XIII CONGRESO SEAE
Sociedad Española de Agricultura Ecológica/Agroecología

Sistemas alimentarios agroecológicos y cambio climático

14-17 NOVIEMBRE 2018 LOGROÑO (LA RIOJA)
RiojaForum - C/ San Millán, 23 - 25
Más Info: www.agroecologia.net

Organiza: Con el apoyo de:

Colaboran:
Título de la publicación:
Actas del XIII Congreso de SEAE:
“SISTEMAS ALIMENTARIOS AGROECOLÓGICOS Y CAMBIO CLIMÁTICO”
14 - 17 noviembre 2018 - Logroño (La Rioja)

Edita:
Sociedad Española de Agricultura Ecológica / Sociedad Española de Agroecología (SEAE)
Camí del Port s/n. Km 1 Edif. ECA Apdo 397
46470 Catarroja (Valencia)
Tel/ Fax. 96 126 71 22
Página web: www.agroecologia.net. E-mail: seae@agroecologia.net

Compilación y revisión:
H Cifre (SEAE), B Iglesias (SEAE), JL Moreno (SEAE)

Maquetado:
F Maixent (SEAE)

ISBN: 978-84-946563-8-5

Reconocimiento – NoComercial – CompartirIgual (by-nc-sa):
No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.
ÍNDICE

INTRODUCCIÓN ... 14

OBJETIVOS .. 14

SEMINARIO: .. 15

¿AMPLIAR LA ESCALA DE LA AGROECOLOGÍA? ... 15

INTRODUCCIÓN ... 16

OBJETIVOS DEL SEMINARIO .. 16

• ¿QUÉ SALTOS DE ESCALA NECESITAMOS? .. 17
 Calle Collado A

• ESCALONAR LA AGROECOLOGÍA: ESTRATEGIAS DE DESARROLLO TERRITORIAL 18
 Levidow L, Sansolo D, Schiavinatto M

• AMPLIAR LA ESCALA DE LOS VALORES AGROECOLÓGICOS ... 19
 Galindo Martínez P

• AMPLIAR LA ESCALA DE LA AGROECOLOGÍA, EL DESAFÍO DE LOS JOVENES 20
 Pino C

• AGROECOLOGÍA Y SU ESCALONAMIENTO .. 21
 Salgado MN

• IFOAM-ABM: AGROECOLOGY SCALING-UP APPROACHES ... 22
 Lušić D

CONFERENCIAS .. 23

C1. AGRICULTURA Y CAMBIO CLIMÁTICO ... 24
 Sanz MJ

C2. AGROECOLOGICAL BASES FOR FOOD SYSTEMS .. 25
 Paoletti F

C3. AGROECOLOGÍA EN EL MUNDO ... 26
 Angulo A, Basterrechea T

C4. INVESTIGACIÓN TRANSDISCIPLINAR Y PARTICIPATIVA PARA LA BIODIVERSIDAD CULTIVADA 27
 Chable V

C5. AGROECOLOGÍA Y PRODUCCIÓN ECOLÓGICA: ¿CUÁL ES LA DIFERENCIA? 28
 Vara Sánchez I

C6. ADAPTACIÓN DE LA VITICULTURA ECOLÓGICA AL CC... 29
 Bartrá E

C7. NECESIDADES DE INVESTIGACIÓN EN AGRICULTURA ECOLÓGICA .. 30
 de Porras M

C8. AGRICULTURA ECOLÓGICA Y CALIDAD VITIVINÍCOLA .. 31
 Raigón MD
<table>
<thead>
<tr>
<th>C9. ¿SOSTENIBILIDAD, TRANSICIÓN O DECRECIMIENTO?: EL PAPEL DE LA AGROECOLOGÍA Y DEL ECOFEMINISMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costanzo Talarico MG</td>
</tr>
<tr>
<td>PANELES</td>
</tr>
</tbody>
</table>

P1. RELOCALIZACIÓN DEL CONSUMO Y LA PRODUCCIÓN DESDE LA ECONOMÍA SOCIAL | 34 |
- LA RELOCALIZACIÓN VA A SUCEDER, LO QUE ESTÁ EN DISPUTA ES CÓMO | 34 |
 - González Reyes L |
- AUMENTO DE ESCALA DEL CONSUMO RESPONSABLE AGROECOLÓGICO | 35 |
 - Morán A |
- OTRA FORMA DE ALIMENTARSE ES POSIBLE | 36 |
 - Cifre H, Navalón F |
- FACPE, RED DE PRODUCCIÓN Y CONSUMO ECOLÓGICO Y DE CERCANÍA | 37 |
 - Haro Pérez I |
- CONDENAS VS PROPUESTA | 38 |
 - Sánchez Agirregomezkorta D |

P2. AGROECOLOGÍA, SALUD Y ECOFEMINISMO | 39 |
- ECOFEMINISMO Y ALIMENTACIÓN RESPONSABLE AGROECOLÓGICA | 39 |
 - Golindo Martínez P |
- RURALIDADES DIVERSES, AGROECOLOGÍA Y SOSTENIBILIDAD: UNA MIRADA DE GÉNERO | 40 |
 - Cruz F |
- REFLEXIONES SOBRE AGROECOLOGÍAS Y FEMINISMOS | 41 |
 - García Roces L, Soler Montiel M |
- SALUD DE LA MUJER Y DISRUPTORES ENDOCRINOS | 42 |
 - Ruipérez González V |

P3. LA PROPUESTA DE PAC DE LA COMISIÓN | 43 |
- LA PAC POST 2021: LA PROPUESTA DE LA COMISIÓN EUROPEA | 43 |
 - Ramón R, Mugica M |
- PERSPECTIVAS PARA EL DESARROLLO DE LA AGRICULTURA ECOLÓGICA EN LA NUEVA REFORMA DE LA PAC | 44 |
 - de la Vega N |
- POR OTRA PAC | 45 |
 - Peiteado Morales C |
- LA REFORMA DE LA PAC | 46 |
 - Fontevedra Carreira E |
- POR UNA PAC DESDE LA AGROECOLOGÍA | 47 |
 - Calafat A |
- REIVINDICACIONES DE GÉNERO EN LA “NUEVA” PAC | 48 |
 - Diez González M |

P4. AGROECOLOGÍA, REGADÍOS Y NUEVA CULTURA DEL AGUA | 49 |
- NUEVA CULTURA DEL AGUA FRENTE AL CAMBIO CLIMÁTICO | 49 |
 - Arrojo P |
- NUEVA CULTURA DEL AGUA | 50 |
 - Hernández-Mora N |
- RÍOS HORMONADOS | 51 |
 - Hernández LA |
- SEGURO TRANSPARENTE: RESUENA LA VOZ HISTÓRICA DEL RÍO SEGURO | 52 |
 - Llorente N |
P5. IMPORTANCIA DE LA BIODIVERSIDAD EN AGROECOLOGÍA ... 53
• EXPERIENCIA DE LA BIOREDIBERAMÉRICA PARA LA “REPERCUERACIÓN DE SEMILLAS LOCALES Y SU ENTORNO CULTURAL EN COMUNIDADES RURALES DE IBERAMÉRICA” ... 53 del Cura Delgado F
• CARACTERIZACIÓN DE LOS BANCOS DE SEMILLAS COMUNITARIOS EN EL ESTADO ESPAÑOL 54 Carrascosa-García M, Koller B, Soriano Niebla JJ, López González P, González Muñoz M
• PERSPECTIVA CIENTÍFICA ... 55 Rodríguez-Burruezo A
• COCINA TRADICIONAL DEL PUEBLO MAPUCHE EN CHILE ... 56 Lepín Z

P6. ECONOMÍA CIRCULAR AGROECOLÓGICA EN EL MEDIO RURAL .. 57
• SUBBÉTICA ECOLÓGICA ... 57 Amián Novales I
• EL DESPEGUE DEL AGROCOMPOSTEJE EN ESPAÑA. PRINCIPALES PROYECTOS DE REFERENCIA Y RETOS 58 Ullóbera F
• MUJER AUTOSUFICIENTE Y GANADERA ECOLÓGICA: EXPERIENCIA INNOVADORA EN LA MONTAÑA DE NAVARRA ... 59 Sánchez M

P7. RETOS DE LA DISTRIBUCIÓN DE PRODUCTOS ECOLÓGICOS .. 60
• RETOS DE LA DISTRIBUCIÓN DE PRODUCTOS ECOLÓGICOS ... 60 Roig D
• DISTRIBUCIÓN TRANSPARENTE PARTICIPATIVA ... 61 Guzmán Ojeda A
• LA FERIA BIOCULTURA, MÁS DE 30 AÑOS SIENDO EL ESCAPARATE DEL SECTOR EN ESPAÑA 62 Escutía M
• LA DEMOCRATIZACIÓN DEL CONSUMO ECOLÓGICO. COMERCIALIZACIÓN Y DISTRIBUCIÓN ... 63 Morales E
• ECOLÓGICO, CERTIFICADO, CALIDAD Y SERVICIO ... 64 Abad Sáez J
• RETOS DE LA DISTRIBUCIÓN DE PRODUCTOS ECOLÓGICOS: ¿HABRÁ ESPACIO PARA TODOS? 65 Torrente L

P8. INTEGRACIÓN DE LA GANADERÍA ECOLÓGICA EN LOS SISTEMAS AGRARIOS ... 66
• INTEGRACIÓN DE LA GANADERÍA ECOLÓGICA EN LOS SISTEMAS AGRARIOS ... 66 Díaz-Gaona C
• FORTALEZAS Y OPORTUNIDADES DE UNA RAZA “LA LOJEÑA” ... 67 Moreno Cobo JA
• LA TRASHUMANCIA COMO MODELO DE GANADERÍA RESILIENTE DE ALTO VALOR ECOLÓGICO 68 López Santiago CA
• LA INNOVACIÓN SOCIAL EN LA INTEGRACIÓN DE LA GANADERÍA AGROECOLÓGICA EN ZONAS RURALES MARGINALES ... 69 López-Marco L
• LA GANADERÍA ECOLÓGICA DE VACUNO DE CARNE EN ASTURIAS ... 70 Nuño Palacio C
• IMPORTANCIA DE LAS RAZAS AUTÓCTONAS ... 71 Cordero Morales R
COMUNICACIONES.. 72

1. POLÍTICAS, PLANES ESTRATÉGICOS, DESARROLLO RURAL Y CAMBIO CLIMÁTICO.............................. 73

• AUTOGESTIÓN Y SOSTENIBILIDAD DE LAS UNIDADES PRODUCTIVAS EN TERRITORIOS INDÍGENAS DEL VALLE LA ESTRELLA, CON MIRAS A LA CONSOLIDACIÓN DE UN SISTEMA DE PRODUCCIÓN BASADO EN UNA COSMOVISIÓN INDÍGENA E INTERCAMBIO DE SABERES ANCESTRALES ... 73
Aguirre Rosales D, Méndez Cartín L, Montero Herrera S, Sánchez Toruño H

• LA AGROECOLOGÍA: ¿SOLUCIÓN PARA FOMENTAR LA INCORPORACIÓN DE LA MUJER AL MEDIO RURAL? 80
Campés R, González V, Uceda A

• AGROECOSISTEMAS TRADICIONALES RESILIENTES. BASE FUNDAMENTAL DE LA SEGURIDAD Y SOBERANÍA ALIMENTARIA EN LA ZONAMEDIA DEL SAN JUAN CHOCÓ COLOMBIA ... 84
Barrios Arango J

• EVALUACIÓN DE LA REDUCCIÓN DE EMISIONES DE CO2 EN LA TRANSICIÓN AGROECOLÓGICA DE COMEDORES ESCOLARES. EL CASO DE LAS ESCUELAS INFANTILES MUNICIPALES DE MADRID .. 91
Díaz-Carro M, Simón Rojo M

• CARENCIAS EN LA INVESTIGACIÓN SOBRE EMISIONES DE GEI EN LA AGRICULTURA Y GANADERÍA MEDITERRÁNEAS: UN ANÁLISIS BIBLIOMÉTRICO CENTRADO EN EL MANEJO ECOLÓGICO .. 98
Aguilera E, Díaz-Gaona C, Reyes-Palomino C, Laureano RG, Sánchez-Rodríguez M, Sanz-Cobeña A, Rodríguez-Estévez V

• REVISIÓN DE ESTRATEGIAS AGROECOLÓGICAS DE ADAPTACIÓN AL CAMBIO CLIMÁTICO EN LA PRODUCCIÓN GANADERA MEDITERRÁNEA ... 109
Reyes-Palomino C, Aguilera E, Díaz-Gaona C, Sánchez-Rodríguez M, Rodríguez-Estévez V

• SIERRA OESTE AGROECOLÓGICA: CONSTRUYENDO COMARCA DESDE LO LOCAL .. 122
Dorrego Carlón A, Hernández-Jiménez V, del Valle J

CARTELES/PÓSTERES RELACIONADOS .. 129

• PROCESO DE CONSTRUCCIÓN DE LA FINCA INTEGRAL DE LOS ÁNGELES CABÉCAR-COSTA RICA, COMO MECANISMO DE RESILIENCIA AL CAMBIO CLIMÁTICO .. 129
Méndez Cartín L, Aguirre Rosales D, Montero Herrera S, Sánchez Toruño H

• ASPECTOS SOCIOAMBIENTALES DE LAS REDES ALIMENTARIAS ALTERNATIVAS: ANÁLISIS DE CASO EN LA CIUDAD DE ZARAGOZA... 130
Cerrada O

• CULTIVANDO FUTURO: PLANTAS MULTIFUNCIONALES POR EL CLIMA ... 131
Jiménez-Gómez A, Vela-Campoy M

• HIERTAS SOCIALES EN MÁLAGA: ESTRATEGIAS DE RESILIENCIA MÁS ALLÁ DE LO URBANO 132
Jiménez-Gómez A, Vela-Campoy M

• PROTOCOLO DE EVOLUCIÓN DEL MANEJO DEL COMPONENTE FORESTAL EN SISTEMAS AGROFORESTALES CON PAGO DE SERVICIOS AMBIENTALES .. 133
Guesada J

• AGROECOLOGY: A PARADIGM SHIFT IN AGRARIAN SCIENCES TO TRANSFORM RURAL REALITIES AND AGROFOOD SYSTEMS ... 134
Alcántara FA

• DIAGNÓSTICO DEL POTENCIAL PRODUCTIVO AGRARIO EN EL TÉRMINO MUNICIPAL DE CÓRDOBA EN EL MARCO DEL PROCESO (MÁS ALLÁ DEL) PACTO DE MILÁN-ALIMENTANDO CÓRDOBA (AC) ... 144
González Muñoz M, Vara Sánchez I, Gallar Hernández D

• CUMPLIMIENTO DE ODS CON UN MODELO DE AGROECOLOGÍA EN EL CENTRO KULBAALIB XE’CHULUB, NEBAJ (GUATEMALA) ... 145
Fernández-Roca Baquero MP, Raigón MD
2. PRODUCCIÓN VEGETAL, VITIVINICULTURA Y SANIDAD VEGETAL

• IMPACTO DE LA IMPLEMENTACIÓN DE CUBIERTAS VEGETALES: EFECTO EN LOS INSECTOS DEPREDADORES DE PLAGAS DE LA VID
 Vicente-Díez I, Sáenz-Romo MG, Vea-Bernal A, Carvajal-Montoya LD, Ibáñez-Pascual S, Martínez-García H, Martínez-Villar E, Pérez-Moreno I, Marco-Mancebón V S

• CUBIERTA VEGETAL: UNA HERRAMIENTA INDISPENSABLE PARA EL MANTENIMIENTO DEL SUELO EN VIÑEDO ECOLÓGICO
 Ibáñez Pascual S

• EMPLEO DE VINAZAS DE REMOLACHA PARA EL CONTROL DE NEMATODOS EN UNA ROTACIÓN TOMATE RESISTENTE-PEPINO
 Bello A, Diez MA, López JA, Torres JM

• CONTRIBUCIÓN A LA MEJORA DE LA BIODIVERSIDAD EN VITICULTURA ECOLÓGICA EN LA D.O. PENEDÈS
 Chamorro I, Fernández S, Bartra E

• RESPUESTA A LA INFECCIÓN POR CARBÓN VESTIDO (TILLETIA CARIIES) DE UNA COLECCIÓN DE VARIEDADES LOCALES DE TRIGO BLANDO (TRITICUM AESTIVUM) DEL PAÍS VASCO Y ESTRATEGIA DE CONTROL
 Ruiz de Arcaute Rivero R, Ortiz Barredo A

• EXPERIENCIAS EN INCORPORACIÓN DE ESPECIES NATIVAS DE CULTIVO DE COBERTURA Y FLORA AUXILIAR EN VIÑEDOS ORGÁNICOS DE CHILE CENTRAL
 Pino C, Barbosa O, Larraín J, Torres C, Salazar A, Carter M, Moreno N

• OÍDIO (LEVILLULA TAUERICA (LÉV.) ARNÉ), ENFERMEDAD EMErgENTE POTENCIALMENTE DAñINA EN PIMIENTO ECOLÓGICO
 Morales-Manzo II, Fita AM, San Bautista A, Rodríguez-Burruezo A

• CONtributes A LA MEJOrA DE LA BIODIVERsIDAD EN VITICULTuRA ECOLÓGICA EN LA D.O. PENEDÈS
 Chamorro L, Fernández S, Bartra E

• INFLUENCIA DEL TIPO DE CUBIERTA EN LA DIVERSIDAD Y ABUNDANCIA DE ENTOMOFUNAUXILAR EN CíTrICOS ECOLÓGICOS

• COMBINACIÓN DE LA BIOSOLARIZACIÓN CON TORTA DE COLZA E INJerto PARA EL CONTROL DE MELOIDogyNE INCCOGNITA EN PIMIENTO

• EL SISTEMA AGROECOLÓGICO DEL VIñEDO: RESERVOIRIO DE LA BIODIVERSIDAD DE LEVADURAS PARA LA ADAPTACIÓN AL CAMBIO CLIMÁTICO
 Blanco P, Castrillo D

• LAS FEROMONAS COMO HERRAMIENTA EFICIENTE EN LA TRANSICIÓN ECOLÓGICA
 Navarro llopis V, Vacas González S, Domínguez-Gento A
3. SUELOS, FERTILIZACIÓN, PRÁCTICAS CULTURALES Y USO DEL AGUA

- **ENSAYO PRELIMINAR DE EFICACIA DE PRODUCTOS AUTORIZADOS EN AGRICULTURA ECOLÓGICA PARA EL CONTROL DE LA AVISPILLA DEL ALMENDRO (EURYTOMA AMYGDALII ENDERLEIN)** .. 243
 Cuenca F, Rubio A, Amorós F, Domínguez Gento A

- **"OIDIO DETECTION", UN PROYECTO PARA UNA APLICACIÓN SOSTENIBLE DE TRATAMIENTOS FITOSANITARIOS EN VID** ... 251

- **EFICACIA DE TRATAMIENTOS ECOLÓGICOS CONTRA LA ARANJA ROJA TETRANYCHUS URTICAE (ACARI: TETRANYCHIDAE) EN CLEMENTINOS RESIDUO CERO** .. 252
 Gavara-Vidal J, López-Olmos S, García-Díaz A, Ferragut F

- **ABUNDANCIA Y DISTRIBUCIÓN TEMPORAL DEL ÁCARO PLAGA EUTETRANYCHUS BANKSI (ACARI: TETRANYCHIDAE) Y EL DEPREDADOR EUSEIUS STIPULATUS (ACARI: PHYTOSEIIDAE) EN CÍTRICOS DE GESTIÓN ECOLÓGICA Y CONVENCIONAL** .. 253
 López-Olmos S, Gavara-Vidal J, Domínguez-Gento A, Ferragut F

- **ENSAYO DE EFICACIA EN CAMPO DE DIFERENTES PRODUCTOS FITOSANITARIOS PARA EL CONTROL DE SCAPHOIDEUS TITANUS EN VINIÉDOS ECOLÓGICOS** ... 260
 Mateu J, Antico H

3. SUELOS, FERTILIZACIÓN, PRÁCTICAS CULTURALES Y USO DEL AGUA

- **VIDEO DOCUMENTAL “MANTENIMIENTO DEL SUELO VIVO”** .. 261
 López Coma X

- **PRODUCCIÓN Y EFICACIA BIOLÓGICA DE SUSTITUTOS Y ADITIVOS ECOLÓGICOS, PARA EL CULTIVO DE SETAS SAPRÓFITAS COMESTIBLES Y MEDICINALES SOBRE RESIDUOS AGRÍCOLAS LOCALES** .. 262
 Díaz Carrasco P, Sulis E, Roselló Oltra J

- **EQUIPO DE INNOVACIÓN MICORRIZAS: INNOVACIÓN SOCIAL PARA LA REGENERACIÓN DE LOS SUELOS AGRÍCOLAS** .. 272

- **MANEJO AGROECOLÓGICO DEL SUELO EN INVERNADEROS Y PRODUCCIÓN ECOLÓGICA** .. 280
 López L, Meca DE, Torres JM

- **USO DE TÉCNICAS DE DIAGNÓSTICO NUTRICIONAL RÁPIDO EN INVERNADEROS ECOLÓGICOS** .. 287
 Casas A, López L, Meca DE, Martínez E, Torres JM

- **REITERACIÓN DE LA BIOSOLARIZACIÓN CON ESTIÉRCOL FRESCO DE OVINO. EFECTOS SOBRE LAS CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DEL SUELO** .. 296
 Guirao P, Fernández P, Larregla S, Lacasa A

- **REESTRUCTURACIÓN DEL COMPLEJO DE CAMBIO TRAS LA BIOSOLARIZACIÓN. BALANCE DE CARBONO Y NUTRIENTES EN INVERNADEROS ECOLÓGICOS DEL CAMPO DE CARTAGENA** .. 305
 Fernández P, Guirao P, Larregla S, Lacasa A

- **AGRICULTURA FAMILIAR: RUIDO DEL AGUA** .. 317
 Neira Seijo X

CARTELES/PÓSTERES RELACIONADOS .. 322

- **USO DE ACOLOCHADOS DE LARGA DURACIÓN EN CULTIVO DE CANTUESO (LAVANDULA STOECHAS L. SUBSP. LUISIERI (ROZEIRA) ROZEIRA): EFICACIA DE CONTROL DE LA FLORA ARVENSE Y DEGRADACIÓN DESPUÉS DE UN AÑO** .. 322
 Mari AI, Cirujeda A, Pardo G, Navarro J

- **INFLUENCIA DE LOS DIFERENTES MANEJOS ECOLÓGICOS Y LAS ROTACIONES EN EL CONTROL DE LA VEGETACIÓN ADVENTICIA Y EN LA RESPUESTA DEL CULTIVO** .. 327
 González-Barragán MI, Guerrero I, Rodrigo JF, Rodrigo R
• **CAMBIA LA BIODIVERSIDAD EN EL SUELO CON LOS DISEÑOS PREDIALES? EVALUACIÓN COMPARATIVA DE LA FAUNA EDÁFICA EN HUERTAS MAPUCHE BAJO DISEÑO AGROECOLÓGICO Y CONVENCIONAL DEL SECTOR BOYECO, REGIÓN DE LA ARAUCANÍA, CHILE** .. 328
Peredo y Parada S, Barrera Salas C, Vega Carvajal M

• **ESTUDIO COMPARATIVO DE LA ABUNDANCIA Y NÚMERO DE RIZOBIOS EN SUELOS DE CULTIVO ECOLÓGICO Y CONVENCIONAL** .. 329

• **ENSAYO DE ELABORACIÓN Y APLICACIÓN DE COMPOST BIODINAMICO CON ADICIÓN DE ARCILLA Y BASALTO** .. 330

• **PURINES DE ORTIGA Y COLA DE CABALLO COMO FERTILIZANTES FOLIARES EN PATATA: ¿SON REALMENTE EFECTIVOS?** .. 331

• **ADAPTABILIDAD DE LA MORINGA OLÍFERA EN CULTIVO ECOLÓGICO A LAS CARACTERÍSTICAS DE LOS SUELOS Y CONDICIONES CLIMÁTICAS DE LA PROVINCIA DE VALENCIA** .. 337
Soriano Soto MD, García Marés F, García-España L, Moreno J

• **LA REGENERACIÓN DE SUELOS HORTÍCOLAS DEGRADADOS CON COMPOST RICO EN CARBONO: UN SUMIDERO CONTRA EL CAMBIO CLIMÁTICO** .. 338
Achotegui-Castells A, Puig Roca J, Trillas M, Romanyá J

4. BIODIVERSIDAD Y SEMILLAS ... 339

• **POTENCIAL FENOLICO Y CAPACIDAD ANTIOXIDANTE EN DIFERENTES VARIEDADES DE ALUBIA: CULTIVO ECOLÓGICO VS CONVENCIONAL** .. 339

• **ESTUDIO DE CASO DE LA PRODUCCIÓN Y VALORIZACIÓN DE DOS VARIEDADES LOCALES DE ZANAHORIA MORADA EN ANDALUCÍA** ... 349
Carrascosa-García M, Yanes Figueroa M, Padel S, Oehen B

• **RECUPERACIÓN PARTICIPATIVA DE LAS SEMILLAS TRADICIONALES DEL PUEBLO MAPUCHE DEL SUR DE CHILE, COMO BASE FUNDAMENTAL DE SU SOBERANÍA ALIMENTARIA** .. 350
Órdenes E, Sepúlveda T

• **ESTABLECIMIENTO DEL PRIMER SEMILLERO Y VIVERO COMUNITARIO PARA LAS COMUNIDADES INDÍGENAS Y CAMPESINAS DE CHILE** ... 361
Órdenes E, Sepúlveda T

• **LABORES CULTURALES ANCESTRALES Y MANEJO DE LA SEMILLAS DE PAPAS NATIVAS EN COMUNIDADES DE OCONGATE – CUSCO, PERÚ** .. 373
Saravia Navarro D, Saldaña Zavala J, Cinaco Castrillón P

• **PROGRAMA DE FITOMEJORAMIENTO PARTICIPATIVO EN TOMATE EN VALENCIA Y CÁDIZ: PROYECTO LIVESTEED** .. 374
Gil-Marqués MA, Figueroa M, Hurtado R, Ballester R, Figueroa-Núñez M, Aguilar F, Durán-Salgado O, Macías-González F, Raigón MD, Rodríguez-Burruezo A

• **CARACTERIZACIÓN MORFOLÓGICA, AGRONÓMICA Y DE CALIDAD DE UNA COLECCIÓN DE 10 VARIEDADES TRADICIONALES VALENCIANAS DE BERENJENA EN CONDICIONES DE BAJOS INSUMOS** .. 379
Rosa-Martínez E, Figás MR, García-Martínez MD, Raigón MD, Prohens J, Soler S

CARTELES/PÓSTERES RELACIONADOS .. 385

• **ESTUDIO DE DIFERENTES CLONES COMO PATRONES EN LA MICROINJERTACIÓN CON YEMAS DEL CLON UF-650 COMERCIAL DE THEOBROMA CACAO LIN** .. 385
Miranda Barbier O, Menéndez Grenot M, Rodríguez Terrero M
• SELECCIÓN Y CONSERVACIÓN DE ESPECIES CULTIVADAS ATENDIENDO A LA PLASTICIDAD FENOTÍPICA DE CARACTERES MORFOLÓGICOS Y FUNCIONALES RELACIONADOS CON EL USO DEL AGUA COMO ESTRATEGIA DE ADAPTACIÓN AL CAMBIO CLIMÁTICO: EL CASO PARTICULAR DE FRAGARIA × ANANASSA .. 386
Landete-Tormo MB, Sesmero R, Quesada MA

• INFLUENCIA DEL TIPO DE MANEJO, ECOLÓGICO O CONVENCIONAL, EN LA ENTOMOFUANNA AUXILIAR ASOCIADA AL CULTIVO DEL CAQUI (DIOPYROS KAKI THUNB.) ... 387
González-Cavero S, Sánchez-Domingo A, Domínguez-Gento A, Vercher R

• ES POSIBLE ALCANZAR EL EQUILIBRIO POBLACIONAL DE LA ENTOMOFUANNA EN AGROECOSISTEMAS? EFECTIVIDAD DEL CORREDOR BIOLÓGICO EN UN SISTEMA AGRÍCOLA MANEJADO BAJO PRINCIPIOS AGROECOLÓGICOS .. 396
Barrera Salas C, Romo Guirado Á, Peredo y Parada S

• SELECCIÓN DE CULTIVARES DE MELÓN ADAPTADOS A AGRICULTURA ECOLÓGICA ... 397

• IMPLEMENTACIÓN DE UN BANCO DE GERMOPLASMA DE PLANTAS MEDICINALES, AROMÁTICAS Y CONDIMENTARIAS EN EL CENTRO DEL VALLE DEL CAUCA, COLOMBIA ... 398
Martínez Martina MA, Vélez Zabala Fj, Adarve J, Terranova D, Rivera V

5. ASESORÍA, DIVULGACIÓN, FORMACIÓN E INVESTIGACIÓN .. 399
• AULAS DE AGROECOLOGÍA COMO HERRAMIENTA DE EXTENSIÓN AGRARIA ECOLÓGICA ... 399
Arcos JM, Garrido EM, Jurado MA, Jauregui J

• ORGANIC-PLUS: UN PROYECTO FINANCIADO POR LA UE PARA INVESTigar ALTERNATIVAS A ELEMENTOS CONTENCIOSOS EN LA AGRICULTURA ECOLÓGICA ... 411
Burbi S, Schmutz U

• CONECTE: DOCUMENTANDO, COMPARTIENDO Y PROTEGIENDO EL CONOCIMIENTO AGROECOLÓGICO TRADICIONAL .. 416

• FORMACIÓN AGROECOLÓGICA PARA LA INCLUSIÓN SOCIAL .. 421
De la Cruz Abarca C

• “TRINITA FERRADOS”: UN PROCESO DE TRANSFORMACIÓN AGROECOLÓGICA .. 426
Neira Seijo X, Neira Cervera M

• AGRICULTURA ECOLÓGICA Y CONSERVACIÓN DE LA NATURALEZA. LA EXPERIENCIA DE RIET VELL .. 431
Cirera JC

• HUERTOS EDUCATIVOS Y AGROECOLOGÍA ESCOLAR ... 432
Puentez González A, Labrador Moreno J

• LA EDUCACIÓN ALIMENTARIA EN ESCUELAS DE VALLEGAS (MADRID) ... 439
Hernández de la Puerta N, Galindo Martínez P

• LA AGRICULTURA URBANA COMO UNA ALTERNATIVA AGROECOLÓGICA PARA LA TRANSFORMACIÓN SOCIAL DE LA COMUNIDAD LA CARRILERA, MUNICIPIO DE TULÚA, COLOMBIA .. 449
Vélez Zabala Fj, Martínez Martina MA, Hidalgo Zapata YY, Soto González AM, Vélez ME

CARTELES/PÓSTERS RELACIONADOS ... 450
• EL Contexto Actual del Proyecto LEISA Revista de Agroecología (22 Años Compartiendo Experiencias Agroecológicas) ... 450
Dorrego Carlón A, Gometta-Estrems T, Finzás García T, De la Cruz Abarca C

• EXPERIENCIA SOBRE LA TRADUCCIÓN DEL ESPAÑOL A LA LENGUA CABÉCAR EN EL TERRITORIO INDÍGENA COSTARRICENSE .. 457
Morales-Morales J
• LA AGRICULTURA ECOLÓGICA EN EL CONGRESO GENERAL DE LA UNIÓN EUROPEA DE CIENCIAS DE LA TIERRA (EGU): SIETE AÑOS DE ANDANDURA ... 462
 Moreno MM, Villena J, González-Mora S, Moreno C
• EL PROYECTO PERMIND: UNA OPORTUNIDAD DE ASESORAMIENTO, DIVULGACIÓN, COMUNICACIÓN, FORMACIÓN E INVESTIGACIÓN DE LA PERMACULTURA ... 464
 Mazuelas Repetto D, Reyes Barroso J, Sánchez García J
• PROYECTO "ADAPTA AGROECOLOGÍA" GENERACIÓN Y DIFUSIÓN DE PRÁCTICAS AGROECOLÓGICAS QUE SE ADAPTAN AL CAMBIO CLIMÁTICO ... 465
 Cifre H, Escultia M, González-V, Maixent F
• ADAPTA TU DIETA, CUIDA TU CLIMA .. 466
 Cifre H, González V, Maixent F
• PROMOVENDO EL USO DE SEMILLAS ECOLÓGICAS PROCEDENTES DE CULTIVOS ECOLÓGICOS ADAPTADOS. PROYECTO LIVESEED .. 467
 Almenar L, Cifre H, González V, Maixent F
• LA REVISTA AGROECOLÓGICA DE DIVULGACIÓN: AE .. 468
 Raigón MªD, Serrano S, González V, Cifre H, Maixent F
• DESCRIPCIÓN DE UN MODELO DE AGRICULTURA SOSTENIBLE. APLICACIÓN EN FINCAS DE PLATANERA ... 469
 Huertas E, Hernández M
• CONOCIMIENTO TRADICIONAL EN EL HUERTO AGROECOLÓGICO 470
 Caetano C, Angel-Sanchez D, Ojuela-Garcia C
• OBJETIVOS DEL PROYECTO LIFE LIVEADAPT PARA ADAPTAR LA GANADERÍA EXTENSIVA AL CAMBIO CLIMÁTICO 471
 Ruiz-Garrido I, Díaz-Gaona C, Sanz-Fernández S, Reyes-Palomo C, Aguilera E, Sánchez-Rodríguez M, Rodríguez-Estévez V
• USO DE ESPECIES CRASAS COMO CUBIERTA VERDE Y BARRERA TÉRMICA EN AZOTEAS DE EDIFICIOS 472
 Gurrea-Ysasi G, Blanca-Giménez V, Fita-Fernández I, Fita A, Fernández-de-Córdova P, Cortés-Olmos C, Prohens J, Rodríguez-Burruezo A
• DISEÑO DE UN HUERTO ECOLÓGICO URBANO "BARATXURI" CON UN PROCESO PARTICIPATIVO EN EL BARRIO DE BUZTINTXURI EN PAMPLONA (NAVARRA) ... 477
 Duque I, Virto I, De Soto I, Enrique A
6. ELABORACIÓN, CALIDAD, NORMAS Y COMERCIALIZACIÓN .. 478
• AGROBOCA. CANAL CORTO DE DISTRIBUCIÓN ONLINE .. 478
 Fernández-Villanueva JL
• SISTEMAS PARTICIPATIVOS DE GARANTÍA (SPG) EN ANDALUCÍA Y PROCESOS AGROECOLÓGICOS DE 2006 A 2018 ... 488
 De la Cruz Abarca C
• VALORACIÓN NUTRICIONAL DE VARIEDADES TRADICIONALES DE JUDÍA GRANO DE CULTIVO ECOLÓGICO 504
 Martínez-Gurrea I, Figueroa Zapata M; García-Martínez MD; Raigón MD
• ESTUDIO NUTRICIONAL DE LECHUGA ICEBERG, HOJA DE ROBLE VERDE Y COGOLLO DE ROMANA PROCEDENTE DE CULTIVO ECOLÓGICO Y CONVENCIONAL ... 516
 Antón I, García-Martínez MD, Raigón MD
• EFECTOS DE LA MATERIA PRIMA Y EL PROCESO SECADO-MADURACIÓN SOBRE LA CALIDAD DEL JAMÓN CURADO. 529
 Domínguez Gómez MJ, Raigón MD
• LA HUELLA DE CARBONO DEL CONSUMO CÁRNICO EN ESPAÑA. UNA EVALUACIÓN A TRAVÉS DE LA HERRAMIENTA GLEAM DE LA FAO ... 539
 Porras J, Ruíz M, López CA
• EFECTO DEL CULTIVO ECOLÓGICO Y LA VARIEDAD SOBRE CONTENIDO EN AZÚCARES REDUCTORES EN PIMENTO ... 550
 Pires Cherrine K, Adalid AM, Moreno-Peris E, Fita AM, Rodríguez-Burruezo A
CARTELES/PÓSTERES RELACIONADOS .. 555
• CIRCUITOS CORTOS DE COMERCIALIZACIÓN Y VARIEDADES LOCALES. EL CASO DE LOS TOMATES NEGROS DE LAS SIERRAS DE SEGURA .. 555
Romero Molina JM, De la Cruz Abarca C, Egea Fernández JM
• REDES DE CIRCUITOS CORTOS DE COMERCIALIZACIÓN (CCC) AGROECOLÓGICOS EN GRANADA ... 556
De la Cruz Abarca C, Matarán Ruiz A, Ruiz Diez A
• DETERMINACIÓN DE LISINA Y TRIPÓFANO EN MUESTRAS DE CHUFA (C. ESCULENTUS L) DE CULTIVO ECOLÓGICO Y CONVENCIONAL .. 557
Vilches M, García-Martínez MD, Raigón MD
• USO INTEGRAL DE LA COLZA COMO ALTERNATIVA SOSTENIBLE PARA LA PRODUCCIÓN DE QUESO BAJO LA DPO IDIAZABAL ... 566
Salazar Gómez N
• PEPIÑOS QUE AYUDAN A REDUCIR EL USO DE PLÁSTICO .. 567
Lopez Rodríguez M
• OBSTÁCULOS LEGALES A LA ECONOMÍA CIRCULAR EN EL ÁMBITO DE LOS BIORRESIDUOS: UN ESTUDIO DE CASO CON RESIDUOS VERDES .. 568
Dupuis I, Michel M, Redondo M

7. GANADERÍA ECOLÓGICA .. 569
• ANÁLISIS INTEGRAL DE UNA GRANJA ECOLÓGICA BOVINA DE PRODUCCIÓN LÁCTEA EN FRIOI (LUGO). GALICIA. I) EVALUACIÓN ENERGÉTICA .. 569
Neira Seijo X, García Romero C
• ANÁLISIS INTEGRAL DE UNA GRANJA ECOLÓGICA BOVINA DE PRODUCCIÓN LÁCTEA EN FRIOI (LUGO). GALICIA. II) EVALUACIÓN DEL MANEJO DEL REBAÑO .. 574
García Romero C, Neira Seijo X
• CARACTERIZACIÓN DE UNA GRANJA AVÍCOLA ECOLÓGICA DE PUESTA EN CASTILLA LA MANCHA, ESPAÑA... 579
Cordero Morales R, García Romero C
• ESTÁNDAR DE PASTOREO REGENERATIVO Y SOSTENIBLE: VERIFICACIÓN POR RESULTADOS DE PRÁCTICAS AGROECOLÓGICAS .. 589
Catalán Balmaseda M, Lozano Diéguez B, Moreno Marcos G, Palomo Guijarro G
• PROYECTO MOSAICO: VENTAJAS Y BARRERAS A LA GANADERÍA ECOLÓGICA PARA PREVENIR LOS INCENDIOS FORESTALES EN LA ALTA EXTREMADURA .. 597
• INTEGRACIÓN DE LA GANADERÍA EN LA AGRICULTURA POSIBILITANDO LA REGENERACIÓN DEL AGROECOSISTEMA DE LA FINCA .. 605
Orellana M, Orellana B
• MODELO AGROSILVOPASTORIL AGROECOLÓGICO EN SASIAINGO BARATZA .. 606
Arregi G, Egino E, González D
• LA AVICULTURA DESDE LA VISIÓN AGROECOLÓGICA: ALTERNATIVAS Y SOLUCIONES ... 619
Gracia Cárdenas R, Vásquez D, Mayor M

CARTELES/PÓSTERES RELACIONADOS .. 625
• DIAGNÓSTICO ECOSSISTÉMICO PARA LA PREVENCIÓN DE LA TUBERCULOSIS BOVINA Y CAPRINA EN EXTREMADURA .. 625
• EL CULTIVO DEL MEJILLÓN EN GALICIA. PROBLEMAS, RETOS Y OPORTUNIDADES .. 626
Cano Guervós A
• POTENCIAL DE LOS MONOGÁSTRICOS EN GANADERÍA ECOLÓGICA: PORCINO EN ESPAÑA ... 627
Sanz-Fernández S, Díaz-Gaona C, Reyes-Palomo C, Sánchez-Rodríguez M, Rodríguez-Estévez V
• CONCLUSIONES DEL SCIENCE BAZAAR DEL PROYECTO OK NET ECOFEED PARA LA BÚSQUEDA DE ALTERNATIVAS EN LA ALIMENTACIÓN DEL PORCINO ECOLÓGICO .. 628
 Díaz-Gaona C, Reyes-Palomo C, Sanz-Fernández S, Sánchez-Rodríguez M, Rodríguez-Estévez V

• MATERIAS PRIMAS ALTERNATIVAS PARA UNA ALIMENTACIÓN 100% ECOLÓGICA Y DE ORIGEN LOCAL:
 RESULTADOS DEL PROYECTO OK-NET ECOFEED PARA EL CERDO .. 629
 Rodríguez-Estévez V, Reyes-Palomo C, Sanz-Fernández S, Sánchez-Rodríguez M, Díaz-Gaona C

MESAS .. 630

REDONDAS ... 630

MR1. POLÍTICAS QUE IMPULSAN LA AGROECOLOGÍA .. 631
• POLÍTICAS QUE IMPULSAN LA AGROECOLOGÍA: PLANES AGROECOLÓGICOS LOCALES EN EL MARCO DEL MÉTODO TERRAE ... 631
 Martín M

• IMPULSANDO LA AGROECOLOGÍA DESDE LA ADMINISTRACIÓN LOCAL EN ORDUÑA .. 632
 Aginako I, Imaz MJ

• POLÍTICAS QUE FOMENTAN ACCIONES EN EL SECTOR ECOLÓGICO EN DIFERENTES PAÍSES EUROPEOS. SME ORGANICS ... 633
 Enrique A, Astiz M, Borruel M, Maeztu F, Bellostas N

• HERRAMIENTAS GLOBALES PARA REFORZAR LO LOCAL ... 634
 Álvarez I

• AVANCES DEL I PLAN VALENCIANO DE PRODUCCIÓN ECOLÓGICA: BALANCE DEL PRIMER TRIENIO 2015-17 ... 635
 Cháfer Nácher MT, Gomis Moratal I, Roselló Oltra J, Domínguez Gento A

• LAS POLÍTICAS AGROECOLÓGICAS EN FRANCIA: EL IMPULSO DE UNA ACCIÓN COLECTIVA, POLIFACÉTICA Y TERRITORIALIZADA ... 636
 Charbonneau M

MR2. NUEVO REGLAMENTO EUROPEO DE AGRICULTURA ECOLÓGICA .. 637
• EL NUEVO REGLAMENTO EUROPEO PARA LA PRODUCCIÓN AGRARIA ECOLÓGICA ... 637
 Calafat A

MR3. AGROECOLOGÍA Y COOPERACIÓN EN LOS OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS) ... 638
• AGROECOLOGÍA: SU CONTRIBUCIÓN A LOS ODS .. 638
 Salgado MN

• EL DERECHO A LA ALIMENTACIÓN Y A LA NUTRICIÓN, LA AGROECOLOGÍA Y LOS ODS ... 639
 Morena MA

• AGROECOLOGÍA Y COOPERACIÓN. TRANSICIÓN AGROECOLÓGICA EN EL VALLE DEL RÍO SENEGAL, MAURITANIA ... 640
 García Brea A, Darphin L

• LA AGROECOLOGÍA, LOS ODS Y EL DESARROLLO SOSTENIBLE ... 641
 Raigón MD

COMITÉS .. 642

• COMITÉ ORGANIZADOR LOCAL .. 642

• COMITÉ DE HONOR .. 642

• COMITÉ CIENTÍFICO .. 642

• COMITÉ TÉCNICO-ASESOR .. 642

Índice autores .. 643
INTRODUCCIÓN

El sistema agroalimentario predominante es responsable de la actual crisis económica, alimentaria, ecológica, social y de valores. Es patente su incapacidad para enfrentar: el abastecimiento de alimentos suficientes, sanos y seguros a una población mundial creciente en un planeta de recursos finitos, la adaptación al cambio climático, la sostenibilidad de las zonas rurales, la igualdad de mujeres y hombres (titularidad compartida en la finca, reparto de cuidados, etc). Hacer frente a estos retos es responsabilidad de todos/as. Los sistemas agroalimentarios agroecológicos tienen una enorme capacidad de transformación social.

