, agricultural outputs and inputs, as well as AIS indi-

cators. With the gathered data 79 low- and middle-income countries and a period ranging

from 2004 to 2011 could be covered. For more recent years insufficient data was available. For
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inputs, outputs and AIS properties, we relied on data very similar to those used by Mekonnen

et al. [11]. The innovation system characteristics were complemented with additional variables,

for instance on research spending in agriculture or foreign aid for agricultural extension. The

choice of variables representing AIS characteristics was discussed with subject matter experts

and deemed adequate, considering the limited availability of data that is more agriculture-spe-

cific. Regarding environmental pressures, we required complete time-series information for

eight years, which can be meaningfully used at an aggregate level of analysis. This implies that

variables should reflect national pollution levels rather than just average values of point-spe-

cific pollution. The analysis focuses on developing countries in Africa (28), Asia (16), Eastern

Europe (16) and Latin America (19), where the need for intensification is considerable, while

agro-ecosystems are increasingly under pressure. Based on the number of countries and the

specified time range, with few missing values, we obtained a large dataset of 608 observations

for conducting the analysis.

Table 1 gives an overview of the variables used in the eco-efficiency and technical efficiency

analyses respectively. Values on emissions from agriculture were obtained from the Climate

Analysis Indicators Tool [29]. This variable serves as a proxy for the pressures of intensive agri-

cultural production with high external input levels. Environmental contamination by pesti-

cides was measured through the pesticide regulation score, which is part of the Environmental

Performance Index [30]. This score quantifies whether countries allow, restrict or ban the

‘Dirty Dozen’ Persistent Organic Pollutants (POPs) under the Stockholm Convention. Fertili-

ser use and land under irrigation were included in the eco-efficiency DEA model as proxies for

nutrient pollution and water withdrawal by agriculture. They are also part of the technical effi-

ciency analysis, along with labour, land, machinery and annual rainfall variables. For most of

the countries considered in the analysis, rainfall strongly affects harvest as production is pre-

dominantly rainfed. It is thus a key input for production. The information on productivity

enhancing inputs as well as economic value added was compiled by Fuglie [7] for TFP analysis.

This dataset, available in its most recent version from USDA [31], is primarily based on annual

time series information from FAOSTAT and, in some cases, modified or supplemented with

data from other sources (such as national statistical agencies), when they were considered to

be more accurate or up-to-date.

Table 1. Summary statistics of variables used in the efficiency analysis.

Efficiency analysis variables Mean St. Dev. Min Max

Output

Value of agricultural output (1,000 int. dollars) 17,600 57,000 47.2 5,120,000

Eco-efficiency

Total GHG emissions from agriculture (MtCO2e/ha) 323 1070 0.21 10,596

Pesticide regulation score (0 to 25) 16.93 7.2 0 24

Both eco-efficiency and technical efficiency

Fertiliser (tonnes of nutrients) 1,561 6,669 0.001 63,600

Land under irrigation (1,000 ha) 2,882 10,341 0.8 66750

Technical efficiency

Labour (1,000 people) 14,790 62,934 27 506031

Land (1,000 ha) 11,464 26,363 47 159450

Value of machinery used in agriculture

(1,000 int. dollars)

257.7 956.8 0.04 10066.3

Annual rainfall (mm) 1171 837 28 3676

Observations (#) 608

https://doi.org/10.1371/journal.pone.0214115.t001
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Table 2 summarises the information on AIS characteristics used as determinants of eco-effi-

ciency in the regression analysis. The choice of variables is motivated by the AIS concept as

specified in key reports on the topic [9, 12, 17]. Each variable is attributed to one of the four

AIS domains, capturing education and research levels, bridging institutions, business and

enterprise development and enabling environment aspects. The variables thus measure the

innovation system characteristics of the respective countries. As some variables could capture

properties of two domains, we consider them as such, representing them by the overlapping

lines in Table 2. Mekonnen et al. [11] pointed out that the AIS variables are expected to have a

positive influence on the technical efficiency of agricultural production. For instance, business

and enterprise indicators are expected to affect it through their influence on the nature and

performance of business and business innovation in the agricultural sector. The quality of

institutions and legal systems is assumed to enable innovation in agriculture. Through our

study we contend that all the positive relationships between innovation system characteristics

and technical efficiency postulated by Mekonnen et al. [11] also apply in the case of eco-

efficiency.

Data on the quality of the educational system, on R&D collaborations between university

and industry, on the ease of accessing loans, as well as on agricultural policy costs, are available

through the Global Competitiveness Report published by the World Economic Forum [32].

The variables rank countries on a scale from 1 (low/minimal) to 7 (high/intensive). The Agri-

cultural Science and Technology Indicators (ASTI) database provides information on national

agricultural research spending and workforce [33], while we rely on data collected by the

Development Assistance Committee of the Organisation of Economic Cooperation and Devel-

opment (OECD) for foreign aid statistics related to agricultural research and extension [34].

The majority of the figures characterising the properties of a country’s innovation system are

taken from the World Bank’s World Development Indicators [35]: Rate of primary school

Table 2. Summary statistics of AIS characteristics and their link to the AIS domains.

AIS

domains

Explanatory AIS variables Mean St. Dev. Min Max

Education & research Quality of the educational system (1 = low to 7 = high) 3.30 0.68 1.91 5.30

Primary school enrolment (gross) 106.00 13.51 51.00 164.50

Agricultural researchers (FTEs per 100,000 farmers) 912.1 1,007.20 35.00 7520.60

Agricultural research spending (% of agr. GDP) 0.82 0.89 0.11 7.42

Foreign aid for agricultural research (% of agr. GDP) 0.013 0.04 0.00 0.37

Scientific and technical journal articles (#) 1969 7445 1.00 74,019.00

Bridging institutions University-industry collaboration in R&D (1 = minimal to 7 = intensive) 3.10 0.64 1.60 4.98

Foreign aid for extension (% of agr. GDP) 0.02 0.05 0.00 0.45

Mobile cellular subscriptions (# per 100 people) 62.13 39.30 0.21 189.00

Business & enterprise Start-up procedures to register a business (#) 9.17 3.22 2.00 18.00

Time required to start a business (days) 37.0 29.8 2.00 153.00

Total tax rate (% of commercial profits) 51.45 39.9 14.4 292.40

Ease of accessing loans (1 = low to 7 = high) 2.80 0.66 1.38 4.65

Enabling environment Credit information index (0 = low to 8 = high) 3.35 2.10 0.00 6.00

Agricultural policy costs (1 = low to 7 = high) 3.8 0.57 2.16 5.50

Legal rights index (0 = weak to 12 = strong) 4.96 2.18 0.00 10.00

Foreign aid received (current int. US$ per capita) 52.20 57.40 0.07 672.50

Gross capital formation (% of GDP) 24.70 7.20 3.03 62.50

Health expenditures (% of GDP) 6.20 1.81 2.40 12.80

https://doi.org/10.1371/journal.pone.0214115.t002
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enrolment, the number of scientific and journal articles, mobile phone subscriptions, start-up

procedures and time to register a business, total tax rate, domestic credit to private sectors,

credit information index, legal rights index, foreign aid received, gross capital formation and

health expenditures.

4. Methodology

Herein, we present how we combined latent class analysis with DEA to examine the eco-effi-

ciency and technical efficiency scores. In developing the LCDEA model, we followed two steps

to obtain class-specific eco-efficiency and technical efficiency scores. First, we ran a latent class

model using technology choice variables to determine class membership. We then performed

a DEA to determine class-specific eco-efficiency and technical efficiency scores.