El sector ecológico crece tanto en superficie, producción, cuota de mercado… en el Estado español, Europa y el mundo. La sociedad demanda, cada vez más, productos sanos, seguros y sostenibles.

Este crecimiento se debe a que el modelo ofrece respuestas donde la agroalimentación industrial fracasa. Ello hace necesario mejorar el enfoque de las políticas a favor del sector ecológico, promoviendo modelos de consumo y de distribución para el crecimiento del consumo local de alimentos ecológicos vinculados a la Economía Circular y la Estrategia Residuos Cero para enfrentar el cambio climático y requiere un esfuerzo de investigación, formación e innovación permanente.

En ese sentido, debemos atender al contexto de crisis múltiple en el que vivimos, donde los sistemas agroalimentarios juegan un papel importante en el abastecimiento de alimentos, así como en la construcción de relaciones sociales entre el campo y la ciudad. Apostar por la Agroecología, entendida en un amplio sentido, como disciplina científica, como conjunto de prácticas y como resultado de procesos sociales, se hace más necesario que nunca.

Los congresos bianuales que organiza SEAE desde 1994, se han convertido en espacios de diálogo interdisciplinar entre investigador@s, técnico@s, asesor@s, agricultor@s, elaborador@s, consumidor@s, colegios, educador@s, cociner@s, comercializadoras, distribuidores y administración, tod@s actor@s relevantes de la cadena agroalimentaria, para analizar y debatir los problemas, retos, avances e innovaciones que se van produciendo para la mejora de la calidad de vida de la gente.

Este año se celebra en Logroño, capital riojana conocida mundialmente por su producción de buen vino, y que cuenta también con una importante huerta tradicional, ganadería extensiva, para enfatizar que es necesario pensar y replantear los sistemas alimentarios que integren agricultura, árboles, animales y personas cuando hablamos de modificar modelos de producción, distribución y consumo.

OBJETIVOS

• Analizar los retos alimentarios actuales y el papel de los sistemas agroalimentarios en la solución de estos
• Intercambiar conocimientos sobre la investigación e innovación del sector de la producción agroecológica y su papel en el cambio climático. Introducir la perspectiva ecofeminista
• Facilitar el intercambio de experiencias e iniciativas transformadoras de los sistemas agroalimentarios que colaboren en el diseño de nuevos escenarios futuros
• Propiciar recomendaciones para impulsar el desarrollo del sector en particular en el lado de la demanda.
SEMINARIO:
¿AMPLIAR LA ESCALA DE LA AGROECOLOGÍA?
INTRODUCCIÓN

Las primeras definiciones del término Agroecología describían un nuevo paradigma científico más holístico que intentaba redefinir la producción de alimentos y la producción agraria en términos de mayor respeto con la naturaleza y como apoyo a los agricultores ecológicos en su modelo productivo, aportando una visión social más intensa que las que se habían trabajado en los movimientos sociales de Agricultura Ecológica. En España, la introducción de este concepto se materializó en sus inicios en el desarrollo de metodologías de investigación, análisis y acompañamiento participativo a los agricultores ecológicos, sobre todo desde una instancia académica singular. Recientemente ese concepto ha sido retomado también por técnicos e investigadores que han realizado aportaciones, pero también por numerosas iniciativas sociales que insisten más en el apoyo a modelos de producción sostenible, más que a reglamentos, destacando otros conceptos que no aparecen en las normativas porque, a menudo, la legislación no se ha adaptado adecuadamente. Recientemente, determinadas instituciones (FAO, Universidades, Naciones Unidas, etc.) que hasta hace poco miraban desde la distancia los movimientos de producción agrícola y ganadera agroecológica, están incluyendo en su discurso la Agroecología como ciencia, propiciando escenarios de debate, incluso de formación en esta disciplina. Así, hemos llegado a un consenso donde la Agroecología contempla los tres pilares que deben integrarse en la definición y en el concepto: la ciencia, el conjunto de prácticas y el movimiento social. Por ello, el enfoque agroecológico debe aplicar los principios y conceptos de la ecología en el manejo y diseño de agroecosistemas sostenibles, en un horizonte temporal, partiendo del conocimiento local que, integrando al conocimiento científico, dará lugar a la construcción y expansión de nuevos saberes socio-ambientales, alimentando así, el proceso de transición agroecológica. Por eso mismo, cuando se habla de agroecología, se trata de una orientación cuyas atribuciones van mucho más allá de aspectos meramente tecnológicos o agronómicos de la producción, incorporando dimensiones más amplias y complejas, que incluyen tanto variables económicas, sociales y ambientales, como variables culturales, políticas y éticas de la sostenibilidad. De la forma de producir, pero también de cómo viven los agricultores o cómo se relacionan con aquellos que compran sus productos y con su entorno. En definitiva, de agronomía, sí, pero también de justicia social, de valores éticos.

Esta amplitud del concepto ha intensificado el número de voces que en el momento actual hablan de Agroecología, ampliando también los escenarios de actuación, en la búsqueda de oportunidades que pueden aprovechar los movimientos sociales para avanzar en la transformación del sistema agroalimentario en su conjunto. Alineado a este crecimiento y posicionamiento sobre la Agroecología, surge también el riesgo de que sea cooptada, institucionalizada y despojada de su contenido inicial, es decir que se utilice como un instrumento del sistema convencional.

La polémica y la disyuntiva en Agroecología están servidas. Pero lo que parece claro, es que nuestra apuesta debe continuar hacia ampliar la escala de la Agroecología, como alternativa no sólo del modelo de producción, sino de una forma de vida, de comprender el mundo, de habitarlo y de sentirlo.

OBJETIVOS DEL SEMINARIO

Conocer los ejes de trabajo de diferentes entidades a nivel internacional y abordar cuestiones como:

¿En qué consiste ampliar la escala de la agroecología?
¿Qué objetivos y valores debe mantener la agroecología si crece en escala?
¿De qué manera enfocar las medidas a nivel político, social, económico y medioambiental para frenar los daños del cambio climático, la inseguridad alimentaria y el despoblamiento rural?
¿QUÉ SALTOS DE ESCALA NECESITAMOS?

Calle Collado A

Instituto de Sociología y Estudios Campesinos (ISEC)
Edificio Gregor Mendel Planta Baja
Campus Rabanales, Córdoba

RESUMEN: Generalmente el debate de “saltos de escala” se refiere a temas como: creación de sistemas agroalimentarios agroecológicos a escala regional o estatal o europea; mayor articulación entre actores implicados en la cadena para caminar hacia formas de producción y consumo más “sostenibles”; relaciones entre el campo y la ciudad más “armónicas”.

Son cuestiones pertinentes y necesitadas de impulsar respuestas en el medio y en el corto plazo. Pero preguntas a la vez insuficientes. Mi enfoque recogerá también una crítica del concepto de “escala” dentro de una visión compleja del territorio y los sistemas agroalimentarios: escalar es también escalar horizontalmente (recordando a Chayanov y las formas de cooperación vertical y territorial del campesinado), escalar cualitativamente (apareciendo aquí toda la crítica de necesidades humanas, del ecofeminismo), es escalar políticamente (desde la agroecología política: ¿quién y cómo defenderá estas propuestas?) y es escalar en términos de co-evolución (construir un metabolismo amigable para la especie humana, decrecer en humos no en salud ni en derechos). Mis propuestas tratarán de basarse en experiencias a la vez que en la potencialidad o marco de oportunidad que viene dado por el agotamiento de la civilización fósil, el de un sistema capitalista-agroalimentario que no da más de sí y nos depreda territorios y bienestar, a la vez que desde la economía social-solidaria y desde la preocupación de la salud (por ejemplo) emergen demandas e incipientes formas de articularse alrededor de saltos de escala más globales (territorialmente) y holísticos (cuerpo-lazos-economías).

Palabras clave: agroecología, escala, territorio, sistemas agroalimentarios
ESCALONAR LA AGROECOLOGÍA: ESTRATEGIAS DE DESARROLLO TERRITORIAL

Levidow L1, Sansolo D2, Schiavinatto M2

1Open University, Reino Unido
2Universidade Estadual Paulista (UNESP), Instituto de Políticas Públicas e Relações Internacionais (IPPRI), São Paulo, Brasil
l.levidow@open.ac.uk

Para utilizar estos conceptos, es necesario enlazarlos estratégicamente. El territorio resulta de movimientos contradictorios incluso procesos de territorialización, desterritorialización y reterritorialización (TDR); en el último, los campesinos y movimientos sociales recrean el territorio, rompiendo con la lógica capitalista (Fernandes, 2005). Un desarrollo territorial puede ser analizado por tres articulaciones: organización de trabajo y certificación para mercados de la economía solidaria; la forma y el uso de las políticas públicas; y conocimientos para las tecnologías socioambientales (extendiendo el esquema de IDRC, 2007). Cada articulación enlaza los procesos horizontales y verticales.

Este esquema analítico será demostrado mediante iniciativas agroecológicas por movimientos sociales en el Estado de São Paulo. Nuestro esquema puede identificar relaciones de poder, conflictos territoriales y opciones estratégicas. De este modo si puede escalonar la agroecología para transformar el sistema dominante – en vez de acomodar o verdearlo.

Palabras clave: desarrollo territorial participativo, economía solidaria, escalamiento, tecnologías socioambientales
AMPLIAR LA ESCALA DE LOS VALORES AGROECOLÓGICOS

Galindo Martínez P
La Garbancita Ecológica. C/Puerto del Milagro, 8, E-28018 Madrid
juliar13@yahoo.es, Tel: 690198356

La alimentación es una actividad social y económica para garantizar el derecho fundamental a una nutrición saludable, suficiente y sostenible para tod@s. El actual desorden alimentario es resultado de una aberración: tratar la producción, circulación y consumo de alimentos como una actividad económica basada en mercancías alimentarias competitivas y rentables. La conversión de los alimentos en mercancías destruye la biodiversidad y la fertilidad de la tierra, produce enfermedades y muertes por hambre y malnutrición, cambio climático y migraciones forzosas. Ignora la protección de la vida y sólo reconoce el derecho a la alimentación de quienes lo expresan como “demanda solvente” a través del mercado.

La Agroecología se alza frente a estos daños como un modelo de alimentación sostenible, saludable y respetuoso con la naturaleza, identidades culturales, derechos humanos, igualdad de género, territorio, biodiversidad, empleo digno, circuitos cortos de comercialización y responsabilidad compartida campo-ciudad.

Los 17 ODS y sus 169 metas concuerdan con los valores de la Alimentación Agroecológica en su carácter integral, universal y transversal. Al recoger la interactuación de Economía, Sociedad y Naturaleza consideran, además de las informaciones expresadas en términos monetarios, las dimensiones éticas, ecológicas, sociales, culturales y de género.

Escalar la Agroecología no es posible sin extender y consolidar sus principios y valores en una cooperación lineal entre producción, distribución, logística y consumo responsables. En esta cooperación cada eslabón de la cadena alimentaria es producto de los eslabones anteriores y premisa para los posteriores.

Palabras clave: cadena alimentaria, consumo responsable, cooperación, ODS, soberanía alimentaria
AMPLIAR LA ESCALA DE LA AGROECOLOGÍA, EL DESAFÍO DE LOS JOVENES

Pino C

Centro I+D en Agroecología. Carrera 164 of. 6. Curicó, Región del Maule, Chile
cpino@agroecologia.cl +569752326010

La ampliación de la escala de la agroecología, se debe realizar en base a ideas que rigen el pensamiento agroecológico, como ciencia y enfoque pluripistemológico, desde el rediseño predial, gestión del agroecosistema en base a eficiencia energética, diversificación funcional, reciclaje y planificación de intervención desde la microcuenca hasta el territorio, siendo clave considerar participativamente las problemáticas que perciben y el beneficio que esperan los agricultores; pero también a quienes están orientados sus productos y como se comercializan; siendo prioritario reducir la intermediación y que el máximo del precio final llegue directamente al agricultor/procesador ecológico. La dimensión ética de la agroecología y de quienes la practican, se debe multiplicar al escalarla, la formación transversal, entre agricultores y a nivel académico, son fundamentales para fortalecerla y despejar confusiones creadas por intereses transnacionales. Se requieren de programas en agroecología que la impulsen a nivel político, de forma dialogante entre lo público y lo privado. Los sistemas agroecológicos son más resilientes al cambio climático y soberanos alimentariamente, la forma en que se frena la migración del campo a la ciudad, es haciéndolos atractivos y valorados por los jóvenes, desde la dimensión espiritual y sentimental, pero también que sea rentable, la visión nostálgica del campesinado, es del siglo pasado, ahora los jóvenes exigen versatilidad, conectividad y redes sociales, de ellos es el futuro, allá tiene que ir la agroecología, más que a un sistema impulsado por normas, un movimiento potente que de respuestas a los desafíos de superar las crisis.

Palabras clave: circuitos cortos, jóvenes agroecólogos, planes nacionales, principios agroecológicos
AGROECOLOGÍA Y SU ESCALONAMIENTO

Salgado MN

Movimiento Agroecológico de América Latina y el Caribe (MAELA)
zr.agroecologia@gmail.com

RESUMEN: La Agroecología, como paradigma en emergencia, responde a trayectorias agrícolas sociales económicas y políticas diversas, encabezadas por los pequeños productores /as de alimentos del mundo (agricultores familiares, campesinos, pueblos indígenas, pastores, pescadores artesanales, recolectores) insertas en un territorio, que conviven en comunidades diversas, que tienen un constructo con principios y características en común. El primero de ellos es la construcción de la AUTONOMÍA, que permita la independencia del modelo de artificialización de los procesos socioproductivos y económicos. El segundo de ellos es la CREATIVIDAD Y RESILIENCIA en los procesos de toma de decisiones, incluyendo los procesos de innovación. El tercero de ellos, es el SOSTÉN CRÍTICO de los principios culturales que su comunidad de pertenencia ha construido. El cuarto de ellos es la INTEGRALIDAD en la visión de los procesos territoriales. Por eso, cuando se habla de llevar a escala la AGROECOLOGÍA, el gran desafío para los implementadores de políticas públicas, para los gobiernos, es cómo construir las respuestas desde los territorios, con los pequeños-as productores de alimentos, no con el agronegocio, no con las agroindustrias que representan el modelo imperante del agro, pues se estaría desvirtuando la construcción socio política, conceptual y productiva y no estaríamos construyendo políticas agroecológicas, sino una captación corporativa de este paradigma. Es hora de conversar sobre llevar a escala la AGROECOLOGÍA con los protagonistas de este proceso, bajo una gestión territorial en base a los principios mencionados.

Palabras clave: autonomía, escala, resiliencia, sostenibilidad, territorios
IFOAM-ABM: AGROECOLOGY SCALING-UP APPROACHES

Lušić D1,2

1IFOAM-AgriBioMediterraneo, Athens, Greece
2Department of Environmental Health, University of Rijeka, Croatia
Braće Branchetta 20, 51000 Rijeka, Croatia
e-address: drazen.lusic@medri.uniri.hr

RESUMEN: Modern agroecology, as a discipline, uses ecological doctrines for the design and management of sustainable agro-ecosystems. It has already been widely accepted that industrial agriculture is no longer sustainable, with negative effects greatly exceeding positive outputs. It greatly contributes to climate extremes that are becoming more frequent and violent. It contributes with one third of greenhouse gas emissions, further changing weather patterns thus compromising the world’s capacity to produce food in the future. Due to lack of ecological regulation tools, monocultures are significantly present and heavily dependent on pesticides and fertilizers, with many unreturned questions concerning the impact of the release of transgenic organisms into the environment. Intensification of agriculture by the use of high-yielding crop varieties, fertilization, irrigation and pesticides influences heavily on natural resources with serious health, environmental and social implications. Such knowledge leads to understanding that it is needed to accept behaviour changes and adopt novel approaches that can turn the odds and point to different directions. It is known that resiliency to climatic extremes is closely linked to the level of on-farm biodiversity and represents a major feature of organic agroecological systems. Diversification provides many illustrations on how complex agroecosystems are able to adapt and struggle especially if coupled with development of local markets aimed at reducing the gap between production and consumption. Introduction of agroecological innovations should be considered as of premium importance since resource-lacking units using such systems make themselves much less reliant on external resources. As a part organic world that promotes organic sustainable agriculture, IFOAM AgriBioMediterraneo (IFOAM-ABM) is strongly supporting such practices. With such initiatives it promotes schemes which incorporate elements of both traditional knowledge and up-to-date science. It is based on strengthening of the collaboration networks, consisting of both number of governmental and non-governmental organizations, national and international. It is dedicated to influence policy makers to launch programmes that support and protect small farmers, R&D projects, and to build up important tools for primary producers to facilitate access to expertise, technology and financing.

Palabras clave: agroecology, food security, organic agriculture, scaling-up approaches
CONFERENCIAS
C1. AGRICULTURA Y CAMBIO CLIMÁTICO

Sanz MJ

Basque Centre for Climate Change (BC3),
Parque Científico de Leioa s/n.
Vizcaya
34 (944 014 690)
info@bc3research.org

RESUMEN: Lograr la transformación para la agricultura sostenible supone un gran desafío. Desafío que puede convertirse en una oportunidad para luchar contra el reto que supone el cambio climático. Se espera que los efectos del cambio climático en la producción agrícola y los medios de vida se intensifiquen con el tiempo y que sean diferentes según países y regiones. La alimentación y la agricultura deben ocupar un lugar central en los esfuerzos mundiales para adaptarse al cambio climático, a través de políticas y medidas que aborden la vulnerabilidad y los riesgos y fomenten sistemas agrícolas que sean resilientes y sostenibles. Estas medidas deben comenzar ya, pues con una mayor intensidad en los efectos del cambio climático resultará cada vez más difícil reforzar la resiliencia. Por medio de la introducción de prácticas agrícolas sostenibles pueden lograrse importantes mejoras en la seguridad alimentaria y la resiliencia ante el cambio climático. Una amplia adopción de prácticas como el empleo de variedades de cultivos eficientes en nitrógeno y tolerantes al calor, la labranza cero, la gestión integrada de la fertilidad del suelo, y en general sistemas de prácticas ligadas a la agricultura ecológica y la conservación y mejora de los suelos podrían contribuir a mejorar la resiliencia a la par que contribuir a mitigar el cambio climático. En el ámbito de la agricultura, mitigación y adaptación al cambio climático deben ir de la mano.

Palabras clave: adaptación, agricultura, cambio climático, mitigación
C2. AGROECOLOGICAL BASES FOR FOOD SYSTEMS

Paoletti F

Council for agricultural research and economics – CREA, Rome, Italy
Organic Food System Programme

ABSTRACT: It is widely recognized now that the global food system is not sustainable. It is not delivering food security and healthy food for everyone. Moreover, it significantly contributes to the deleterious changes in climate and other environmental factors. The productionist approach has proved to be unable to solve all forms of malnutrition (hunger, nutrient deficiency, overweight and obesity), which often coexist in many countries. In particular, rising incomes and urbanization are driving a global dietary transition in which traditional diets are replaced by diet higher in calories, processed products, meat, fats, added sugars that supply energy, but little or no other nutrition. The consequence is a worldwide increase of the incidence of overweight and obesity and related non-communicable diseases. Moreover, these consumption patterns strongly influence greenhouse gases emissions, thus contributing to the detrimental environmental impacts of the global food system.

A transformation of the current food systems towards sustainability is urgently needed, in line with the targets set by the United Nations 2030 Agenda and Sustainable Development Goals.

Sustainable models are necessary for this transformation in order to guide interventions within the food systems including inputs and production, processing, storage, transport and retailing, consumption, policymaking and education.

The presentation will be focused on the contribution of agroecology and organic to the transformation process.

The Organic Food System Programme initiative will be presented.

Key words: agroecology, diet, food system, organic, sustainability
C3. AGROECOLOGÍA EN EL MUNDO

Angulo A, Basterrechea T

Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO),
Oficina de la FAO en España
Paseo Infanta Isabel, 1 – planta 3. 28014 Madrid
Arturo.angulo@fao.org, Tfno. +34 91 347 4144 | 91 539 8459
www.fao.org/espana

RESUMEN: En septiembre de 2015, mediante la aprobación de la Agenda 2030, la comunidad internacional ratificó el compromiso a favor del desarrollo sostenible. La Agenda, ambiciosa y transformadora, supone el reconocimiento de la insostenibilidad del modelo de desarrollo en el que la humanidad está inmersa y la superación de un eje de cooperación exclusivamente Norte-Sur. La alimentación y la agricultura están en el corazón de la Agenda, y sus desafíos actuales: el hambre, la obesidad, la contaminación ambiental, la pérdida de biodiversidad, la agricultura basada en los combustibles fósiles, el abandono del campo, etc. requieren un profundo proceso de reflexión y transformación de los aspectos fundamentales que guían el desarrollo actual y los sistemas agroalimentarios. La agroecología, entendida como un enfoque integrado que aplica simultáneamente conceptos y principios ecológicos y sociales al diseño y la gestión de los sistemas alimentarios y agrícolas, está llamada a tener un papel fundamental como herramienta de transformación social, ambiental y económica que contribuye a múltiples ODS, especialmente al ODS 2.

La Agroecología es una realidad en todo el mundo y ha sido empleada en el campo desde hace muchos años. Para avanzar hacia sistemas alimentarios sostenible es esencial incluir la agroecología en los marcos legales y reglamentarios que abordan diversos aspectos, desde la producción hasta los mercados, creando un entorno propicio. Cada vez hay más países que apoyan la agroecología con leyes, regulaciones y políticas nacionales, ya sea directa o indirectamente. La FAO ha estado trabajando en el mapeo y actualización de una base de datos de estos marcos jurídicos en coordinación con FAOLEX: www.fao.org/agroecology/policies-legislations/es

Palabras clave: agroecología, normas, objetivos de desarrollo sostenible, sistemas alimentarios
C4. INVESTIGACIÓN TRANSDISCIPLINAR Y PARTICIPATIVA PARA LA BIODIVERSIDAD CULTIVADA

Chable V

INRA (Institut National de la Recherche Agronomique), UMR BAGAP (Biodiversité, Agroécologie, Aménagement du Paysage), 65 rue de Saint Brieuc, 35042 RENNES, France
veronique.chable@inra.fr

RESUMEN: La biodiversidad es reconocida como esencial para la vida en la tierra y para los ecosistemas, dándoles la capacidad de una evolución continua. Nuestra hipótesis asume que la agricultura ecológica es, en esencia, una agricultura basada en la adaptabilidad de las plantas a su entorno para optimizar el potencial que ofrecen un territorio determinado y las prácticas agronómicas.

Desde la década de 2000, cuando se impuso una normativa europea para producción ecológica basada en semillas ecológicas, los agricultores se preguntaron sobre la naturaleza de las variedades disponibles. En estas circunstancias, se inició un proceso de investigación participativa en Francia y Europa entre agricultores e investigadores, con el objetivo de explorar conjuntamente los recursos genéticos de varias especies y establecer una selección in situ (en los campos del propio agricultor), basada en una red de colaboradores, lo cual derivó en la creación de redes asociadas o “Community Seed Banks” comprometidos colectivamente con la multiplicación de las variedades cultivadas respetando los procesos biológicos naturales para la selección y producción de semillas. Entre otras el Réseau Semences Paysannes en Francia, Rete Semi Rurali en Italia y la Red de Semillas en España. Una forma de investigación apoyada por los programas europeos desde 2007.

Actualmente, el proyecto H2020 DIVERSIFOOD promueve al mismo tiempo: i) el arraigo de la biodiversidad cultivada y el apoyo a redes de actores locales, con ii) la reintroducción de especies o cultivos infrautilizados u olvidados en Europa, iii) desarrollando estrategias de fitomejoramiento dirigidos a crear nuevas poblaciones de plantas cultivadas más diversas y iv) ampliando el círculo de agentes implicados (molineros, panaderos, transformadores) con el objetivo de desarrollar una investigación multidisciplinar y explorar las oportunidades de comercialización de una oferta más diversa de productos.

Palabras clave: biodiversidad agraria, fitomejoramiento, participación
RESUMEN: La Agroecología es un enfoque sobre los procesos agrarios que se suele definir como el manejo ecológico de los recursos naturales a través de formas de acción social colectiva. Dicha acción se promueve a través de desarrollos participativos desde los ámbitos de la producción y la circulación alternativa de los alimentos con la idea de establecer formas de producción y consumo que contribuyen a encarar la crisis ecológica y social. Desde esta perspectiva, una producción ecológica certificada puede ser funcional a un modo agroecológico o, por el contrario, a un manejo industrial de los recursos naturales visible en los procesos de sustitución de insumos con un engranaje en los mercados de exportación. El debate se centra, por tanto, en la clasi-fi-cación conceptual y en el recorrido de los diversos estilos productivos vinculados a la agroecología así como de la gama de propuestas y sus limitantes. Profundizar en el potencial de la producción ecológica y sus esfuerzos para abrir propuestas agroecológicas desde las trayectorias y los aprendizajes de cada iniciativa es un reto en el que debemos incidir constantemente puesto que no existen recetas ni soluciones perfectas sino contextos, recursos, saberes y enfoques con los que abordar la incertidumbre y la complejidad de la cuestión agraria y alimentaria.

Palabras clave: acción social colectiva, diálogo de saberes, manejos ecológicos, manejo industrial, multidimensionalidad
C6. ADAPTACIÓN DE LA VITICULTURA ECOLÓGICA AL CC.

Bartrá E

Departament d’Agricultura, Ramaderia, Pesca i Alimentació
Plaça Àgora, 2-3 | 08720 | Vilafranca del Penedès | Telèfon: 93.890.02.11
ebartra@gencat.cat

RESUMEN: El cambio climático está comportando desde hace años y está previsto que comporte en el futuro entre otros: aumento de la temperatura media y máxima, menor disponibilidad hídrica y mayor frecuencia de situaciones extremas (calor o frío intenso, sequía o inundaciones, etc.). Este conjunto de situaciones afecta al cultivo de la viña y a la elaboración de vino. Las prácticas vitícolas para adaptarse al cambio climático incluyen sistemas de aumento de la capacidad de retención del agua en el terreno, evitar la erosión, control del vigor, prevención de mildiu, oidio y podredumbre y el estudio de variedades, clones y porta injertos resistentes a la sequía y enfermedades. Un problema añadido que puede ser una amenaza para el sector ecológico es la limitación del uso del cobre como fungicida en Europa y, en particular, la renovación de fungicidas con cobre en España. En el ámbito enológico también se requieren técnicas de adaptación al cambio climático y a la tendencia a mayor concentración de azúcares en el mosto, menor contenido de nitrógeno y el estudio de levaduras y bacterias adaptadas a éstas condiciones. También se recomienda utilizar un mejor aislamiento, energías alternativas y reducir la huella hídrica y de carbono en la viña y la bodega para no tan sólo adaptarse si no también colaborar a mitigar las causas del cambio climáticos por parte de viticultores y bodegas.

Palabras clave: cambio climático, enología, viticultura ecológica
C7. NECESIDADES DE INVESTIGACIÓN EN AGRICULTURA ECOLÓGICA

de Porras M

F:BL Europe, Brussels Office
Research Institute of Organic Agriculture F:BL
Rue de la Presse 4, Brussels, Belgium
miguel.deporras@fibl.org

RESUMEN: La agricultura ecológica ha pasado de ser un tipo de agricultura practicada y comercializada en determinados “nichos” a convertirse en uno de los mercados más dinámicos de la agricultura europea. Esta diseminación y generalización de este método de producción ha sido posible gracias al creciente interés de los consumidores europeos en hábitos más saludables y sostenibles en su alimentación. Sin embargo, este crecimiento no ha venido acompañado por un incremento en los recursos disponibles para la investigación en agricultura ecológica. La investigación, el desarrollo y la innovación son claves para resolver los problemas de producción que cualquier sistema agrícola. Pero son aún más necesarios cuando lo que se trata de cambiar de paradigma para analizar la agricultura desde el punto de vista de los sistemas agroalimentarios. El cambio climático, la pérdida de biodiversidad, la erosión de los suelos, los malos hábitos alimentarios, la pérdida de agricultores, etc. son problemas íntimamente relacionados con dichos sistemas y es por ello que una visión holística es necesaria para poder resolverlos. Sin embargo, el grueso de los recursos, públicos y privados, destinados a la investigación continúa invirtiéndose en tecnologías que no han resultado capaces de resolver, incluso han agravado, los principales problemas de nuestros sistemas agroalimentarios. La agricultura ecológica, que nace como movimiento que introdujo por primera vez esta visión sistémica, esta llamada no solo a ganar mercados, sino a actuar a la vanguardia de la comunidad científica en la creación de conocimiento que permita la transición de nuestros sistemas agroalimentarios.

Palabras clave: agricultura ecológica, investigación, sistemas agroalimentarios, transición
C8. AGRICULTURA ECOLÓGICA Y CALIDAD VITIVINÍCOLA

Raigón MD

Sociedad Española de Agricultura Ecológica/Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, E-46022 Valencia; Tel: 34 963877347 ext. 73470
m draigon@qim.upv.es

RESUMEN: La calidad de un vino ecológico empieza en el viñedo y es el resultado de un amplio conjunto de factores que intervienen desde el inicio del ciclo vegetativo, hasta llegar al consumidor, incluyendo la recolección de la uva y el resto de procesos que influyen en la vinificación y conservación del vino. Los principales factores que afectan a la calidad del vino se pueden agrupar en:
1. Factores relacionados con el hábitat de la vid.
2. Factores dependientes de la especie y variedad.
3. Factores relacionados con las prácticas de viticultura.
4. Factores relacionados con las prácticas enológicas.

Los vinos ecológicos deben seguir un proceso natural desde que se vendimian las uvas hasta que son embotellados. La normativa comunitaria establece requisitos a todos los procesos que sufren los vinos en las bodegas, excluyendo procesos físicos y químicos como la concentración parcial en frío, la restricción del anhídrido sulfuroso, la desalcoholización parcial o los tratamientos mediante electrodiálisis o con intercambiadores de cationes para la llamada estabilización tartárica del vino.

El contenido de polifenoles totales de un vino aporta información sobre su calidad en cuanto a capacidad antioxidante y son, junto con el alcohol y la acidez, los pilares fundamentales de este producto. Además tienen una marcada influencia en las características sensoriales del mismo ya que son los responsables del color, en los vinos tintos, y de los atributos gustativos astringencia, amargo y cuerpo. En la actualidad los vinos ecológicos compiten con los convencionales en precio y en calidad. Hay que destacar las extraordinarias características organolépticas que se pueden conseguir y por ello atraen cada día más al consumidor, no solo por sus especiales características y propiedades beneficiosas sino también por sus buenas características organolépticas.

Palabras clave: hábitat, prácticas enológicas, prácticas vitivinícolas, variedad, vino ecológico
C9. ¿SOSTENIBILIDAD, TRANSICIÓN O DECRECIMIENTO?: EL PAPEL DE LA AGROECOLOGÍA Y DEL ECOFEMINISMO

Costanzo Talarico MG
Grupo de investigación EcoEcoFem, Ctra. de Utrera, 1, E-41013 Sevilla

RESUMEN: El desarrollo productivista del sistema neoliberal ha provocado un crecimiento exponencial en la explotación ambiental y un consumismo sin frenos, llegando casi a un punto de no retorno del agotamiento de los recursos. El sistema agroalimentario actual es claramente una expresión de este modelo económico, con una redistribución profundamente desigual de los alimentos. Frente a todo esto, son muchas las propuestas para sanar las marcas dejadas.

El concepto de decrecimiento evidencia la urgencia de la necesidad de parar un crecimiento sin frenos que nos está llevando a la (auto) destrucción: el nuestro es un mundo “finito” que precisa “decrecer”, oponiéndose a los parámetros de una economía convencional que no tiene en cuenta los riesgos que estamos viviendo. De esta forma, el decrecimiento se propone como un nuevo paradigma que plantea el reto de “vivir mejor con menos”, abriendo el camino a una sostenibilidad que incluya aspectos de justicia social además que ambientales.

Un elemento sobre el que reflexionar en esta nueva sostenibilidad, es la relación entre seres humanos. Esta fricción resulta ser el debate existente entre el ecologismo y el feminismo, lo que hace necesario que el proceso de encuentro entre ambas corrientes implique no poder “pensar la sostenibilidad si no va acompañada de equidad”. Desde el pensamiento feminista se resalta que las necesidades físicas, biológicas y afectivas universales han sido cubiertas por un papel realizado históricamente por las mujeres, en lo que se conoce como la división sexual del trabajo. No obstante el fundamental papel que han desempeñado históricamente las mujeres en la esfera doméstica, el trabajo no remunerado de las mujeres ha sido totalmente invisibilizado y ninguneado. En este sentido, es necesario incorporar una perspectiva ecofeminista que visibilice las resistencias que en varios territorios del mundo están siendo encabezadas por mujeres, poniendo en el centro la protección de los bienes comunes como la tierra, el agua o los saberes locales. Las muchas formas de resistir y construir propuestas alternativas de las mujeres, fomentan la protección del territorio y se materializan en iniciativas agroecológicas concretas que impulsan una sostenibilidad que incluye aspectos ecológicos, socio-económicos y de género.

Palabras clave: agroecología, decrecimiento, ecofeminismo, resistencias
PANELES
P1. RELOCALIZACIÓN DEL CONSUMO Y LA PRODUCCIÓN DESDE LA ECONOMÍA SOCIAL

LA RELOCALIZACIÓN VA A SUCEDER, LO QUE ESTÁ EN DISPUTA ES CÓMO

González Reyes L

Ecologistas en Acción
Calle Marqués de Leganés, 12, 28004 Madrid
luis.glez.reyes@nodo50.org

RESUMEN: Relocalizar el consumo y la producción no es una opción, es algo que sucederá inevitablemente. El modelo agroindustrial es muy dependiente de los combustibles fósiles en general y del petróleo en particular. Los necesita para los insumos (pesticidas, abonos), el cultivo (maquinaria) y la distribución globalizada. Además de combustibles fósiles, este modelo alimentario necesita de otra serie de recursos no renovables, como el fósforo. Mientras que durante el siglo XX se produjo una disponibilidad al alza de estos recursos, en el siglo XXI está empezando (o próximo a comenzar) el proceso contrario. Además, no existen alternativas para sostener el modelo agroindustrial con energías renovables. Esto conllevará que este modelo globalizado no sea sostenible y se tengan que abrir paso modelos de agricultura más ecológica y de cercanía.

Sin embargo, agricultura ecológica no es lo mismo que la agricultura agroecológica. El componente de justicia social solo llegará como consecuencia de la aglutinación de luchas y de proyectos que tengan la suficiente fuerza y ganen la suficiente escala para evitar la eclosión de otras basadas en la dominación de unas personas sobre otras. En este siglo, además de grandes riesgos y retos, también existirán oportunidades inéditas para el desarrollo agroecológico como consecuencia de los contextos que se abrirán.

Palabras clave: agroecología, colapso, relocalización
AUMENTO DE ESCALA DEL CONSUMO RESPONSABLE AGROECOLÓGICO

Morán A

La Garbancita Ecológica. c/Puerto del Milagro, 8, E-28018 Madrid
Email: lacerstabasica@lagarbancitaecologica.org; Tel: 626032012

RESUMEN: Sin lucha contra el cambio climático no habrá agua ni alimentos sanos para la mayoría de la humanidad. La Agroecología contribuye a la fertilidad de la tierra, el ahorro de agua, la reducción de la huella de carbono y la resiliencia frente al cambio climático.

La Alimentación Agroecológica no puede prosperar sin la transformación del consumismo compulsivo en consumo responsable y sin redes propias de distribución eficientes y sostenibles.

La Alimentación Agroecológica: a) No emplea químicos que matan la vida del suelo, plantas y animales. b) Respeta la fertilidad de la tierra proporcionando más vitaminas y minerales en los alimentos. c) Favorece la biodiversidad de especies que garantizan equilibrio ecológico y protección de las cosechas. d) Ofrece alimentos de cercanía y temporada, recién recolectados y plenos de vitalidad. e) Emplea trabajo digno para producir alimentos saludables y sostenibles. f) Construye comercio justo entre agricultor@s y consumidor@s. g) Promueve la igualdad entre mujeres y hombres en producción de alimentos y cuidados. h) Cierra el ciclo energía/nutrientes y ahorra/depura agua. i) Respeta a los animales. j) Contempla calidad, cantidad, vitalidad, proporción, combinación, orden de la ingesta y masticación de los alimentos; k) Educa en hábitos saludables.

La Garbancita Ecológica, cooperativa de consumidor@s y productor@s sin ánimo de lucro, se creó en Madrid hace diez años como logística de los Grupos Autogestionados de Konsumo (GAKs) para el fomento del consumo responsable agroecológico, autogestionado, popular, ecofeminista y de responsabilidad compartida agricultores-consumidores mediante suministro de alimentos, educación y asesoría a escuelas.

Palabras clave: agroecología, autogestión, circuitos cortos, responsabilidad compartida, soberanía alimentaria
OTRA FORMA DE ALIMENTARSE ES POSIBLE

Cifre H, Navalón F

Som Alimentació
Maximiliano Thous 26
Valencia
www.somalimentacio.com

RESUMEN: El consumo de productos ecológicos crece año tras año a un ritmo ya imparable. Los alimentos ecológicos han aparecido con fuerza en casi todas las grandes superficies de distribución, al tiempo que coexisten con iniciativas clásicas de consumo ecológico, como son las tiendas especializadas y los grupos de consumo.

Los grupos de consumo clásicos requieren de un gran esfuerzo y tiempo para finalmente acceder a un limitado oferta de productos. Siguen bebiendo de un enorme activismo social que imposibilita la escala de estas iniciativas a sectores más amplios de población.

Las tiendas especializadas y la gran distribución ponen al alcance de l@s consumidor@s una amplia gama de productos posibilitando una compra 100% “ecológica”, todas ellas con un importante espíritu empresarial que busca maximizar sus beneficios económico. Sin embargo, vivimos en un contexto de crisis múltiple (económica, ecológica y social) que no podemos dejar de mirar y se hace obligatorio un replanteamiento de nuestra compra y de nuestra alimentación. En este sentido, relocalizar el consumo y la producción de productos ecológicos es una necesidad.

Ya no podemos atender únicamente a la “vertiente” egoísta del consumo, donde nos preocupamos por nuestra salud, sino que debemos atender (y cada vez más) al cuidado del planeta y de las personas productoras. Para much@s la etiqueta ecológica ya no es suficiente y buscamos nuevas construcciones de relaciones sociales entre el campo y la ciudad, buscando poder hacer una compra variada y diversa de productos agroecológicos. Quién ha producido mi comida, dónde y de qué manera, son preguntas necesarias. Todas estas razones han impulsado el nacimiento del primer supermercado cooperativo y colaborativo en la ciudad de Valencia: Som Alimentació. Es un espacio donde poder encontrar todo lo necesario para el consumo diario con productos ecológicos y locales a un precio justo para todos, donde l@s soci@s elegimos que alimentación queremos y establecemos entre tod@s los criterios de las compras.

Palabras clave: agroecología, consumo responsable, sistemas agroalimentarios
RESUMEN: FACPE es una federación en la que convergen siete organizaciones de producción y consumo ecológico de cinco provincias andaluzas. Somos asociaciones y cooperativas que nos movemos en el marco de la agroecología, el consumo responsable y local y la economía social de forma autogestionada, asamblearia y participativa.

Trabajamos en relocalizar la producción y el consumo de productos, poniendo a disposición de los/as consumidores/as alimentos ecológicos priorizando lo local, acortando distancias en la distribución y minimizando el consumo de combustibles fósiles tanto en el transporte como en el envasado, priorizando el granel. Establecemos relaciones de confianza y compromiso con los/as productores/as, planificando la producción por temporadas, consensuando precios, visitando las fincas, poniendo cara y voz a quienes producen nuestra comida.

Cada una de las entidades cuenta con una forma de organización, gestión y toma de decisiones propia y autónoma, teniendo en común el estar integradas por personas consumidoras y productoras de productos ecológicos, sumando más de 1700 unidades de consumo y unas 170 productoras, y objetivos comunes como el fomento y sensibilización sobre la producción y el consumo ecológico y de cercanía, el acercamiento mundo rural-mundo urbano, el establecer precios estables, justos, dignos y no especulativos y el anteponer a las personas y las relaciones de apoyo y confianza.

Para alcanzar nuestros objetivos hemos puesto en marcha diferentes modalidades de canales cortos de comercialización, incluyendo tiendas abiertas a personas socias, tiendas abiertas a personas socias y no socias, reparto de cestas y organización de mercadillos semanales; además de realizar charlas, talleres, visitas a las fincas e industrias del sector o articular un sistema participativo de garantía como herramienta de dinamización y generación de confianza.

Una red de redes, articulada cada una en su territorio y a nivel andaluz en FACPE.

Palabras clave: agroecología, canales cortos, economía social, SPG
CONdena vs PRopuesta

Sánchez Agirregomezkorta D

Grupo de consumo Ekoeki
totelka@riseup.net

RESUMEN: Vivimos en un mundo en el que gracias a la proliferación de la información todos somos conscientes en mayor o menor medida de un abrumador número de situaciones de nuestra vida cotidiana que hacen que se tambalee nuestro sistema de valores. Conocemos bien que en nuestra cesta de la compra hay productos con agrotóxicos, fruto de la explotación animal, procedentes de monocultivos impuestos por grandes multinacionales, productos ligados a pérdida de biodiversidad o deforestación, otros que sustentan guerras y poblaciones oprimidas...

Todo este conocimiento, si bien es necesario, genera una sensación de frustración y parálisis ante la magnitud de cualquier intento de regir nuestro consumo por criterios que, si bien en un marco teórico, son compartidos por la mayoría, caen en el abismo del olvido ante la magnitud de la tarea y el choque brutal que supone con estilos de vida generalizados en nuestras sociedades.

Ante estas realidades es cierto también que van surgiendo proyectos, la mayoría de ellos pequeños, con bases éticas poderosas que suponen una alternativa y que luchan para abrirse paso en canales de comercialización copados por grandes grupos.

Es por ello que quizás sea necesario que pongamos más el acento en las alternativas que en la condena, vehiculando canales y formatos que permitan a esos pequeños proyectos que van naciendo aquí y allí darse a conocer y tener una posibilidad de prosperar. Y es ahí donde los grupos de consumo pueden aportar posibilidades de éxito a muchos de estos proyectos si es que son capaces de adaptarse a la realidad cambiante de nuestras sociedades.

Palabras clave: agrotóxicos, alternativas, grupos de consumo, sistema de valores
P2. AGROECOLOGÍA, SALUD Y ECOFEMINISMO

ECOFEMINISMO Y ALIMENTACIÓN RESPONSABLE AGROECOLÓGICA

Galindo Martínez P

La Garbancita Ecológica y Grupo de Ecofeminismo de SEAE
c/Puerto del Milagro, E-8 28018 Madrid
Email: lacestabasica@lagarbancitaecologica.org
tfno.: 690198356

RESUMEN: Alimentación es tarea de cuidados: producir, distribuir, comprar y cocinar para nutrir, dar salud y placer a quienes consumen los alimentos. La alimentación industrializada y globalizada es enfermante: aumenta la productividad en base a químicos y hormonas que disminuyen la fertilidad del suelo y proporciona alimentos desvitalizados, desmineralizados y cargados de tóxicos. Esta dieta, al reducir vegetales, cereales integrales y legumbres y aumentar carne y azúcar, debilita la flora intestinal que protege nuestra salud.

La alimentación globalizada produce millones de enfermedades y muertes evitables, destruye la naturaleza y provoca cambio climático, desequilibrio territorial y emigración.

Las mujeres somos más vulnerables a agrotóxicos y disruptores endocrinos por mayor tejido graso y los transmitimos en embarazo y lactancia. Aumentan las personas enfermas por químicos y el trabajo de cuidados que recae mayoritariamente en nosotras.

La crítica ecofeminista cuestiona la subordinación de la vida y los cuidados a la producción y reproducción del capital en la alimentación industrializada, mercantilizada y globalizada.

El Ecofeminismo denuncia la subordinación de las mujeres a los hombres y cuestiona un desorden alimentario que destruye la naturaleza e impide cooperación, salud, seguridad y soberanía alimentaria.

La Alimentación Agroecológica requiere repartir las tareas de cuidados mujeres/hombres, no subordinar producción y reproducción de la vida al beneficio económico y que la actividad económica incluya las relaciones recíprocas de cuidados.

Cooperación, igualdad de género y cuidados deben impregnar la cadena de valor alimentaria: producción, transporte, distribución, cultura nutricional y campesina, cocinagastronomía, familias, escuela, restauración colectiva y consumo.

Palabras clave: cuidados en clave agroecológica, feminismo, reparto equitativo de trabajo de cuidados, salud y mujeres, subsunción de la vida al capital
RURALIDADES DIVERSAS, AGROECOLOGÍA Y SOSTENIBILIDAD: UNA MIRADA DE GÉNERO

Cruz F

Cátedra de Estudios de Género
Instituto de Investigación en Gestión Forestal Sostenible, Universidad de Valladolid
ETS Ingenierías Agrarias Universidad de Valladolid - Avd. Madrid s/n, E-34004 - PALENCIA
fatimaregina.cruz@uva.es

RESUMEN: Aunque a veces cueste creerlo, principalmente a los que miran desde fuera, hablar del medio rural es cada vez más hablar de diversidad, una amplia diversidad de personas, de paisajes y de realidades. Lo rural es complejo. Lejos debería quedar la idea de ruralidad como mundo agrario - con la agricultura y la ganadería como actividades principales, los varones como protagonistas, y donde la mayoría de la población rural estaba vinculada a ese sector productivo. En Europa los territorios rurales vienen caracterizándose por la masculinización, la despoblación y el sobreenvejecimiento poniendo de relieve la importancia de las cuestiones de género para la sostenibilidad social de esos entornos. Un análisis detenido de la evolución demográfica del medio rural en España muestra que las mujeres procuran alejarse de espacios donde perciben limitadas posibilidades de desarrollo personal, económico y social. Mientras tanto, en las últimas décadas, una especial sensibilidad socioambiental viene conquistando el espacio público y ganando interés en las prácticas femeninas. Muchas mujeres, en pequeños grupos o desde amplios movimientos sociales, ponen el foco sobre la soberanía alimentaria, la salud personal y comunitaria, el rescate de saberes tradicionales y la búsqueda de entornos que ofrezcan mejor calidad de vida. Así, se construyen nuevas ruralidades, más atractivas y vinculantes para las mujeres y también para hombres, que no se acomodan en reproducir los mandatos productivistas del neoliberalismo. Sin embargo, cabe cuestionarnos sobre dónde y cómo están mujeres y hombres en esos escenarios y hasta qué punto se están superando las desigualdades y subordinaciones de género.

Palabras clave: nuevas ruralidades, agroecología, género y feminismo
REFLEXIONES SOBRE AGROECOLOGÍAS Y FEMINISMOS

García Roces I, Soler Montiel M

ISEC y Asociación Varagaña-Género y Agroecología
ISEC, Edificio Gregor Mendel Planta Baja, Campus Rabanales, Córdoba

RESUMEN: Parto de la idea de que la construcción de una agroecología feminista está en marcha, tanto en las prácticas como en las ideas que impulsan esas prácticas. Para fortalecer este proceso es necesario hacer y a la vez reflexionar sobre lo que estamos haciendo y lo que está pasando a nuestro alrededor, tanto para orientar nuestras acciones como para visibilizarlas. También para vivir con menos angustia el capitalismo que nos devora la vida.

Inicialmente propongo reflexionar sobre qué es y cómo podemos construir una agroecología feminista. Así como cuáles son, desde las vivencias compartidas y las realidades locales, algunos de los frenos a los que se enfrenta esa agroecología feminista en construcción. Esta es una reflexión abierta y “situada” ya que creo que la agroecología feminista solo puede construirse desde la realidad encarnada de la gente, y en especial, desde la vida cotidiana de las mujeres.

También me gustaría reflexionar sobre qué entendemos que es una agroecología feminista identificando algunas “barreras”. Finalmente, indicar algunas cuestiones que consideramos fundamentales para la acción. Este texto no pretende sentar cátedra sobre qué hacer o qué está pasando. Tan solo socializar algunas de las reflexiones compartidas con mi amiga y compañera de militancia Marta Soler Montiel en largas conversaciones entre Gijón y Sevilla (dos territorios periféricos) como forma de enriquecer un debate que ya está en curso sobre la necesidad de integrar perspectivas feministas y agroecológicas en las teorías y en las prácticas.

Palabras clave: debate, mujeres, perspectivas, realidades locales
RESUMEN: Las mujeres somos cíclicas gracias al ritmo biológico de nuestras hormonas, que van ligadas a nuestros neurotransmisores y esa combinación, determina como nos sentimos emocionalmente, nuestra capacidad cognitiva de pensamiento, nuestra fuerza física y hasta nuestro deseo sexual, en definitiva gracias a ese biorritmo vivenciamos diferentes estados que nos hacen experimentar, sentir, reflexionar y desde ahí planteamos cambios, evolucionar y ser cada día más plenas y más felices.

Es decir la existencia de las mujeres va ligada a la sintonía hormonal, y este equilibrio va a determinar su salud y bienestar.

Pero, ¿dónde nos encontramos hoy?.

Actualmente, nuestro mundo moderno industrial, se caracteriza, por estar sobrecargado de sustancias químicas que se comportan como hormonas, y como tales atentan directamente a la salud y al bienestar de las mujeres.

Son sustancias químicas que se comportan como hormonas, en concreto como estrógenos y así, provocan desequilibrios hormonales y patologías de nuestros órganos reproductivos.

Por estos efectos en conjunto, estos estrógenos químicos afectan tan negativamente a la fertilidad humana.

La buena noticia es que es muy sencillo y accesible reducir nuestra exposición a estas sustancias dañinas para la salud femenina.

Así, en este encuentro SEAE, conoceremos donde están estos estrógenos químicos y recomendaciones practicas para minimizar nuestra exposición a ellos.

Por ello esta invitación a explorar y reflexionar juntas sobre nuestra salud.

Las mujeres tenemos un desafío: respetar nuestra naturaleza, y abrir los ojos para ser conscientes de cómo cuidar de nuestra feminidad.

Palabras clave: alimentación, contaminantes ambientales, salud
P3. LA PROPUESTA DE PAC DE LA COMISIÓN EUROPEA

LA PAC POST 2021: LA PROPUESTA DE LA COMISIÓN EUROPEA

Ramón R, Mugica M

European Commission
DG Agriculture and rural development
Unit C-1 Agricultural Policy Analysis and Perspectives
B-1049 Bruxelles/Belgique

RESUMEN: Tras un intenso año de debate y de trabajo analítico (incluida una consulta pública muy participativa), el 1 de junio de 2018 la Comisión Europea presentó sus ideas para la Política Agrícola Común (PAC) de después de 2020 en forma de tres propuestas legislativas.

Las propuestas de la PAC se centran en la simplificación y la modernización de la política para mantenerla preparada para el futuro. Además de los objetivos tradicionales de asegurar la renta agrícola, la seguridad alimentaria y la protección del medio ambiente, la futura PAC también abordará nuevas demandas sociales (por ejemplo, el bienestar de los animales).

También se propone una nueva asociación entre la UE y sus Estados miembros. En el futuro, a nivel de la UE se definirán los elementos necesarios para alcanzar los objetivos comunes de la UE. El diseño detallado de las medidas políticas corresponderá a cada Estado Miembro y se propondrán en un documento estratégico, el plan estratégico de la PAC. Allí tendrán la oportunidad de adoptar medidas específicas y simples en función de las necesidades de sus agricultores y de las zonas rurales.

La Comisión también propone una distribución más justa y mejor orientada de las ayudas directas que estarán más centradas en los pequeños y medianos y los jóvenes agricultores, un nuevo conjunto de medidas para mejorar el medio ambiente en consonancia con la mayor ambición de la UE en materia de protección del medio ambiente y acción por el clima, un apoyo continuo al crecimiento, el empleo y las inversiones en las zonas rurales y un impulso para aprovechar plenamente las nuevas tecnologías e innovaciones. Todo ello contribuirá a garantizar que la futura PAC pueda permitir que la agricultura de la UE siga proporcionando beneficios a los ciudadanos de la UE y contribuya a mantener las zonas rurales de la UE como espacios vitales.

Actualmente, la Comisión está facilitando los debates en el Parlamento Europeo y el Consejo de la UE, que, en su calidad de colegisladores, tienen la última palabra en la aprobación de las propuestas.

Palabras clave: medio ambiente, nueva gobernanza, simplificación y modernización
RESUMEN: El sector agrícola europeo actualmente enfrenta una serie de retos fundamentales que incluyen una caída constante en el número de agricultores, el declive del bienestar económico y social de muchas comunidades rurales en todo el continente, una degradación sin precedente de los recursos naturales y el aumento de desastres naturales relacionados al cambio climático. La PAC actual no ha sido capaz de revertir esta situación y en algunos casos ha empeorado las cosas. Es por ello que IFOAM EU en su estrategia para el futuro de la PAC publicada en 2017 mantiene que ante todo los fondos públicos de dicha política deben apoyar a los agricultores que provean servicios y bienes públicos que beneficien a toda la sociedad y no solo a un determinado sector.

En el contexto de la reforma post 2020, es esencial que la PAC facilite la transición a gran escala hacia modelos de agricultura durable, como son la agricultura ecológica y la agroecología. IFOAM EU en su reciente posición sobre la PAC apoya con cautela el modelo basado en resultados y condicionalidad reforzada propuesto por la Comisión Europea. ¡No obstante, falta ambición! Al menos 70% de los fondos de la PAC deberían centrarse en los objetivos medioambientales para dar verdaderos incentivos a los agricultores que cambien sus sistemas de producción. No queda claro bajo los nuevos Regímenes ecológicos los sistemas/prácticas agrícolas que estos apoyarán o si podrán gestionarse a nivel regional. El rol del instrumento para la Gestión de riesgos debería limitarse para que no incentive prácticas agrícolas que van en contra de los objetivos medioambientales.

La nueva PAC debe evitar a toda costa los riesgos de renacionalización y fragmentación. Por ello es importante aplicar un fuerte sistema de gobernanza y reglas comunes rigiendo los planes nacionales, que al mismo tiempo garanticen la participación a nivel nacional de la sociedad civil y los diferentes gremios agrícolas.

Palabras clave: bienes públicos, desarrollo rural, medioambiente, regímenes ecológicos, UE
POR OTRA PAC

Peiteado Morales C

WWF España
Gran Vía de San Francisco, 8. Esc D, E-28005 Madrid
agricultura@wwf.es

RESUMEN: Ésta no es la política agraria común (PAC) que esperábamos, ni la que necesitamos. De nuevo en reforma, por no cumplir los objetivos sociales, económicos y ambientales previstos, el debate sobre la PAC se centra en minimizar los recortes presupuestarios y en neutralizar cualquier progreso hacia una política justa y sostenible. De esta forma, se sigue destinando sólo un 25% del presupuesto al desarrollo rural, desaparecen los pagos verdes del primer pilar y se sustituyen por Ecoesquemas, sin presupuesto mínimo blindado. Se omite toda mención a los Sistemas Agrarios de Alto Valor Natural y se siguen permitiendo los pagos directos basados en derechos históricos, a pesar de dejar fuera del sistema a la agricultura y ganadería más respetuosa con el medio ambiente. Además, desaparece la medida propia de producción ecológica, se simplifica el sistema de indicadores de seguimiento y se da vía libre a los estados para diseñar actuaciones y medidas en función de sus necesidades. Esto, sin una gobernanza adecuada, que asegure la participación pública de la sociedad civil en el debate, diseño, aplicación y seguimiento de la PAC, puede llevarnos a una política con poco de “común”, nada amigable con el clima y la naturaleza, que deja fuera de juego a los productores que no quieren convertir el campo en una fábrica. En la alianza #PorOtraPAC trabajamos más de 20 organizaciones para cambiar el final del cuento, buscando una PAC que apoye la transición hacia Sistemas Alimentarios Sostenibles, en los que agricultores y consumidores recuperen la posición preeminente que les corresponde por derecho.

Palabras clave: dinero público, sostenibilidad, transición agroecológica
LA REFORMA DE LA PAC

Fontevedra Carreira E

Dirección General de Desarrollo Rural, Innovación y Política Forestal
Ministerio de Agricultura, Pesca y Alimentación
Avda. Gran Vía de San Francisco, 4-6. E-28005. Madrid
Tel: 91 3471808; efonteve@mapama.es

RESUMEN: La Política Agrícola Común (PAC) desempeña un papel clave en el mantenimiento del tejido rural y en la contribución a la producción de alimentos de calidad a través del segundo pilar.

Los métodos de producción ecológicos aportan, por un lado, productos ecológicos a un mercado específico que responde a la demanda de los consumidores y, por otro, bienes públicos que contribuyen a la protección del medio ambiente y al desarrollo rural.

A pesar de que la participación del sector agrícola ecológico y el mercado de productos ecológicos van en aumento, los mayores costes y menor producción de la agricultura ecológica no resultan totalmente remunerados, vía precio, por los consumidores finales.

Para contribuir al crecimiento de este sector en España, la agricultura ecológica es apoyada mediante una medida específica, con más de ochocientos millones de euros en los Programas de Desarrollo Rural 2014-20.

Esta ayuda tiene por objeto incentivar a los agricultores y ganaderos a transformar los métodos de producción convencionales en métodos de agricultura ecológica según se define en el Reglamento (CE) nº 834/2007 del Consejo, así como a mantener estos métodos después del período inicial de la conversión.

Así mismo, otras actuaciones financiadas en los PDRs, como la promoción de los productos bío, la investigación local mediante la EIP, el fomento de la trasformación, la difusión en jornadas y seminarios, los encuentros e intercambios de saberes entre agricultores y el impulso a los mercados locales contribuyen a concienciar a la sociedad sobre la importancia de estas producciones.

Palabra clave: apoyo, bienes públicos, desarrollo rural
POR UNA PAC DESDE LA AGROECOLOGÍA

Calafat A

Sociedad Española de Agricultura Ecológica/Agroecología (SEAE)
Cami del Port, S/n. Km 1 Edif. ECA - (Apdo 397)
E 46470 Catarroja (Valencia); Tel: +34 96 126 71 22

RESUMEN: La Unión Europea-UE se enfrenta a grandes retos. El debate se centra en las medidas necesarias para encajar el Brexit o la llegada masiva de personas desplazadas de sus hogares debido a injusticias de un sistema socioeconómico mundial del que Europa es cómplice. Sin embargo, el gran reto real es iniciar la construcción de un modelo socioeconómico justo, inclusivo y equitativo, que contribuya a la mitigación del cambio climático y a su adaptación, que sirva a su gente y también de ejemplo a nivel mundial. El futuro de la UE depende de su capacidad de incluir y conservar países miembros, de desmontar xenofobias internas y externas, de eliminar desigualdades y de acoger a los nuevos europeos sin desatender a los ya residentes.

Para cumplir con estos objetivos necesitamos un cambio importante en nuestras políticas locales, estatales y comunitarias.

SEAE, en coordinación con otras organizaciones de la sociedad civil, en la Coalición PorOtraPac y en la Federación Internacional de Movimientos de Agricultura Ecológica-IFOAM, trabaja para que la Política Agrícola Común-PAC, sirva al bien común y a las necesidades reales de agricultores y consumidores.

Previo a la elaboración de la propuesta de Reglamentos PAC post 2020 por parte de la Comisión, IFOAM EU propuso un cambio de orientación para que los fondos públicos se destinaran a compensar bienes y servicios públicos generados por los agricultores. No produjo ese cambio, así que ahora trabajamos para que la propuesta sea más justa y responsable, proponiendo enmiendas a los Reglamentos y propuestas al Plan Estatal.

Palabra clave: agricultores, cambio, políticas, reglamento, UE
REIVINDICACIONES DE GÉNERO EN LA “NUEVA” PAC

Diez González M

FADEMUR-Federación de Asociaciones de Mujeres Rurales
C/Agustín de Bethancourt, 17 – E-28003 Madrid

RESUMEN: Para la Federación de Asociaciones de Mujeres rurales, FADEMUR, la Política Agraria Común (PAC) solo tiene de femenino su determinante artículo y es que en sus más de cincuenta años de historia jamás se ha implementado una PAC con perspectiva de género. Esto una muestra muy gráfica de que las políticas puestas en marcha por Bruselas no pasan de las palabras bonitas, en lo que a las mujeres rurales se refiere, a los hechos y a legislar con perspectiva de género. Desde Europa, nos dedicamos discursos, somos protagonistas de eslóganes y una clave en sus diagnósticos. Sin embargo, se olvidan de las mujeres rurales cuando se toma decisiones y nos ignoran a la hora de ejecutar los tratamientos.

Y esto no son solo palabras. Los datos demuestran una clara desventaja de las mujeres frente a los hombres: tenemos menos explotaciones agrícolas y estas son más pequeñas, por lo que cuentan con menos apoyos públicos y son menos rentables. Solo el 30% de las explotaciones de la UE están gestionadas por alguna mujer. Una cifra que, además, maquilla los casos más graves, como el de los Países Bajos, donde las mujeres únicamente están al frente del 5% de ellas. En total, ellos controlan el 61% de la tierra frente al 12% que tenemos nosotras.

Que una política europea no implemente la perspectiva de género es chocante a estas alturas, especialmente después de conocer los datos anteriores. Aunque todavía más inaudito es que no lo haga la política más importante en presupuesto e impacto en la vida de los ciudadanos y ciudadanas, desde que desayunan hasta que cenan. Pero hay que recordar que la PAC es una política estratégica que va más allá de llenar nuestros estómagos. De ella también depende que se mantengan nuestros ecosistemas, que la estructura socioeconómica de la mayor parte del territorio de la Unión goce de buena salud y que no se vacíen nuestros pueblos.

Palabra clave: mujer rural, política, producción agraria
P4. AGROECOLOGÍA, REGADÍOS Y NUEVA CULTURA DEL AGUA

NUEVA CULTURA DEL AGUA FRENTE AL CAMBIO CLIMÁTICO

Arrojo P
G.P. Confederal de Unidos Podemos-En Comú Podem-En Marea (GCUP-EC-EM). Congreso de los diputados

RESUMEN: El cambio climático en curso agudiza problemas y acorta plazos a la hora de afrontar las diversas crisis de insostenibilidad vigentes. El agua, factor clave de la vida en el planeta pasa a ser eje central en las políticas de adaptación que debemos asumir, tanto en materia de regadíos, como de gestión del territorio y de vertebración social del medio rural. La necesidad de promover nuevos modelos productivos desde una nueva visión de economía circular exige transitar de una planificación hidrológica al servicio del crecimiento ilimitado del regadío a nuevos enfoques que gestionen la demanda en los límites que impone la sostenibilidad de nuestros ecosistemas acuáticos, con especial atención a la recuperación de nuestros acuíferos como reservas estratégicas de sequía. Esta adaptación del regadío a los escenarios de cambio climático demandará no sólo mejorar la eficiencia en el uso del agua, sino una transición en la estructura de cultivos, hacia producciones mejor adaptadas al territorio y a las condiciones climáticas, al tiempo que una transición a nuevas estrategias productivas agroecológicas y coherentes con la economía circular. El cambio climático, en suma, nos obliga a acortar los plazos en los que debemos transitar de una economía depredadora en crecimiento ilimitado, con una agricultura industrial expansiva, basada en el consumo y degradación de recursos básicos como el agua o la fertilidad del suelo, a una economía circular que se integre respetuosamente en los ciclos naturales que regeneran la disponibilidad de esos recursos y sustentan la vida.

Palabras clave: agricultura, cambio climático, planificación hidrológica
NUEVA CULTURA DEL AGUA

Hernández-Mora N

Fundación Nueva Cultura del Agua (FNCA)
Calle de Pedro Cerbuna, 12, E-50009 Zaragoza
fnca@unizar.es

RESUMEN: La gestión de los recursos hídricos debe alinearse con la realidad incontestable del cambio climático y los impactos previstos para el territorio mediterráneo: disminución de los recursos disponibles, desplazamiento espacial y temporal de las lluvias e intensificación de los extremos. El sector agrario, que en la actualidad consume el 80% de los recursos hídricos en España, es especialmente vulnerable. Desde la FNCA se plantean las siguientes prioridades en el proceso de la necesaria transición hídrica:

- Adaptación del sector agrario a las nuevas realidades climáticas mediante un proceso de “desintensificación” que requerirá estrategias diversas en cada territorio según criterios de limitaciones hídricas, rentabilidad económica, sostenibilidad ambiental, sostenibilidad territorial y viabilidad social. Se cuestiona la eficacia de los procesos de modernización de regadíos (principal iniciativa promovida desde el Estado) como estrategia de adaptación al cambio climático, dado que las evaluaciones disponibles muestran que en muchos casos el ahorro de agua es muy escaso y el consumo total de agua aumenta.

- Protección de las fuentes de abastecimiento (ríos, acuíferos, humedales) frente a los procesos de contaminación difusa proveniente de la agricultura (nitratos, biocidas, contaminantes emergentes), mediante la aplicación del principio de quién contamina (o deteriora) paga y la modificación del sistema de incentivos agrarios existentes.

- Trabajar con la naturaleza para adaptar los territorios a las nuevas realidades climáticas. Los territorios agrarios deben jugar un papel crucial en la gestión de sequías e inundaciones: gestión de las llanuras de inundación en picos de crecida, participación en centros de intercambio de derechos públicamente gestionados en períodos de sequía, renaturalización de cauces fluviales, etc.

- Promover modelos agrarios adaptados a las nuevas realidades climáticas y objetivos de sostenibilidad por ejemplo a través de la promoción de I+D+i para un secano del siglo XXI, creación de valor añadido en productos de calidad, u otras iniciativas similares.

Palabras clave: adaptación, cambio climático, nueva cultura del agua
RÍOS HORMONADOS

Hernández LA
Ecologistas en Acción Madrid
Tel: 915312389
koldoherloz@gmail.com

RESUMEN: Los plaguicidas están diseñados para actuar contra los organismos que pretenden combatir, pero pueden dañar a otros seres vivos. De acuerdo con el listado de plaguicidas con propiedades de alteración endocrina publicado por Pesticide Action Network Europe (PAN) 53 sustancias activas autorizadas tienen la capacidad de alterar el sistema hormonal.

España, con un consumo de 78.818 toneladas de plaguicidas en 2014, es el país europeo que más plaguicidas utiliza. La consecuencia de este uso masivo es la creciente presencia de residuos de plaguicidas en los alimentos y el medio ambiente.

El informe de Ecologistas en Acción “Ríos hormonados. Amplia presencia de plaguicidas disruptores endocrinos en los ríos españoles” analiza los datos oficiales de los Programas de Vigilancia de la Calidad de las Aguas de las 10 Confederaciones Hidrográficas que respondieron a nuestra petición de información sobre la presencia de plaguicidas en las aguas superficiales.

Los datos recopilados muestran la presencia de plaguicidas tóxicos en todas las cuencas analizadas. Las cuencas hidrográficas más contaminadas son aquéllas con una agricultura industrial más intensa. La del Júcar es la más polucionada habiéndose detectado en 2016, 35 de los 57 plaguicidas analizados, 22 de ellos prohibidos y 21 posibles disruptores endocrinos.

Estos resultados, muestran un panorama preocupante, si bien incompleto por la falta de datos, debido a la presencia de mezclas de plaguicidas en una misma cuenca, por lo que urge reducir el uso de estos tóxicos y prohibir los plaguicidas con propiedades de alteración endocrina.

Palabras clave: disruptores endocrinos, plaguicidas, ríos
SEGURA TRANSPARENTE: RESUENA LA VOZ HISTÓRICA DEL RÍO SEGURA

Llorente N

Plataforma Segura Transparente (PST)
Calle Obispo Sánchez d’Avila, 11, 4º A,
30.007, Murcia
seguratransparente@gmail.com

RESUMEN: La Asociación Plataforma Segura Transparente (PST) es un movimiento social que integra a agricultores de los regadíos originales de la Cuenca del Segura (CCAA de Castilla-La Mancha, Andalucía, Murcia y Valencia).

Como en otras regiones, el avance del agro-negocio industrial por todo el territorio segureño manipula a la opinión pública, acarrea importantes ampliaciones de superficie de riego de dudosa legalidad y la transformación a menudo irreversible de zonas de secano y forestales en nuevos regadíos, y la consiguiente demanda y uso de recursos hídricos de manera insostenible en todos los aspectos.

PST defiende el equilibrio del agro-ambiente desde los regadíos tradicionales, centrándose en su lucha en:

a) la plena transparencia en la gestión de todos los recursos hídricos de la Cuenca, así como de los usos reales y destinos finales de todos los volúmenes de agua que debe gestionar impecablemente el Organismo de Cuenca;

b) la conservación, mantenimiento y apoyo activo a los regadíos tradicionales e históricos a cuyo valor productivo y clave importancia socioeconómica, se unen los valores paisajísticos, ambientales y culturales, destacando un patrimonio hidráulico tradicional de enorme valor;

c) la conservación de los ecosistemas y biodiversidad del río Segura, afluentes y manantiales, erradicando su contaminación de origen agrario, urbano e industrial, ligada a una salinización creciente, especialmente acuciante en la Vega Baja.

A ello se suma a medio plazo lograr una transición atractiva y eficiente hacia la agricultura ecológica, que permita el uso sostenido de los recursos suelo y agua y la adaptación de la agricultura de la Cuenca a la demanda, paulatinamente más preocupada por la sostenibilidad en origen, y teniendo como fin último que las personas que trabajan el campo y las huertas puedan vivir dignamente de ello.

Palabras clave: gestión de la demanda, movimiento social, regadíos tradicionales, transparencia
P.5. IMPORTANCIA DE LA BIODIVERSIDAD EN AGROECOLOGÍA

EXPERIENCIA DE LA BIOREDIBEROAMÉRICA PARA LA “RECUPEERACIÓN DE SEMILLAS LOCALES Y SU ENTORNO CULTURAL EN COMUNIDADES RURALES DE IBEROAMÉRICA”

del Cura Delgado F

Univ. Politécnica T Mérida “K Ramírez” (UPTM KR), Venezuela; federico.delcura@gmail.com

RESUMEN: La Biorediberoamérica es una red del Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), la cual desde el año 2016 propicia el intercambio de experiencias entre grupos de investigación, sobre el análisis del elemento cultural y las prácticas agrícolas, para el desarrollo sostenible de las comunidades rurales vulnerables ante escenarios de cambio climático, propiciando la recuperación de la diversidad de semillas locales, ante la erosión genética que amenaza la agricultura. La particularidad especial de este nexo radica en la importancia que se le otorga al elemento cultural cuando se explora y estudian las prácticas agrícolas desde la perspectiva de la complejidad, analizando sus múltiples relaciones y contextos. La red articula bajo la coordinación de Venezuela (Universidad Politécnica Territorial de Mérida), nodos de ocho (8) países: Argentina (Universidad de La Plata), México (Universidad Veracruzana), Perú (Universidad de La Molina), Colombia (Universidad Pontificia Javeriana), Uruguay (Universidad de La República), Brasil (Universidad de Santa Catarina), Chile (Universidad de la Frontera) y España (Sociedad Española de Agricultura Ecológica), y cerca de 50 investigadores. Metodológicamente esta red ha funcionado mediante herramientas electrónicas, gracias a las cuales puede recoger, compartir y dar visibilidad a la información contenida o producto de los trabajos de investigación. Entre los resultados se puede mencionar Seminarios Virtuales, Encuentros entre los grupos, actividades de difusión a través de videos, la publicación de la revista Cuadernos de la Biored, donde las experiencias son compartidas y validadas de forma que puedan ser aplicadas en cada país y por grupos nóveles en formación.

Palabras clave: agrodiversidad, desarrollo sostenible, integración, saberes culturales, semillas
CARACTERIZACIÓN DE LOS BANCOS DE SEMILLAS COMUNITARIOS EN EL ESTADO ESPAÑOL

Carrascosa-García M1, Koller B2, Soriano Niebla JJ1, López González P1, González Muñoz M1

1Red Andaluza de Semillas "Cultivando Biodiversidad", Caracola del C.I.R. – Parque de San Jerónimo s/n. E-41015 Sevilla; Correo-e: info@redandaluzadesemillas.org; Web: http://www.redandaluzadesemillas.org

2Arche Noah. Obere Straße 40, A-3553 Schiltern (Austria). Correo-e: info@arche-noah.at. Web: www.arche-noah.at

RESUMEN: Los bancos de semillas comunitarios (BSC) son herramientas de innovación y cohesión social que contribuyen activamente a la gestión comunitaria y dinámica de la biodiversidad cultivada. La presente investigación, coordinada por la Red Andaluza de Semillas “Cultivando Biodiversidad”, forma parte de una más amplia, desarrollada en el marco del proyecto DIVER-SIFOOD, y tiene entre sus metas conocer y reflexionar sobre los objetivos, funcionamiento, estrategias, valores y retos de los BSC en el Estado español así como mostrar la diversidad de experiencias existentes en el territorio.

El análisis se ha abordado mediante una encuesta realizada entre mayo de 2016 y julio de 2017, en la que han participado 30 iniciativas de 15 comunidades autónomas. Su resultado muestra que los BSC son espacios abiertos, de acceso e intercambio de material vegetal de variedades mayoritariamente locales, que realizan actividades de multiplicación y almacenamiento de semillas, evaluación de estas variedades, y formación y sensibilización de la ciudadanía. Acometen sus tareas con una infraestructura limitada y se enfrentan a una importante falta de recursos humanos y financieros, que suplen gracias a la implicación directa de un número pequeño de personas, fundamentalmente agricultores y agricultoras profesionales y aficionados, que trabajan de manera voluntaria.

Los BSC constituyen plataformas colaborativas, de empoderamiento de la sociedad civil, que contribuyen a la generación de sistemas agroalimentarios sostenibles. Por ello, su papel debe ser reconocido y sus capacidades técnicas, de incidencia política, de construcción de comunidad y financieras fortalecidas.

Palabras clave: acceso e intercambio, biodiversidad cultivada, comunidad, semillas, variedades locales
PERSPECTIVA CIENTÍFICA

Rodríguez-Burruezo A

Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Edificio 8E, Acceso J. Universitat Politècnica de València (UPV). Camino de Vera s/n CP 46022. Valencia.
adrodbur@doctor.upv.es

RESUMEN: La biodiversidad es clave para dar continuidad a la vida. Unas poblaciones genéticamente diversas garantizan adaptabilidad frente a nuevos agentes ambientales o biológicos. En la historia evolutiva del planeta la selección natural ha favorecido a unos genotipos frente a otros, diversificando poblaciones y motivando el desarrollo de nuevas especies, y la selección artificial aplicada en agricultura no debe ser ajena a este hecho.

Así, hemos utilizado centenares de especies para nuestra alimentación y los cultivos que tenemos hoy día son fruto de la selección de mutantes surgidos de poblaciones silvestres. Sin embargo, desde la revolución industrial, y especialmente en las últimas décadas, las estrategias de fitomejoramiento enfocadas a maximizar rendimientos en sistemas intensivos han reducido nuestra base alimentaria a unas pocas especies, las cuales a su vez albergan una estrecha agrodiversidad, provocando un peligroso cuello de botella genético.

En este marco, la diversidad presente en variedades tradicionales es fundamental en el fitomejoramiento para agroecología (AE). La mayoría evolucionaron bajo una agricultura anterior a la revolución verde, siendo esperable una mejor adaptabilidad a condiciones de bajos insumos como la AE. Además, se les atribuye una extraordinaria variabilidad en sabor, aroma y calidad nutricional, aspectos cada vez más demandados por el consumidor, en particular el de producto ecológico (taste-of-the-past). Finalmente, promover el consumo y, en consecuencia, el uso de variedades tradicionales en AE por pequeños agricultores es una forma in situ de diversificar la producción, apoyar la soberanía alimentaria y mitigar la erosión genética (i.e. se conserva lo que se usa).

Palabras clave: domesticación de especies, etnobotánica, fitomejoramiento participativo, seguridad alimentaria, variedades tradicionales
COCINA TRADICIONAL DEL PUEBLO MAPUCHE EN CHILE

Lepin Z

Alianza Nacional Biodiversidad Alimentaria,
General Cruz 560, Temuco, Chile,
zunytradiciones@gmail.com

RESUMEN: La pérdida de semillas tradicionales ha traído grandes cambios en nuestras formas de vida, desde nuevos sistemas productivos contaminantes hasta cambios en la calidad y tipo de alimentación local. Cuando perdemos semillas perdemos salud, historia, cultura y alimentos de gran valor nutricional y patrimonial. La alimentación del pueblo mapuche no ha sido distinta al de muchos otros pueblos latinoamericanos, que basaban su alimento en la recolección y en la agricultura sustentable de policultivos, es así como la quinua, conocida por nosotros los mapuche como kinwa, se consumía hace unos 800 años. Posteriormente fue reemplazada por el trigo y la avena, las que después de siglos terminaron convirtiéndose en variedades locales de gran importancia en nuestra alimentación. Fue así que hace algunos años atrás, la postergada kinwa se convertía en un súper alimento, así como también papas de diversos colores y formas, se fueron uniformizando hasta ser de sólo dos tipos, perdiéndose toda una tradición alimentaria y productiva. Estos cultivos sumados a gran cantidad de frutos nativos de recolección, como maqui, nolca, arrayán, murtilla y frutilla blanca, fueron mantenidos en los campos y en las mesas de muchos mapuche. Este conocimiento lo convertí en “Zuny Tradiciones”, un restaurante que visitan cientos de turistas cada año, donde además de rescatar semillas tradicionales, rescato la cocina tradicional, manteniendo una alimentación diversa y rica, basada en frutos nativos y cultivos tradicionales, revalorizándola como una riqueza que no debemos perder, porque es parte fundamental de nuestra salud, nuestras tradiciones y nuestra vida misma.

Palabras clave: cocina mapuche, cocina tradicional, diversidad, mapuche, semillas tradicionales
P6. ECONOMÍA CIRCULAR AGROECOLÓGICA EN EL MEDIO RURAL

SUBBÉTICA ECOLÓGICA

Amián Novales I

Subbética Ecológica
CO-6213, 11, E-14940 Cabra, Córdoba

RESUMEN: La peculiaridad de la asociación de productores y consumidores Subbética Ecológica consiste en que se constituye en 2009 gracias a la unión de un grupo de hortelanos de las tradicionales huertas de Cabra y algunas familias consumidoras, que ha crecido hasta crear una central de pedidos y de distribución con 45 productores, 400 familias consumidoras de Cabra y comarca y con 50 entidades asociadas: tiendas, colegios, restaurantes y grupos de consumo de las provincias de Córdoba, Jaén y Sevilla, y que está organizada de manera totalmente participativa bajo los principios de la Agroecología y de la Economía del bien Común, con la cercanía, honestidad, responsabilidad, cooperación, solidaridad, respeto como valores base.

Palabras clave: agroecología, cooperación, Economía del Bien Común, huertas de Cabra, participación, precio justo
EL DESPEGUE DEL AGROCOMPOSTAJE EN ESPAÑA. PRINCIPALES PROYECTOS DE REFERENCIA Y RETOS

Llobera F
Grupo Operativo Agrocompostaje - SEAE
+34 600572029
e-mail: francollobera@economiasbioregionales.org

RESUMEN: El objetivo del agrocompostaje es reciclar desde el sector agrario los residuos de la finca y actividades agroganaderas, pero también los orgánicos orgánicos urbanos adecuadamente separados en origen. La separación en origen es uno de los mayores retos junto con la adecuación normativa para estas pequeñas plantas de economía circular de la materia orgánica de modo territorializado y fortaleciendo los sistemas alimentarios circulares y locales.

Desde el Grupo Operativo supraautonómico, liderado por la SEAE, han participado socios de cinco comunidades autónomas que han realizado un cuestionario a entidades locales y agricultores para analizar el interés y la demanda y viabilidad ex ante de este tipo de experiencias.

De los casi 100 cuestionarios respondidos por agricultores de todo el Estado, se desprende que la inmensa mayoría tienen menos de 4 ha, no reciben ayudas de la PAC, están certificados en ecológico o producen en régimen de confianza agroecológica con consumidores de proximidad. Los municipios interesados que han respondido al cuestionario son en su mayoría pequeños, rurales de menos de 5.000 habitantes, y quieren contribuir con esta estrategia de gestión local a conservar población, proteger el sector productivo y cerrar los ciclos del carbono de modo local, reduciendo emisiones. Se estima un pago por tonelada tratada entre los 100 y 50 €/t al agricultor, similar a las tasas de tratamiento en las grandes plantas. Con esta estrategia se consigue ayudar a pequeños productores y facilitar la conversión a la agricultura ecológica o la autoproducción de enmiendas y fertilizar de modo orgánico la tierra.