4.1 Latent class model

Consider a general production function expressed as a function of conventional agricultural

input variables (e.g., land) and environmental pressure variables (e.g., pesticide regulation

score) that influence technological choice and are thus summarized under the term “techno-

logical choice variables”:

Yit ¼
XK

k¼1

ðak þ gkxkitÞ þ εitjj ð1Þ

where Yit is the value of agricultural output for country i at time t. xkit is the vector technologi-

cal choice variables k = 1,. . .,K. The latent class model assumes that there are j distinct classes

for parameters α = α1,α2,α3. . .αK and γ = γ1,γ2,γ3. . .γK that define countries based on their

technological choice (subscript t is subsequently dropped for simplification). Class member-

ship status j of the countries is unknown a priori and depends on their technological choice.

Following Llorca et al. [36], let all the parameters associated with class j be denoted by θj. The

conditional likelihood function of country i belonging to class j is then denoted by LFij(θij).
The unconditional likelihood function is then computed as a weighted sum of the likelihood

function across the j classes, where the weights are the probabilities of class membership

πij(δj):

LFiðy; dÞ ¼
XJ

j¼1

LFijðyjÞpijðdjÞ ð2Þ

with 0 � pijðdjÞ � 1 and
PJ

j¼1
pijðdjÞ ¼ 1:

The above condition is satisfied by parameterising class probabilities as a multinomial logit

model in the following fashion:

pij dj

� �
¼

expðd0jxiÞ
PJ

j¼1
expðd0jxiÞ

ð3Þ

Where xi is the vector of technological choice variables that determine class membership

and d
0

j are the corresponding class-specific parameters to be estimated. In our setting, we used

the following variables to determine class membership: fertiliser use, arable land, land under

irrigation, rainfall, machinery, labour and pesticide regulation score. In addition to the above

inputs, we also used total emissions from agriculture, which is an outcome of technology

choice rather than a variable that affects technological choices, in the class splitting model. We

introduced this variable as a proxy for the type of technology used by countries. We assume
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that differences in these environmental pressure and conventional inputs between countries

affect their technological choice and level of eco-efficiency. Therefore, countries that possess

similar attributes in the above variables are more likely to be in the same class. The overall like-

lihood function is then derived based on Eq (2) and Eq (3) as follows:

lnLFðy; dÞ ¼
XI

i¼1

lnLFiðy; dÞ ¼
XI

i¼1

ln
XJ

j¼1

LFijðyjÞpijðdjÞ

( )

ð4Þ

The parameters of the log-likelihood function in Eq (4) can be estimated using maximum

likelihood. The posterior class membership probabilities are then computed as follows:

p jjið Þ ¼
LFijðŷ jÞpijðd̂ jÞ

PJ
j¼1
LFijðŷ jÞpijðd̂ jÞ

ð5Þ

By applying the Schwarz Bayesian Information Criterion (SBIC), we can determine the

optimal class size. Once the number of classes are determined, posterior probabilities from Eq

(5) can be used to assign each country to their respective class based on their highest posterior

probability.

4.2 DEA for determining eco-efficiency and technical efficiency

After determining the number of latent classes, we used DEA to estimate class-specific

eco-efficiency and technical efficiency scores. We employed DEA and not a stochastic

frontier production approach as it allows multiple inputs–outputs relationships without

any assumption on the underlying functional relationship linking inputs, environmental

pressures and outputs [8, 26]. Following Kuosmanen and Kortelainen [8] and Picazo-

Tadeo et al. [26], we assume that a given country i produces a total output, which is cap-

tured as the value of agricultural output Yi, using inputs that may have a detrimental effect

on the environment denoted by Dn (n = 1,2,3,. . .. . .N). Given our definition of eco-effi-

ciency (EF) as the ratio of economic value added to environmental damage, it is formal-

ised as follows:

EFi ¼
Yi

f ðDi1; . . . ;DiNÞ
ð6Þ

Where f(.) is the damage function that aggregates individual N environmental pressures

into a single environmental damage score [8]. As pointed out by Kuosmanen and Kortelainen

[8] and Picazo-Tadeo et al. [26], constructing the composite environmental pressure score that

aggregates individual environmental pressures is not straightforward, as it requires a weighting

mechanism that takes into account the relative importance of the different environmental

pressures. There are many approaches to calculating weights. These include assigning the

same weight to each individual environmental pressure variable or assuming any arbitrary lin-

ear combination of the environmental pressure variables: f ðDi1; . . . ;DiNÞ ¼
PN

n¼1
onDin,

where ωi is a vector of weights. A natural way of assigning weights in the latter case would be

to use Principal Component Analysis (PCA). However, PCA relies on orthogonal transforma-

tions of the environmental pressure variables. DEA overcomes the problem of choosing

weights for the linear combination without requiring an arbitrary combination. It maximizes

the relative eco-efficiency score of a given DMU compared with the other DMUs (in our case

it maximizes the relative eco-efficiency score compared to the class specific scores) by account-

ing for all environmental pressure variables. Formally, the DEA eco-efficiency score can be
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calculated as

MaximizeoniEFi ¼
Yi

PN
n¼1
oinDin

ð7Þ

s. t.

Yi
PN

n¼1
oinDin

� 1 and oin � 0 ð8Þ

Following Picazo-Tadeo et al. [26], the dual formation of the above maximization problem

can be formalized as follows:

Minimizeti;φi0 EFi0 ¼ φi0 ð9Þ

s. t.

Yi0 �
PI

i¼1
tiYi and φi0Dni0 �

PI
i¼1
tiDin and ti � 0 ð10Þ

In the above dual formalization, the strictly non-negative (τi) denotes the weighting of each

country in the composition of the eco-efficient frontier. φ�i0 (which is the optimal solution of

the above minimization problem) denotes country specific eco-efficient scores. A higher eco-

efficiency score suggests that reducing environmental pressures is more difficult without

reducing output.

DEA takes into account heterogeneities within the observed sample and uses the best per-

forming unit as a benchmark to which other units in the sample are compared. Therefore, the

eco-efficiency and technical efficiency scores of countries as obtained from DEA are measured

relative to the “best practice” in the sample, which is not necessarily the same as the “best avail-

able” technology [11]. It is also important to note that the analysis is based on a latent class

model, so eco-efficiency and technical efficiency scores of countries are class specific and cal-

culated relative to the best practice in the class to which the sample unit belongs. Under this

circumstance, eco-efficiency and technical efficiency scores cannot be directly compared

between classes. Once the class-specific eco-efficiency and technical efficiency scores were cal-

culated, we analysed the determinants of efficiency (both eco-efficiency and technical-effi-

ciency) using the bootstrapped truncated regression approach. This approach proposed by

Simar and Wilson [37] is superior to traditional approaches (Tobit and OLS). Simar and Wil-

son [37] showed that regressing DEA efficiency scores on socio-economic characteristics

using a Tobit model has several limitations: These include the fact that DEA efficiency scores

are bounded between zero and one but not within the context of a censoring data generating

process. In addition, efficiency estimates from DEA are also serially correlated, leading to

invalid inference [37]. We therefore employed bootstrapped truncated regression to examine

the determinants of both eco-efficiency and technical-efficiency.

5. Results

In this section, we first explain the efficiency scores computed for each country and then pres-

ent the determinants of eco-efficiency and technical efficiency.

5.1 Class specific eco-efficiency scores

We provide eco-efficiency scores calculated using the class splitting model. Based on the SBIC

we identified the optimal number of latent classes for estimating efficiency scores, which

resulted in a two-class model for our specification. Fig 1 reports the distribution of eco-
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efficiency scores for the two classes. A country will be considered as eco-efficient if the DEA

eco-efficiency score is one. If the score is less than one, then it will imply inefficiency suggest-

ing a reduction in environmental pressure variables is feasible without reducing agricultural

output. The distribution of the class-specific eco-efficiency scores suggest a clear difference

between countries in terms of eco-efficiency. In terms of the composition of countries, a dis-

tinct grouping was established. Class one predominantly consists of emerging economies with

a generally more commercial agricultural sector. For instance, Brazil, China, India and South