Los principales retos e inconvenientes de este enfoque agrocompostador y descentralizador en la gestión de los biorresiduos urbanos son: la ausencia de normativa y la dificultad en la consecución de permisos al tratarse igual una gran planta centralizada provincial que una pequeña finca agrícola. Por otro lado la adecuada separación en origen, con menos del 1% de impropios para garantizar la calidad final del compost.

El GO está estudiando diferentes casos de normativas en UE y en USA para hacer una propuesta legislativa en varias comunidades autónomas. Así mismo se están buscando ayuntamientos que quieran participar en una red de experiencias piloto en diferentes CCAA, capaces de garantizar sistemas de recogida de orgánicos con gran pureza.

Palabras clave: agricultura ecológica, ciclos carbono, diversificación rural, economía circular, materia orgánica, renta agraria, residuos sólidos urbanos
MUJER AUTOSUFICIENTE Y GANADERA ECOLÓGICA: EXPERIENCIA INNOVADORA EN LA MONTAÑA DE NAVARRA

Sánchez M

Ganaderas en Red (GeR)
arditurri@hotmail.com

RESUMEN: Mi andadura hacia la autosostenibilidad se inicia desde en el año 2000. Llegué a Goizueta con mis tres hijos y compré una vaca Betizu. Hoy en día son 40 vacas de esta raza semisalvaje y en peligro de extinción, las que conforman la ganadería ecológica extensiva Domiñía Abeltzaintza Ekolojikoa. Llegar hasta aquí ha sido camino difícil para una mujer sola en el medio rural, aplicando la ecología no sólo en mi trabajo sino en toda mi forma de vida.

Economía circular para nosotros significa autoabastecernos y comercializar a través de la venta directa, ferias y mercados locales. La Betizu es una vaca pequeña con poca rentabilidad económica, pero de gran valor culinario.

Pertenecer a Ganaderas en Red significa sentirme acompañada, tanto para compartir asuntos del día a día en nuestro trabajo (compra y venta de ganado, alimentación, etc.), como para visibilizar el esfuerzo que venimos haciendo mucho tiempo y despertar las consciencias en lo que se refiere a las dificultades de ser ganadera en un sector todavía muy masculinazo que precisa adaptarse para facilitar nuestra integración.

Palabras clave: Betizu, ganadería extensiva, mujeres, pastoralismo, red
P7. RETOS DE LA DISTRIBUCIÓN DE PRODUCTOS ECOLÓGICOS

RETOS DE LA DISTRIBUCIÓN DE PRODUCTOS ECOLÓGICOS

Roig D

EcoLogical.bio
diegoroig@ecological.bio
+34 961153305
www.ecological.bio

RESUMEN: Probablemente la mayor revolución del sector nacional esté teniendo lugar en los canales de comercialización donde se identifican la existencia de varios canales de comercialización, el tradicional ecológico o especializado y el convencional o gran consumo así como cooperativas y venta directa del productor principalmente.

En los últimos años se observa en la distribución especializada una evolución de los formatos. El formato comercial originario de hace unos años que recoge pequeñas tiendas especializadas (herbolarios y ecotiendas) está evolucionando hacia estructuras de supermercados ecológicos de más dimensiones, mayor oferta y categorías.

Asimismo estamos presenciando un importante desarrollo de las principales cadenas de supermercados ecológicos que, en contrapartida al formato de herbolario o pequeña ecotienda, van aumentando los puntos de venta.

Su implantación se centran en grandes ciudades y zonas turísticas con el objetivo de atender a un cliente internacional, mayor consumidor de productos ecológicos.

Al mismo tiempo que el retail especializado está evolucionando, la distribución convencional también ha demostrado estar apostando de forma decidida por aumentar la oferta de productos ecológicos en sus lineales. A la ya presencia en hipermercados, grandes almacenes y hard-discount, en los últimos dos años han entrado la gran mayoría de las cadenas supermercados a implantar la categoría bio.

Estos dos canales representan la mayor cuota de ventas de productos bio nacionales. A ellas se le suman, las iniciativas digitales, venta directa, cooperativas de consumidores y tiendas gourmet conformando el total de la distribución bio nacional.

Palabras clave: canal convencional, canal especializado, cooperativas de consumidores, gran consumo, venta directa
DISTRIBUCIÓN TRANSPARENTE PARTICIPATIVA

Guzmán Ojeda A

Ecocentral
Juan Ramón Jiménez 22, 08902 Hospitalet de Llobregat (Barcelona)

RESUMEN: LA ECOCENTRAL es un proyecto que surgió desde los fogones en el 2006 para intentar fomentar al sector produ
ductor ecológico a través de la distribución transparente. Pasando por diferentes tipos de “co-consumidores” en el 2012 se espe
cializó en comedores escolares y actualmente cuenta con una plantilla de 10 colaboradores que abastecen a casi 60 escuelas
(17 mil menús diarios) en toda Catalunya. Todo este modelo se basa en productos planificados con los agricultores y las escuelas
les pagan directamente a ellos, dejando la especulación de lado para que los precios sean competitivos con el precio público del
menú escolar. Probablemente a partir de 2019 comenzemos a expandir este modelo a los grupos de consumo.

Palabras clave: comedores escolares, compra pública, menús
LA FERIA BIOCULTURA, MÁS DE 30 AÑOS SIENDO EL ESCAPARATE DEL SECTOR EN ESPAÑA

Escutia M

Asociación Vida Sana
montse.escutia@vidasana.org
Tel 616927337
www.vidasana.org

Desde la organización de BioCultura hemos sido testimonios de la evolución y el crecimiento del sector: La creación de las primeras empresas de distribución, la aparición de cadenas de supermercados especializados en el producto ecológico, empresas del sector convencional que empezaron a ofrecer productos ecológicos… hasta la irrupción con fuerza en el mercado de las grandes cadenas de hipermercados.

El mercado ha ido creciendo y con ella la gama de productos. Hemos vivido la llegada de la carne tras una primera etapa donde el consumidor era básicamente vegetariano. Luego llegó el pescado y la consolidación de las algas. También los productos congelados a medida que aumentaba la gama de productos transformados. Actualmente crece con fuerza el movimiento vegano y con él los superalimentos y las leches vegetales.

Asimismo hemos podido ver la evolución de los consumidores desde unos inicios en que sólo los más concienciados se interesaban por ellos hasta la situación actual donde la preocupación por una dieta saludable es un potente motor que impulsa el crecimiento del sector.

Palabras clave: alimentación ecológica, consumo, feria, mercado
LA DEMOCRATIZACIÓN DEL CONSUMO ECOLÓGICO. COMERCIALIZACIÓN Y DISTRIBUCIÓN

Morales E
Carrefour España
Eugenio_morales_jimenez@carrefour.com
646 760 458

RESUMEN: El consumo de productos ecológicos ha dejado de ser un segmento nicho para abrirse a perfiles de consumidores comprometidos con una tendencia general de consumo responsable dentro del marco general de la protección del medio ambiente y la defensa de su sostenibilidad.

Este aumento de la demanda de productos ecológicos ha adquirido volúmenes de crecimiento de dos dígitos en los últimos años.

España tiene un importante potencial productor que hasta la fecha ha suministrado en gran medida a la industria fabricante extranjera, enfrentándose ahora al reto de adaptar su modelo productivo a la demanda local.

Carrefour lleva más de 15 años comprometida con la difusión del consumo de productos ecológicos, llegando incluso a desarrollar su propia marca Carrefour BIO.

Un surtido de marcas nacionales, internacionales, regionales, locales y propias que supera las 2.000 referencias y permite realizar una cesta completa de la compra solo con productos con certificación ecológica.

Carrefour ha desarrollado una doble implantación de la categoría en sus hipermercados: Una sección específica de productos BIO dirigida al consumidor habitual, y la también la ubicación de las referencias bio junto al resto de artículos en todas las categorías para incitar a la prueba a un consumidor esporádico o incipiente.

La tradicional apuesta de Carrefour por dar visibilidad a los productos ecológicos en sus lineales realiza una labor de difusión y conocimiento de estos productos entre los más de 540 millones de visitantes que pasan cada año por sus diferentes formatos de tienda.

Esta labor de generar notoriedad a la categoría bio repercute positivamente a todo el sector ya que está haciendo crecer la masa crítica de consumidores potenciales de forma exponencial.

Carrefour está emprendiendo acuerdos comerciales de larga duración con productores nacionales para facilitar su transición a la producción ecológica y garantizar unos precios asequibles al consumidor impulsando así la democratización del bio.

Palabras clave: precios asequibles, universalizar consumo
ECOLÓGICO, CERTIFICADO, CALIDAD Y SERVICIO

Abad Sáez J

La Tahúlla BIO S.L., Avenida de Zaragoza 12, Bajo, E-26540 Alfaro (La Rioja)
www.latahullabio.com; jose@latahullabio.com; Tel: 941 18 20 20

RESUMEN: La Tahúlla BIO S.L. es una empresa que dedica su esfuerzo a la producción y distribución de alimentos ecológicos certificados.

Nuestro modelo de trabajo se basa en maximizar tanto la calidad del producto como el servicio al cliente, que en nuestro caso son grupos de consumo, tiendas, supermercados y mercados mayoristas.

Entendemos que el futuro del sector es prometedor pero también dependiente de las buenas prácticas de producción y de la aplicación de un eficiente control de la certificación del producto y así evitar intrusismos, caídas insostenibles de precios y desconfianza del consumidor.

Otro aspecto importante a tener en cuenta es la aplicación de políticas que potencien y ayuden al incremento de superficies dedicadas al cultivo de productos ecológicos con la intención de mejorar poco a poco los suelos y aguas de nuestro entorno.

Demostrado está que la producción ecológica y su consumo mejora la salud de los habitantes y de los suelos de este planeta, por tanto, si potenciamos su vigilancia, incremento de las superficies de cultivo y distribución adecuada del producto, el futuro de este sector será cada vez mejor.

Palabras clave: calidad, distribución, futuro, producción, servicio
RETOS DE LA DISTRIBUCIÓN DE PRODUCTOS ECOLÓGICOS: ¿HABRÁ ESPACIO PARA TODOS?

Torrente L

Bioconsum
Plaça dels Pagesos, 11, E-25003 Lleida
Tel:973 28 31 09

RESUMEN: Lo que podemos decir como pioneros que somos es: ¡Bienvenidos a la ecología! Desde Bioconsum y Molsa, trabajamos para integrar a todas las partes de la cadena, Productores, Distribuidores, Vendedores y Consumidores, con intereses comunes, para optimizar recursos y planificar estrategias de acuerdo a nuestras necesidades reales, lo que nos proporcionará mayor autonomía de los mercados.

Para ser coherentes, con el modo de proceder ecológico, deberíamos ser capaces de cambiar el paradigma de competitividad por el de colaboración, ya que la entrada del gran capital, acabará banalizando el sector.

Palabras clave: autonomía, banalización, bienvenidos, colaboración
INTEGRACIÓN DE LA GANADERÍA ECOLÓGICA EN LOS SISTEMAS AGRARIOS

Díaz-Gaona C

Cátedra de Ganadería Ecológica Ecovalia de la Universidad de Córdoba, Campus Universitario de Rabanales, Ctra. Madrid-Cádiz Km. 396, E-14071, Córdoba; pa2digac@uco.es

RESUMEN: La ganadería ecológica se diferencia de la extensiva convencional, especialmente, en la carga ganadera. Cuando ésta está correctamente ajustada, se reducen las necesidades de insumos externos (alimentación suplementaria) y se alcanza un óptimo equilibrio animal-plantasuelo que contribuye a disminuir la contaminación y la erosión, y a mejorar la calidad del suelo y el agua. Así, a través del pastoreo, el ganado es capaz de transformar los pastos y restos de cultivos en alimentos de alta calidad para la población, sin competir con ella y contribuyendo a reducir el consumo de grano por la ganadería (que actualmente es una tercera parte del grano producido a nivel mundial).

Los sistemas ganaderos intensivos y la deslocalización de la ganadería dan lugar, por un lado, al sobrepastoreo y la tala de bosques y, por otro, al desaprovechamiento de los recursos pastoreables, perdiéndose su importante valor económico y ambiental. Todo ello repercute en la capacidad del suelo para retener carbono y agua, disminuyendo su fertilidad y biodiversidad.

Una ganadería que basa su alimentación en el uso exclusivo de piensos (que es el modelo mayoritario en los países más desarrollados) requiere la producción y el transporte de altas cantidades de gramíneas y leguminosas, y de los fertilizantes sintéticos necesarios, emitiéndose con ello una gran cantidad de gases de efecto invernadero (GEI). Por el contrario, una ganadería ligada al suelo, como la ecológica, mejora el nivel de secuestro de carbono y la capacidad de mitigación y adaptación al cambio climático, y pone su objeto en la salud total: humana, animal y medioambiental (One Health), reforzándose todo ello en los sistemas mixtos agrosilvopastorales.

Palabras clave: biodiversidad, carga ganadera, equilibrio, fertilidad
FORTALEZAS Y OPORTUNIDADES DE UNA RAZA "LA LOJEÑA"

Moreno Cobo JA

Asociación Raza Ovina Lojeña
Loja (Granada)
juantaniorazaovina@hotmail.com; Tel: 638835208

RESUMEN: La raza ovina lojeña es una raza ovina en peligro de extinción, ubicada en un ecosistema singular denominado “Sierras de Loja” en poniente granadino, que abarca varios municipios (Loja, Alhama de Granada, Zafarraya, Salar etc.), además de estar insertada en otros ecosistemas de municipios cercanos como Ilora, Villanueva del Trabuco, etc., y en otras comunidades y provincias llevadas por ganaderos atráidos por las características e idiosincrasia de esta peculiar raza que destaca por su rusticidad y carácter maternal entre otras muchas bondades.

La raza ovina lojeña está incluida en el catálogo oficial de razas de España y tiene aprobada la llevanza del libro genealógico por la Consejería de Agricultura de la Junta de Andalucía.

La Asociación de Ganaderos de la Raza Ovina Lojeña trabaja el programa de mejora genética de la raza aprobado por la Consejería y puesto en desarrollo por los ganaderos, secretaría ejecutiva de la asociación y el grupo de investigación de la universidad de Córdoba especializado en genética.

La asociación raza ovina lojeña intenta generar valor añadido para los ganaderos a través de la comercialización de los corderos, basada en la innovación de productos y mercados, mediante su cooperativa “Covecol” paralelamente.

Se intenta desarrollar otras vertientes como el agroturismo, visitas guiadas a explotaciones ganaderas, y puesta en valor de la lana ecológica de la raza ovina lojeña.

Actualmente la raza ovina lojeña está trabajando en la exportación de animales vivos a comunidades árabes para sus fiestas del cordero y Ramadán. Se está innovando con productos como el jamón de cordero ecológico lojeño.

También se trabaja la restauración gourmet y algo con el mercado kosher.

En definitiva, la Asociación Raza Ovina Lojeña trata de desarrollar todas las vertientes posibles que hagan del cordero ecológico lojeño un producto exclusivo que aporte a los ganaderos un valor añadido que garantice un relevo generacional y un reconocimiento a esta profesión de ganadería extensiva ecológica que tanto aporta a la sociedad.

Palabras clave: ganadería extensiva ecológica, producto exclusivo, reconocimiento, relevo generacional, valor añadido
LA TRASHUMANCIA COMO MODELO DE GANADERÍA RESILIENTE DE ALTO VALOR ECOLÓGICO

López Santiago CA

RESUMEN: La trashumancia constituye una práctica ganadera milenaria adaptada al contexto climático mediterráneo y la orografía española, que se ha demostrado altamente resiliente (capacidad de afrontar los cambios sin perder su esencia). Su recesión hasta casi desaparecer se asocia a la pérdida de rentabilidad frente al modelo de producción estante industrializada y a los cambios culturales de la sociedad española que la situaron en la marginalidad social y económica. A pesar de todo, aún se mantienen ejemplos que pueden servir de modelo para la transformación de los sistemas agrarios de cara a un futuro de crisis civilizatoria.

El Laboratorio de Socioecosistemas de la UAM llevó a cabo un proyecto de investigación de carácter interdisciplinar y participativo, para la evaluación ecológica, social y económica de los servicios de los ecosistemas asociados a la trashumancia, en el cual mostramos como la ganadería trashumante garantiza el suministro de un flujo variado de servicios de alta calidad, favoreciendo la conservación de la biodiversidad. La mayoría de los actores sociales que participaron reconocieron su importancia para el bienestar humano, así como el valor económico no reconocido por los mercados de muchos de los servicios generados o mantenidos por esta actividad.

En el escenario de abandono progresivo del medio rural que vive nuestro país y en el contexto de la crisis socioecológica que atraviesa la Unión Europea, la trashumancia, como ganadería extensiva y ecológica, representa una oportunidad para el mantenimiento de medios de vida rurales sostenibles que disminuiría nuestra vulnerabilidad y mejoraría nuestra capacidad de adaptación al cambio ambiental global.

Palabras clave: crisis socioecológica, Servicios de los Ecosistemas, sostenibilidad rural
LA INNOVACIÓN SOCIAL EN LA INTEGRACIÓN DE LA GANADERÍA AGROECOLÓGICA EN ZONAS RURALES MARGINALES

López-Marco L

Instituto Agronómico Mediterráneo de Zaragoza, IAMZ-CIHEAM, Av. Montañana E-1005, Zaragoza
lopez-marco@iamz.ciheam.org

RESUMEN: La ganadería extensiva es una de las actividades que más población fija en las zonas rurales marginales de Europa, dando forma y manteniendo la mayoría de nuestros ecosistemas. Sin embargo, el aislamiento y la despoblación de estas zonas ha conllevado la pérdida de dicha actividad y de los paisajes asociados a ella, siendo necesario buscar nuevas prácticas que garanticen su sostenibilidad no solo ecológica, sino también económica y social.

La agroecología se basa en producir alimentos de calidad conservando los recursos y las poblaciones locales en su medio, defendiendo el carácter multifuncional de la gestión agrosilvopastoral y su influencia en el desarrollo rural, y buscando la salud y el bienestar de las personas. La innovación social (reconfiguración de las prácticas sociales, en respuesta a los retos sociales, buscando mejorar el bienestar e incluyendo necesariamente el compromiso de los actores de la sociedad civil) aplicada a la ganadería agroecológica, podría ser una solución para mantener la actividad y la población en estas zonas.

El proyecto H2020 SIMRA busca progresar en el estudio y el conocimiento de la innovación social en el medio rural. En este trabajo se presentan diferentes innovaciones sociales en ganadería extensiva agroecológica recogidas en la base de datos del proyecto SIMRA.

Palabras clave: agroecología, agricultura social, ganadería ecológica, innovación social
LA GANADERÍA ECOLÓGICA DE VACUNO DE CARNE EN ASTURIAS

Nuño Palacio C

COPAE
Av. Prudencio González, 81, E-33424 Posada, Asturias
copae@copaeastur.org

El modelo de producción ecológica de vacuno de carne se basa en ganaderías familiares, de tamaño pequeño o mediano, de vacas nodrizas que completan el ciclo de cebo. Son ganaderías acogidas a la IGP “Ternera Asturiana”, con las razas autóctonas Asturiana de los Valles y de la Montaña.

Existen varios sistemas de manejo, según la zona, y la posibilidad de aprovechamiento de los pastos durante gran parte del año. Los pastos constituyen ecosistemas de gran diversidad. Son pastos de tipo húmedo o mesofítico, que se mantienen mediante pastoreo y siega, con enmiendas orgánicas a base de estiércol y aportes con abonos minerales de origen natural. En los pastos de puerto sólo se realizan desbroces mecánicos. La mayoría de los montes comunales están en espacios protegidos y su uso es compatible con las normas de producción ecológica.

Gracias a la certificación conjunta con la IGP existe una red de mataderos, comercializadores y puntos de venta que permiten cerrar el ciclo y que el producto llegue como ecológico a los consumidores mediante canales cortos.

La promoción se realiza siguiendo las recomendaciones de alimentación saludable que se establece en la estrategia NAOS, participando en el “Programa de Alimentación Saludable y de Producción Ecológica en los comedores escolares de Asturias”, de las Consejería de Salud, Educación y Medio Rural.

Palabras clave: biodiversidad, canales cortos, pastos, razas autóctonas
IMPORyANCIA DE LAS RAZAS AUTÓCTONAS

Cordero Morales R

Oficina Comarcal Agraria, Delegación Provincial de Agricultura y Desarrollo Rural
Calle Doctor Fleming, 9, E-13580 Almodóvar del Campo (Ciudad Real)
mrcordero@jccm.es

RESUMEN: La ganadería ecológica es una actividad de desarrollo sostenible ligada a la tierra, cuyo objetivo es el aprovechamiento eficiente de los recursos naturales, conservando el entorno natural, manejados acordes a las normas de producción ecológica. El recurso rural más abundante producido de forma natural y ecológica son los pastos permanentes, siendo pastoreo la técnica pastoril más eficiente y ambientalmente sostenible en cuanto a la utilización de los nutrientes y gestión del territorio.

Para la integración de la ganadería ecológica en los sistemas agro-silvo pastoriles se hace necesario contar con las razas ganaderas de los distintos territorios. La selección natural realizada durante años a partir de troncos ancestrales en combinación con la influencia de los distintos ecosistemas, ha forjado las capacidades de las distintas razas autóctonas. En este sentido las razas autóctonas y locales son las que proporcionan mayores ventajas a la ganadería ecológica y su utilización es fundamental para desarrollar una ganadería ecológica competitiva de forma autosuficiente, tanto desde el punto alimentario, por el mejor aprovechamiento de los recursos agroforestales y su mayor eficiencia metabólica/energética, como desde el punto de vista zoosanitario con un mayor vigor constitucional de resistencia a las enfermedades y numerosas ventajas en los sistemas de cría.

Además las razas autóctonas y locales contribuyen favorablemente a la preservación del medioambiente y biodiversidad aumentando la fertilidad de los ecosistemas, dinamizando el banco de semillas y controlando la biomasa herbácea/leñosas que previene la aparición de incendios. Sin olvidar los beneficios socioculturales, que gracias a las razas autóctonas se preserva y mantiene la cultura pastoril ofreciendo productos de alta calidad.

Por otra parte la ganadería tradicional española llevada a cabo con razas autóctonas y en especial aquellas que están en peligro de extinción, entre otras Chamanta, Merina negra, Manchega negra, Berrenda negra y colorada, Cabra Blanca Celtibérica, etc., encuentran en la ganadería ecológica una forma hacer muy acorde a sus principios, con mayores garantías de conservación y supervivencia de estas ganaderías minoritarias y aportando una marca de calidad universal que permite a los ganaderos de razas autóctonas y en peligro de extinción vender sus productos de una manera sostenible y así evitar la desaparición de este importante material genético.

Palabras clave: ganadería ecológica, pastoreo ecológico, razas autóctonas
COMUNICACIONES
1. POLÍTICAS, PLANES ESTRATÉGICOS, DESARROLLO RURAL Y CAMBIO CLIMÁTICO

AUTOGESTIÓN Y SOSTENIBILIDAD DE LAS UNIDADES PRODUCTIVAS EN TERRITORIOS INDÍGENAS DEL VALLE LA ESTRELLA, CON MIRAS A LA CONSOLIDACIÓN DE UN SISTEMA DE PRODUCCIÓN BASADO EN UNA COSMOVISIÓN INDÍGENA E INTERCAMBIO DE SABERES ANCESTRALES

Aguirre Rosales D, Méndez Cartín L, Montero Herrera SL, Sánchez Toruño H

Universidad Nacional, Heredia Costa Rica, Apartado Postal 86-3000, www.una.ac.cr 22773300

RESUMEN: El proyecto realizado es una iniciativa multidisciplinaria de la UNA, que se da en el distrito del Valle la Estrella de la provincia de Limón, uno de los distritos con mayor pobreza en Costa Rica y con una importante población indígena. El objetivo principal es acompañar a centros educativos y actores locales en la autogestión de unidades productivas integradas para la generación de alimentos sostenibles y su uso para fines educativos (aulas verdes o abiertas), con el respaldo de otras instituciones gubernamentales que permitan, no solo la auto-sostenibilidad, sino la autogestión de los actores involucrados. Se podrá replicar un modelo desarrollado en el territorio Tayni, en escuelas y colegios indígenas del país, donde deberá incorporarse los saberes ancestrales y la cosmovisión de cada grupo étnico participante.

Como principales productos y resultados tenemos el establecimiento de unidades productivas en centros educativos de la zona por medio del acompañamiento, elaboración y divulgación de materiales didácticos para los centros educativos y capacitación de familias y puedan realizar sus propios procesos como una unidades productivas integrada y por último sistematizar la experiencia, con el fin de discutir una posible política nacional sobre la producción sostenible de alimentos en los centros educativos y comunidades aledañas.

Todo lo anterior, ha de permitir a la UNA proyectarse y posicionarse, por medio de la extensión, docencia, investigación y producción, ante la sociedad costarricense potenciando el trabajo en territorios indígenas; al contribuir con el desarrollo de las familias y entes educativos de estas regiones.

Palabras clave: Comunidades indígenas y turismo rural comunitario, seguridad alimentaria y sostenibilidad ambiental, unidades productivas integrales.

ABSTRACT: It is a multidisciplinary initiative one, occurring in the District of the province of Limón star Valley; one of the districts with greater poverty in Costa Rica and a significant indigenous population. The main objective is to help schools and local actors in self-management of production units for the generation of sustainable food and its use for educational purposes (green or open classrooms), with the support of other institutions Government permitting, not only the self-sustainability, but also the self-management of the actors involved. You can replicate a model developed in the territory Tayni, schools and indigenous schools in the country, where the ancient knowledge and the worldview of each ethnic group must be incorporated. As main outputs and outcomes have the establishment of productive units in schools in the area through the accompaniment, development and dissemination of educational materials for schools and families and they can perform their own processes as an integrated production units and finally to systematize the experience, in order to discuss a possible national policy on the sustainable production of food in schools and surrounding communities. All of the above, should help at one project and position themselves, by means of the extension, teaching, research and production, before the Costa Rican society promoting the work in indigenous territories; to contribute to the development of families and educational bodies of these regions.

Key words: comprehensive productive units, food security and environmental sustainability, indigenous communities and community-based rural tourism.
INTRODUCCIÓN

La educación pública de Costa Rica incluye desde la primaria hasta la educación superior, para ello cuenta con cinco universidades públicas entre las cuales se encuentra la Universidad Nacional de Costa Rica (UNA), y cuyo estatuto orgánico hace mención a la acción sustantiva y a su ejecución por medio de la docencia, la extensión, la investigación y la producción dentro de su lineamientos los cuales deben integrarse de diferentes maneras y proyectarse a las comunidades bajo su zona de influencia.

Es así, como los proyectos de extensión universitaria han llegado a facilitar los procesos de desarrollo comunitario en aquellas zonas que presentan algún riesgo o vulnerabilidad y que requieren de ser atendidas para solventar sus necesidades. Con el programa de la Vicerrectoría de Extensión de la UNA, se hace posible poner en práctica estas normativas como es la iniciativa Autogestión de las unidades productivas en territorios indígenas del Valle La Estrella, con miras a la consolidación de un sistema de producción basado en una cosmovisión indígena e intercambios de saberes que se hace mención en esta presentación.

La creación de proyectos de este tipo posibilita llegar a aquellas comunidades, no solo detectando sus necesidades sino también brindándoles acompañamiento, capacitación e implementando acciones para gestión ambiental, el desarrollo sostenible y el mejoramiento de la calidad de vida de las comunidades.

La clave de este proyecto es el acompañamiento a los centros educativos y comunidades aledañas, implementando las unidades productivas integradas, módulos de producción, huertas comunales, rescate de saberes ancestrales que favorezcan las condiciones en las que se encuentran en la actualidad.

Antecedentes:

Este documento basado en la experiencia de campo, ha generado la implementación de los proyectos de Extensión de la Universidad Nacional (UNA) y la Vicerrectoría de Extensión, la Sección Regional Huetar Norte y del Caribe Campus Sarapiquí, la Escuela de Ciencia Agrarias y el Instituto de Investigación y Servicios Forestales de la UNA, en la com unidad Indígena Tayni del Valle La Estrella, Limón Costa Rica. Conjuntamente con la comunidad, del territorio indígena Tayni cuya extensión de 163 317 hectáreas se encuentra en la provincia de Limón, en el cantón del mismo nombre en el distrito de Valle La Estrella; y con una población indígena de 10 500 habitantes que representan el 5,9% de la población indígena total del país (CEPAL 2018).

Localizada entre los distritos con más carencias del país, el cual puede observarse en el índice de desarrollo social; que lo ubica en la posición 478 del total de 483 distritos. (MIDEPLAN 2017) que es la unidad que representa mejor las desigualdades en el ámbito nacional y específicamente las de este distrito (Montero y Calderón 2018).

La población meta se ubica entre los centros de población más importantes específicamente en los centros educativos de Boca Cohen, Gavilán, Jabuy, Vesta, Moi y Bellavista y en la Comunidad Indígena de Los Ángeles Cabecar cuyo territorio colinda con el Cantón de Talamanca.

Dentro de las limitantes que posee la región, es el difícil acceso al territorio esto debido carreteras transitables en pocas épocas del año, escazas fuentes de empleo que en su mayoría se dan en la producción y comercialización de banano y plátano cuyos dueños son empresas transnacionales, que limitan el ingreso económico de las familias, ubicándolos dentro del rubro de las regiones más rezagadas del país. (Figura 1).

El objetivo principal de la iniciativa es acompañar a los centros educativos y a actores locales en la autogestión de unidades productivas integradas, para la generación de alimentos y su uso para fines educativos (aulas verdes o abiertas). Sus objetivos específicos están contemplados bajo los siguientes rubros:

- Elaborar y divulgar materiales didácticos para los centros educativos y familias para que puedan realizar sus propios procesos en las unidades productivas integradas.
- Sistematizar la experiencia para utilizarla en las diferentes unidades académicas participantes por medio de artículos en congresos y seminarios relacionados con la temática, con el fin de discutir una posible política nacional sobre la producción sostenible de alimentos en los centros educativos.
Bajo los dos anteriores lineamientos es que se basa este trabajo, donde la idea principal es divulgar la experiencia y los resultados obtenidos con la puesta en marcha del proyecto.

Marco Teórico:

A raíz de la ratificación del Convenio 169 de la Organización Internacional del Trabajo (OIT) que hace mención a los derechos y las políticas a seguir sobre los territorios indígenas costarricenses, en lo que refiere a que en la toma de cualquier decisión debe reconocerse la cultura y otras características específicas, y sobre todo hacer participes por medio de la consulta como pueblo indígena y tribal, unido esto a la prioridad del gobierno por implementar estrategias dirigidas por los órganos de educación superior, así como su órgano rector: CONARE, en el establecimiento de un plan quinquenal para pueblos indígenas (PPIQ); que se enfoca en mejorar la condición de estos pueblos, es que se lleva a cabo diferentes estrategias para tratar de solventar las necesidades que acontecen en estos territorios.

La puesta en práctica de esta estrategia se da con el reconocimiento de la definición de territorio indígena y sus diferentes variables, entre estas tenemos por ejemplo la variable geográfica que corresponde a un área espacial creada por ley o por decreto ejecutivo y que suele tener límites naturales, destinado a que las poblaciones indígenas puedan desarrollarse según sus costumbres y tradiciones. Otra definición que permite ampliar más este enunciado es que; un pueblo indígena es la variable cultural, donde coinciden idioma, comidas, tradiciones, ascendencia, historia y origen común, religiosidad, creencias, valores, visión de mundo, entre otros aspectos que les caracteriza como pueblo y que cada uno de ellos se encuentra asociado a un territorio. (Proyecto Gestión de unidades productivas asociadas a los saberes ancestrales del territorio indígena Tayni, comunidad de Boca Cohen, Valle la Estrella, Limón, 2015-2016).
Por otro lado las Unidades productivas integrales o UPI como opción sustentable para los agricultores son “… una alternativa de producción familiar integrada, basada en la implementación de sistemas autosuficientes y diversificados que minimiza de esta forma perdidas y desequilibrios en el ambiente.” (Rojas y Daly 2016, pág. 147).

Entre otras definiciones podemos citar la de la Finca Didáctica Loroco ubicada en pleno territorio indígena Talamanca, en la cual resalta la importancia que tienen por qué recuperan la cultura de sus antepasados con la puesta en marcha de sistemas agrícolas que siguen y guardan sus tradiciones, les aseguran el autoconsumo y calidad de los productos, con un sistema de policultivo agroecológico que utiliza técnicas ancestrales inmersas dentro de su cosmovisión indígena que a su vez puede resultar un modelo de atractivo turístico novedoso para la región.

Otra de las ventajas que podemos señalar dentro de la implementación de las UPI es la diversidad de actividades agrícolas que se complementan con sistemas avícolas, de piscicultura inmersos en un matiz agroforestal, medicina tradicional y que se divide en etapas simultáneas o bien complementarias que permite tener diferentes módulos de producción, que involucra la mano de obra familiar y en el caso particular de este proyecto solventado por los estudiantes de las escuelas y colegios participantes estudiantes universitarios de las diferentes carreras involucradas en esta iniciativa y la mano de obra de la comunidad de Los Ángeles Cabecar quienes trabajan como un grupo que realiza todas las labores que requiere la UPI.

La importancia de las UPI es que están relacionadas con la seguridad alimentaria, salud, producción sostenible, manejo integrado de los recursos, protección del medio ambiente, formación de microempresas y organización comunitaria. Para el Instituto de Nutrición de Centroamérica y Panamá (INCAP), la Seguridad Alimentaria y Nutricional (SAN) es el estado en el cual todas las personas gozan, en forma oportuna y permanente, del acceso a los alimentos en cantidad y calidad para su adecuado consumo y utilización biológica, garantizandoles un estado de bienestar que coadyuve a su desarrollo”. Por lo que el Ministerio de Educación Pública (MEP) cuenta con un programa de huertas escolares, que busca la seguridad alimentaria para las escuelas y colegios; para lo que el proyecto de la UNA permite a las instituciones del territorio indígena involucradas, una oportunidad para producir parte de lo que se puede consumir en los comedores Página 3/12 07-10-18 03:23 pm.

METODOLOGÍA

El enfoque de abordaje será basado en la investigación-acción-participación (IAP), que involucra al equipo de trabajo, centros educativos y actores locales; cuya particularidad es que permite re-direccionar el rumbo de las necesidades según la problemática generada, acorde con las actividades e indicadores establecidos en los objetivos del proyecto, que además es una metodología donde se aprende haciendo por medio de los diálogos de saberes y desarrollando la acción sustantiva en la realidad de la cosmología de las comunidades indígenas.

El proyecto está planteado en cuatro fases:

- La primera fase involucra a nuevos centros educativos y actores locales y una inducción para que conozcan el proyecto y sus alcances.
- La segunda fase se enfoca principalmente en la capacitación, planificación y establecimiento de la UPI con un plan de trabajo, donde se indican las actividades a realizar, fechas y encargados; además de algunas observaciones y resultados esperados
- Como tercera fase el Establecimiento de los diálogos de saberes y procesos de capacitación con los actores locales y demás participantes del proyecto. Rescate de las tradiciones alimentarias indígenas y sus productos no maderables del bosque, donde se realizó varios talleres y sistematizado mediante un manual educativo, que permitirá compartirlo con los estudiantes de los centros educativos y actores locales
- Y por último y no menos importante la Sistematización, evaluación y rendición de cuentas del proceso y resultados del trabajo realizado por medio de la elaboración de manuales y brochure para la promoción del
proyecto y la incorporación didáctica del mismo mediante la presentación de ponencias o posters en congresos o seminarios como estrategia de comunicación.

Hay que recalcar que parte de la metodología es que se implementara un modelo de seguimiento que será llevado a cabo con la integración de un comité encargado del establecimiento, seguimiento y el proceso productivo, de cosecha y post-cosecha de la unidad productiva integrada; constituido por profesores, estudiantes y el director del centro educativo.

RESULTADOS DE EXPERIENCIAS

De las fases establecidas para dicho proyecto hacemos mención, que las primeras dos fases del proyecto generaron buenos resultados con la incorporación de nuevos centros educativos, además las siguientes fases se refieren a la puesta en marcha de los talleres participativos involucrando los saberes ancestrales, la cosmovisión indígena con las nuevas tecnologías de producción.

La experiencia obtenida en los diferentes talleres como es el Taller de Viveros Forestales, el de Huertas y el de Abejas permitió utilizarlo como una herramienta aplicada dentro del marco de la enseñanza-aprendizaje, fortaleciendo los recursos de las comunidades involucradas, así también la puesta en práctica de todo aquel aprendizaje obtenido por los estudiantes implicados dentro de estos procesos, generando nuevas ideas para implementar en el mediano plazo. Figura 2.
Lo mencionado anteriormente ha dado como resultado que, se apliquen conocimientos nuevos y ancestrales propios de aquellos lugares y actores involucrados, dando un enriquecimiento en ambas direcciones y aprovechando todos los saberes locales, unidos a aquellas herramientas innovadoras o tecnológicamente modernas, con los cuales los participantes se ha empoderado de su entorno, incentivándoles a generar productos que pueden comercializarse y ser consumidos por ellos mismos. Con la idea de mejorar las economías familiares de estas comunidades y por ende de la economía local, regional y nacional. Figura 3.

![Figura 3: Empoderamiento del entorno por medio de la sensibilización ambiental](image)

CONCLUSIONES

Se han estructurado 8 huertas de producción 7 de ellas en las diferentes escuelas y el colegio participante y la última en la Comunidad Indígena de Los Ángeles Cabecar.

Una finca integral en el colegio de Boca Cohen que ha permitido la producción de al menos 10 tipos nuevos de alimento para mejorar la seguridad alimentaria y nutricional de las poblaciones tanto estudiantil como de las familias involucradas en el proyecto.

Las unidades productivas integrales ayudan a las comunidades y centros educativos a aumentar su seguridad alimentaria como un método de reducción de vulnerabilidad.

La presencia del proyecto en la zona ha permitido abrir una alternativa para los estudiantes del colegio indígena de Boca Cohen de contemplar la posibilidad de formar parte del estudiantado en las carreras que imparte la Universidad Nacional.

BIBLIOGRAFÍA

• Del Pozo T, comunicacion@agriculturasostenible.org, Teléfono: 91 360 53 39/ 673 518 853, @agrosostenible
• Esquivel Acosta AC. 2012. Uso del suelo, actividades productivas agropecuarias y nivel cantonal y el potencial de conectividad ecológica entre Áreas Silvestres Protegidas de Costa Rica.
• Leiva Meza MJ. 2012. Formulación de una propuesta de proyecto de seguridad alimentaria en el Municipio de San Agustín Acasaguastlán, Departamento El Progreso, Guatemala.
• Navarro Ortega, M.A. 2012. Evaluación participativa del aporte de fincas integrales a los servicios eco sistémicos y a la calidad de vida de las familias en el Área de Conservación Tortuguero, Costa Rica.
• Rojas I, Daly C. 2016. Propuesta de un modelo para el desarrollo del turismo rural comunitario en la comunidad de los Ángeles en Coreña Sarapiquí Heredia, Costa Rica. En Revista de nuevo Humanismo Revista del Centro de Estudios Generales. EUNA Págs. 141
• Siles Calvo J, Gutiérrez Montes I, Ramírez Agüero F. 2012. Estrategia de equidad e igualdad de género.
LA AGROECOLOGÍA: ¿SOLUCIÓN PARA FOMENTAR LA INCORPORACIÓN DE LA MUJER AL MEDIÓ RURAL?

Compés R, Gonzálvez V, Lladosa A

Departamento de Economía y Ciencias Sociales, Universitat Politècnica de València (València, rcompes@esp.upv.es); vgonzalvez@agroecologia.net: Comité de Agricultura Ecológica de la Comunitat Valenciana (anitalladosa@gmail.com)

RESUMEN: La agroecología no es lo mismo que la agricultura ecológica. Los principios agroecológicos, los movimientos sociales que los apoyan y las prácticas productivas que los aplican constituyen en conjunto una alternativa al sistema dominante en materia agroalimentaria. La agroecología consiste no solo en un conjunto de técnicas productivas respetuosas con el entorno natural –como es el caso de la agricultura ecológica-, sino que incorpora también aspectos relativos a la organización y gestión de la producción y su relación con el entorno tales como el género, la calidad del trabajo o la distribución de márgenes y precios. Combinar adecuadamente todas estas dimensiones en el sistema actual no es fácil. Como un paso previo al análisis del papel de la mujer en la agroecología en España, este trabajo estudia la participación de ésta en la agricultura ecológica a partir de los datos de los Censos Agrarios elaborados por el Instituto Nacional de Estadística. Aunque hay productores de agricultura ecológica a través de la agroecología que no se certifican, esta información es útil como una primera aproximación al grado de incorporación de la mujer a la agroecología. Los resultados muestran que la participación de la mujer en la agricultura ecológica –tanto en calidad de titular como de jefa de explotación– no son superiores a los equivalentes para la agricultura convencional, y tampoco que las explotaciones de agricultura de mujeres sean distintas que las de hombres. Esto debe servir para repensar las estrategias de incorporación de la mujer a esta técnica y movimiento.

Palabras clave: agricultura ecológica, censo agrario, desarrollo rural, género

INTRODUCCIÓN Y OBJETIVOS

Desde que la Comisión Europea reconociera la agricultura ecológica como parte de la estrategia para la incorporación del medio ambiente y el desarrollo rural en la Política Agraria Común (PAC), y decidiera que los productores ecológicos debían ser compensados, unido a un cambio en los sistemas agroalimentarios y al aumento de la demanda de productos ecológicos y de calidad (Arnesto, 2005), se ha producido un crecimiento del número de explotaciones ecológicas.