Africa are members of class one. The average eco-efficiency score of countries in this class

(being 0.41) is low and remained constant between 2004 and 2011. Class two is composed

mostly of developing countries, but also includes several smaller emerging economies. While

the trend is similar for class two countries, the average eco-efficiency scores remained at a

higher level (being 0.59). Despite differences, the results suggest for both classes that most

countries can reduce environmental pressures without reducing the value of agricultural out-

put. Note that eco-efficiency scores are class specific and not comparable across classes. On

average, the most eco-efficient country in class one is Rwanda, but also China and Brazil are

performing relatively well. Indonesia turned out to be the most eco-efficient country in class

two, followed by Costa Rica and Argentina. When comparing the most and least eco-efficient

countries in terms of environmental pressures and use of conventional inputs, the result sug-

gests that less eco-efficient countries have a lower pesticide regulation score, use more fertiliser

and have higher emission levels.

5.2 Determinants of eco-efficiency

Table 3 shows the results of regressing AIS properties on eco-efficiency for both classes. The

coefficient for scientific publishing, as a bridge between research and other domains, is positive

and significant across classes. Similar trends can be observed for the quality of the educational

system, and the legal right index. Overall, the results suggest that improving scientific output,

education and legal rights plays an important role for eco-efficiency strategies. However, for

primary school enrolment, the effect is only positive for class one countries, while it is negative

Fig 1. The distribution of class-specific eco-efficiency scores.

https://doi.org/10.1371/journal.pone.0214115.g001
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Table 3. Determinants of eco-efficiency.

Class 1 Class 2

Coef. Coef.

Quality of the educational system (1 = low to 7 = high) 0.114��� 0.185���

(0.018) (0.022)

Primary school enrolment (% gross) 0.002�� -0.002��

(0.001) (0.001)

Agricultural researchers (FTEs per 100,000 farmers) -0.001��� -0.001�

(0.000) (0.000)

Agricultural research spending (% of agr. GDP) 0.034��� -0.064���

(0.011) (0.021)

Foreign aid for agricultural research (% of agr. GDP) -0.005 -0.416

(0.282) (0.303)

Scientific and technical journal articles (#) 0.053��� 0.025���

(0.007) (0.008)

University-industry collaboration in R&D -0.089��� -0.104���

(1 = minimal to 7 = intensive) (0.024) (0.024)

Foreign aid for extension (% of agr. GDP) 0.545 1.481���

(0.366) (0.448)

Mobile cellular subscriptions (# per 100 people) -0.000 -0.000

(0.000) (0.000)

Start-up procedures to register a business (#) 0.005 0.001

(0.004) (0.005)

Time required to start a business (days) -0.000 0.001

(0.000) (0.000)

Total tax rate (% of commercial profits) -0.000� -0.001

(0.000) (0.001)

Ease of accessing loans (1 = low to 7 = high) -0.065��� -0.087���

(0.020) (0.019)

Credit information index (0 = low to 8 = high) 0.007 0.025���

(0.006) (0.006)

Agricultural policy costs (1 = low to 7 = high) 0.008 0.060��

(0.020) (0.023)

Legal rights index (0 = weak to 12 = strong) 0.012� 0.018���

(0.006) (0.006)

Foreign aid received (current int. US$ per capita) 0.000 -0.000

(0.000) (0.000)

Gross capital formation (% of GDP) 0.001 -0.002

(0.001) (0.002)

Health expenditure (% of GDP) -0.017��� 0.024���

(0.006) (0.008)

Number of bootstr. Reps 100 100

Wald chi2(27) 560.6 ��� 371.5 ���

Prob > Chi2(27) 0.0000 0.0000

N 245 363

Bootstrapped standard errors are reported in parenthesis.