Los estudios sobre la agricultura ecológica en el mundo son numerosos, y abordan múltiples aspectos como su origen, su desarrollo y evolución, las motivaciones de los productores y los factores o variables que han incidido en su crecimiento. Sobre las variables más señaladas, destacan la edad, el tamaño de la explotación, el nivel formativo, el tiempo dedicado a la explotación y el género (Burton et al., 1999; Binimelis et al., 2004; Pérez et al., 2008; Beltrán-Esteve et al., 2012; Padel, 2001; Sabaté-Martínez, 2000), siendo este último uno de los más interesantes por la creciente importancia que se le está dando a la mujer en la sociedad en favor de la igualdad en todos los sectores y, en particular, en el agrario, ya que éste es mayoritariamente masculino.

La Organización para la Cooperación y el Desarrollo Económico, ha destacado la especial preocupación de las mujeres por el medio ambiente y la salud (OECD, 2008), además, la agricultura ecológica ha sido identificada como fuente de oportunidad de trabajo para las mujeres (López, 1999 y Díaz, 2005), a lo que cabe añadir su contribución al empoderamiento de la mujer y a la igualdad de género (Fanworth y Hutchings, 2009). Esta reivindicación de la mujer en el sector coincide con algunos cambios estructurales que se están produciendo en el sector agrario, en particular una cierta feminización y un aumento del número de mujeres titulares. Todos estos factores, unidos a ciertos movimientos de retorno al campo (Díaz, 2005), llevan a pensar que el porcentaje de mujeres en agricultura ecológica debe haber aumentado en los últimos años.
De ser así, la agricultura ecológica podría cumplir los objetivos respecto al medio ambiente y el desarrollo rural, tal y como la Comisión Europea pretendía, entendiendo el desarrollo rural como “un proceso de revitalización equilibrado y autosostenible del mundo rural basado en su potencial económico, social y medio ambiental” (Quintana et al., 1999). En el aspecto económico y medio ambiental, parece quedan claro que la agricultura ecológica es beneficiosa, pero sería un aspecto importante la incorporación de la mujer para evaluar también de forma positiva el aspecto social de este sistema productivo.

Por todo esto, el objetivo de esta Comunicación se centra en dos aspectos: en primer lugar, determinar el grado de incorporación de la mujer en la agricultura ecológica y, en segundo lugar, analizar aquellos factores que influyen en la decisión de cambiar al sistema productivo de agricultura ecológica, en el caso de Comunitat Valenciana.

Para responder a estos objetivos, se utilizan datos procedentes de los Censos Agrarios del INE de los años 1999 y 2009, ya que esta fuente secundaria es la más completa sobre datos de explotaciones agrarias en España y sus Comunidades Autónomas. En particular, se utilizan los microdatos publicados en código ASCII que se descifran mediante el programa SPSS. Se considera explotación ecológica aquella que al menos tiene un cultivo inscrito en una entidad certificadora. La población total se ha dividido entre las explotaciones en las que el jefe de la explotación es también el titular y las que no lo es. Se ha realizado un análisis descriptivo de las explotaciones y, por último, un análisis de correspondencias múltiples con el fin de analizar el grado de relación de variables sobre el sistema de producción agraria. Para las variables cualitativas se ha obtenido el número de casos presentes y el porcentaje correspondiente, y para las variables cuantitativas, los valores mínimo, máximo, media y desviación típica. Con todos estos datos se obtiene el mapa perceptual que permite estudiar de forma gráfica la relación existente entre las variables, de manera que la mayor o menor distancia entre los puntos representados reflejan relaciones de dependencia y semejanza más o menos fuertes entre las categorías representadas.

RESULTADOS

Incorporación de la mujer en el sistema productivo ecológico

Como era de esperar, a nivel nacional en 2009, las explotaciones continúan siendo dominantes (2,29% de las explotaciones son ecológicas), pero lo que sorprende, vistos los antecedentes, es que el porcentaje de mujeres es menor en ecológicas (18,60%) que en explotaciones convencionales (21,70%). En general, las explotaciones ecológicas son diferentes que las convencionales: tienen mayor superficie media (50 ha frente a 23 ha), los productores son más jóvenes y dedican mayor tiempo a la explotación.

Cuando se comparan las explotaciones ecológicas en las que la mujer es titular, se observan también diferencias a tener en cuenta. En el caso en que la mujer sea titular y jefa de la explotación, existe mayor número de explotaciones, aunque de menor tamaño medio y más especializadas en agricultura y ganadería. Mientras en aquellas en las que la mujer no es la titular, el tamaño medio es mayor y están especializadas sobre todo en agricultura ecológica. El resto de variables estudiadas son muy similares, -tramo de edad principal entre 45 a 54 años, con experiencia agraria exclusivamente, el porcentaje principal de tiempo dedicado, incluso los cultivos mayoritarios-.

En el caso de la Comunitat Valenciana, las explotaciones ecológicas alcanzan, en 2009, el 0,95% del total de las explotaciones, el porcentaje de hombres sigue siendo mayor que el de mujeres, y en contra de lo que podía pensarse, el porcentaje de mujeres en convencional mayor que en ecológico (15,58% frente a 14,54%). Las explotaciones ecológicas en las que la titular es la jefa, son mayores en número, menores en extensión media y con mayor dedicación de tiempo que en las que la jefa no es la titular. El resto de variables obtienen los mismos valores, – la edad principal de 45 a 54 años, especialización en agricultura ecológica y los cultivos por superficie –.
La evolución de las explotaciones ecológicas en la Comunitat Valenciana entre los años 1999 y 2009 ha resultado ser la siguiente: en el caso de las explotaciones en las que la mujer es titular y jefa de explotación, el número ha disminuido, sin embargo aumenta el número de hectáreas y la extensión media; la formación continua siendo la experiencia agraria exclusivamente, aunque ha disminuido el porcentaje (de 89,09 % a 71,79 %) y dedicar mayor porcentaje de tiempo (en 2009 de 25 % a 50 % del tiempo). Los cultivos, por superficie, han cambiado de otros frutales y bayas a viñedo. En el caso de las explotaciones en las que la jefa de la explotación no es la titular, ha aumentado tanto el número como la superficie, pero ha disminuido la superficie media por explotación (de 71 ha a 61 ha); la edad de las mujeres se sitúa en el mismo intervalo, entre 45 a 54 años; la formación mayoritaria es la experiencia agraria en ambos años, aumentando el porcentaje en 2009; el porcentaje de tiempo dedicado a la explotación es el mismo – de 0% a 25% – y por último, los cultivos mayoritarios tanto por superficie como por explotaciones han cambiado a viñedo y olivar respectivamente.

Grado de relación de las variables estudiadas respecto al sistema de producción

Para el análisis de correspondencias múltiples con las variables del Censo Agrario 1999 (INE), el primer eje viene definido por las unidades de trabajo/año total (UTAT), – distinguiendo las explotaciones con unas UTAT hasta 0,79 y las explotaciones con unas UTAT mayores o iguales a 0,79 – y por el porcentaje de tiempo trabajado en la explotación, – explotaciones con un porcentaje inferior al 25% frente a las de igual o superior al 25%. El segundo eje lo define la edad, – personas de 25 a 64 años de las mayores de 65 años –, y el jefe de la explotación, – titular frente a no titular –. Dichos ejes explican el 39,2% de la variabilidad asociada a las variables cualitativas estudiadas. Se observa que las explotaciones de agricultura ecológica están dedicadas a la agricultura general, con una superficie de hasta 22,36 ha. Son explotaciones de personas con una edad entre los 25-54 años, con estudios profesionales o universitarios agrarios que no son titulares de la explotación.

En el caso de 2009, las variables se agrupan en torno a dos ejes; un primer eje viene definido por las unidades de trabajo/año totales (UTAT), – distinguiendo a las explotaciones con unas UTAT hasta 0,61 de las explotaciones con unas UTAT mayores de 0,61 unidades –, por la superficie agrícola utilizada (SAU), – explotaciones con una SAU hasta 2,72 ha de las mayores de 2,72 ha –, así como por el porcentaje de tiempo de trabajo en la explotación, – explotaciones con un porcentaje inferior al 25% frente a las de igual o superior al 25% –. El segundo eje lo define la Producción Estándar Total (PET) y el tipo de cultivo. Dichos ejes explican el 45,2% de la variabilidad asociada a las variables cualitativas estudiadas. Se observa que las explotaciones de agricultura ecológica están dedicadas a la horticultura, con una superficie a partir de 11,11 ha, unas UTAT a partir de 1,11 y un PET igual o superior a los 28.636 €. Son explotaciones de jóvenes entre 25 y 34 años, con estudios profesionales o universitarios agrarios que dedican el 75 % o más del tiempo de trabajo a la explotación.

Por ello, las variables que presentan un grado de relación más estrecho con el sistema de producción ecológico en ambos años son: la edad, el nivel de formación, el tamaño de la explotación, y el tipo de cultivo. Mientras en el año 1999 la no titularidad presentaba un grado de relación, en 2009 son el PET, el porcentaje de tiempo dedicado a la explotación y las UTAT.

En ningún año, el sexo parece mantener un grado de relación con el sistema de producción ecológico, mientras el resto de variables tiene relación en uno u otro año, aunque con diferentes valores.

CONCLUSIONES

Durante los últimos años, el impulso a la mujer es un punto importante en la política, – a través de cambios legislativos –, y mediante el apoyo desde programas europeos, con la intención de conseguir igualdad y hacer desaparecer las brechas existentes entre hombres y mujeres, visibilizar el trabajo de estas – importante sobre todo en un sector tan masculinizado como es el agrario –, de forma que se pueda alcanzar el renombrado desarrollo rural sostenible, desde un aspecto tan difícil como es el social.
Sin embargo, los resultados obtenidos en el análisis muestran datos contrarios a los que cabría esperar. El porcentaje de mujeres en sistemas de producción ecológica no es mayor que en el convencional, y en el caso de la Comunitat Valenciana, este porcentaje ha disminuido además entre los diez años estudiados. Respecto al grado de relación que muestran las variables estudiadas, se observa, que el sexo es la única variables que no mantiene relación con el sistema ecológico en ninguno de los años, aunque si la entrada de jóvenes, y es visible la presencia de variables económicas como son el PET y las UTAT en el último año.

Parece que las razones para el cambio de sistema de producción son principalmente económicas, no pudiendo medir a través del presente estudio, la influencia de la conciencia medio-ambiental. En cualquier caso, si se toma la incorporación de la mujer como un indicador de sostenibilidad e inclusión social, no parece que se estén cumpliendo las expectativas.

Por tanto, estos datos invitan tanto a la reflexión como a posteriores investigaciones. Por un lado, es posible que la mujer no sea tan proclive como se cree a los métodos de producción ecológicos frente a los convencionales, por otro, puede ser que lo que está ocurriendo es que la mujer está ingresando principalmente en el mundo ecológico, pero no a través de los sistemas de certificación sino de la agroecología. Esta hipótesis encaja con el dato de Ecologistas en Acción (2017) según el cual el 41 % de los proyectos de agroecología están liderados por mujeres.

BIBLIOGRAFÍA

- OECD. 2008. Gender and sustainable development: maximizing the economic, social and environmental role of women. Paris (Francia): OECD.
AGROECOSISTEMAS TRADICIONALES RESILIENTES. BASE FUNDAMENTAL DE LA SEGURIDAD Y SOBERANÍA ALIMENTARIA EN LA ZONA MEDIA DEL SAN JUAN CHOCÓ COLOMBIA

Barrios Arango L

Ibarriosa@unal.edu.co, Sánchez de Prager Marina @unal.edu.co, Universidad Tecnológica del Chocó; Universidad Nacional de Colombia (UNAL) sede Palmira/Grupo de Investigación en Agroecología

RESUMEN: Sistemas tradicionales de producción de las comunidades indígenas y negras: Este concepto emergió en la década de 1990, época de mayor auge de los estudios acerca del valor de la región Pacífica en términos de biodiversidad biológica y cultural para el país y el planeta, en el cual se implementan las políticas de conservación de la biodiversidad y de desarrollo sostenible (Escobar 2010). Los sistemas tradicionales del chocó son prácticas productivas que responden al conocimiento ancestral que han adquirido las comunidades locales para permitir su resiliencia, supervivencia y preservar la diversidad y la riqueza natural del medio que los rodea. (Flórez y Millán 2007) en el cual se complementan actividades agrícolas con prácticas de recolección, extracción de productos forestales, pesca, caza, actividades pecuarias, labores artesanales y actividades extractivas como la minería y el aprovechamiento forestal y que constituyen su base productiva como fuente primordial de la seguridad y soberanía alimentaria (Riascos 2012, Escobar 2010). Los cuales están conformados por los policultivos, sistemas agroforestales, huertos caseros o traspatio, azoteas, montes, colinos, y agro minería. (Zuluaga y Ramírez 2015), (Arredondo 2013) (Varela 2013) (Escobar 2010). Caracterizados por rotación de cultivos, bajos niveles de insumos externos, utilización de mano de obra familiar, combinación de múltiples actividades, generación de pocos excedentes, y por ser centrales en la alimentación y la economía local. También son altamente eficientes en términos de seguridad alimentaria, en la mejora de las condiciones nutricionales y en la salud de sus pobladores, siendo al mismo tiempo una estrategia para conservación in-situ de la agrobiodiversidad.

Palabras clave: agroecología, autonomía, conocimiento tradicional, cultura, policultivos.

INTRODUCCIÓN

El agroecosistema: es la unidad de análisis de la agroecología. Se comprende como el complejo total de organismos de un área agrícola, junto a todo el ambiente físico externo condicionado por las actividades agrícolas, industriales y sociales del hombre. El agroecosistema es considerado como un ecosistema domesticado, con características intermedias entre un ecosistema natural y un ecosistema donde participa la acción humana (Glissman, 2002).

A diferencia de la agricultura de monocultivo, los agroecosistemas son más complejos, sustentables, estables y multifuncionales debido a que están integrados por personas, plantas, animales, suelo y agua en un área bien definida, y cuya estructura, funcionamiento y manejo dependen de la organización familiar (Nair, 2001; Albuquerque et al.; Juan y Madrigal, 2005; Juan et al., 2007). Los agroecosistemas son espacios importantes en donde se realiza una domesticación y adaptación de especies arbóreas y arbustivas, al igual que de variedades, razas e individuos, debido a lo cual se tiene una gran variabilidad genética (Pérez y Cruz, 1994; Jiménez et al., 1999). Como lo señala Mariaca (2012).

Mariaca (2012) refiere que para el estudio de la estructura y función de los agroecosistemas es importante tener presente los atributos ecológicos (ecosistema, comunidad, población, individuos) y manifestaciones culturales (cosmovisión, historia, tecnología, organización familiar, función económica, construcción de conocimiento, procesos de domesticación, prestigio, valor de los productos, origen de las especies y significado de las especies presentes), lo cual puede conducir a una comprensión integral de la complejidad de estos sistemas productivos.
Para (Zuluaga y Ramírez 2015) los sistemas de producción agrícola en el Pacífico Colombiano están conformados por los policultivos, los sistemas agroforestales y las huertas caseras, caracterizados por rotación de cultivos, bajos niveles de insumos externos, utilización de mano de obra familiar, combinación de múltiples actividades, generación de pocos excedentes y por ser centrales en la alimentación y la economía local. Estos sistemas productivos son altamente eficientes en términos de seguridad alimentaria en la mejora de las condiciones nutricionales y en la salud de sus pobladores, siendo al mismo tiempo una estrategia para conservación in-situ de la agrobiodiversidad.

Por su parte (Arredondo 2013) los clasifica en traspatio o huerto, policultivos y azoteas, para el (consejo del dagua 2012) policultivos, montes, y el huertos caseros donde se incluyen azoteas. (Varela 2013) los clasifica como: patio, azotea, colinos, monte y un sistema más complejo como lo es la agrominería o sistema minero campesino.

(Escobar 2010) por su parte los clasifica en colinos, policultivos, azoteas, monte, los cuales pueden corresponder a una o varias familias, puede ser contiguo o no, y se pueden haberse obtenido a través de una variedad de medios, desde la herencia e intercambio hasta la compra. Cada sistema usa una combinación de prácticas. La agricultura es caracterizada por una selección cuidadosa de semillas y parcelas, el sistema de tumba y pudre, el uso diferenciado de espacios y tiempo del año según las especies, la atención al ciclo lunar, la asociación y rotación de cosechas, períodos barbecho, y el trabajo familiar y reciproco comunal.

MATERIALES Y MÉTODOS

Localización:

La Zona del San Juan se encuentra enmarcada por la Serranía del Baudó, la Cordillera Occidental, el Macizo de los Farallones de Cali y el Océano Pacífico; allí se ubican los municipios de Tadó, Istmina, Condoto, Novita, Cértegui, Unión Panamericana, Sipí, Rio Iró, Medio San Juan, San José del Palmar y Litoral del San Juan. La región del San Juan es una zona de alta pluviosidad, con una vegetación muy diversa y recorrida por el río San Juan, cuya longitud es de 190 Km, a lo largo de este se forman suelos aluviales que contienen ricos yacimientos de minerales, metálicos y no metálicos (oro y platino). Sin embargo la explotación irracional de este recurso ha generado daños al medio ambiente, pues la actividad afecta, las fuentes hidricas, la fauna y flora que allí confluyen. (CODECHOCÓ, 2012).

Figura 1. Ubicación geográfica de los municipios del área de estudio
Fuente: Corporación para el Desarrollo Sostenible del Chocó (CODECHOCÓ, 2012).
METODOLOGÍA

El trabajo metodológico se realizó en tres fases:

Fase 1. Documentación

Se desarrolló bajo observación indirecta, que comprendió una extensiva revisión bibliográfica y levantamiento de información secundaria, la cual permitió recopilar toda la información sobre la distribución ecológica, el conocimiento y el estado de conservación de especies cultivadas, sus parientes silvestres y los sistemas tradicionales de producción en el Departamento del Chocó, dentro de la zona de estudio estudiada.

Fase 2. Socialización y Consulta Previa

La segunda fase consistió en la consulta previa a la comunidad, a través de las autoridades étnico-territoriales locales (consejos comunitarios), la cual permitió la obtención de permisos para trabajar en el área de influencia del proyecto. Se realizó la socialización, dentro de un abordaje participativo. Todo el estudio se desarrolló mediante la metodología de Investigación Acción Participativa (IAP), que vincula a las comunidades para tomar decisiones y la hace parte activa del desarrollo del mismo, en la cual se conformarán grupos de diálogo y además se elaborarán diagnósticos participativos agroecológicos.

Fase 3. Campo

Cuadro 1. Diseño del instrumento de muestreo

<table>
<thead>
<tr>
<th>Región</th>
<th>Municipio</th>
<th>Número de Agroecosistemas</th>
<th>Total agroecosistemas / Región</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan</td>
<td>Tadó</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Istmina</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nóvita</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Caracterización estructural y funcional de los diferentes componentes de los sistemas tradicionales

Aplicación de encuestas semiestructuradas. La aplicación de las encuestas semiestructuradas y la observación directa en campo, permitieron el levantamiento de la información de campo, que es indispensable en la realización de esta investigación. Se aplicaron doce (12) encuestas en cada municipio objeto de estudio (una a cada propietario del agroecosistema) para un total de 36 entrevistas durante la ejecución de este estudio, es importante mencionar que las entrevistas fueron grabadas para un mejor análisis de la información.

Las encuestas incluyen información familiar, información de los sistemas productivos (mano de obra, manejo, prácticas culturales, cantidades, precios y costos de producción de los bienes obtenidos), destinos de la producción, entre otros (Ver figura 2).

Identificación los componentes (físicos y biológicos) que constituyen los agroecosistemas tradicionales. El levantamiento de información sobre aspectos físicos y biológicos de los agroecosistemas se realizó de manera directa en campo por parte del grupo de investigación en compañía de los productores, mediante la utilización del GPS (registro de coordenadas geográficas de los agroecosistemas). Mediciones del terreno (a través de cinta métrica) para el posterior cálculo del área, y cuantificación de especies existentes (especies vegetales y animales) y rendimiento productivo.
Estructura y función de los agroecosistemas. Para la recolección de la información estructural; las especies forestales y agrícola, primero se clasificaron con relación con su hábito ecológico, evaluando su altura total de la siguiente forma: especies arbóreas: >5 m; especies arbustivas (incluyendo las lianas y trepadoras): 1 m a 5 m; y especies herbáceas <1 m, este muestreo se realizó planta a planta en cada uno de los huertos y se aplicara la ecuación utilizada por (Bentes et al., 2000) y adaptada por (Borja, T y Andrade, D. 2011) que considera el nivel de utilización de las especies, la importancia biofísica y la demanda de las especies por parte los productores. Esta ecuación se denomina Coeficiente de Importancia de la Especie (CIE):

\[
CIE = \frac{(3*NU) + (2*IB) + DC}{6}
\]

Posterior a lo anterior en uno de los agroecosistemas se realizo un trancepto de 10m por 30m donde se identificará la estructura vertical y horizontal, la cual se representará a través de un perfil idealizado de los componentes bióticos a través de estratos como: arbóreo, arbustivo y herbáceo. Se presentará un perfil idealizado del estrato de la vegetación (un perfil modelo por municipio). Las especies estratificadas verticalmente, en cada estrato conteniendo plantas que pertenecen a una forma de vida específica y que constituyen pilar fundamental en la estructura del agroecosistema estudiado.

La información sobre la parte funcional de cada una de las especies se obtuvo a través de la aplicación de encuestas semiestructurada a cada uno de los propietarios de los agroecosistemas. La función estuvo determinada de acuerdo con el uso que les dan los productores a las especies existentes en los agroecosistemas encontrados.

RESULTADOS Y DISCUSIÓN

Agroecosistemas Tradicionales de Producción Caracterizados en la Zona Media del San Juan. los agroecosistemas tradicionales en el Chocó se caracterizan por una relación y articulación entre sus componentes donde son evidentes las relaciones e interacciones y dependencia de los subsistemas para que el todo funcione sin alteraciones mayores.

Ejemplo, las azoteas son manejadas por las mujeres y los niños y están articuladas con el huerto familiar o hacen parte de este sistema, el huerto familiar esta articulado con el sistema de monte y colinos los cales están
alejados de la casa y son manejados por el hombre, juntos garantizan no solo la soberanía alimentaria y la economía familiar sino también la oportunidad de construir espacios de educación y paz en comunidades rurales afectadas por la violencia. Los agrosecosistemas presentes en la zona de estudio fueron:

1. **La Agrominería.** Es un sistema minero-campesino creado por las comunidades afrodescendientes del Pacífico Colombiano, especialmente en el departamento del chocó, y está estructurado por todos aquellos mineros-campesinos que se autoabastecen de alimentos mientras producen excedentes, y se conectan con las sociedades nacionales a partir de la minería de pequeña escala, valiéndose de tecnologías manuales y mano de obra familiar (Varela 2013).

La característica de este sistema es una diversificación productiva que incluye trabajo en minas artesanales, cultivos itinerantes, caza, pesca, recolección y mantenimiento de patios y zoteas alrededor de las viviendas. Una geografía simbólica ordena esas prácticas productivas, organiza el trabajo entre los géneros y define formas de acceso a los recursos. (Varela 2013) La agrominería es un sistema autónomo que genera cambios hacia una producción diversificada e independiente, permitiendo una nueva visión de desarrollo desde lo étnico territorial, con un enfoque cultural arraigado y desarrollado por las prácticas ancestrales de las comunidades locales que habitan las poblaciones rivereñas del Chocó.

2. **Los Montes.** Estos agrosecosistemas tradicionales tienen como característica importante su alto nivel de diversidad genética y de especies, en la forma de policultivos o de sistemas agroforestales en los cuales se realizan prácticas de recolección, extracción de productos forestales, principalmente madera, actividades de minería y de fauna silvestre. (Varela 2013) El monte es una zona de respaldo en el cual encontramos gran número de especies con diversos usos tales como: maderas, plantas medicinales, ornamentales y alimenticias; el aprovechamiento es sostenible y controlado por la comunidad. (Riascos 2012) El descanso o enfriamiento de un cultivo consiste en permitir que poco a poco el bosque recupere el terreno que perdió, tras el proceso de socola y trabajo intenso durante cinco años. Aquellos cultivos recién abandonados, donde comienzan a crecer arbustos y sotobosque, son llamados por los chocano montes biches. Aquellas donde los viejos frutales ya se confunden con el paisaje propio de la selva chocona son llamadas montes jechos o bravo. Los cuales permiten el trabajo asociado y la tenencia de la tierra es trasmitida de generación en generación, entre grupos de familiares, pero se permite el aprovechamiento libre por parte de la comunidad de sus frutales y la cacería de animales que habitan en él. (Varela, 2013).

3. **Las Azoteas.** Son pequeños espacios ubicados muy cercanos a las casas, sus estructuras son construidas en madera rectangulares levantada del suelo por cuatro horquetas que protegen los cultivos de animales e inundaciones. (Varela 2013), rellenas de una mezcla de tierra de hormiga, limo y arcilla, ubicadas entre uno y dos metros del suelo, usadas para el cultivo de hierbas y las plantas medicinales, plantas alimenticias y condimentarias, y presentan un área aproximada entre 5 y 50 m² (Riascos, 2012). Las mujeres son las encargadas de mantener esta labor, que constituyen un elemento importante de los sistemas tradicionales de producción en el Pacífico en términos del conocimiento local y la biodiversidad agrícola (Camacho 1998; citado por Escobar 2010, Arredondo 2013).

4. **El Colino.** Es un sistema tradicional que tiene al plátano como su componente principal, presentando una base importante de la seguridad alimentaria y conservación de la diversidad genética (Escobar 2010) en el cual encontramos una amplia variabilidad de musáceas inter-específica, o entre especies distintas, y una alta diversidad intra-específica (Zuluaga y Ramírez 2015) utilizadas principalmente para el autoconsumo, como el como el cachaco, el banano, el primitivo, el guineo y el muslo de mujer, con distintas formas y sabores agrupados con el término de (Varela 2013) los colinos se encuentran en lotes distantes a la casa, son dedicados a la siembra de cultivos en forma trashumante, se hacen pequeños claros en la selva, los cuales no exceden una hectárea, donde se siembra plátano (Musa sp.) como cultivo principal, en asociación con maíz (Zea mays), ñame (Dioscorea sp.), arroz (Oryza sativa), yuca (Manihot esculenta), árboles frutales y maderables, (Zuluaga y Ramírez 2015).
5. Huertos Caseros Mixtos. Los huertos son técnicas agrícolas antiguas que han ayudado a la subsistencia familiar en muchas poblaciones del mundo. Representan una fuente potencial de recursos naturales utilizados por las familias, esto con múltiples fines y propósitos. Existen diversos tipos de huertos y desde luego también varias definiciones, por ejemplo el Instituto Internacional de Recursos Filogenéticos (IPGRI) señala que los huertos familiares son ecosistemas agrícolas situados cerca del lugar de residencia permanente o temporal. En los huertos familiares existe una combinación de árboles, arbustos, verduras, tubérculos y raíces comestibles, gramíneas y hierbas que proporcionan alimentos y condimentos, medicinas y material para construcción. A menudo también se integran animales domésticos a estos agroecosistemas. Además, los huertos familiares coadyuvan a la seguridad alimentaria, al ingreso familiar y representan una importancia, económica, social y cultural; por lo que es importante su manejo y preservación (Denisen y Nichols, 1998).

El huerto casero es un sistema agroforestal (SAF) simultáneo. La definición de huerto casero mixto es muy variada debido a factores geográficos, sociales y culturales. Hoogerbrugge y Fresco (1993) citados por Lok (1998) lo definen como un sistema de producción suplementario y a pequeña escala para (y manejado por) los miembros de un hogar que simula el ecosistema natural con sus múltiples estratos. Los huertos caseros son una tecnología agroforestal multipropósito que se basa en la asociación intensiva de leñosas, frutales y no leñosas, generalmente cerca de la vivienda (Ospina, 2003). En los sistemas de producción tradicionales del Pacífico Colombiano, las comunidades incluyen las azoteas como un elemento importante dentro de los huertos caseros mixtos ya que se encuentran haciendo parte integral del sistema de producción y no un componente aislado (Varela 2013).

Para Delgado y Castillo (1996), el huerto familiar es una alternativa al problema de abastecimiento de alimentos en áreas marginales, y complementa la dieta alimentaria deficiente de sus habitantes (agregándole verduras y frutas secas) favoreciendo una alimentación sana. Sin embargo, de un estudio efectuado en algunas comunidades rurales de Nicaragua y Honduras, Marsh y Hernández (1998) manifiestan que los huertos caseros tienen como beneficio primario el abastecimiento de alimentos de alto valor nutritivo para el consumo familiar, especialmente frutales, musáceas y productos animales, pero que éstos generan además entre un 10 y un 26 por ciento del ingreso familiar total.

Desde un enfoque ecológico, los huertos familiares son espacios geográficos en los que se conserva germoplasma in situ (Jiménez et al., 1999; Rebollar et al., 2008), debido a que se han convertido en refugio para muchas especies vegetales silvestres que han desaparecido de su hábitat natural, convirtiéndose en espacios importantes para conservar la agrobiodiversidad de la región; a sea, no únicamente conservan los recursos fitogénéticos utilizados para la alimentación y la agricultura, sino también se incluyen en esta definición las especies silvestres que viven y florecen en condiciones naturales en éstos; así como las plantas medicinales, los animales, árboles y arbustos cultivados que conforman un ecosistema y las dimensiones económicas, culturales y sociales que determinan las actividades, como el conocimiento tradicional, los factores socioculturales y los procesos participativos (Villa y Caballero, 1998; González, 2002; Juan et al., 2007).

CONCLUSIÓN

Los agroecosistemas tradicionales presentes en la zona media del San Juan son el resultado de las interacciones entre las diferentes formas de conocimiento, prácticas tradicionales y culturales, las cuales junto con un ambiente natural agreste desarrollan las condiciones apropiadas para que la vida emerja y se tanforme en su principal estilo de vida, adaptación, supervivencia y sustento familiar.

En los agroecosistemas tradicionales del Chocó evidencia una sinergia importante en el cual se realiza una simbiosis entre sus componentes, encontrando siempre en cada agricultor la presencia de mínimo tres agroecosistemas diferentes Ejemplo: azoteas, huertos caseros mixtos, monte o colinos que garantizan así la soberanía, autonomía y seguridad alimentaria de las familias.
BIBLIOGRAFÍA

- Arredondo, J. (2013). Caracterización de los sistemas de producción tradicional, morfología y diversidad genética del cerdo criollo de la Región Pacífica colombiana, Palmira
- ASOCASAN, (2015). Asociación Campesina del Alto San Juan Plan de zonificación y manejo ambiental del consejo comunitario mayor del Alto San Juan., Chocó
- Biopacífico. (1994). Economías de las comunidades rurales en el Pacífico Colombiano. Quibdó, Colombia
- Bernardo 2017 Mançano Fernandes Territorios y Soberanía Alimentaria
- Universidad Estatal de San Pablo (UNESP). Cátedra Unesco de Educación del Campo y Desarrollo Territorial
- BORJA, Teofilo Cuesta; ANDRADE, Ditter Horacio Mosquera. Evaluación estructural y funcional de los sistemas productivos urbanos en Quibdó, Chocó, Colombia. Revista Agroforestería Neotropical, 2013, vol. 1, no 1
- FAO. (2011). Segundo informe sobre el estado de los recursos fitogenéticos para la alimentación y la agricultura en el mundo. Roma. FAO.
- Zuluaga, G y Ramírez. (2015). Uso, manejo y conservación de la agrobiotodiversidad por comunidades campesinas afrocolombianas en el municipio de Nuquí, Colombia
EVALUACIÓN DE LA REDUCCIÓN DE EMISIONES DE CO2 EN LA TRANSICIÓN AGROECOLÓGICA DE COMEDORES ESCOLARES. EL CASO DE LAS ESCUELAS INFANTILES MUNICIPALES DE MADRID

Díaz-Carro M1, Simón Rojo M2

1Universidad Complutense Madrid. Facultad de Ciencias Biológicas, Calle José Antonio Novais, 12, 28040 Madrid
mdc195@gmail.com

2Universidad Politécnica Madrid, Surcos Urbanos. DUYOT, ETSAM Avda Juan de Herrera 4, 28040 Madrid m.simon@upm.es

RESUMEN: La transición hacia modelos alimentarios agroecológicos necesita apoyarse en una mayor coordinación entre producción agroecológica y consumo responsable, en el que la compra pública puede desempeñar un papel clave. En Madrid, la plataforma ciudadana Madrid Agroecológico ha volcado en un sistema de información geográfica, los datos disponibles sobre grupos de consumo y producción agroecológica y sobre otros espacios con potencial para apoyar la transición agroecológica, como las Escuelas Infantiles.

La colaboración entre investigadores de la Universidad Politécnica de Madrid y la Universidad Complutense de Madrid, vinculadas a la plataforma Madrid Agroecológico, ha permitido ir un paso más allá del mapeo, aprovechando programas y herramientas de código abierto para ejecutar análisis geoespaciales con los que informar las estrategias de transición agroecológica. Realizamos un análisis exploratorio del impacto que tendría en términos de reducción de la huella de carbono la política municipal de incorporación de alimentación ecológica y de proximidad en Escuelas Infantiles. Es una política ya aprobada, aunque todavía en proceso de puesta en marcha, que responde a las demandas de la plataforma ecocomedores y otros colectivos, integrados en Madrid Agroecológico. El análisis geoespacial permite comparar el impacto potencial del cambio de modelo de suministro. Se toma como base de análisis un producto representativo y se evalúan distintos escenarios, según sea sistema de producción convencional o ecológico y según el sistema de distribución sea el normal de Mercamadrid o de proximidad (vinculado a Mercamadrid o directamente con los productores agroecológicos). La combinación da como resultado cinco escenarios diferentes para evaluar: a) el actual con producción convencional, b) el mismo modelo de suministro actual pero con producción ecológica, c) suministro de producto convencional de cercanía a través de Mercamadrid (que cuenta con una campaña de promoción “De aquí, de ahora”), d) suministro de producción ecológica dentro de la campaña “De aquí, de ahora” de Mercamadrid y por último e) suministro agroecológico de cercanía apoyado en dos puntos logísticos de central de compras al norte y al sur de la ciudad.

Una evaluación de los modelos debería contemplar más aspectos y no ser reduccionista, puesto que la huella de carbono es sólo uno de los impactos a tener en cuenta. En cualquier caso, los resultados señalan que el factor con mayor incidencia está relacionado con la reducción de la huella de carbono asociada al transporte. Pasando del sistema actual a un suministro de proximidad se conseguiría una reducción del 70% de las emisiones de CO2 y en un modelo agroecológico de proximidad, la reducción llegaría al 80%.

Palabras clave: análisis geoespacial, ecocomedores, herramientas de evaluación, huella de carbono, mapeo colaborativo, sistemas alimentarios sostenibles

INTRODUCCIÓN

La expansión de las poblaciones humanas y el incremento exponencial en el consumo de los recursos naturales ha llevado a que nos encontremos en un escenario de cambio global. Los efectos de las actividades humanas son, al menos, tan importantes como los derivados de procesos geológicos (Crutzen & Stoermer, 2000), por lo que se considera que estamos inmersos en un periodo geológico nuevo: el Antropoceno.

Es reconocido que el cambio climático es uno de los motores principales de esta alteración (Millenium Ecosystem Assessment, 2005). El aumento de la concentración de CO2 en la atmósfera, con niveles un 44.6% superiores respecto a la época preindustrial (valor calculado a partir de NOAA, consultado de https://www.co2.earth/), produce múltiples efectos en los ecosistemas, destacando el aumento de las temperaturas y la
reducción de las precipitaciones en el sur de Europa (IPCC, 2007), así como cambios en las comunidades bióticas (Karhu et al., 2014).

La preocupación por estas emisiones ha inspirado la cuantificación de la huella de carbono, los equivalentes en GEI (Gases de Efecto Invernadero) de las actividades humanas (Hillier et al., 2009). En esta, cobra especial importancia el sector de la agricultura, pues es uno de los principales emisores de GEI, con un 21% del impacto total (Tubiello et al., 2015).

La agricultura industrial no sólo genera impactos medioambientales, sino que no consigue acabar con la insuficiencia alimentaria. A pesar de que la seguridad alimentaria afecta a varios de los Objetivos de Desarrollo Sostenible para 2030 (ONU, 2015) el número de personas que pasan hambre sigue creciendo (FAO, 2015) y en nuestra propia ciudad nos encontramos un 5% de niños con un peso insuficiente, y un 40% por encima de lo recomendado (Área de Gobierno de Equidad, Derechos Sociales y Empleo, 2015).

Frente a un modelo productivo insostenible, la agroecología, que tiene sus raíces en áreas rurales pero ha ido permeando cada vez más los entornos urbanos, propone enfrentar estos procesos a partir de nuevas alianzas urbano-rurales con relaciones de proximidad basadas en la solidaridad y la cooperación (Díaz-Carro et al., 2018). Es en este entorno urbano donde entroncan medio ambiente y seguridad alimentaria, a través del Pacto de Milán (MUFPP), el primer protocolo internacional en materia alimentaria que pone el foco en el nivel municipal. Las ciudades firmantes se comprometen a desarrollar sistemas alimentarios sostenibles, seguros, sanos y accesibles, en un marco de acción que entre otros factores, permita mitigar y adaptarse a los efectos del cambio climático. Esta iniciativa, promovida en octubre de 2015, fue firmada entonces por el Ayuntamiento de Madrid, que se comprometió a la realización de una Estrategia Alimentaria, la cual ha sido definida desde y con los movimientos sociales agroecológicos, destacando el caso de la Plataforma Madrid Agroecológico. Una de las medidas propuestas fue el apoyo institucional a la restauración de escuelas infantiles con menús basados en productos de temporada y locales. El impacto en la reducción de emisiones al generalizar estos cambios puede parecer obvia y notoria, pero aún no ha sido calculada y comparada con otras medidas.

Comprender el alcance de los distintos mecanismos de transición alimentaria en cuanto al potencial mitigador del cambio climático permitirá establecer prioridades claras con el objetivo de incidir en ambas problemáticas.

MATERIALES Y MÉTODOS

El análisis de la huella de carbono se aplica a las Escuelas Infantiles de gestión municipal, del Ayuntamiento de Madrid. La Estrategia Alimentaria Saludable y Sostenible de Madrid 2018-2020 incluye una medida para la introducción de “Alimentos ecológicos y de comercio justo en los comedores de la Red Municipal de Escuelas Infantiles”

El análisis se desglosa en cuatro fases:

1. Localización de espacios de consumo (escuelas infantiles y la población servida) y cuantificación de demanda.
2. Cálculo de la huella de carbono asociada a los distintos modos de producción (convencional frente a ecológico) de un cultivo representativo en los menús de las Escuelas infantiles.
3. Localización de espacios de abastecimiento y cálculo de la huella de carbono asociada al transporte, modelizando tres tipos de suministro (a larga distancia, de cercanía y agroecológico).
4. Evaluación y prospectiva.

Describimos a continuación las variables, los indicadores aplicados con sus correspondientes fuentes de datos y de verificación.
1. Localización de espacios de consumo (escuelas infantiles y la población servida) y cuantificación de demanda

Los espacios de consumo del sistema de estudio son las Escuelas infantiles de gestión municipal (Ayuntamiento de Madrid), que en el curso 2017-2018 disponían de 7.168 plazas (según nota de prensa del 15 de septiembre de 2017). Para el cálculo de la huella asociada al transporte, es importante conocer cómo se distribuyen los menores en las Escuelas Infantiles. Disponíamos sin embargo de información detallada solo para 16 Escuelas, con número de plazas muy variable, entre 53 y 150, al resto de las Escuelas se le ha asignado un valor estándar de 100 plazas. En conjunto los cálculos se han efectuado sobre un total de 5.616 menores de entre 0 y 3 años.

Un menú está compuesto por multitud de componentes. En este caso, para testear la metodología, tomamos un alimento común en la dieta infantil: la patata. Para la estimación del consumo de patata, nos basamos en el Documento de Consenso sobre la Alimentación en Centros Educativos, aprobado por el Consejo Interterritorial del Sistema Nacional de Salud en 2010, y en las “Recomendaciones de consumo mensual de alimentos en el comedor escolar” de la Comunidad de Madrid. Establecen entre 4 y 8 raciones al mes, contando con entre 3 y 8 raciones como plato principal y hasta 5 como guarnición. Estos datos se han contrastado con varios menús que ofrecen las Escuelas Infantiles estudiadas, comprobando que es habitual el aporte de 4 raciones de patata por semana, lo que implica 0,4 kg por semana.

2. Cálculo de la huella de carbono asociada a distintos modos de producción de un cultivo representativo en los menús de las Escuelas infantiles

Los cálculos se basan en resultados contrastados de investigaciones previas (Aguilera et al, 2015), relativas a las emisiones de CO₂ asociadas a distintos modelos de producción (ecológica y convencional, para cultivos hortofrutícolas a cielo abierto en climas mediterráneos). Los valores expuestos en estos trabajos fueron 215 y 178 g de CO₂ por kilogramo de producto final de patata, según sea cultivo convencional o ecológico.

3. Localización de espacios de abastecimiento y cálculo de la huella de carbono asociada al transporte

El análisis geoespacial permite comparar el impacto potencial del cambio de modelo de suministro. Se modelizan tres tipos de suministro: de larga distancia, de cercanía y agroecológico.

El cálculo de la huella de transporte se divide en la distancia media que recorren los alimentos hasta las centrales locales de abastecimiento (Mercamadrid y los puntos propuestos en este trabajo como espacios de logística distribuida), según sean locales o de gran distancia; y la distancia recorrida desde estas centrales a las distintas escuelas. No se valoran los costes de refrigeración y conservación ni los asociados a la gestión de residuos. Para el cálculo del modelo actual basado en transporte a larga distancia, tomamos como referencia los valores medios de kilómetros recorridos según el Anuario de Estadística (Dirección General de Estadística 2016) que arroja una cifra de 817 km. La distancia media en la distribución de proximidad, se basa en las estadísticas facilitadas por Mercamadrid y recopiladas en el marco de su campaña “De aquí y de ahora”. En el caso de la distribución con proyectos agroecológicos, se escogen explotaciones reales, tomados del mapa de la plataforma Madrid Agroecológico desde los cuales se calcula la distancia a las dos centrales de compra.