���, �� and � refers to significant at 1%, 5% and 10% respectively. Time dummies are included but not reported here

https://doi.org/10.1371/journal.pone.0214115.t003
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for class two countries. Albeit the magnitude of this effect is small. The negative result in class

two countries is likely due to the fact that a high ratio for this indicator in developing countries

reflects a substantial number of overage children enrolled rather than a successful education

system. Also for other AIS properties we found clear heterogeneous effects. For example, fur-

ther sign reversal effects can be observed for agricultural research spending. The sign here is

negative in case of class 2, while its effect is positive for class 1 countries. This can be an indica-

tion of research investments in developing countries involving limited compliance with envi-

ronmental safeguard standards. Finally, health expenditures show a heterogeneous effect as

well. We presume that greater spending for health care in order to compensate for higher pol-

lution levels is associated with more intensive commercial agriculture and thus lower eco-effi-

ciency in emerging economies. This is not the case for class 2 countries, where higher

expenditures for health appear to be linked with greater eco-efficiency. One possible explana-

tion is that agricultural activities are relatively more labour intensive in this class, so health

care spending can improve the supply of farm labour, which is then available for soil conserva-

tion or integrated pest management. Furthermore, foreign aid for extension, agricultural pol-

icy costs and credit information index were positive and significant for countries in class two

only.

The variables defined as ease of accessing loans, number of agricultural researchers and uni-

versity-research collaboration in R&D were associated negatively with eco-efficiency for both

classes. Easy access to loans can create incentives for intensification investments that prioritise

productivity gains over environmental concerns. The same prioritisation might be made by

agricultural researchers. The effect of university-industry collaboration in R&D suggests that

currently innovations resulting from such collaborations are not geared towards eco-effi-

ciency. As reported in Table 4, this variable has a statistically significant positive effect on tech-

nical efficiency scores in class 2. Future collaboration in R&D, e.g. in the area of climate smart

agriculture, will therefore matter for improving the eco-efficiency of countries, while main-

taining higher levels of technical efficiency.

5.3 Determinants of technical efficiency

Since the magnitude of technical efficiency does not have much policy implication by itself, we

present and examine the main determinants of technical efficiency. As explained in the intro-

duction, the focus of this paper is not on technical efficiency. Nonetheless, we report technical

efficiency regression results to explore differences in the magnitude and direction of expected

effects of AIS characteristics on technical and eco-efficiency scores. Certain variables that may

improve technical efficiency may not necessarily improve eco-efficiency.

The average technical efficiency score for both classes is about 0.92. Despite significant dif-

ferences in eco-efficiency scores between the two classes, we did not find any variation in the

level of technical efficiencies. This indicates that high technical efficiency scores are not neces-

sarily accompanied by higher eco-efficiency scores. Understanding the expected effects of AIS

variables on technical and eco-efficiency respectively will be useful when considering policy

objectives. Class-specific technical efficiency scores are not reported here due to space limita-

tion but the distribution of these values is presented in the appendix.

Regarding the respective determinants of technical and eco-efficiency, similarities and dif-

ferences emerge. The results in Table 4 demonstrate that the quality of the educational system,

university-industry collaboration in R&D, number of start-up procedures, credit information

index and total tax rate are associated with technical efficiency. The variable representing agri-

cultural research spending was positively associated with eco-efficiency, while its effect on

technical efficiency was insignificant. Foreign aid for extension appears to be of relevance for
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Table 4. Determinants of technical efficiency.

Class 1 Class 2

Coef. Coef.