El valor de emisiones por transporte depende de las características específicas de cada contexto. Como primera aproximación, nos basamos en los estudios realizados en Reino Unido y que se basa en los estudios de McKinnon y Piecyk (2009), adoptando como valor 62 gramos de CO₂ por kilómetro y tonelada transportada, en un camión de 40-44 toneladas de capacidad que funcionara con una carga media de 22 tonelada (carga al 50%) e hiciera un 35% de los viajes vacío (Cefic E.C.T.A. 2011).
4. Evaluación y prospectiva (contrastar si existen superficies productivas y reducciones de emisiones según modelos)

De la combinación de dos modelos de producción y tres de distribución seleccionamos cinco escenarios diferentes para evaluar: a) el actual con producción convencional, b) el mismo modelo de suministro actual pero con producción ecológica, c) suministro de producto convencional de cercanía a través de MercaMadrid (que cuenta con una campaña de promoción “De aquí, de ahora”), d) suministro de producción ecológica dentro de la campaña “De aquí, de ahora” de MercaMadrid y por último e) suministro agroecológico de cercanía apoyado en dos puntos logísticos de centrales de acopio al norte (Hortaleza, junto a la M-40) y al sur de la ciudad (en el mismo MercaMadrid).

RESULTADOS

La Estrategia Alimentaria Saludable y Sostenible de Madrid 2018-2020 incluye un eje de acción sobre “Compra pública, comercio y restauración”, con el objetivo de “incorporar las dimensiones ética, social y ambiental en la compra pública alimentaria y mejorar la calidad nutricional de la misma”. En este eje, la medida “Alimentos ecológicos y de comercio justo en los comedores de la Red Municipal de Escuelas Infantiles” plantea la “introducción progresiva de, al menos, un 70% de producto ecológico y de circuito corto (no más de dos intermediarios) en distintos grupos de alimentos (frutas, verdura y hortaliza, legumbre, cereales, huevos, lácteos, carne de ternera o pollo, aceite de oliva virgen extra). Además, es obligatorio que en los desayunos y/o meriendas se incluya, al menos, un producto de comercio justo”.

Figura 1: Localización de las 56 Escuelas Infantiles Municipales
Fuente: Elaboración propia a partir de información del Portal Datos Abiertos del Ayto de Madrid
Estimando 5.616 comensales en las Escuelas Infantiles, los cuales consumen a lo largo del curso escolar una media de 15,2 kg de patata, obtenemos que los valores de emisiones de carbono se calculan para una estimación de consumo anual de 85.373 kg de patata. Se modelizan los 5 escenarios definidos anteriormente para aplicar la metodología de cálculo explicada en el anterior apartado, comparando cada uno de ellos con respecto al escenario de mayores emisores (Tabla 1 y Figura 2).

Tabla 1. Emisión de CO₂ asociado al consumo de patata en Escuelas Infantiles

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Peso relativo de las emisiones</th>
<th>Emisiones Total Ton CO₂/año</th>
<th>Estandarización</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convencional / larga distancia</td>
<td>Producción 20%</td>
<td>89,171</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Transporte 80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convencional / cercanía</td>
<td>Producción 72%</td>
<td>25,405</td>
<td>0,285</td>
</tr>
<tr>
<td></td>
<td>Transporte 28%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecológica / larga distancia</td>
<td>Producción 18%</td>
<td>86,012</td>
<td>0,964</td>
</tr>
<tr>
<td></td>
<td>Transporte 82%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecológica / cercanía</td>
<td>Producción 66%</td>
<td>23,100</td>
<td>0,259</td>
</tr>
<tr>
<td></td>
<td>Transporte 34%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agroecológica / cercanía</td>
<td>Producción 86%</td>
<td>17,608</td>
<td>0,197</td>
</tr>
<tr>
<td></td>
<td>Transporte 14%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 2. Reducción de emisiones. Relación entre los distintos modelos de producción y distribución.
Fuente: Elaboración propia
DISCUSIÓN

Los resultados demuestran la diferencia de emisiones entre los distintos escenarios. En comparación con el modelo de agricultura convencional y larga distancia, que es el que emite una mayor cantidad de CO₂, vemos que hay una reducción de emisiones del 72% escogiendo producto de proximidad. El cambiar el modelo agrícola hacia el ecológico, si sigue manteniendo la larga distancia apenas reducirá emisiones un 4%. Sin embargo, combinado con el escenario de cercanía, la huella asociada se reduce un 75%. Pero es el agroecológico el modelo que más consigue reducir la huella ecológica, hasta un 80% respecto a la situación actual, a la vez que permite profundizar en la cuestión social con mayor calado.

Hay una gran variación en el peso relativo de las emisiones asociadas a la producción y al transporte en cada uno de los distintos modelos. En un extremo encontramos la producción ecológica a larga distancia, en la que el transporte puede llegar a suponer el 82% de las emisiones totales, y nos lleva a cuestionar la sostenibilidad de ese modelo en términos de su impacto en huella de carbono, pues sigue basándose en un modelo de distribución intensivo en el empleo de combustibles fósiles. Un cálculo más preciso contribuiría a matizar esta afirmación, pues el transporte a larga distancia de mercancías pesadas se suele hacer con modos de transporte que consumen menos combustible por unidad de carga transportada.

En el otro extremo encontramos la producción agroecológica basada en una red de distribución de proximidad y apoyada en centrales de acopio (dos para la ciudad de Madrid). En ese caso, incluso aunque las emisiones asociadas a la producción se reduzcan en un 17% respecto a los cultivos convencionales, suponen el 86% de las emisiones totales. Esta red de centrales, que se podría complementar con otras, es una de las reivindicaciones de los movimientos agroecológicos de la ciudad y que a la luz de los resultados, merecería la pena que fuera apoyada desde las políticas públicas relacionadas con la movilidad sostenible y la calidad del aire.

Para esta transición, sabiendo que una hectárea de cultivo de patata en este ambiente puede producir cerca de 43.000Kg de este tubérculo en regadío, y 30 en secano, para la acción planteada se necesitarían no más de 3 hectáreas (https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin2017sm_tcm30-455983.pdf). Si la producción fuese ecológica, teniendo en cuenta los rendimientos medios publicados por el MAPAMA (2017), que arrojan unas cifras de 18.370 kg por hectárea para la Comunidad de Madrid, la superficie necesaria ascendería a poco menos de 5 hectáreas.

Si bien un menú escolar se compone de muchos más alimentos, deja clara la posibilidad de transicionar hacia una agricultura basada en lo local, y la importancia que tiene en cuanto a emisiones, máxime sabiendo que de los alimentos que se consumen en la ciudad solo un 4% tiene su origen en la Comunidad de Madrid (Morán y Simón, 2018). El objetivo de reterritorializar los sistemas alimentarios es complejo, pero la compra pública puede ser una de las herramientas que permitan esto en el corto plazo.

A pesar de que estamos hablando de que la superficies necesarias para alimentar las Escuelas Infantiles con patatas ecológicas es muy reducida, en la Comunidad de Madrid no hay prácticamente superficie certificada en producción ecológica de patata, siendo esta inferior a 1 hectárea, computando tanto superficie en prácticas, como en conversión y certificada (MAPAMA, 2017). Sin embargo, si que existe suficiente capacidad de producción en fincas agroecológicas hortícolas para cubrir la demanda de patata en comedores escolares. Los cálculos deberían extenderse para abarcar el conjunto de los productos hortícolas de temporada, como nos planteamos en la continuación de esta investigación.

La apertura de los pliegos de contratación a producción con certificación social participativa, tal y como han hecho en la Comunidad Valenciana, permitiría reconocer estos proyectos agroecológicos como suministradores de patata ecológica, satisfaciendo la demanda de las Escuelas Infantiles con el modelo de menor huella de carbono.

La potencialidad de los comedores escolares ecológicos, la inclusión de cláusulas de comercio justo y sostenible en los pliegos de contratación y la propia compra pública, son innegables, y suponen un salto de escala con respecto al escenario actual.
CONCLUSIONES

De acuerdo con los resultados, el factor con mayor incidencia está relacionado con la reducción de la huella de carbono asociada al transporte. Pasando del sistema actual a un suministro de proximidad se conseguiría una reducción del 70% de las emisiones de CO₂ y en un modelo agroecológico de proximidad, la reducción llegaría al 80%.

Desde que Madrid firmó en 2017 el Pacto de Milán, se comprometió a “trabajar para desarrollar sistemas alimentarios sostenibles, inclusivos, resilientes, seguros y diversificados, para asegurar comida sana y accesible a todos en un marco de acción basado en los derechos, con el fin de reducir los desperdicios de alimentos y preservar la biodiversidad y, al mismo tiempo, mitigar y adaptarse a los efectos de los cambios climáticos”. Sin embargo, hasta el momento no ha sido cuantificada la potencialidad de estas medidas para influir en las emisiones directas e indirectas en la ciudad.

Esta evaluación es necesaria para priorizar unas u otras actuaciones en este marco, así como para comprender su éxito y alcance.

BIBLIOGRAFÍA

• Díaz-Carro M., Simón Rojo M. 2018. La alimentación en un horizonte popular de emancipación. Transiciones ecológicas y soberanía alimentaria. ESBOZOS 17:45-52.
CARENCIAS EN LA INVESTIGACIÓN SOBRE EMISIONES DE GEI EN LA AGRICULTURA Y GANADERÍA MEDITERRÁNEAS: UN ANÁLISIS BIBLIOGRÁFICO CENTRADO EN EL MANEJO ECOLÓGICO

Aguilera E1*, Díaz-Gaona C1, Reyes-Palomo C1, Laureano RG1, Sánchez-Rodríguez M1, Sanz-Cobeña A2, Rodríguez-Estévez V1

2CEIGRAM, Escuela Técnica de Ingeniería Agronómica, Alimentaria y de Sistemas, Universidad Politécnica de Madrid. 28040 Madrid
*pa2agfee@uco.es

RESUMEN: El análisis bibliométrico de la literatura permite identificar las lagunas en la información disponible para focalizar de manera efectiva los esfuerzos de investigación. En este trabajo se ha realizado una revisión sistemática de la literatura publicada hasta 2017 sobre emisiones agrícolas de GEI (cultivos, pastos y animales) bajo clima mediterráneo. Los artículos se clasificaron según el tipo de producción, manejo, emisión, metodología y localización.

Se compilaron 781 trabajos en los que se estudian emisiones de GEI en la agricultura mediterránea, un 81% de los cuales abordan la producción vegetal, un 11% los pastizales y solo un 7% la producción animal. El manejo ecológico se aborda en un 18% de los estudios sobre agricultura y en un 9% de los estudios sobre ganadería. En cuanto al tipo de emisión, un 73% de los estudios miden CO2 en suelo, 14% miden N2O en suelo, 9% CH4 en suelo, y solo un 2% emisiones del manejo del estiércol, 1% emisiones de CH4 entérico y ningún estudio realiza mediciones de GEI en sistemas ganaderos ecológicos. Por último, un 18% de los estudios son ACV en los que se estima la huella total de C.

En conclusión, aún existen importantes fuentes de emisiones que están muy poco caracterizadas, en particular las mediciones en campo en ecológico, cultivos leñosos, pastizales y sistemas ganaderos extensivos. Además, la mayor parte de estudios ACV no incluyen el secuestro de C ni emplean factores de emisión específicos del clima mediterráneo, lo que perjudica al manejo ecológico.

Palabras clave: agricultura ecológica, gases de efecto invernadero, huella de carbono, metano, óxido nítrico

INTRODUCCIÓN

La agricultura es una importante fuente de emisiones de gases de efecto invernadero (GEI) a nivel global, no solo por su contribución directa a la emisión de metano (CH4) y óxido nítrico (N2O), cuantificados en los Inventarios de Emisiones a la Atmósfera elaborados por los países firmantes del Protocolo de Kyoto, sino también por su contribución a las emisiones industriales y del transporte asociadas a la producción de insumos como fertilizantes, plaguicidas, combustible, electricidad y maquinaria.

El conocimiento sobre los patrones de emisión de gases de efecto invernadero (GEI) en la agricultura ha avanzado enormemente en las últimas décadas, con un ritmo de publicaciones que aumenta de manera exponencial (Aleixandre-Benavent et al. 2017), numerosas síntesis globales que comparan la producción convencional con métodos alternativos de producción que podrían contribuir a mitigar estas emisiones, como la agricultura ecológica (e.g., Poore y Nemecek 2018). Sin embargo, una de las conclusiones principales de estas revisiones es la amplia variabilidad observada, debido a la alta complejidad de los sistemas estudiados y la diversidad de situaciones existentes en el mundo real y de metodologías empleadas para realizar las evaluaciones. Estos resultados subrayan la necesidad de realizar análisis específicos para cada región agroclimática, ya que los resultados raramente pueden ser extrapolables a condiciones distintas. Además, el análisis específico en cada tipo de clima es necesario para ajustar de manera adecuada los factores de emisión a cada situación, ya que los promedios globales ofrecidos por el IPCC (2006) no reflejan de manera adecuada los patrones de emisión en muchas condiciones agroclimáticas, como las que tienen lugar en las áreas mediterráneas.
La agricultura mediterránea, además de ser altamente vulnerable al cambio climático y otros procesos del cambio global, es una importante fuente de emisiones de GEI (Sanz-Cobena et al. 2017). Las características del clima mediterráneo, con inviernos suaves y húmedos y veranos calurosos y secos, condiciona no solo la productividad y el tipo de cultivos y producciones ganaderas, sino también el balance de emisiones de GEI, a través de su influencia sobre los procesos biogeoquímicos del suelo. De este modo, varios meta-análisis recientes en condiciones mediterráneas muestran patrones de emisión de N\textsubscript{2}O bien definidos en función del manejo del agua y del tipo de fertilizante (Aguilera et al. 2013a, Cayuela et al. 2017), una alta respuesta del carbono orgánico del suelo (COS) a los cambios en el manejo (Aguilera et al. 2013b, Vicente-Vicente et al. 2016). Por otro lado, la complejidad de los procesos responsables de las emisiones de GEI hace que incluso dentro de una región agroclimatológica concreta sea difícil generalizar, y resulta necesaria una investigación aún más específica, que incluya cada uno de los tipos de cultivo y producción ganadera, en cada área geográfica. El principal objetivo de este trabajo es el de conocer dónde se ha focalizado la investigación sobre emisiones de GEI en la agricultura mediterránea, con especial atención a la agricultura ecológica, para lo que se ha realizado una búsqueda bibliográfica exhaustiva y un análisis bibliométrico, que nos ha permitido identificar las carencias en la información disponible. Los objetivos específicos incluyen: (1) Clasificar las publicaciones en función del área geográfica, el tipo de producción, el tipo de emisión y el tipo de manejo; (2) Conocer las cifras de emisiones GEI en los principales sistemas agrarios mediterráneos; (3) Determinar la influencia del manejo ecológico en el balance de emisiones de gases de efecto invernadero (GEI) por unidad de superficie y de producto; (4) Identificar el potencial de mitigación de GEI de las prácticas de manejo más relevantes; (5) Comparar las emisiones de GEI de distintos sistemas y tipos de emisión con el número de publicaciones científicas; (6) Detectar las principales fuentes de incertidumbre y lagunas en la información actualmente disponible.

MATERIAL Y MÉTODOS

Se ha partido de la creación de una base de datos sobre emisiones agrícolas de GEI en áreas con clima mediterráneo (definidas según el mapa de la Fig. 1), a partir de la cual se ha extraído información estadística. En primer lugar, se procedió a una búsqueda bibliográfica a través de la base de datos Web of Science (WOS), utilizando palabras clave relacionadas con el tema e incluyendo todos los trabajos publicados hasta 2017. Se admitieron los artículos relativos a cultivos, pastos y ganadería. Los artículos relativos a aprovechamientos forestales o zonas naturales también fueron incluidos, si bien en este ámbito no se realizó una revisión exhaustiva.

En el caso de la producción vegetal, los términos introducidos en el buscador fueron: “crop” o “agricultura” en combinación con “Mediterranean”, y con “organic”, “conventional”, y con uno de los términos: “GHG emission”, “life cycle assessment”, “LCA”, “carbon footprint “CO₂”, “CH₄”, “N₂O”, “soil organic carbon”. Además, se realizaron búsquedas específicas para cada país, sustituyendo el término “Mediterranean” por el de cada uno de los países con clima mediterráneo, y verificando la localización del estudio dentro de cada país. En el caso de la ganadería y los pastos se sustituyó “crop” por “livestock”, y además, se introdujeron en el buscador las palabras clave “pasture”, “grassland”, “dehesa” o “montado”, considerando también varias combinaciones con los términos “manure management” y “enteric fermentation”. A su vez, en todos los trabajos seleccionados, se revisaron todas las referencias y artículos que se citaban en los mismos, para así considerar estudios que no hubieran sido identificados en la búsqueda por palabras clave en WOS. Además, se han incluido artículos que abordan las emisiones de GEI en zonas limítrofes con el clima mediterráneo, y artículos que no estudian emisiones de GEI, pero sí procesos relacionados que pueden arrojar luz para el desarrollo de prácticas de mitigación. Los estudios revisados se han sistematizado mediante su categorización jerarquizada en función de varios criterios. Las categorías establecidas han sido las siguientes:

– Por tipo de clima: (i) Mediterráneo: se han considerado la superficie del “Bioma Mediterráneo” definida en el informe “Global 200” de ecorregiones globales o biorregiones identificadas como prioritarias en la conservación (Olson y Dinerstein, 2002), según se muestra en la Fig. 1; (ii) Límite: Se han considerado áreas no situadas bajo clima mediterráneo, pero sí a menos de 100 km del área de distribución de este bioma. En este caso, la búsqueda no ha sido exhaustiva. La mayoría de los estudios clasificados en esta categoría se sitúan en el norte de España (Cordillera Cantábrica y Galicia) y el norte de Italia (valle del Po); (iii) No mediterráneo: Se incluyen en esta categoría los estudios no realizados en clima mediterráneo ni en zonas limítrofes. La búsqueda en este caso tampoco ha sido exhaustiva.

– Por tipo de manejo: (i) Convencional (CON): se incluyen en esta categoría todos los tratamientos que no cumplen con la normativa de agricultura ecológica (relativa al uso de insumos químicos, bienestar animal, etc.), aunque incluyan prácticas que puedan aplicarse en agricultura ecológica; (ii) Ecológico (ECO): tratamientos que cumplen con la normativa de agricultura ecológica, o que son calificados como tales por los autores, a menos que haya datos que indiquen lo contrario; (iii) Ecológico/Convencional (E/C): estudios que incluyen tratamientos con manejo ecológico y convencional.

– Por el tipo de emisiones estudiadas (ya sea mediante mediciones directas, modelización, aplicación del factor del IPCC, o revisiones): (i) N₂O del suelo; (ii) CH₄ del suelo; (iii) Secuestro de Carbono (C); (iv) CH₄ entérico; (v) Manejo del estiércol, incluyendo CH₄ y/o N₂O; (vi) Análisis de ciclo de vida (ACV) de la huella total de C.

– Por tipo general de producción: (i) Cultivos herbáceos: cultivos herbáceos anuales o perennes. Se incluyen tanto estudios sobre cultivos específicos o barbechos como estudios sobre rotaciones o usos del suelo; (ii) Cultivos leñosos: cultivos perennes con biomasa leñosa. También se incluye el plátano, dentro de la subcategoría de Frutales; (iii) Pastos y superficie forestal: pastizales y praderas para aprovechamiento a diente del ganado, tanto permanentes como temporales. Se incluyen estudios sobre matorral, áreas abandonadas y forestal, aunque en estas últimas categorías la búsqueda no ha sido exhaustiva; (iv) Ganadería: sistemas de producción ganadera o subsistemas de éstos.

– Por tipo específico de producción: Los estudios que incluían más de un tipo distinto de producto se incluyeron en todas las categorías correspondientes. Asimismo, existen algunos estudios en los que se incluyen varios cultivos de una misma rotación, pero no se ofrecen datos separados de cada uno. Es el caso de la mayoría de estudios sobre secuestro de C en cultivos herbáceos, pero también de algunos estudios sobre N₂O y ACV. Para el secuestro de C los estudios se clasificaron en todas las categorías correspondientes, porque se entiende que no es posible realizar estudios específicos de cada cultivo en experimentos de larga duración en los que la unidad de análisis es la rotación en su conjunto, no el tipo de cultivo. Sin embargo, los estudios sobre N₂O y ACV solo se clasificaron en las categorías de las que ofreciesen datos específicos.
Las subcategorías de cultivos herbáceos incluyen: (i) Cereales de invierno: para la producción de grano, generalmente cultivados en secano. Incluyen trigo, cebada, avena, centeno y otros cereales menores; (ii) Cereales de verano: para la producción de grano, generalmente cultivados en regadío. Incluyen maíz, sorgo, mijo y otros cereales menores; (iii) Arroz: este cultivo se considera de forma independiente de otros cereales por su particular patrón de emisiones; (iv) Leguminosas grano: para la producción de grano, generalmente cultivadas en invierno en secano. Incluyen guisantes, habas, judías, garbanzos, lentejas, y otras leguminosas menores. Como en el caso de los cereales, no se incluyen aquí las cultivadas como cubiertas vegetales o para cosecha en verde o aprovechamiento a diente, y en este caso, tampoco aquellas cultivadas para cosechar su fruto en verde (habas, guisantes, judías), que se incluyen dentro de las hortícolas. También se excluye la soja, que se incluye en los cultivos industriales; (v) Hortícolas: cultivos hortícolas de invierno o verano. Se han distinguido los cultivos en invernadero de los cultivos al aire libre. Se incluyen las raíces y tubérculos como patatas y boniatos, frutas herbáceas como fresa, sandía o melón, y leguminosas para cosecha de su fruto en verde; (vi) Industriales: cultivos que son sometidos a procesamiento previo a su uso final. Incluyen oleaginosas, de las que se obtiene aceite y torta de semillas, como girasol, colza, soja o cártamo; azucareras como la remolacha y la caña de azúcar; y fibras como el lino o el algodón; (vii) Forraje: incluyen cultivos herbáceos para la cosecha de su biomasa completa, generalmente en verde, con un uso forrajero o energético. También se incluyen cubiertas vegetales cuando se estudian de forma específica. Incluyen especies leguminosas perennes como la alfalfa o anuales como el trébol o la veza, cereales como el maíz, la cebada o la avena, y otras plantas herbáceas como la festuca, el miscanthus, el cardo o la caña.

Las subcategorías de cultivos leñosos establecidas son: (i) Olivar; (ii) Viñedo; (iii) Frutos secos: El cultivo principal es el almendro, y también se incluyen otros como nogal, avellano, castaño o algarrobo; (iv) Frutales no cítricos: Incluye una amplia variedad de frutales de pepita, hueso y subtropicales. Algunas de las especies más relevantes son melocotonero, manzano, ciruelo, peral, albaricoquero, cerezo, aguacatero, mango, platanera, kiwi o higuera; (v) Cítricos: El cultivo principal es el naranjo, y también incluye mandarino, limonero, pomelo y otros cítricos menores.

Las subcategorías de pasto y forestal establecidas no son excluyentes entre sí, y son las siguientes: (i) Pastos: Incluye pastizales y praderas, con un estrato herbáceo y aprovechamiento ganadero. Incluye los pastos arbola- dos como la dehesa, pero excluye matorral, que puede tener aprovechamiento ganadero; (ii) Biomasa leñosa: Plantaciones de cultivos leñosos con alta densidad y turnos de corte reducido para la cosecha de la biomasa leñoso; (iii) Abandonado: Cultivos o pastos abandonados, cuya vegetación es variable en función de la situación concreta, desde vegetación herbácea a árboles formados, aunque suele estar dominada por matorral; (iv) Forestal: Superficie con elevada presencia de vegetación leños a, incluyendo desde matorral a plantaciones forestales o bosques naturales, así como la dehesa; (v) Dehesa: Sistema con estrato de pasto herbáceo y otro leñoso con árboles dispersos, con un aprovechamiento principalmente ganadero, pero también forestal y a veces agrícola.

Las categorías ganaderas establecidas son: (i) Monogástricos: porcino, avícola y cunícola. Incluye tanto producción de carne como de huevos; (ii) Rumiantes: bovino, ovino y caprino. Incluye producción de carne, leche y lana; (iii) Otros animales: caracoles, abejas y piscicultura de agua dulce.

Por la metodología seguida para estudiar las emisiones: El método de estimación de las emisiones se ha clasificado de forma jerárquica. Los estudios en los que se realizaban estimaciones con más de un método se han clasificado dentro del método más preciso. Las categorías definidas incluyen: (i) Factor IPCC: Las aproximaciones más generales estarían basadas en la aplicación de un factor general global, conocido como Nivel 1 (Tier 1) del IPCC; (ii) Modelizado: Estos estudios aplican factores más específicos o modelos más o menos complejos para la estimación de las emisiones de GEI. Corresponderían al Nivel 2 del IPCC; (iii) Medido: estudios en los que se realizan mediciones de GEI en campo o en condiciones equiparables a las del campo (por ejemplo, en estudios de mesos escala con condiciones controladas que simulan el clima mediterráneo). En el caso de las mediciones en campo de C, estas se han clasificado en: (a) Medido<3 años: estudios en los que se miden C orgánico del suelo en tratamientos diferenciados durante experimentos de menos de 3 años de duración. También se incluyen estudios en los que se miden flujos de CO2 del suelo (respiración del suelo) o del agroecosistema; (b) Medido>3 años:
incluye experimentos de más de 3 años de duración, que permiten estimar tasas anuales de secuestro de C; (iv) Revisión: revisiones bibliográficas, incluyendo los metaanálisis y las revisiones descriptivas.

– Por la localización geográfica de la investigación: (i) Por región global: Cuenca mediterránea, California, Chile, Sudáfrica, Australia; (ii) Por país: Todos los países con clima mediterráneo dentro de su territorio; (iii) Por comunidad autónoma: dentro de los realizados en España.

Los datos bibliométricos se han comparado con los niveles de emisión estimados para un país mayoritariamente mediterráneo, España. Para realizar esta comparación, se ha construido un indicador, el número de artículos publicados por teragramo de CO₂eq emitido. Este indicador se ha aplicado a nivel de tipos de producción o de cultivo, y también de tipos de emisión, en base a las categorías anteriormente definidas. En el caso del secuestro de C, solo se han incluido los artículos con comparaciones de más de 3 años de duración. En el caso de los ACV, el número de estudios ACV se ha comparado con las emisiones asociadas a los insumos, es decir, descontando de la huella total de C las emisiones biogénicas, que ya se estudian en sus indicadores correspondientes.

Las emisiones de GEI en la producción agropecuaria española se han reconstruido a partir de varias fuentes. Las emisiones de la ganadería se han tomado de Leip et al. (2010), que realizaron un ACV de la ganadería europea. Para reconstruir las emisiones de la producción vegetal, se ha partido de los datos del Inventario Nacional de Emisiones, que se ha complementado aplicando factores de emisión de N₂O específicos del clima mediterráneo (Cayuela et al. 2017), y estimando las emisiones asociadas a la producción de insumos agrícolas y el secuestro de C. Para la estimación del secuestro de C se ha partido del secuestro potencial que podría realizarse, en lugar del balance neto en la actualidad, que es cercano a cero (Aguilera et al. 2018). Para estimar el secuestro potencial se ha tomado el objetivo de la estrategia 4 por 1000 (https://www.4p1000.org/), de incrementar el COS en un 4 por mil anual. Para ello, se ha tomado como referencia el stock de C en los suelos de cultivos, pastos y bosques en España estimados a partir de mediciones en campo por Rodríguez-Martín et al. (2016). Por último, para estimar las emisiones asociadas a la producción y uso de insumos, se han tomado datos de uso de insumos oficiales (MAPA, 2018), a los que se han aplicado factores de emisión derivados de los coeficientes de energía de Aguilera et al. (2015a) y de intensidad de emisiones de cada tipo de energía de IEA (2015).

RESULTADOS

Se han revisado 1023 trabajos científicos relevantes, de los cuales 779 estudian emisiones de GEI bajo condiciones de clima mediterráneo. De estos últimos, un 84% corresponden a estudios sobre producción agraria convencional, un 2% analizan sólo la producción ecológica, y un 14% comparan la producción ecológica con la convencional (Cuadro 1).

Cuadro 1. Número de artículos revisados bajo clima mediterráneo, según tipo de manejo. (GEI: se estudian los GEI; No GEI: no se estudian los GEI)

<table>
<thead>
<tr>
<th></th>
<th>GEI</th>
<th>No GEI</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convencional</td>
<td>654</td>
<td>51</td>
<td>705</td>
</tr>
<tr>
<td>Eco/Con</td>
<td>107</td>
<td>24</td>
<td>131</td>
</tr>
<tr>
<td>Ecológico</td>
<td>18</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>779</td>
<td>84</td>
<td>863</td>
</tr>
</tbody>
</table>
80 artículos publicados en 2017 (Fig. 2). Sin embargo, los estudios sobre producción ecológica no han llegado a despuntar y su número se encuentra estancado desde 2006 en unos 10 artículos publicados anualmente.

Figura 2. Evolución del número de artículos publicados anualmente sobre emisiones de GEI bajo clima mediterráneo, según tipo de manejo. (CON: convencional; E/C: ecológico/convencional; ECO: ecológico)

En cuanto a la distribución geográfica de los estudios, se observa una fuerte concentración en España, con 329 artículos (42%) (Fig. 3). El segundo país es Italia (21%) y el tercero EEUU (11%). Aunque con menor diferencia respecto al resto, España vuelve a ser el primer país en número de estudios sobre manejo ecológico (34%), seguido de Italia (22%), EEUU (19%) y Grecia (13%). Con respecto a la distribución de publicaciones dentro de España (Fig. 3), destaca Andalucía, con 138 estudios (un 42%), seguida de Cataluña (13%) y la Comunidad de Madrid (12%). También en Andalucía se ha publicado la mayor parte de los artículos sobre manejo ecológico, en este caso más de la mitad (55%).

Figura 3. Número de artículos sobre emisiones de GEI bajo clima mediterráneo, por países y por comunidades autónomas. Se excluyen los estudios que abarcan más de un país. El número de artículos que incluyen manejo ecológico se indica entre paréntesis.

El secuestro de C es el proceso más estudiado, con 566 artículos, seguido de las emisiones de N₂O del suelo, con 257 artículos (Cuadro 2). Sin embargo, muchos de los artículos con estimaciones de N₂O y de CH₄ no realizan mediciones en campo, por lo que la diferencia con los estudios sobre C en suelo se incrementa en el análisis específico de los artículos con mediciones en campo (Cuadro 2). En esta tabla también se muestra que la práctica totalidad de los trabajos que han realizado medidas de campo bajo manejo ecológico se refieren
al secuestro de C. Destaca el reducido número de trabajos que realizan mediciones de GEI en el manejo del estiércol y del CH₄ entérico, y la ausencia de los relacionados con el manejo ecológico.

Cuadro 2. Número de artículos sobre emisiones de GEI bajo clima mediterráneo, según tipo de emisión y manejo. El número de artículos que incluyen mediciones se indica entre paréntesis.

<table>
<thead>
<tr>
<th></th>
<th>Ecológico</th>
<th>Eco/Con</th>
<th>Convencional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACV</td>
<td>2</td>
<td>32</td>
<td>103</td>
<td>137</td>
</tr>
<tr>
<td>Secuestro de C</td>
<td>15</td>
<td>85</td>
<td>466</td>
<td>566</td>
</tr>
<tr>
<td>N₂O suelo</td>
<td>7</td>
<td>39</td>
<td>211</td>
<td>257</td>
</tr>
<tr>
<td>CH₄ suelo</td>
<td>0</td>
<td>5</td>
<td>67</td>
<td>72</td>
</tr>
<tr>
<td>Manejo estiércol</td>
<td>1</td>
<td>2</td>
<td>44</td>
<td>47</td>
</tr>
<tr>
<td>CH₄ entérico</td>
<td>0</td>
<td>2</td>
<td>32</td>
<td>34</td>
</tr>
<tr>
<td>Mediciones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secuestro de C</td>
<td>14</td>
<td>72</td>
<td>413</td>
<td>499</td>
</tr>
<tr>
<td>N₂O suelo</td>
<td>6</td>
<td>5</td>
<td>101</td>
<td>112</td>
</tr>
<tr>
<td>CH₄ suelo</td>
<td>0</td>
<td>2</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>Manejo estiércol</td>
<td>1</td>
<td>0</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>CH₄ entérico</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Los cultivos herbáceos son el tipo de producción más estudiado, con 422 artículos publicados sobre emisiones de GEI (54% de los estudios), seguidos de los cultivos leñosos (31%), y de los pastizales y zonas forestales (19%), mientras que los que consideran la ganadería solo son 51 (7%) (Fig. 4). Solo se ha encontrado un estudio específico de la ganadería ecológica y otros 3 que comparan ganadería ecológica y convencional, de modo que la ganadería ecológica solo suma el 7% del total de estudios sobre ganadería. El análisis por tipo específico de producción (Fig. 4) muestra grandes diferencias en el número total de estudios dedicados a cada tipo de cultivo o producción animal, así como en el porcentaje de éstos que incluyen manejo ecológico. Mientras que existen más de 200 estudios sobre cereales de invierno, o más de 100 sobre hortícolas y sobre olivar, apenas se llega a 20 estudios en las categorías de arroz, cítricos y monogástricos. El manejo ecológico se ha estudiado en más de un tercio de los estudios sobre leguminosas grano, hortícolas y cítricos, pero en menos del 10% de los estudios sobre cereales de invierno, arroz, forrajes y pastizales, y en ningún estudio sobre monogástricos.
Las emisiones de GHG de la producción agropecuaria en España representan aproximadamente 75 millones de toneladas de CO2eq, sin incluir el secuestro de C, cuyo potencial de mitigación aproximado sería de unos 24 millones de toneladas de CO2eq (datos no mostrados). Las emisiones totales están dominadas por la ganadería, donde destacan los piensos importados, seguidos del metano entérico y el manejo de estiércol (columna izquierda de la Fig. 5a). Además, una parte de la producción vegetal y sus emisiones asociadas está destinada a la producción local de piensos. Por otro lado, la magnitud total de las emisiones asociadas a la producción vegetal y a los pastizales (insumos, N2O y CH4 del suelo) es similar al potencial de mitigación del secuestro de C. El N2O juega un papel relativamente menor en las emisiones de la producción vegetal, siendo mayores las emisiones debidas a la producción de insumos. Existe una gran disparidad entre los niveles de cada tipo de emisión y el número de artículos dedicados a cada uno de ellos (Fig. 5a), principalmente entre las categorías relacionadas con la producción animal (insumos ganaderos, CH4 entérico y manejo del estiércol), que representan la mayor parte de las emisiones, pero una fracción muy pequeña de los artículos publicados, y las relacionadas con la producción vegetal, donde se da la situación inversa. Este desequilibrio se ve reflejado en el número de artículos publicados por millón de toneladas emitida (Fig. 5b).

![Figura 5. Comparación de las emisiones de GEI en España y del número de artículos publicados bajo clima mediterráneo en el mundo, según el tipo de emisión. Se comparan en términos porcentuales (a) y como número de artículos publicados por unidad de CO2 equivalente emitida en cada proceso (b).](image)

La Fig. 6 clasifica los estudios ACV encontrados en función de su forma de contabilizar algunos procesos clave en el balance de emisiones, en particular procesos biogénicos. En la Fig. 6a se observa cómo la mayor parte de los estudios ACV sobre cultivos aplica un nivel Tier 1 (el más grueso, que consiste en la aplicación de un factor de emisión global) para el cálculo del N2O, y no considera el secuestro de C en el balance de emisiones. La mayoría de los artículos que sí considera el secuestro de C lo hace mediante modelización (Tier 2), pero de nuevo en esos mismos artículos no se aplican metodologías de cálculo del N2O ajustadas a las condiciones mediterráneas. De este modo, solo un 24% de los estudios ACV incluyen el secuestro de C, y un 5% incluyen mediciones en campo. En conjunto, solo el 6% de los estudios ACV sobre productos agropecuarios mediterráneos llegan a Tier 2 en la estimación de las emisiones de N2O y del secuestro de C. De modo similar, existe una mayoría de estudios ACV de productos animales (Fig. 6b) en los que las emisiones del manejo del estiércol y las de CH4 entérico o bien no se incluyen en el balance, o bien se estiman con el nivel Tier 1 del IPCC, aunque en este caso existe una proporción apreciable de estudios que sí que llega a Tier 2 en ambos tipos de emisiones. Sin embargo, en este caso ninguno de los ACV revisados incluye mediciones directas de estos gases.
Las emisiones de GEI biogénicas de los suelos y los animales son una importante fuente de incertidumbre en los balances de emisiones de los sistemas de producción agropecuarios. En cambio, los componentes tecnológicos de los ACVs agrícolas, como insumos químicos y maquinaria, están generalmente bien caracterizados (por ejemplo, Kim y Overcash, 2003; Ecoinvent Center, 2007) y muestran una variabilidad relativamente baja. Por lo tanto, pueden ser modelados usando bases de datos generales como Ecoinvent, aunque podrían existir diferencias regionales que deben tenerse en cuenta (Aguilera et al. 2015a). Por el contrario, los procesos biogeoquímicos, como los que tienen lugar en los suelos y en los cuerpos de los animales o en su excreta, y que dan lugar a las emisiones de gases traza (N₂O y CH₄) y al balance de C del agroecosistema (en el suelo y en la biomasa leñosas), son muy variables y dependientes de las condiciones específicas del sistema productivo, como condiciones edafoclimáticas, composición de la dieta o de las razas de los animales. En el caso de la producción vegetal, se ha demostrado que el factor de emisión por defecto (Tier 1) del IPCC, del 1% sobre el N aplicado, no se corresponde con los promedios en condiciones mediterráneas. En particular, el factor de emisión en secano sería de alrededor del 0,3%, y en regadío sería variable en función del tipo de riego, con máximas emisiones en el riego por aspersión (Aguilera et al. 2013a, Cayuela et al. 2017). Además, estas revisiones cuantitativas muestran que los fertilizantes orgánicos sólidos tienen un factor de emisión muy inferior
al de los fertilizantes sintéticos o los purines, y que de hecho no es significativamente distinto de 0. A pesar de esto, los resultados de nuestro análisis bibliométrico muestran que la gran mayoría de estudios ACVs emplean el factor de emisión Tier 1 del IPCC (Fig. 6). Por tanto, en estos estudios se está penalizando al manejo ecológico, donde se suelen emplear fertilizantes orgánicos sólidos, y las emisiones de N₂O tienen un papel relativamente mayor, por las emisiones evitadas de la producción de fertilizantes y pesticidas.

La incertidumbre en la estimación del secuestro de C es aún mayor que en la estimación de emisiones de N₂O, lo que ha favorecido la omisión de la dinámica del COS en los balances de GEI agrícola, a pesar de que este proceso ha sido identificado como el de mayor potencial de mitigación GEI dentro de la agricultura (e.g. Smith et al. 2008). Muy pocos estudios incluyen el secuestro de C dentro de los cientos de balances de GEI agrícolas publicados. Algunos ejemplos no limitados al Mediterráneo de estas excepciones son los trabajos de Kim y Dale (2005), Adler et al. (2007), Knudsen et al. (2014), o Godard et al. (2013). Estos estudios muestran que la contribución de la dinámica del C del suelo al balance GEI no puede pasarse por alto. En el caso de las producciones agrícolas mediterráneas, los estudios ACV que incluyen el balance de C (e.g. Venkat, 2012, Aguilera et al. 2015b, 2015c) muestran una relevancia aún mayor de este proceso, especialmente bajo manejo ecológico. En este tipo de manejo el ahorro de emisiones asociado al secuestro de C llega a compensar el 100% de las emisiones en algunos tipos de cultivo, como el olivar (Aguilera et al. 2015c). Por tanto, su omisión supone una fuerte penalización al manejo ecológico, de modo que se puede afirmar que los estudios ACV que no incluyen este proceso (la mayoría) no pueden considerarse fiables para comparar la contribución de cada tipo de manejo al cambio climático en condiciones mediterráneas. De manera similar, la mayoría de estudios ACV sobre sistemas ganaderos solo llegan hasta Tier 1 en procesos clave como el manejo del estiércol y las emisiones de CH₄ entérico (Fig. 6), y en muchos casos ni siquiera se realiza una estimación Tier 1 de estas emisiones, y en ninguno se incluyen mediciones en campo. Esta aproximación tan gruesa a componentes del balance de emisiones con gran variabilidad intrínseca y peso en la huella final resta fiabilidad a los resultados obtenidos, y subraya la necesidad de investigaciones más ajustadas a las condiciones mediterráneas.

CONCLUSIONES

Se han detectado importantes lagunas en la información publicada, con fuentes de emisiones importantes que están muy poco caracterizadas. En particular, existen muy pocas mediciones en campo de GEI del suelo (N₂O y C del suelo) en manejo ecológico, cultivos leñosos y pastizales, así como un número muy escaso de mediciones de GEI en ganadería (CH₄ entérico y emisiones de manejo del estiércol), a pesar de que estas son de gran peso en las emisiones totales. También destaca la ausencia de datos en sistemas ganaderos extensivos. Además, la mayor parte de estudios ACV no incluyen el secuestro de C ni emplean factores de emisión específicos del clima mediterráneo, lo que resta fiabilidad a los resultados y perjudica al manejo ecológico.

REFERENCIAS

in Mediterranean cropping systems. A meta-analysis. Agriculture, Ecosystems & Environment 168, 25-36.

REVISIÓN DE ESTRATEGIAS AGROECOLÓGICAS DE ADAPTACIÓN AL CAMBIO CLIMÁTICO EN LA PRODUCCIÓN GANADERA MEDITERRÁNEA

Reyes-Palomo C, Aguilera E, Díaz-Gaona C*, Sánchez-Rodríguez M, Rodríguez-Estévez V

Cátedra Ganadería Ecológica Ecovalia-Clemente Mata. Campus Universitario de Rabanales. Ctra. Madrid-Cádiz Km. 396. 14071, Córdoba, España. +34 957212074/ +34 607197863. *pa2diggac@uco.es

RESUMEN: La producción ganadera de la zona mediterránea se enfrenta a retos debidos al cambio climático como la disminución de las precipitaciones, el aumento de la temperatura y la mayor frecuencia de eventos climáticos extremos. La adopción de medidas de adaptación es urgente, para poder mantener sistemas ganaderos sostenibles. El objetivo de esta revisión es sintetizar la información científica relacionada con la adaptación agroecológica al cambio climático y el agotamiento de los recursos en la ganadería mediterránea.

Se ha realizado una revisión bibliográfica por palabras claves en el motor de búsqueda Web of Science.

La revisión muestra que, en un contexto de cambio climático y agotamiento de recursos, se puede lograr una mayor resiliencia mediante la integración de los sistemas ganaderos con la silvicultura y la agricultura. Para ello es fundamental la combinación del conocimiento y prácticas tradicionales con el conocimiento ecológico actual. La utilización de razas locales permite una mejor adaptación a las condiciones climáticas más adversas propias de cada comarca. La adecuación de las cargas ganaderas es fundamental para revertir los procesos de degradación asociados a la intensificación y al abandono. La recuperación de prácticas como la trashumancia y la trasterminancia permite optimizar el uso de recursos pascícolas. Además, la ganadería extensiva puede jugar un papel clave en la prevención de incendios y en la reducción de su virulencia, que se ve agravada por el cambio climático y el abandono del manejo tradicional del monte.

En conclusión, las prácticas que llevan a una mayor autosuficiencia, a través de una mayor integración con el medio, son las que mayor potencia de adaptación presentan.

Palabras clave: agrosistemas de secano, autosuficiencia, carga ganadera, conocimiento tradicional, integración agroganadera, resiliencia.

INTRODUCCIÓN

La literatura disponible sobre la adaptación agroecológica en el ganado es muy escasa en general (Rojas-Downing et al., 2017) y en el clima mediterráneo en particular. Las modificaciones de los sistemas de producción pecuaria hacia modelos que sean resilientes ante los cambios incluyen la diversificación de las especies y los cultivos forrajeros, la integración de los sistemas ganaderos con la silvicultura y la agricultura y la modificación de algunas prácticas agrícolas (IFAD, 2010). Rivera-Ferre et al. (2016) subrayan la necesidad de distinguir entre los diferentes tipos de sistemas ganaderos para diseñar estrategias de adaptación, dado que sus desafíos relacionados con el cambio climático suelen ser diferentes. Los autores identifican tres tipos de sistemas ganaderos con características específicas: sistemas de pastoreo, sistemas mixtos de cultivos y ganadería y sistemas industriales. Tanto los sistemas de pastoreo como los sistemas mixtos de cultivos y ganadería se consideran sistemas extensivos que aplican muchos principios agroecológicos. Los sistemas extensivos comparten amenazas relacionadas con los impactos sobre el clima local, mientras que los impactos en los sistemas industriales están relacionados principalmente con sus cadenas de suministro. Los sistemas de producción ganadera extensivos han moldeado los paisajes tradicionales en la Cuenca Mediterránea, interactuando con la heterogeneidad natural para crear la gran diversidad de hábitats en este área, generalmente en base a sistemas agropilvopastorales con alto valor ecológico y eficiencia de uso de recursos (Sal, 2000; Díaz-Gaona et al., 2014a). Se estima que los complejos mosaicos agro-silvo-pastorales aún cubren el 23,3% de la ecorregión mediterránea (Malek y Verburg, 2017). Las estrategias de adaptación en sistemas ganaderos extensivos se centran principalmente en...
la gestión de la explotación, tanto de ganado como de pastos, y en el uso de razas autóctonas que se adaptan mejor a las condiciones climáticas de cada área.

OBJETIVOS

El objetivo de esta revisión es sintetizar la información científica relacionada con la adaptación agroecológica al cambio climático y el agotamiento de los recursos en la ganadería en las regiones de clima mediterráneo, con un enfoque especial en la Cuenca Mediterránea. En primer lugar, se buscan las principales amenazas para los agroecosistemas, que se centran en los recursos hídricos y del suelo, y en las principales especies de cultivos y ganado, para pasar a describir la investigación específica del Mediterráneo sobre la adaptación agroecológica a estos procesos. En esta revisión, las estrategias de adaptación del ganado abarcan el manejo del ganado, cambios en razas y especies, y la producción de pastos y forrajes, incluyendo la gestión de incendios mediante el pastoreo extensivo.

MÉTODO

Se ha realizado una revisión bibliográfica por palabras claves en el motor de búsqueda Web of Science, tras la cual se revisó la bibliografía de los artículos remitidos por el motor de búsqueda.

RESULTADOS Y DISCUSIÓN

Estrategias agroecológicas para la adaptación de la ganadería al cambio climático

Las estrategias agroecológicas que en general se barajan para la adaptación de la ganadería mediterránea al cambio se muestran en el Cuadro 1, donde también se indica su efecto o desempeño socioambiental. Entre las prácticas estudiadas no se han identificado ejemplos de rendimiento claramente negativo en ningún indicador. Esta evaluación representa el rendimiento promedio estimado de las prácticas que se aplican actualmente, pero se reconoce un gran potencial de mejora al adaptar su gestión a cada situación agroclimática específica.

<table>
<thead>
<tr>
<th>Estrategia</th>
<th>Biodiversidad</th>
<th>MOG</th>
<th>Autonomía energética</th>
<th>Productividad</th>
<th>Empleo</th>
<th>Desarrollo económico</th>
<th>Control de la erosión</th>
<th>Eficiencia del agua</th>
<th>Mitigación de GES</th>
<th>Reducción de la nutrición</th>
<th>Reducción de la población animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajuste de cargas ganaderas</td>
<td>Verde oscuro</td>
<td>Verde oscuro</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Diversificación del sistema</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Trasherancto</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Árboles en el pasto</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Estanqueros</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Razas autóctonas</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Cambio de especies</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Mejorar/ Redondear</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
<tr>
<td>Prevención de fuego con ganado</td>
<td>Verde oscuro</td>
<td>Verde claro</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Manejo del ganado

En vista de los cambios proyectados en los pastos mediterráneos, una estrategia de adaptación podría ser extender o intensificar el tiempo de pastoreo en la temporada otoño-invierno; esta temporada de pastoreo más larga reduciría los costes de alojamiento de los animales (Iglesias et al., 2012) en los sistemas y momentos que estos lo requieran; sin embargo, pueden ser necesarios costes adicionales de alojamiento para mitigar el calor del verano. Además, la reducción del crecimiento de la hierba en primavera aumentará los costes de la alimentación suplementaria. En lugares donde no es posible alargar la temporada de pastoreo, la conservación del exceso de producción de los pastos como ensilaje o heno y una menor dependencia de la alimentación externa podrían ser medidas de adaptación efectivas (Tubiello et al., 2007; Howden et al., 2007; Iglesias et al., 2012).

En el caso de las fases o sistemas intensivos, la reducción de las densidades dentro de las instalaciones ganaderas es otra medida que contribuye a disminuir el estrés por calor que los animales soportan cuando requieren estabulación o alojamiento, además de mejorar las medidas de ventilación, aislamiento y reducción de la temperatura en el interior de la granja (Méndez-Jiménez, 2012), incluso en parcelas o parques exteriores (por ejemplo con sombras, goteros y nebulizadores). Sin embargo, algunos sistemas de ventilación y refrigeración consumen energía y requieren más agua (Ran, 2010); por lo tanto, el aislamiento térmico y la ventilación pasiva deberían ser las primeras opciones para mejorar las instalaciones ganaderas.

Aparte de eso, los sistemas extensivos y en exteriores requieren otras medidas, como la disponibilidad y el suministro de agua dulce, mientras que los animales pastan y sestean; en este sentido, los sistemas agroforestales brindan refugio a los animales. Por ejemplo, Mancera et al. (2018) muestran la relación entre la estructura del paisaje y los indicadores de bienestar animal e indican que el bienestar del ganado se puede mejorar mediante la inclusión de árboles en los pastizales. Por otro lado, las charcas y pantanetas artificiales se han identificado como una estrategia de adaptación útil en las tierras secas del Mediterráneo, aunque, para maximizar los servicios de los ecosistemas que brindan, deben combinarse con otras medidas, como la reubicación de áreas agrícolas fuera de sus cuencas, la forestación de las áreas circundantes y la adopción de las mejores prácticas de manejo agrícola local (Santos et al., 2018). El aumento de las necesidades de agua del ganado y de los animales silvestres será simultáneo, lo que disminuirá la disponibilidad y calidad del agua cuando estos compartan los pastizales; en este sentido, Barasona et al. (2014) mostraron cómo las fuentes de agua permanentes actúan como puntos importantes de transmisión de la tuberculosis por la interacción entre el ganado y el jabalí en el ecosistema mediterráneo, especialmente durante el verano y el otoño. Por lo tanto, será necesario preservar las fuentes de agua con cercos o refugios, o emplear sistemas de abrevaderos de precisión que solo proporcionen agua al ganado identificado electrónicamente.

La trashumancia es una práctica tradicional de movilidad de ganado destinada a utilizar de manera eficiente la estacionalidad de los recursos de pastoreo en grandes escalas espaciales, beneficiándose de la diferencia en la fenología y, por lo tanto, los períodos de crecimiento entre áreas con patrones climáticos contrastados. Esta movilidad reduce la presión sobre los pastizales en época de baja capacidad de carga a través del movimiento desde las zonas bajas a los pastos de alta montaña en la estación seca. Este sistema de movimiento estacional ha sido tradicionalmente utilizado en toda la Cuenca Mediterránea, donde ha ayudado a formar complejos paisajes en mosaico, a mejorar la calidad del suelo, a dar un descanso a la vegetación más sensible al sobrepastoreo (por ejemplo, renuevos de la arboleda en la dehesa), a reducir los riesgos de incendio y a preservar los valores culturales y el conocimiento ecológico local, desde la Península Ibérica en el oeste (Camarero et al., 2018; Otero-Rozas et al., 2014) a las montañas Taurus en el este (Ocak, 2016). A su vez, la trashumancia puede ser una estrategia para eludir determinadas patologías, como pueden ser los oestrosis o las miasis estivales (Habela et al., 2014). A pesar de representar un desafío significativo, la recuperación de la trashumancia, ahora perdida en muchas áreas debido al abandono rural y otros factores socioeconómicos, podría ser una estrategia efectiva para aumentar la eficiencia de la producción ganadera y su viabilidad económica en un contexto de cambio climático. Además, se ha demostrado que la trashumancia contribuye a la disminución de la intensidad de las emisiones de GEI y la dependencia de energía no renovable de la producción ganadera mediterránea al aumentar la contribución de los pastizales a la alimentación (Vigan et al., 2017). Sin embargo, la aparición de enfermedades emergentes y re-emergentes derivadas del cambio climático pueden ser limitantes para el movimiento del ganado.
Razas locales y cambio de especies

Las estrategias de adaptación que se aplican entre los pastores tradicionales consideran la composición multiespecífica de los rebaños para sobrevivir periodos extremos de clima (Nyong et al., 2007) y el cambio de ganado vacuno a ovino y caprino, ya que los requisitos de alimentación del primero son mayores que los requisitos de pequeños rumiantes (Oba, 1997). De hecho, estos cambios del ganado bovino al ganado ovino y caprino como estrategia de adaptación a los cambios en el clima en la región mediterránea han sido observados desde hace 8.200 años (Roffet-Salque et al., 2018).

La industrialización ganadera ha significado la pérdida de biodiversidad en este sector, una tendencia agrava-vada por el cambio climático. Al mismo tiempo, las poblaciones rurales que pierden biodiversidad son las más vulnerables al cambio (IPCC, 2014) y la FAO estima que el 20% de las razas de ganado están en riesgo, con una tasa de extinción de casi una raza por mes (Rischkowsky y Pilling, 2007). Esta pérdida de biodiversidad está estrechamente relacionada con las prácticas utilizadas en la cría de animales que apuntan a maximizar la producción a costa de abandonar los sistemas de producción tradicionales, perdiendo la capacidad de responder a los impactos ambientales (Thorton et al., 2009). Las razas de animales tienen diferentes requerimientos de agua (Olkowski, 2009); a mayor productividad, mayores requerimientos de agua y de alimento. En este sentido, se espera que el consumo de agua para la cría de animales se triplique globalmente para 2050 (Rojas-Downing et al., 2017). Por este motivo, el ganado lechero, generalmente criado en condiciones intensivas, podría dejar de ser productivo en la Cuenca Mediterránea dada la importante demanda de agua de los cultivos forrajeros y para la limpieza de las instalaciones (Ran, 2010).

Un principio agroecológico importante es usar especies y genotipos adaptados al medio ambiente, en lugar de adaptar las condiciones de cría a los requisitos de los animales (Archimede et al., 2014). Por lo tanto, bajo condiciones de cambio climático en la región mediterránea, se deben elegir las razas más resistentes a la sequía, lo que puede resultar en sistemas de producción ganadera menos intensivos (Dono et al., 2013). Las razas autóctonas son las más adaptadas al medio ambiente y las prácticas de producción locales (Manzano y Salguero, 2018). En sistemas extensivos, son preferibles razas más resistentes a las enfermedades, menos productivas pero más robustas y longevas (Novak y Fiorelli, 2010). Cada sistema de pastoreo tiene su dinamismo y es necesario recuperar algunas razas de ganado, así como aumentar su especialización en pastoreo, no sus rendimientos en intensivo y las tasas de conversión de alimento compuesto (Monserrat Recorder, 2007), como se ha hecho hasta ahora. En este sentido, Mata Moreno et al. (2004) indicaron cómo los agricultores reconocen las características de resistencia y adaptabilidad de diferentes especies y razas para obtener el máximo beneficio de diferentes hábitats en una misma región; del mismo modo, Rodríguez-Estévez et al. (2004) enumeraron las razas autóctonas de rumiantes indicadas, como las más adaptadas para cada territorio, por ganaderos extensivos, pastores y partes interesadas en 17 áreas naturales protegidas de Andalucía. El uso de estas especies y razas animales más resistentes a las altas temperaturas y a la sequía se puede implementar a largo plazo, desarrollando los caracteres fenotípicos deseados y su adaptación al pastoreo en esas condiciones mediante selección genética (Nardone et al., 2010).

Las razas de ganado autóctonas suelen mostrar capacidades de tolerancia al calor más altas que los animales puros y cruzados (Rashamol et al., 2018). En la Cuenca Mediterránea, las razas locales se han estudiado como productos de complejos procesos culturales y ambientales mediados por la selección natural y artificial (Colino-Rabanal et al., 2018), dando lugar a una gran cantidad de nichos socioecológicos que generan una valiosa fuente de diversidad genética.

Manejo de pastos y forrajes

Los ecosistemas mediterráneos son muy resistentes a las perturbaciones climáticas (Bussotti et al., 2015). Las plantas de los ecosistemas mediterráneos han evolucionado para adaptarse a las sequías periódicas, y pueden hacer frente a los aumentos moderados de sequías provocadas por el cambio climático (Jongen et al., 2013). En una revisión reciente, Ergon et al. (2018) concluyeron que el cultivo de especies de pratenses para adaptarse al cambio climático, tanto en las zonas nórdicas como en las mediterráneas, no sólo debería apuntar a mejorar...
el rendimiento de las plantas en condiciones más estresantes, sino también a aumentar su diversidad como estrategia general de adaptación. Esta diversidad también debe reconocer la variedad de condiciones edafoclimáticas de la región mediterránea. Por ejemplo, Annicchiarico et al. (2011) encontraron que los cultivares completamente inactivos en verano de Dactylis glomerata fueron los más adaptados a la sequía severa, siendo los más adecuados para el norte de África, mientras que los cultivares no latentes o no latentes por completo eran más interesantes en el sur de Europa. Por otro lado, las respuestas adaptativas a las sequías periódicas de las plantas mediterráneas también pueden tener beneficios indirectos para la adaptación. Por ejemplo, la mayor asignación de biomasa subterránea en condiciones de sequía podría ayudar a proteger el suelo contra la erosión y la degradación (Sardans y Penuelas, 2013). Sin embargo, estos autores también identificaron tendencias preocupantes resultantes de las interacciones entre el cambio climático y las perturbaciones locales provocadas por el hombre. Por ejemplo, la fragmentación de hábitats por la urbanización podría impedir la sustitución natural de especies de plantas de sur a norte y de altitudes bajas a altas (Bussotti et al., 2014).

En la Cuenca Mediterránea, los sistemas ganaderos extensivos se caracterizan por unas bajas cargas ganaderas (Díaz-Gaona et al., 2014a y 2014b) y, en general, ausencia de riego en los pastos (Toro-Mujica et al., 2015). Por ejemplo, en el suroeste de España se caracterizan por pastoreo extensivo en pastizales naturales, el uso de razas ovíneas locales, baja rentabilidad y baja producción (baja tasa de reproducción), pero de productos de alta calidad (Gaspar et al., 2008).

La actual Directiva del Consejo de la UE relativa a la protección de cuerpos de agua contra la contaminación causada por nitratos provenientes de fuentes agrícolas (EC, 1991), admite un aporte máximo de nitrógeno de hasta 170-210 kg N por ha y año. Sin embargo, este límite se ha utilizado incorrectamente para establecer los límites de las cargas ganaderas de la ganadería extensiva (Díaz-Gaona et al., 2014a), incluyendo a la ganadería ecológica; porque excreción no es consumo de forraje y los pastizales mediterráneos no pueden soportar la misma carga ganadera que el resto de los pastizales y prados europeos. Se debe enfatizar que la carga ganadera es el único factor ecológico de los pastizales que el ganadero puede controlar (Díaz-Gaona et al., 2014a). Además, como consecuencia de ciertas políticas europeas (p. Ej., EC, 2009), las autoridades españolas permitieron cobrar las primas por extensificación con hasta 1,4 UGM por ha de dehesa, cuando la carga ganadera sostenible de los pastizales mediterráneos se ha estimado en 0.2-0.4 UGM por ha (Olea y San Miguel-Ayanz, 2006; Rodríguez-Estévez et al., 2010). En algunos casos estas políticas han derivado en la degradación de los pastos por sobrepastoreo y en otros han favorecido la sustitución de los sistemas de producció tradicional, en equilibrio con los recursos naturales basados en pastos nativos, por pastos mejorados, lo que a veces ha llevado a la pérdida de las actividades pastorales tradicionales y la pérdida de ciertas especies (Riedel et al., 2007). Por este motivo, Toro-Mujica et al. (2015) establecen que los cambios en la producción ganadera y las actividades tradicionales deben evaluarse con respecto a la fragilidad de los recursos naturales, lo que aumenta su vulnerabilidad a los impactos asociados con el cambio climático; en particular cuando afectan áreas naturales protegidas (Díaz-Gaona et al., 2014b). Además, en vista de los cambios proyectados en los pastizales mediterráneos, una estrategia de adaptación sería la modificación del régimen de pastoreo o corte de los pastizales (Tubiello et al., 2007; Howden et al., 2007) o la recuperación de trashumancia donde esta práctica ha sido abandonada.

Francaviglia et al. (2012) encontraron que, en un escenario de cambio climático, los usos de la tierra caracterizados por un bajo nivel de intensificación, como los sistemas silvopastorales, almacenan más carbono orgánico del suelo (COS) que otros sistemas. En España, Rodríguez-Martín et al. (2016) encontraron resultados similares, el COS de los pastizales (68 Mg por ha) es similar al de los bosques, y mucho más alto que en los cultivos, tanto herbáceos como leñosos. Además, la producción ecológica ayuda a aumentar el carbono del suelo en las tierras de cultivo, que a largo plazo podría ayudar a mantener la producción primaria neta anual (PPN) de cultivos forrajeros en un contexto de cambio climático. A su vez, esta mejora de la PPN puede revertir los posibles impactos negativos del cambio climático en la producción ganadera (Ghahramani y Moore, 2015). Los experimentos en otras regiones climáticas han demostrado que un manejo adecuado del pastoreo, como el pastoreo rotacional con alta frecuencia de rotación, puede aumentar los niveles de SOC en los pastos. A pesar de esto, el efecto del pastoreo en los pastos depende en gran medida del tipo de clima (Abdalla et al., 2018), por lo que se requieren experimentos específicos en áreas mediterráneas. En España existe una interesante
práctica tradicional de manejo del ganado ovino llamada “majadeo” (que significa estercolar). Consiste en encerrar el rebaño de ovejas a una alta densidad en un corral portátil que se mueve cada noche para abono de los suelos pobres, logrando un aumento de la materia orgánica del suelo y un mayor crecimiento de algunas especies pascícolas, como *Trifolium subterraneum* y *Poa bulbosa* (Rodríguez-Estévez, 2005).

Otra práctica de adaptación para aumentar la fijación COS sería la recuperación de las poblaciones de coleópteros coprófagos, mermadas por el empleo sistemático de determinados antiparasitarios (Lobo y Veiga, 1990; Lumaret y Martínez, 2005). Además, la desaparición de este estiércol de la superficie reduciría las emisiones de GEI y la superficie herbácea cubierta por este, especialmente en el caso de las bostas de vacuno.

Dehesas y montados

La dehesa y el montado son sistemas agroforestales con árboles dispersos con un interés especial para la adaptación al cambio climático en la Cuenca Mediterránea. González y San Miguel (2004) indican que las dehesas son un paradigma de equilibrio e interdependencia entre la producción y la conservación de la naturaleza, donde sus altos valores ambientales son el resultado de su gestión extensiva, equilibrada y eficiente. En esta línea, Pleninger y Bieling (2012) presentan la dehesa como un ejemplo de resiliencia. Tienen una capa arbórea dominada por *Quercus* spp. y una capa de pasto herbáceo, que puede rotarse con cultivos anuales como medida para controlar el crecimiento de arbustos. Estos árboles dispersos proporcionan alimento en forma de bellotas y ramón (de aprovechamiento directo y de la poda), así como leña en los años de poda. También tienen importantes funciones ecológicas que contribuyen a la adaptabilidad de estos agroecosistemas, incluida la regulación del microclima, la dinámica del agua, el ciclo de nutrientes y la fertilidad del suelo, entre otros (Moreno y Pulido, 2009). Las raíces profundas de las encinas y alcornoques en las dehesas les permiten adquirir agua de las capas profundas del suelo, lo que aumenta la productividad general de biomasa en el agroecosistema (Jongen et al., 2013). Se ha observado un aumento en la fertilidad del suelo (Moreno, 2008) y un mayor almacenamiento de C cerca del tronco del árbol (Cappai et al., 2017) en las dehesas ibéricas. Es evidente que los pastos arbolados almacenan más C y crean un hábitat más rico que los que no tienen árboles, además de albergar niveles más altos de biodiversidad (Cappai et al., 2017).

Los árboles dispersos también se han identificado como una estrategia eficaz para facilitar respuestas adaptativas en los agroecosistemas. Según Manning et al. (2009), los árboles dispersos pueden abarcar gradientes climáticos que permiten movimientos multidireccionales de la biota a través de los paisajes. Los animales de pastoreo también tienen efectos positivos para la biodiversidad de las dehesas, como se ha observado con escarabajos (García-Tejero et al., 2013) o aves carroñeras como el buitre negro (*Aegypius monachus*). Además, la producción ganadera extensiva también ayuda a aumentar la diversidad de razas domésticas adaptadas a diferentes áreas que a menudo no pueden usarse para otras formas de producción (Bernués et al., 2011; Rodríguez-Estévez et al., 2012; Díaz-Gaona et al., 2014b). De hecho, el pastoreo de ganado está generalmente extendido en áreas mediterráneas con alto valor natural (Bernués et al., 2011; Díaz-Gaona et al., 2014b).

El manejo de las dehesas enfrenta múltiples desafíos, como la seca, una enfermedad de las quercíneas causada por *Phytophthora cinnamomi* (Bergot et al., 2004) o la falta de regeneración del arbolado. Muchas dehesas y montados se han transformado en tierras de cultivo o han perdido su uso agrícola, limitando su capa herbácea a pastizales (por ejemplo, Pinto-Correia y Mascarenhas, 1999). A su vez, las actividades extensivas en dehesas y montados están ahora amenazadas por su baja rentabilidad y abandono rural, lo que lleva a procesos de intensificación y abandono (Acha y Newing, 2015; Costa et al., 2009; Godinho et al., 2016). Ambos procesos resultan en la pérdida de la multifuncionalidad tradicional de estos sistemas y en su capacidad para proporcionar servicios valiosos de los ecosistemas, haciéndolos más vulnerables a perturbaciones como incendios, sequías y enfermedades, cuya frecuencia e intensidad están aumentando. En el caso de la intensificación, provoca una falta de regeneración natural y la muerte de los árboles sobre-venejeicados que afectan la estabilidad ecológica y la sostenibilidad de todo el sistema (Moreno y Pulido, 2009). Por ejemplo, en España, se ha observado una falta de regeneración de árboles, particularmente en los lugares de uso más intenso de las dehesas (Herguido et al., 2017). Del mismo modo, la intensificación redujo el...
reclutamiento de encinas (Q. ilex) en sistemas silvo-pastorales de la isla de Lesbos en Grecia, lo que podría desencadenar un ciclo de retroalimentación al aumentar la sequía (Plieninger et al., 2011).

El enfoque agroecológico muestra que la búsqueda de soluciones a los desafíos de sostenibilidad puede beneficiarse enormemente de los conocimientos ecológicos sobre las interacciones entre los organismos y con el medio ambiente, lo que generalmente conduce a soluciones más efectivas que con enfoques basados en insumos tecnológicos. En cualquier caso, cualquier medida de innovación debería considerar la recuperación o adaptación de las prácticas tradicionales con las que pudiera guardar relación. Por ejemplo, se ha encontrado que una carga ganadera adecuada es un factor clave para el equilibrio ecológico y esto se alcanza una vez que la capa arbustiva se mantiene en un mínimo para la regeneración natural de las especies de árboles de Quercus (Ruiz-Peinado et al., 2017). Además, esta capa arbustiva es positiva en términos de secuestro de carbono debido al aumento de COS y de la biomasa aérea (Ruiz-Peinado et al., 2017). Como otro ejemplo, el remplazo de plantullas de encina se ha visto mejorado por la plantación de bellotas debajo del dosel de arbustos, pero no con riego por goteo adicional (Leiva et al., 2013). La regeneración de dehesas mediante el corte de arbustos puede reducir la biodiversidad a menos que se combine con el pastoreo (Tarrega et al., 2009), lo que refleja el papel dominante del pastoreo en la preservación de la biodiversidad de estos agroecosistemas. A pesar de esto, se ha demostrado que la presencia de parches con alta densidad y diversidad de árboles y arbustos aumentan las aves insectívoras, y éstas reducen la población de insectos defoliadores del alcornoque (Q. suber) en los montados o dehesas ibéricas (Pereira et al., 2014), lo que subraya el papel de los paisajes mosaico en la conservación de la biodiversidad y productividad de estos agroecosistemas.

La exclusión del pastoreo de ciertas parcelas de una dehesa durante el verano tiene efectos similares a los de la trashumancia en el pasto, evitando el pastoreo de árboles pequeños.

Figura 1. Impactos del abandono y sobreexplotación en la dehesa. Modificado de Burgalho et al. (2011).

Martin y Magne (2015) simularon sistemas ganaderos con diferentes grados de diversidad frente a los escenarios de cambio climático en Francia, concluyendo que los sistemas con mayor diversidad mostraron una mejor capacidad de adaptación y una menor vulnerabilidad frente a la variabilidad climática, logrando la autosuficiencia para los requerimientos de forraje sin aumentar los costos de alimentación. Sus resultados confirman la posibilidad de aumentar la capacidad de adaptación y reducir la vulnerabilidad de los sistemas ganaderos al cambio climático a través del aumento de su diversidad agrícola. En este sentido los sistemas adehesados son un modelo a considerar.

En una dehesa bien conservada (con bajas cargas ganaderas, alimento suplementario escaso y trashumancia en verano) las diferencias entre el manejo ecológico y el convencional son pequeñas (Díaz-Gaona et al., 2014b). En algunos casos, la principal diferencia en el manejo de pastos entre ellos es la labranza, que no suele ser habitual pero que es mínima en la agricultura ecológica (Parras-Alcantara et al., 2014; Corral-Fernandez et
al., 2013) y unas cargas ganaderas más bajas en ecológico. Escribano et al. (2014) compararon los atributos básicos de sostenibilidad en sistemas ganaderos ecológicos y convencionales en dehesas, encontrando una mayor sostenibilidad en las fincas ecológicas debido a una mayor estabilidad y autosuficiencia. Además, el hecho de que no se utilicen antibióticos, herbicidas y pesticidas implica beneficios para la salud y la calidad ambiental. Una baja dependencia de los productos y servicios externos y una mayor diversificación hacen que estos sistemas sean menos vulnerables a los impactos causados por el cambio climático, en particular la falta de forraje durante los períodos de sequía gracias a las menores cargas ganaderas.

Prevención de fuegos por el ganado y manejo tradicional del bosque

Los incendios son una de las principales amenazas que enfrenta la Cuenca Mediterránea en un contexto de cambio climático. El aumento en el riesgo de mega incendios destructivos ha mostrado el fracaso de las estrategias convencionales de supresión de incendios. En consecuencia, los incendios controlados están ganando atención como herramientas de manejo de incendios más efectivas que la supresión en áreas del Mediterráneo (Fuentes et al., 2018, Pique y Domenech, 2018), pero deben aplicarse con cuidado para evitar riesgos para la biodiversidad (Enright et al., 2014). Se ha demostrado que la combinación de incendios de baja frecuencia y pastoreo moderado promueve la conservación de especies endémicas en el suroeste de la Cuenca Mediterránea (Paniw et al., 2017).

En este contexto, las prácticas tradicionales de manejo constituyen herramientas con un alto potencial para prevenir los mega incendios. Los regímenes de incendios y la cría de animales han estado estrechamente vinculados en los agroecosistemas mediterráneos a lo largo de milenios. Los incendios se utilizaron para mejorar la producción de pastos y la calidad del alimento (Ruiz-Mirazo et al., 2012), mientras que el pastoreo en sí mismo y la eliminación de los parches de bosques ayudaron a prevenir la expansión de los incendios forestales. Por ejemplo, la disolución de la Mesta, una gran organización ganadera trashumante, a fines del siglo XIX, ha sido relacionada con el aumento de incendios forestales en el centro de España en 1893-1894 (Camarero et al., 2018). En el presente, las cargas ganaderas en la mayoría de bosques, matorrales y pastizales de la Europa mediterránea está muy por debajo de la capacidad de carga debido al abandono de la tierra (Soto et al., 2016, Papanastasis, 2009), lo que disminuye la eficacia del ganado para la prevención de incendios (Evlagon et al., 2012); por ejemplo, Díaz-Gaona et al. (2014a) al estudiar la carga ganadera de las comarcas agrarias de las regiones Andalucía y Castilla-La Mancha encuentran 12 comarcas con elevado nivel de subpastoreo, en tres de las cuales no hay ninguna ganadería extensiva por desaparición de las explotaciones tras la jubilación de los ganaderos.

Fernandes (2013) identificó la gestión del combustible como la estrategia clave para gestionar los incendios en un contexto de cambio climático en la Cuenca Mediterránea, lo que está en línea con los llamamientos a una “coexistencia” con el fuego (Moritz et al., 2014, Otero y Nielsen, 2017), en lugar de aplicar estrategias agresivas de supresión de incendios. En realidad, el manejo del combustible ha sido tradicionalmente la estrategia principal de los campesinos mediterráneos para coexistir con el fuego, principalmente a través del uso intensivo de bosques (dominados por Quercus spp., con alta resistencia al fuego y baja combustibilidad) y los recursos de matorrales, principalmente para el pastoreo de ganado y la producción de carbón vegetal (Papanastasis, 2009; Mancilla-Leyton y Martín Vicente, 2012). Cuando se manejan adecuadamente, las cargas han sido identificadas como una estrategia de reducción de combustible muy efectiva en los bosques mediterráneos, debido a su capacidad para alimentarse de todos los arbustos mediterráneos que constituyen el combustible (Lovreglio et al., 2014), y tanto las cargas como el ganado vacuno son eficaces en la reducción de las cargas de combustible (Ruiz-Mirazo et al., 2011).

Por lo tanto, desde una perspectiva agroecológica, la gestión de incendios en un contexto de cambio climático pasaría por la recuperación funcional de los paisajes en mosaicos tradicionales a través de la reintroducción de la ganadería extensiva y la recuperación de áreas de pastos, la extracción de biomasa a tasas sostenibles, la recuperación de dehesas o la repoblación con quercínneas en áreas boscosas. Otros beneficios importantes de estas medidas pueden incluir: (i) la reducción de la dependencia de alimentos importados y, en consecuencia, de los impactos de su producción fuera de la Cuenca Mediterránea (ver, por ejemplo, Sanz-Cobena et
al., 2017); (ii) la producción de energía renovable, reduciendo así la gran dependencia de los países mediterráneos de los combustibles fósiles; (iii) el aumento de la biodiversidad, que se beneficia de los paisajes de mosaico (por ejemplo, Marull et al., 2015); (v) el aumento de la productividad vegetal, por ejemplo cuando se despejan los arbustos para la regeneración de los pastos (Lasanta et al., 2009) o cuando el crecimiento de los árboles aumenta debido a la eliminación del sotobosque mediante el pastoreo, reduciendo la competencia e intensificando el reciclaje de nutrientes (Papanastasis, 2009); (vi) beneficios paisajísticos y socioeconómicos (Lasanta et al., 2015). Sin embargo, también pueden surgir algunos problemas de la interacción del bosque, el fuego y el pastoreo (Torres-Manso et al., 2014).

CONCLUSIONES

Se han identificado tres tipos de estrategias para la adaptación en la producción animal:

- Manejo del ganado: los sistemas ganaderos extensivos son más vulnerables a los cambios ambientales locales, pero más resistentes a las interrupciones en las cadenas de suministro globales. Algunas de las prácticas específicas incluyen asegurar las condiciones de confort térmico en las instalaciones cuando estas sean necesarias, garantizar la disponibilidad de agua potable en el campo y aumentar la movilidad a través de la trashumancia y trasterrinancia.

- Cambios en razas y especies: hay una gran diversidad de razas locales en la Cuenca Mediterránea, que están adaptadas a situaciones y entornos extremos, pero están desapareciendo rápidamente, lo que hace necesario revertir esta tendencia. Los cambios en las especies, como el reemplazo de vacas por pequeños rumiantes, también podrían ayudar en la adaptación a condiciones climáticas más secas y más cálidas.

- Manejo de pastos: la adopción de cargas ganaderas sostenibles debe promoverse como medida prioritaria en los pastizales extensivos. Existe una necesidad urgente de revertir las tendencias de abandono e intensificación de dehesas y otros agroecosistemas extensivos. El ganado extensivo también ha demostrado ser una herramienta altamente efectiva para la tarea cada vez más desafiante de la gestión de incendios.

AGRADECIMIENTOS

Este trabajo se realiza en el marco del proyecto LIFE17 CCA/ES/000035 - LiveAdapt “Adapting livestock farming to climate change”, financiado por el programa europeo LIFE.

BIBLIOGRAFÍA

- Bergot M, Clopet E, Péramaud V, Déqué M, Marcais B, Desprez-Loustau M L. 2004. Simulation of potential range...
expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biology 10: 1539-1552.

- Papiw M, Quintana-Ascencio PF, Ojeda F, Salguero-Gomez R. 2017. Interacting livestock and fire may both threat

• Rischkowsky B, Pilling D. 2007. The state of the world’s animal genetic resources for food and agriculture. FAO (Food & Agriculture Org.).

• Rodríguez-Estévez V. 2005. El mapeo o redleo. La Fertildad de la Tierra 23:63-66

SIERRA OESTE AGROECOLÓGICA: CONSTRUYENDO COMARCA DESDE LO LOCAL

Dorrego Carlón A¹, Hernández-Jiménez V¹, del Valle J²

¹Observatorio para una Cultura del Territorio, C/ Duque Fernán Nuñez, 2-1, 28010 Madrid
²Iniciativas Socioambientales G. S.Coop, C/ Tribulete, 25, 28012. Madrid
Página web: www.sierraoesteagroecologica.org
Correo electrónico: sierraoesteagroecologica@sierraoesteagroecologica.org; anadorrego@gmail.com

RESUMEN: Sierra Oeste Agroecológica es un proyecto que nace en 2016 como una oportunidad para impulsar el proceso de transición agroecológica que la comarca necesita para afrontar los retos (la crisis sistémica que llevamos viviendo en los últimos años) a los que se están enfrentando actualmente las ciudades región como Madrid. Sierra Oeste es una comarca periurbano-rural bajo la influencia de la cercana ciudad de Madrid.
En los primeros pasos se plantearon cuatro acciones principales bajo el enfoque de la investigación acción participativa: 1. Diagnóstico participativo de recursos agroecológicos y actores de la comarca, 2. Impulso para la creación de una plataforma que actúe como espacio de coordinación, 3. Proyecto Piloto de Agro-compostaje en dos municipios (Zarzalejo y Fresnedillas), 4. Plan de sensibilización en torno a los recursos existentes en la comarca y la agroecología a la población local.
Siguiendo una de las bases de la agroecología “hacer ciencia con y para la gente”, se intenta no sólo dar la palabra a los actores, sino buscar el valor práctico de la investigación por sus propios protagonistas, a la vez que, para el resto de la sociedad. Nuestra intención es compartir los avances del proceso y las propuestas para la transición hacia sistemas agroalimentarios territorializados.

Palabras clave: relaciones urbano-rurales, sistemas agro-alimentarios, territorio, transición

INTRODUCCIÓN

El proyecto “Sierra Oeste Agroecológica: construyendo comarca desde lo local”, nace en 2016 como una oportunidad para impulsar el proceso de transición que la comarca Sierra Oeste necesita para afrontar las políticas agroalimentarias que las ciudades-región están actualmente diseñando y planificando como medidas para afrontar la crisis sistémica que llevamos viviendo en los últimos años.

La Comarca Sierra Oeste de Madrid (Fig.1) está formada administrativamente por 19 municipios y su singularidad dentro de la Comunidad de Madrid responde a su ubicación geográfica que comprende zonas de sierra, de rampa y transición a los valles se refleja en una gran variedad de ecosistemas con una gran diversidad de usos agrarios y paisajes acordes a las diferentes condiciones físico-climáticas de la zona. En breves distancias podemos pasar de pastizales de montaña a pinares de pino negral, de pino albar o de pino piñonero en las cotas más bajas, paisajes de castaños o los pequeños robledales diseminados a lo largo de la sierra. Los ríos y arroyos dibujan su curso con bosques de galería bien nutridos de sauces, fresnos y alisos, tan escasos...
estos últimos en nuestra comunidad y muy bien representados en el río Alberche y alguno de sus afluuentes. Los encinares, en zonas más secas o más abiertas, nos evocan una ancestral relación con el ser humano por sus formas adehesadas o por la existencia de antiguos bosques donde aún se nota la actividad humana.

Desde hace años el colectivo de Zarzalejo en Transición ha realizado un trabajo intenso en el municipio de Zarzalejo y alrededores (Fresnedillas de la Oliva, Robledo de Chavela, Navalagamella, Chapinería, El Escorial…) para visibilizar las problemáticas asociadas a la crisis ecosocial que vivimos y plantear alternativas al sistema globalizado y capitalista. Los cambios políticos que se han vivido en los últimos años a nivel estatal han generado una mayor preocupación e implicación de la ciudadanía en la política municipal. En estos años han proliferado las candidaturas ciudadanas y los proyectos sociales que buscan cada vez más el diálogo entre los actores sociales y políticos vinculados a los territorios. Todo ello, junto al trabajo que se ha venido realizando desde las plataformas por la soberanía alimentaria y la agroecología de la región de Madrid, y más concretamente con la intensificación de las acciones desde Madrid Agroecológico a través de alianzas entre los sectores públicos y los movimientos sociales como es el caso de la transición de los comedores escolares a proyectos de alimentación sostenible en Fresnedillas de la Oliva o el interés por el agrocompostaje municipal, han permitido que procesos como este que estamos poniendo en marcha salgan a la luz y se presenten como una alternativa para el actual modelo de desarrollo sostenible de una comarca periurbano-rural como es la Sierra Oeste de Madrid.

En estos primeros pasos de Sierra Oeste Agroecológica nos hemos planteado cuatro acciones principales:

1. Diagnóstico participativo de recursos agroecológicos y actores de la comarca
2. Impulso para la creación de una plataforma que actúe como espacio de coordinación
3. Proyecto Piloto de Agrocompostaje en dos municipios (Zarzalejo y Fresnedillas de la Oliva)
4. Sensibilización en torno a los recursos existentes en la comarca y la agroecología a la población local.