Quality of the educational system (1 = low to 7 = high) 0.008 0.017��

(0.008) (0.007)

Primary school enrolment (% gross) 0.000 -0.001��

(0.000) (0.000)

Agricultural researchers (FTEs per 100,000 farmers) -0.000 0.000

(0.000) (0.000)

Agricultural research spending (% of agr. GDP) 0.002 -0.003

(0.004) (0.007)

Foreign aid for agricultural research (% of agr. GDP) 0.052 0.010

(0.103) (0.115)

Scientific and technical journal articles (#) 0.008�� -0.001

(0.003) (0.003)

University-industry collaboration in R&D 0.007 0.027���

(1 = minimal to 7 = intensive) (0.009) (0.008)

Foreign aid for extension (% of agr. GDP) 0.137 0.237�

(0.120) (0.136)

Mobile cellular subscriptions (# per 100 people) 0.000� -0.000�

(0.000) (0.000)

Start-up procedures to register a business (#) 0.004�� 0.004��

(0.002) (0.002)

Time required to start a business (days) -0.000 -0.000

(0.000) (0.000)

Total tax rate (% of commercial profits) 0.000�� 0.000

(0.000) (0.000)

Ease of accessing loans (1 = low to 7 = high) 0.013� 0.000

(0.007) (0.007)

Credit information index (0 = low to 8 = high) -0.004 0.008���

(0.003) (0.002)

Agricultural policy costs (1 = low to 7 = high) 0.002 -0.018��

(0.007) (0.008)

Legal rights index (0 = weak to 12 = strong) 0.004 -0.003

(0.003) (0.002)

Foreign aid received (current int. US$ per capita) -0.000 -0.000

(0.000) (0.000)

Gross capital formation (% of GDP) -0.001�� 0.001�

(0.001) (0.001)

Health expenditure (% of GDP) 0.000 -0.001

(0.002) (0.002)

Number of bootstr. reps 100 100

Wald chi2(27) 148.6��� 73���

Prob > Chi2(27) 0.0000 0.0000

N 245 363

Bootstrapped standard errors are reported in parenthesis.

���, �� and � refers to significant at 1%, 5% and 10% respectively.

Time dummies are included but not reported here

https://doi.org/10.1371/journal.pone.0214115.t004
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both types of efficiency for countries in class two. However, university-industry collaborations

and the number of start-up procedures are positively associated with technical efficiency, but

not with eco-efficiency.

6. Discussion and conclusions

To date cross-country studies on R&D and AIS have focused on investigating effects on agri-

cultural productivity and technical efficiency. However, little evidence exists on which innova-

tion system properties can support a country’s process of sustainable intensification through

enhancing eco-efficiency. In the light of the Sustainable Development Goals and the multiple

challenges of hunger eradication, poverty reduction, better nutrition and healthier ecosystems,

metrics for better understanding policy-relevant issues related to agriculture and the environ-

ment need to be explored more widely and deeply. Eco-efficiency can capture potential trade-

offs as well as synergies. It not only takes into account relations between the economic and

environmental dimensions, but also the risk of shifting environmental impacts from one area

to another. This safeguards against reaching potentially false conclusions when using single

metrics, such as carbon footprint or pesticide contamination scores [38]. Neither could a com-

posite one-dimensional sustainable agriculture index capture trade-offs.

Eco-efficiency analysis can offer clues on management and decision-making parameters,

especially by identifying drivers in a given context, as shown in this study. Research, extension,

business and policy-making are key factors in the intensification and commercialisation of

farming systems around the world and their role needs to be better understood. Contrary to

the great majority of AIS studies, analysing case-specific innovation processes [19, 24], this

study uses aggregate data and econometric methods to explore the extent to which innovation

system properties relate to eco-efficiency. Data availability poses a challenge though and little

evidence from the literature exists for corroborating results found here. Therefore, at this

stage, our enquiry remains exploratory rather than allowing for reliable predictions of what

system properties determine eco-efficiency in agriculture.

Besides limited availability of time-series data on environmental pressures, the representa-

tion of AIS properties constitutes an important constraint in the present analysis. Due to a lack

of more specific data at such an aggregate level of analysis on aspects related to e.g. quality of

agricultural education and training, public spending on extension services, responsiveness of

research to needs of producers or costs of certification procedures in agriculture, many of the

variables in the analysis are broad and rather serve as proxies. With efforts to collect more

detailed data for the sector through the Enabling the Business of Agriculture indicators [39],

the precision in capturing some important elements of a country’s AIS will improve, in partic-

ular with regard to the business and enterprise domain. However, there is a need to fill data

gaps related to research, education and extension, in particular with regard to depicting AIS

qualities. The ASTI database records numbers of researchers and public spending on research

in agriculture, but falls short of providing any indicators on the relevance and demand-orien-

tation of agricultural research [33]. A lack of structured country data is particularly apparent

for extension and other institutional arrangements that fulfil the bridging function between

education and research actors on the one side and value chains actors on the other.

Despite limitations arising from the nature of the data used, the analysis leads to important

insights. Eco-efficiency scores among the countries considered in this study are relatively low for

both classes, while technical efficiency scores are generally high. This suggests that eco-efficiency

could be improved for many countries under current conditions. Through the right organisa-

tional, institutional, social and financial combinations, existing innovations can be brought into

greater use. The AIS indicators explored in this study represent potential parameters to boost
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innovation processes in support of eco-efficiency. Involving key national and international

stakeholders and mainstreaming eco-efficiency criteria within existing development strategies

will accelerate the transformation towards more sustainable and resilient rural societies.

While there is little congruence in terms of the influence of factors introduced in the study

of Mekonnen et al. [11] and that of the eco-efficiency determinants, few variables have a simi-

lar effect, such as the quality of the educational system and legal right index. Critically, foreign

aid for extension can boost both efficiency types, at least for countries in class two. Investing in

education and extension services could thus contribute to improving technical efficiency as

well as eco-efficiency. On the contrary, collaboration between universities and industry in

R&D, had a positive effect on technical efficiency, but a negative effect on eco-efficiency. Possi-

bilities to adjust modalities of collaboration might need to be considered in such instances.

This study underscores that cross-country comparison of eco-efficiency needs to take into

account variation among countries. With the aim of providing consistent estimates of eco-effi-

ciency scores, the study employed a latent-class rather than a conventional DEA model for

eco-efficiency analysis. Important heterogeneities in terms of technological choice and AIS

characteristics were thus considered when estimating class-specific eco-efficiency scores.

Emerging economies, including China, India and Brazil, tend to operate at a different techno-

logical frontier than developing country economies, such as Kenya, Uganda and Ethiopia.

With exceptions, emerging economies were attributed to class one, while class two predomi-

nantly covers developing country economies. These two groups are also fundamentally differ-

ent in terms of the use of key conventional and environmental pressure variables. As expected,

countries in class one (emerging economies) have higher GDP and agricultural output levels.

Similarly, the intensity of input use (both conventional and environmental pressure variables)

is quite high in these economies compared to countries in class two.

Similarities and differences among classes in terms of the direction and magnitude of the

drivers of eco-efficiency are of interest. The quality of the educational system, scientific pub-

lishing and the legal right index are positively associated with eco-efficiency levels regardless

of class allocation and thus the technological frontier at which countries operate. Similarly,

current university-research collaboration in R&D, number of agricultural researchers and ease

of accessing loans are negatively associated with eco-efficiency levels regardless of class alloca-

tion and thus the technological frontier at which countries operate. However, foreign aid for

extension, agricultural policy costs, credit information and spending on health improvements

appear to only enhance the eco-efficiency of the countries in class two. According to the

results, these countries would benefit more from investments in extension, while countries

in class one can boost their eco-efficiency by investing in agricultural research. In general,

the results suggest the need for context-specific interventions instead of a “one size fits all
“approach. While this article illustrates the potential of a macro-level diagnostic approach to

assessing the role of innovation systems for sustainability in agriculture, it also demonstrates

that care is needed when interpreting results. The evidence generated by this type of analysis

can provide potential pointers to policy and investment gaps and opportunities, but inferences

should be corroborated with concrete case study data in order to draw sound conclusions.
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