Durante los primeros años de puesta en marcha del proyecto (Primera fase: 2016 y 2017) se impulsaron, fundamentalmente, las acciones 1 y 3: la elaboración del diagnóstico participativo y el proyecto piloto de agrocompostaje a través de talleres y sesiones formativas e informativas y de la participación voluntaria de 80 familias de los municipios de Zarzalejo y Fresnedillas de la Oliva, del Colegio Público CEIP San Bartolomé y un restaurante, quienes recogieron los residuos orgánicos dos veces a la semana, durante 8 meses (Mayo 2017 – Enero 2018) alcanzando las casi 3 toneladas de residuos totales que se han compostado en la Huerta CSA y un avicompostero.

No obstante, el diagnóstico ha sido el principal insumo para el trabajo posterior que está siendo desarrollado en relación a la dinamización del territorio desde un enfoque agroecológico. Los objetivos que guiaron la elaboración del diagnóstico partían del análisis realizado para la elaboración del proyecto y se terminaron de reformular en paralelo al desarrollo del proceso participativo que permitió terminar de definir el camino a seguir. Estos fueron:

- Objetivo 1: mapear de manera colectiva el sector agroecológico de la Sierra Oeste
- Objetivo 2. Visibilizar el sector agroecológico de la Sierra Oeste
- Objetivo 3: Identificar las principales dificultades y necesidades para el desarrollo de la propuesta de la agroecología en la Sierra Oeste
- Objetivo 4. Realizar propuestas coherentes que puedan aportar soluciones integrales a las necesidades detectadas
MÉTODOS

La Investigación Acción Participativa (Villasante, 2006) con sus herramientas para la dinamización de un territorio ha sido la mejor apuesta metodológica para sumergirnos en la Sierra Oeste. Para ello, y según se acaba de señalar, la elaboración del diagnóstico nos pareció el primer paso que nos permitiera conectar con un territorio sobre el que hay muchas expectativas para posicionar a la Sierra Oeste en el ámbito del desarrollo sostenible y dar a conocer el potencial de la transición agroecológica de la comarca poniendo la agroecología en el centro (Bermejo, 2016).

Gráfico 2. Agroecología (contenidos Sierra Oeste Agroecológica)

De esta forma hemos tenido la oportunidad de hablar con muchas personas con distintas sensibilidades y agendas a partir de entrevistas semiestructuradas con agentes clave, de talleres participativos de identificación de recursos que han sido espacios abiertos y enriquecedores donde el trabajo ha sido intenso y esclarecedor, de la revisión bibliográfica que nos ha permitido conectar con el territorio y los agentes que en él trabajan.

Por último, el taller de devolución del diagnóstico nos permitió afinar el documento estratégico que marcará el proceso de Sierra Oeste Agroecológica. Para ver una descripción detallada del enfoque metodológico desde la identificación de actores, los talleres participativos, entrevistas con agentes clave, consulta de fuentes de información secundaria, ver Capítulo 5. Diagnóstico Sierra Oeste Agroecológica (Hernández-Jiménez y del Valle, 2017).

La elección de un enfoque participativo (Hernández-Jiménez et al., 2016) para la elaboración de este diagnóstico responde al enfoque agroecológico. Por ello y siendo una de las bases de la agroecología “hacer ciencia con y para la gente” (Funtowicz y Ravetz, 1996), se intenta no sólo dar la palabra “al/las investigado/a/a”, sino buscar el valor práctico de la investigación para sus propios protagonistas, a la vez que, para el resto de la sociedad, respondiendo así al para qué y para quién de la producción de conocimiento (Montañés, 2000). Destacar también que la importancia no radica en conocer solamente los datos cuantitativos, sino en conocer los discursos que se esconden detrás de esos datos, que explican la realidad desde la perspectiva del
investigado. La percepción de las personas implicadas es fundamental para poder hacer un análisis del discurso agroecológico (Cuéllar, 2008).

Sin duda, hay una necesidad de abordar conjuntamente los grandes retos a los que nos enfrentamos como sociedad de una manera global, compleja y coincidimos en hacerlo más pronto, que tarde, con más vehemencia aun cuando se trata del potencial de los recursos y las gentes de la comarca.

RESULTADOS

Potencial y Fortalezas de la experiencia Sierra Oeste Agroecológica

La Sierra Oeste cuenta con una sociedad civil organizada y muchas iniciativas colectivas que apuestan por un desarrollo rural más sostenible. Existe un rol activo de las corporaciones locales quienes están abordando algunas cuestiones fundamentales como: la gestión de los residuos, la valorización de los recursos agrarios, el conocimiento tradicional y el impulso de un turismo que valore el paisaje y los usos agrarios de la comarca.

El carácter renovado de la ADI Sierra Oeste (antiguo Consorcio Sierra Oeste), con una nueva Estrategia de Desarrollo Local Participativo para el periodo 2014-2020, representa una oportunidad en la puesta en marcha de proyectos innovadores desde la producción, la transformación y el consumo. También la presencia del Centro de Educación Ambiental de El Águila de la Comunidad de Madrid, situado en Chapinería, como centro de referencia en la promoción de la Sierra Oeste, especialmente, por el apoyo prestado en visibilizar los productos locales.

Existe un sector agroalimentario diversificado, reconocido a nivel autonómico de carnes, vinos, hortalizas e industria de la transformación artesana con reconocimiento incluso a nivel internacional como es el caso del sector del vino. Muchas de estas iniciativas están certificadas con el sello ecológico, otras no, pero se auto-denominan como agroecológicas y/o se enmarcan dentro de los parámetros de la producción artesana. Hay también diversas actividades económicas ligadas a la restauración ofreciendo productos de la comarca y/o de proximidad: la cosmética natural, actividades turísticas asociadas a los saberes tradicionales y al entorno natural, la educación ambiental, la bioconstrucción y las energías renovables, entre otras.

Problemáticas que afronta la Sierra Oeste

- Existe un continuo abandono de las tierras de labor y de cultivos tradicionales como el olivo y el almendro. Dicho abandono además repercute en la consiguiente pérdida de la memoria biocultural.

- Madrid es un mercado potencial inmenso, el más importante del Estado, pero al que no logramos acceder a pesar de nuestra cercanía ya que las dinámicas de los canales comerciales no siempre responden exclusivamente al eje de la proximidad.

- La falta de transformación colectiva (pej. obradores comunitarios, almazaras…) no hace más que acrecentar las dificultades de la actividad agropecuaria en la comarca, sin estructuras organizadas en casi ninguno de los sectores con excepciones importantes como la Denominación de Origen de Vinos de Madrid.

- Difícil acceso a la tierra, que se encuentra principalmente en manos de personas mayores sin dar relevo generacional a jóvenes mayoritariamente provenientes de entornos urbanos.

- Inadecuada gestión de los escasos pastos comunales, en muchas ocasiones cedidos para el aprovechamiento cinegético, sin que puedan ser aprovechados para proyectos ganaderos de los municipios.

- Falta de identidad comarcal, quizás debido a la diversidad entre las zonas de vega y sierra, que en vez de aportar equilibrio entre territorios ha aportado diferenciación.
Construcción de propuestas de trabajo para Sierra Oeste Agroecológica

En el proceso de definición de las necesidades se han identificado ejes de trabajo que abordan el sistema agroalimentario y desarrollo rural de una manera global e integradora y que están en consonancia con el contenido de la Estrategia de Desarrollo Local Participativo de la Sierra Oeste de Madrid realizada por la ADI Sierra Oeste:

Eje 1. Refuerzo de la identidad territorial y el trabajo local en red abordando cuestiones como son: la valorización y la recuperación del paisaje rural y los saberes tradicionales que, en la comarca, son abundantes y muy atractivos; incidir en la percepción del valor de la Sierra Oeste; mejorar la intercomunicación en relación al transporte dentro de la comarca; desarrollar una comunicación clara, popular y simple que interpele a todas las personas de la comarca e impulsar la creación del/la “agente de dinamización local agroecológico” (ADL) como una figura semejante a los DILAS que se proponen desde la metodología de la Red Terrae.

Eje 2. Apoyo a las personas productoras y transformadoras agroecológicas y fomento del emprendimiento agroecológico para estimular el tejido económico. En este sentido se plantean algunas acciones como la creación de bancos de tierras, acceso a la formación en agroecología, fomentar el consumo de productos agroecológicos, etc.

Eje 3. Sensibilización y educación mediante campañas y proyectos educativos que lleguen a todos los ámbitos de la sociedad, desde los equipos técnicos y políticos que toman decisiones hasta los niños y niñas.

Eje 4. Creación de la Plataforma Sierra Oeste Agroecológica como espacio de coordinación para abordar todas las cuestiones que tengan que ver con la agroecología y el desarrollo rural de la comarca.

Discusión de resultados y consideraciones finales

A partir de la información proporcionada por el diagnóstico, de la experiencia de trabajo de la primera fase y del contacto y retroalimentación continua con la diversidad de actores/as involucrados/as en el desarrollo de la comarca Sierra Oeste es que se reflexionan y plantean algunas propuestas de trabajo para la segunda fase del proceso Sierra Oeste Agroecológica para el periodo 2018-2020 en el que nos encontramos actualmente.

Por una parte, se prioriza como herramienta central de dinamización del territorio, el impulso de la Plataforma Sierra Oeste Agroecológica como espacio abierto y referente de la comarca para:

- la coordinación de todos aquellos agentes vinculados con el desarrollo rural, la alimentación y la economía circular en la comarca
- la visibilización del sector agroecológico y su potencial de desarrollo de la comarca
- la mejora de las condiciones de vida de la población y el fortalecimiento del tejido económico de la comarca

La plataforma, aunque surgida como una iniciativa de dinamización desde el equipo del proyecto dada la debilidad organizacional en la comarca, aspira a ser apropiada por los propios actores del territorio por lo que se ha iniciado una construcción colectiva en la que se quieren conocer a los/as agentes (personas o entidades) que faltan en la identificación que ya se tiene; definir el para qué de la plataforma y las necesidades que cubriría y establecer un cronograma con las acciones prioritarias de la plataforma.

En este sentido, es que se han establecido como principales líneas de trabajo:

1. La constitución formal de la plataforma de manera que se puedan movilizar recursos para poner en marcha acciones que permitan fortalecer los sistemas agroalimentarios locales desde un punto de vista económico y de generación de empleo
2. El impulso de una marca para fortalecer la imagen y la identidad comarcal así como un mercado/feria agroecológica itinerante.

Fotografía 3. Carteles de la exposición itinerante, actividades infantiles y mercado

Otra de las acciones principales detectadas para este segundo periodo, aparte del impulso de la plataforma, es la de facilitar el acceso a la tierra a través de la creación de un banco de tierras que incluya tanto las tierras de titularidad privada como municipal en desuso que se quieran ceder o alquilar. Este banco de tierras serviría para estimular la puesta en marcha de nuevas iniciativas que actualmente encuentran muchas trabas para comenzar su actividad por la falta de terreno.

Asimismo, otras acciones que se trabajaran en esta segunda fase de Sierra Oeste Agroecológica serán la incidencia en agendas políticas y la sistematización, generación de conocimiento y sensibilización para impulsar el potencial de cambio en los territorios.

Se plantea como aspecto clave en el proceso, la importancia de considerar las distintas necesidades e intereses de los actores vinculados con el desarrollo rural, la producción y la transformación agroalimentaria ya que no todo el territorio es agroecológico. En principio, el trabajo se desarrolla bajo los conceptos de cercanía e identidad comarcal (“lo local”), pequeña agricultura familiar, etc. que nos permiten aglutinar a un mayor número de agentes pero queda pendiente cómo llevar a cabo la transición agroecológica de la comarca desde el sector de la producción.

Además, es interesante reflexionar sobre el papel que va a jugar la comarca dentro de la Comunidad de Madrid. Ahora que los grandes núcleos urbanos, algunos de ellos muy cercanos a la Sierra Oeste, están definien y sus agendas en materia de alimentación y reducción de residuos orgánicos para los próximos años, es importante que desde los territorios rurales se aborden también estas cuestiones de manera que se puedan generar diálogos horizontales y democráticos y la construcción conjunta de sistemas agroalimentarios territorialisados sostenibles.

REFERENCIAS BIBLIOGRÁFICAS

CARTELES/PÓSTERES RELACIONADOS

PROCESO DE CONSTRUCCIÓN DE LA FINCA INTEGRAL DE LOS ÁNGELES CABÉCAR-COSTA RICA, COMO MECANISMO DE RESILIENCIA AL CAMBIO CLIMÁTICO

Méndez Cartín L¹, Aguirre Rosales D, Montero Herrera S, Sánchez Toruño H

¹Universidad Nacional de Costa Rica, ana.mendez.cartin@una.cr

RESUMEN: En Costa Rica, la región Huetar Caribe alberga el 5.9% de los indígenas costarricenses y es uno de los sitios con mayores índices de pobreza en el país (29%). Asimismo, estas poblaciones han sufrido una transculturización que ha limitado la agricultura familiar a la producción de algunos tubérculos, granos básicos y frutales; así como un abandono momentáneo del sistema de policultivo tradicional (Guevara y Vargas 2000, Martínez 2004, Acuña 2007, Chalampuente 2012, Calderón 2014). Este estudio pretende instalar una unidad productiva integral en la comunidad de Los Ángeles Cabécar, la cual sea producto de un sistema de intercambio de saberes entre académicos de la Universidad Nacional de Costa Rica y los conocimientos ancestrales indígenas. Esto se realiza mediante el método de acción participación, utilizando talleres que buscan instaurar comunidades de aprendizaje, donde son los mismos actores locales los que participan en la presentación de sus conocimientos junto con los académicos universitarios. La unidad productiva se construye utilizando insumos internos de la comunidad y promoviendo la autosostenibilidad de esta, al utilizar semilla criolla y módulos de almácigos y producción de abono orgánico. También, existe un módulo de riego, que se basa en el almacenamiento de agua en caso de sequías. La unidad productiva incorpora plantas útiles de la cosmovisión Cabécar lo que fortalece la diversidad del sistema y mejora la soberanía alimentaria de la comunidad. Por lo que la construcción de un sistema de producción agroecológico que incorpora productos y métodos de manejo indígenas favorece la resiliencia de la unidad productiva al cambio climático; ya que fomenta la soberanía alimentaria de la comunidad, promueve la fijación de dióxido de carbono en la madera e implementa técnicas de conservación de aguas y suelo.

Palabras clave: agroecología, cambio climático, comunidades indígenas, sistemas productivos integrales
ASPECTOS SOCIOAMBIENTALES DE LAS REDES ALIMENTARIAS ALTERNATIVAS: ANÁLISIS DE CASO EN LA CIUDAD DE ZARAGOZA

Cerrada O

Escuela Politécnica Superior, E-22071 Huesca
cerrada20@gmail.com 658442484

RESUMEN: El sistema agroalimentario atiende una de las necesidades más básicas de la humanidad, pero a su vez, vertebra una organización sociocultural, económica y política. Desde años remotos, la actividad agrícola ha sido la creadora del paisaje. El territorio se organizaba en función a ella, y eran muchas las familias a las que daba soporte y autosuficiencia; pero en los años 60 el sistema cambió. Se produjo una alteración en la cadena agroalimentaria (Producción-Distribución-Consumo). Productores y consumidores perdieron poder decisivo, transfiriéndoselo al sector distribuidor, quien consiguió la separación de los extremos de la cadena y una descontextualización alimentaria con ello. El modelo alimentario pasó a ser insostenible por la cantidad de energía que necesitaba para su funcionamiento, además de la pérdida de soberanía ciudadana que manifestaba. Entonces, frente a este escenario de creciente poder de las grandes comercializadoras, aparece a principio de siglo, por parte de la población productora y consumidora, una creciente desconfianza de este modelo; surgiendo panoramas alternativos que apuestan por la localización de alimentos y los circuitos cortos de comercialización como manera de garantizar precios dignos, fomentar la economía local, proteger el medio ambiente, así como fomentar un tejido social en base al consumo responsable. En este estudio se realiza un análisis de caso en Zaragoza, haciendo uso de una estrategia multimétodo: revisión bibliográfica para la conceptualización y conocer el estado de la cuestión; investigación social a través de encuestas y cuestionarios a los diferentes actores para caracterizarlos y analizar la tendencia de las RAAs.

Palabras clave: agroecología, huerta Zaragoza, resiliencia alimentaria
CULTIVANDO FUTURO: PLANTAS MULTIFUNCIONALES POR EL CLIMA

Jiménez-Gómez A.1,2, Vela-Campoy M.1

1Ecoherencia S.C.A. – Centro de Innovación Social La Noria, Av. Arroyo de los Ángeles, 50, E-29011 Málaga; info@ecoherencia.es; 664008780
2Programa de doctorado en Diversidad Biológica y Medio Ambiente, Universidad de Málaga, Avda. Cervantes, 2, E-29071 MÁLAGA

RESUMEN: Las Plantas Multifuncionales (PlaM) son recursos estratégicos para la mitigación y adaptación al cambio climático, nos pueden aportar alimento, medicina, son útiles en el huerto, en la recuperación de espacios degradados... por ello, su conocimiento y apreciación por parte de la ciudadanía es muy importante, y mucho más en el ámbito rural. El proyecto Cultivando Futuro promueve el uso de las PlaM en la provincia de Málaga a través de talleres formativos, jornadas de ciencia ciudadana, ensayos de productividad y asociación de cultivos y degustaciones de platos cocinados con PlaM. La buena participación y acogida de las PlaM por parte de la población malagueña promete servir de excusa para la búsqueda de recursos propios y el emprendimiento tanto en áreas rurales necesitadas de la provincia como en el entorno urbano, así como en la generación de una nueva cultura gastronómica más sostenible y acorde con los nuevos desafíos asociados al cambio climático en la provincia.

Palabras clave: ciencia ciudadana, etnobotánica, plantas comestibles no convencionales
HUERTAS SOCIALES EN MÁLAGA: ESTRATEGIAS DE RESILIENCIA MÁS ALLÁ DE LO URBANO

Jiménez-Gómez A 1,2, Vela-Campoy M 1

1 Ecoherencia S.C.A. – Centro de Innovación Social La Noria, Av. Arroyo de los Ángeles, 50, E-29011 Málaga; info@ecoherencia.es; 664008780
2 Programa de doctorado en Diversidad Biológica y Medio Ambiente, Universidad de Málaga.
Universidad de Málaga, Avda. Cervantes, 2, E-29071 MÁLAGA

RESUMEN: Poco queda de verdad en los recuerdos evocadores de paisajes rurales llenos de huertas, huertas con todo tipo de hortalizas, que abastecían a las familias y vecinos de los pueblos. Las dinámicas de abandono del mundo rural y la presión de los mercados agroalimentarios han provocado la intensificación de monocultivos más rentables, afectando al paisaje, a la economía y a las dinámicas del mundo rural, provocando el desabastecimiento alimenticio de la población, haciéndola dependiente de las grandes superficies de los municipios más cercanos. Este fenómeno se conoce como “desiertos de comida”, lugares donde los habitantes de una localidad o barrio concreto deben desplazarse varios kilómetros para poder encontrar alimentos frescos. El abandono de las huertas rurales tradicionales coincide en la actualidad con la aparición de espacios de cultivo urbano y periurbano en proyectos como huertas de alquiler, huertas co-gestionadas o huertos cedidos por entidades públicas. Cuando imaginamos este tipo de proyectos es probable que visualicemos iniciativas urbanas. Sin embargo, esta tendencia ya es una realidad también en zonas rurales mereciendo ser estudiada como estrategia frente a la despoblación de áreas rurales. Las huertas sociales malagueñas de áreas urbanas y del mundo rural cuentan con un gran potencial de respuesta ante los desafíos climáticos y la desafección alimentaria, propiciando la reconexión con lo rural y la permanencia en el territorio.

Palabras clave: desiertos de comida, huertos urbanos, permanencia en el territorio
PROTOCOLO DE EVOLUCIÓN DEL MANEJO DEL COMPONENTE FORESTAL EN SISTEMAS AGROFORESTALES CON PAGO DE SERVICIOS AMBIENTALES

Quesada J

Instituto Tecnológico de Costa Rica
20303-Costa Rica
juquesadaquesada@gmail.com
(506) 863 406 17

Los sistemas forestales (SAF) con pago de servicios ambientales de Costa Rica, actualmente no son evaluados desde la perspectiva del manejo forestal, por lo que este protocolo tiene como objetivo establecer procedimientos con sentido lógico que permitan evaluar el manejo forestal que se da en los sistemas agroforestales que han recibido el pago de servicios ambientales por parte del Estado costarricense. La elaboración de protocolo se apoya en resultados de investigaciones anteriores que cateterizaron los sistemas de producción agroecológica como los SAF. Mediante la utilización del protocolo de evaluación de estos sistemas productivos se garantiza un impacto positivo en aspectos sociales, ecológicos y financieros. Mediante revisiones bibliográficas y consulta técnicas se elaboró el protocolo y se validó su funcionabilidad en proyectos agroforestales establecidos. La evaluación se basa en la determinación de la calidad de las prácticas silviculturales aplicadas previamente por los productores a los sistemas, además se considera la calidad de los productos forestales que se encuentran dentro del sistema, y los componentes agrícolas o de pastoreo para eventualmente determinar las interacciones entre componentes. Se incluyen matrices que permiten a partir de las variables evaluadas determinar el estado general del sistema y se establecen métodos de muestreo no tradicionales que permiten mantener principios estadísticos, y además ser aplicados con mayor eficiencia en los SAF. Cuando se conozcan ciertas características específicas del proyecto a evaluar, entonces el protocolo podrá ser aplicado en cualquier sistema agroforestal. El protocolo actualmente se mantiene en la etapa final de la validación.

Palabras clave: agroforestería, calidad, plantaciones, tecnologías
AGROECOLOGY: A PARADIGM SHIFT IN AGRARIAN SCIENCES TO TRANSFORM RURAL REALITIES AND AGRIFOOD SYSTEMS

Alcântara FA

Embrapa - Brazilian Agricultural Research Corporation, GO 462 Highway/km 12, 75375-000, Santo Antônio de Goiás, GO, Brazil. Phone number: +55 62 3533-2214. E-mail: flavia.alcantara@embrapa.br or alcantaraface@yahoo.com.br

Abstract: We live in a paradoxical world: on the one hand, there are food’s surpluses and high rates of loss/waste; on the other hand, more than 800 million people are hungry and most of them live in rural areas of developing countries. Industrial agriculture has already proved to be unsuitable for these farmers and, in addition, it has failed in truly and sustainably feeding the world, producing mainly commodities, at high energetic and environmental costs. Small farmers should be able to produce healthy and diversified foods at low costs, strengthening local markets and meeting their feeding needs and the demands of neighboring communities. The key to transform rural realities and agrifood systems is Agroecology and the “alternative” forms of agriculture supported by it. As science, practice and movement, Agroecology challenges academy to broaden its view on what science can/must do, and furthermore, on the role of science in transforming the world. Despite the dynamism of scientific changes, as the New Alliance and Postnormal sciences show, Cartesianism still dominates the agrarian sciences. This theoretical essay proposes that: (1) the consolidation of Agroecology as science, practice and movement is urgent to reach plural, fair and clean agrifood systems and (2) as science, its consolidation depends on a change of mindset, that should rely on the reconnection between humans and nature and on the accountability of science for the common good, considering the ethical and political effects of its results on society.

Key words: family farming, rural development, sustainability, theoretical essay

INTRODUCTION

There is a myth that has been widely spread: “there will have no food for the 9 billion of people who will be on Earth in 2050 if we do not double crops productivity”. The truth is that adequate food supply is not dependent on increasing crops (commodities?) productivity, but on improving access to food. Therefore, we should not keep asking “How to produce more in the same area?” Instead, we should start asking “What to produce, where, how, by whom and for whom?”.
The Brundtland Report defined sustainable development as the “development that meets the needs of the present without compromising the ability of future generations to meet their own needs”. In this report, several dimensions are pointed out as crucial for reaching sustainability, but, usually only three of them are in the center of the discussions: economic, social and environmental dimensions. Even worse is that, we have, as world, focused much more on the economic dimension, to the detriment of the other two. In agriculture, this selective focus means a global agrifood system that excludes in social terms, is poorly diverse and environmentally dysfunctional.

The global crisis in 2007/2008, when there was a substantial increase in the prices of the chemical fertilizers and, consequently, in the food prices, showed the unsustainability of our global agrifood system, highly dependent on industry. In addition, the dominant model has already proven to be unsuitable for small farmers, who could not keep up the “modernization” process initiated by the Green Revolution.

Environmental problems such as soil degradation, water contamination and loss of biodiversity are side effects of the industrial agriculture, not to mention the health problems caused by direct or indirect contact with pesticides, which mainly affect small farmers and rural workers. In recent decades there have been some attempts of “greening” the industrial agriculture through the Double Green Revolution (Conway, 1997), Sustainable Intensification (Royal Society, 2009) and Ecological Intensification (FAO, 2009). In this “greening” process, social impacts remain outside. According to Caporal (2009), the “green” solutions come from an “ecotechnocratic” discourse, with no effective social and environmental concern.

With the objective of assessing the impacts of past, present and future agricultural knowledge, science and technology on the reduction of hunger and poverty, on the improvement of rural livelihoods and human health, and on equitable, socially, environmentally and economically sustainable development, the International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD) produced a global report, signed by 61 countries (58 with no restrictions) (IAASTD, 2009). In this document, it is recognized that food security, in most developing countries, can be achieved placing the productivity and profitability of small-scale farmers at the center of development policies. Showing with data that “business as usual is not an option”, the report evaluates that dependence on simplistic technological solutions will not reduce persistent hunger and poverty and, even, could worsen environmental problems and social inequity. According to the report, the achievement of socially and ecologically resilient systems relies on the strengthening of the small-scale farm sector, on the increase of investments in Agroecology based-agricultures, and on the reconfiguration of agricultural research, extension and education, valuing the contribution of local and indigenous knowledge.

Agroecology is a science, a practice and a movement (Wezel et al., 2009). As a science, it studies agroecosystems, integrating knowledge from agronomy, ecology, economics and sociology (Altieri, 1989). Some agroecological principles are biodiversity maintenance, nutrients recycling, synergy between crops and animals and soil and water regeneration (Altieri, 1989; Altieri, 2000; Gliessman, 2001). However, maybe the greatest differential of Agroecology is to consider the effects of the agricultural processes on human life – on rural areas, on rural people, on local markets, on food sovereignty, on social inequity, as well as on human health and well being.

Despite its capacity of promoting changes (or because of it?), Agroecology faces many challenges, remarkably as science. Some of these challenges are (Alikântara, 2017): to avoid placing Agroecology in the same box of conventional agrarian sciences (it will not fit well); to arrive at a consensus on the concepts and relations between Agroecology and all forms of alternative agriculture, such as organic agriculture and ecological agriculture – the responsibility to correctly inform society is ours; to step out of a certain “marginalization trend”, by assuming not a resistance behavior, but a existence behavior – resisting presupposes domination, while existing presupposes autonomy; to avoid the cooptation of agroecological principles by the industrial agriculture “greening” process, and, in response, to show and value Agroecology based-agricultures differential, potential and role in a changing world.

Agroecology may be considered as the correspondent in agrarian sciences of a new strategy for problems solution - the post-normal science and extended peer communities (Funtowicz and Ravetz, 1997), and, also, its
principles and strategies are closely related to the New Alliance propositions (Pripogine and Stengers, 1991). However, in order to change paradigms in science, including agrarian sciences, is necessary a change of mindset and, of course, and unfortunately, this is not an easy task. It is a task for strong and brave people! A mindset shift, from individual to collective, from competition to cooperation, from reductionist to holistic, from artificial to natural, from quantity to quality, among other comparable pairs, can be achieved, but it will take time and effort. In agrarian sciences, we are doing this change (and facing the challenges of doing it) as we insist in agroecology approaches. However, if we really want to practice/research/learn/teach Agroecology, as a tool to transform rural realities and agrifood systems, we should work, in parallel, on its strengthening.

This theoretical essay proposes that: (1) the consolidation of Agroecology as science, practice and movement is urgent to reach plural, fair and clean agrifood systems and (2) as science, its consolidation depends on a change of mindset, that should rely on the reconnection between humans and nature and on the accountability of science for the common good, considering the ethical and political effects of its results on society.

MATERIAL AND METHODS

As a theoretical essay, this work was based on a bibliographic survey and on the author’s inferences and opinions, adopting the reflexive structure of theoretical essays given by Menegheti (2011).

RESULTS AND DISCUSSION

Why is necessary to reach plural, fair and clean agrifood systems? The answer to this question seems obvious, but unfortunately it is not. Amartya Sen, the Indian economist and philosopher, winner of the Nobel Prize for economics in 1998, warned that food security is not only a matter of producing enough food, but also of making this food available to those who need it (Sen, 1981).

Lappé and Collins (2015) pointed the 10 myths about hunger and the number one myth is “too little food, too many people”. Authors affirm that abundance, not scarcity, better describes the world’s food supply: despite the world’s population more than doubled between 1961 and 2013, we produce around 50 percent more food for each of us today – for which we waste about a third – and even after diverting roughly half of the world’s grain and most soybean protein to feed animals and non-food uses, the world still produces enough to provide every human being around 2,900 calories a day. When it is applied the calorie-deficiency standard, the United Nations estimates that nowadays roughly 800 million people are hungry, but when measures of nutrients deficiencies are considered as well, it is estimated that a quarter of the world’s people suffer from nutritional deprivation. An experience in a very poor community in Brazil, where a project of urban agriculture was carried out, showed that most families’ members were deprived from nutrients, although the calories were supplied: their diet was based on rice, pasta and bread (carbohydrates), characterizing hidden hunger and explaining why some of them were over-weight. Pasta and bread were bought at the local markets, at low cost, while vegetables and fruits were expensive, considering their economic incomes (Oliveira and Santos, 2007).

There is a moral imperative to eliminate malnutrition, as it accounts for 45% of the deaths of 16,000 children, which occur every day. Children of short stature who survive have poorer school performance, and, in consequence, are vulnerable and can be deprived of future well-paid jobs that would serve their own and their family’s livelihood (Global Panel on Agriculture and Food Systems for Nutrition, 2016).

Barruti (2013) pointed out in her book “Mal comidos – Como la industria alimenticia argentina nos está matando”, that food and nutrition are the subjects in which converge the most relevant conflicts of this period: corruption, crime, scientific experimentation, financial speculation, the weakness of the State against corporations, climate change, the ecological imbalance and the social convulsions. The author says that “The world population grows and demands food and that represents a unique opportunity for us” is the argument of those who support this system that has nothing to do with the prosperity it celebrates.
The industrial agriculture, strongly dependent on inputs (seeds, fertilizers, pesticides, machinery and other "advanced" technologies), produces mainly commodities (soybean, wheat, corn, sugarcane, among others) at high environmental and energetic costs. This model, based on the Green Revolution, has left behind itself, for decades, a trail of environmental degradation, loss of biodiversity, food standardization, and health problems (whether from agrochemical contamination or diets impoverishment), as well as a long history of small-scale farmers’ displacement to urban areas, as a way to survive, mainly in developing countries.

All problems arising from this model are evidenced in the Atlas of Agribusiness, recently published in Portuguese by the Heinrich Böll Stiftung Brazil and Rosa Luxemburgo Foundation, with some specificities about Brazil. According to the publication, the commodities soybean, corn, sugarcane and cotton concentrate 85% of the agrochemicals used in this country. Intoxication cases occur mainly with people who are directly exposed during work, but also may appear long after exposure and affect a particular population. Between 2007 and 2013, in Brazil, the number of intoxication cases increased from 3.08 people per 100,000 inhabitants to 6.23 people per 100,000 inhabitants (Santos and Glass, 2018).

But, what policies are needed to build fairer and more sustainable food systems? Olivier De Schutter, as UN Special Rapporteur on the Right to Food (mandate from 2008 to 2014), conducted a Report published in 2014, where it is clear that we need policies that are more coherent with local/regional specificities. The global scenario supports the expansion of export-oriented agriculture, but it does not act by encouraging governments to consider other dimensions of food systems that are not limited to increasing production rates (United Nations, 2014).

Unfortunately, not only policies, but also agricultural research and education as well as public extension services, for decades, have focused most of their attention, efforts, human and economic resources to disseminate and strengthen the industrial model. On the other hand, agroecology and all forms of agriculture based on it were (and still are) marginal when it comes to investments in scientific research, education, and extension services. It is urgent to change such situation, since Agroecology is the key to transform rural realities and agrifood systems, not "only" because of its capacity of integrating science, social movements, farmers/consumers needs and environmental questions, but, above all, for its respect for human and non-human life.

The conceptual confusion around its definition could be an obstacle to its consolidation. Around the world, it is common the use of the term “organic agriculture” as “collective” for all forms of agriculture classified as "alternative" or "ecology-based". However, this has been causing misunderstandings and wrong interpretations of Agroecology. That is why it is urgent to accept and to value Agroecology as the transdisciplinary science that subsidizes the understanding of all biodiverse agroecosystems, be these systems organic, natural, regenerating, among other "Agroecology-based agricultures". Actually, the term “agroecology-based agricultures” is more adequate as collective than “organic” or “ecologic”, and its use should be discussed among agroecologists (Alcântara et al., 2017), as well as agroecological principles: Agroecology is a dialectical science and, as such, it has no dogmas or recipes, it has principles (Machado and Machado Filho, 2017).

According to Wezel et al. (2009), the notion of Agroecology as science, practice and movement has to be well defined in any argumentation. Actually, in some countries, for instance, in Brazil, Agroecology figures not only as science, practice and movement, but also as guideline for public policies and part of the formal education system (Norder et al., 2016). Therefore, the consolidation of Agroecology is an ongoing process, dynamic and continued. In addition, it will be different (slower or faster, stronger or weaker…) depending on factors such as national policies and governments, social organization, consumers awareness and needs, involvement of academics, and many other social, economic, political and environmental aspects.

Holt-Gimenez and Altieri (2013) proposes that it is necessary to build a countermovement that centers Agroecology within a politically transformative peasant movement for food sovereignty. For them, forging strong alliances between Agroecology and food sovereignty is crucial to avoid the cooption of Agroecology by the “reformists” of Green Revolution.
Agroecology, because of its potential for global impact, has attracted much attention and many papers and reports have placed it as the only way out of the global agricultural crisis. Discussions, conflicts and paradigm clashes are associated to the growing impact of Agroecology around the world, which has become a political option in defense of the poorest. In addition, its projection in the territory, beyond the limits of the agroecosystem (farm), is increasingly noticed (Funes-Monzote and Serrano, 2016). Nevertheless, political discussion from the agroecological point of view is still very incipient. Agroecology does not yet present analytical instruments and criteria for developing national or regional strategies, in which political and institutional aspects play a key role. However, the amplitude of the agroecological movements and the experiences at different levels of the public administrations demonstrate the importance of the development of the political aspects of the agroecological theory, leading to the necessity of a Political Agroecology (Molina, 2012).

Altieri (2016) points out that even though some authors argue that researchers such as Bensin, Henin, Tischler and Azzi mentioned the word Agroecology in their writings at the beginning of the last century, Agroecology - as a science that integrates the scientific advances of ecology, agronomy, anthropology and rural sociology to the traditional/local knowledge, and that is politically committed to peasant agriculture and food sovereignty - was born in Latin America in the early 1980s. This origin is part of its strength and it is what can carry Agroecology forward as the solution to socio-environmental problems related to agriculture. For this author, Agroecology is a transformative science, which must be closely linked to farmers’ organizations in a constant process of cognitive, technological and sociopolitical innovation. However, this goes against some preconceptions of scientists, which have a lot to do with a certain philosophical ignorance and supposed neutrality that seems to have liberated the science of its commitments and responsibilities for the collective good.

A world that is relevant to all forms of human and non-human life requires an agriculture that is oriented to life, not to development. This paradigmatic change requires Agroecology itself to take a radical turn to imagine questions that require a philosophical rethink of the process of innovation and to find answers that are committed to the sustainability of life, not sustainable rural development, which is sustainable green capitalism - something impossible (Silva, 2014).

Agroecology is a multiple and transgressive science that presents possibilities for the future of food in the world and for the reconnection between human beings and nature. However, in order for Agroecology to be a transformation agent, it is necessary to overcome some challenges. Only the union around the same concepts, principles and objectives will give Agroecology the legitimacy and strength it needs before the great work that awaits it (Alcântara, 2017).

Alcântara (2017) suggests certain collective assumptions, which could strengthen Agroecology: (1) non-scientific knowledge has the same value as scientific knowledge; (2) farmers are stakeholders, not merely receivers; (3) problems and solutions are context-dependent (climate, soil, culture, etc.) and, therefore, local; (4) as a science, Agroecology is transdisciplinary; (5) because it is also practice and movement, Agroecology encompasses non-scientific fields; (6) as science, practice and movement, Agroecology aims to transform social-environmental realities.
It is not possible to overcome complex problems using the same model of innovation that created it, therefore, it is necessary to “innovate innovation” (Silva, 2011). The side effects of the classical paradigm are the humanity’s inequality and the planet’s vulnerability (Silva, 2014). Souza and Cabral (2009) propose the application of the contextual/constructivist innovation model in the agrarian sciences (instead of the classic/positivist approach), from which instead of seeing the world as a machine, we would see it as a network and instead of knowing to control, we would understand to transform.

The paradigmatic change, as Khun (1987) defined, is also taking place in the agrarian sciences: the problems created by the old form, led by the industrialization of agriculture and led by the Green Revolution, opened space for Agroecology as a new “disciplinary matrix” (Caporal, 2016). What Khun called “dissent group from the scientific community” is what we are in Agroecology: many brave people came before us and, probably, many brave people will have to come after us. However, the post-normal science, as a continuity of the paradigm shift, proposed by Khun, is the term adopted to characterize the overcoming of an era in which the norm for scientific practice was to solve puzzles, ignoring broader methodological, social, and ethical questions brought to light by the scientific activity itself and/or its results (Funtowicz and Ravetz, 1997). According to these authors, in post-normal science, the uncertainty and ethical/political effects of scientific results for the environment and society are considered, and decision makers are communities of peers, not only scientists and politicians. Therefore, decisions would come from a “society comprehension” and not only from “scientific knowledge”. Agroecology as a science-practice-movement (and politics) juncture is very close to this concept of new science proposed by post-normal science, since the limits of Agroecology are broad and go far beyond the scientifically defined Cartesian field. In addition, the dynamic agro ecological knowledge framework is built together with farmers and it also considers consumers as part of the global food systems problems and solutions. In this context, the complex biodiverse systems of Agroecology and their intricate ecological, social and economic relations also fit into the proposal of Prigogine and Stengers (1991), the New Alliance, which presents a new alliance between humans and nature, in order to produce science from the acceptance of the instability and uncertainty of complex systems, as part of their own self-organization.

The holistic approach goes the same way. Fritjof Capra, in his book Web of Life (Capra, 1997), criticizes the reductionist Cartesian view, which assumes that everything should be divided in parts to understand the whole. The author encourages a holistic approach as a counterpoint, reminding us that, for a very long time, predominated the mechanical vision of the universe, of the human body as a machine, of society as a struggle for existence, of belief in unlimited material progress, and of the belief that women are inferior to men. This, according to him, is the old paradigm, which has to be replaced by a new one (and it is being replaced by a new one, but it seems that the process is slow…). In the new paradigm - ecological - all scientific conceptions and theories are recognized as limited and approximate, because science can never provide a complete and definitive understanding. However, most scientists disagree with this thought, and this disagreement is probably due to certain hypocrisy: as Sheldrake (2014) puts it in his book The Science Delusion, the scientific hypocrisy of appropriating absolute truth is a remnant behavior of political and religious behaviors that prevailed in the birth of mechanistic science. Cartesian separation between culture and nature excludes the millenarian relationship between humans and non-humans, denying the premise that humans are part of nature and allowing humans to control nature as well as ways of life and meanings (Walsh, 2007).

For Prigogine (1996) science should not promote certainties, not even probabilities, only possibilities. The author states: “we are witnessing the emergence of a science that is no longer confined to simplified, idealized situations, but which faces us with the complexity of the real world.” Santos (1995) points out that: (1) all scientific-natural knowledge is scientific-social and (2) the distinction between the natural and social sciences is no longer meaningful and useful.

“The aim of science is not to open the door to infinite wisdom, but to set a limit to infinite error”. This is a phrase attributed to Galileo Galilei by Bertold Brecht in his book Life of Galileo. And he goes forward: “I hold that science’s sole aim must be to lighten the burden of human existence. If the scientists brought to heel by self-interested rulers limit themselves to piling up knowledge for knowledge’s sake, then science can be crippled and your new machines will lead to nothing but new impositions. You may in due course discover all that there is to
discover, and your progress will nonetheless be nothing but a progress away from mankind. The gap between you and it may one day become so wide that your cry of triumph at some new achievement will be echoed by a universal cry of horror.” (Divay, 2010) – Maybe a little pessimistic.

It is important to believe in change, otherwise we can become hopeless or, what is worse, cynical. During a discussion on what would be the best alternative for very poor family farmers to achieve food security and sovereignty, an economist told me (so, this is a personal communication) that he did not believe in the agroecological alternative. Then, I asked him what would be the exit for these families, and his answer was: “None, zero… or… they can wait for the father to retire” (in order to live from the payment of the father’s retirement). Is there nothing you can do to help? I believe there is. Jiddu Krishnamurti, an Indian philosopher, speaker and writer, said: “It is not health care to be well adjusted to a deeply sick society.” Let us remain misfit and do what can be done.

Cultural relations of most contemporary societies, especially the Western ones, are defined by a model of development expressed by the general idea of progress, which is based on the growth of the Gross Domestic Product (GDP) and the wealth accumulation. Environmental movements have several currents that criticize these relations and model, since the idea of development is very recent in human history and not always the “peoples of Earth” have accumulated capital as their life purpose. For the Greeks, the solution to these relationships would be in the concept of harmony, whereas for some pre-Columbian American cultures, nature was sacred and, therefore, they attributed the highest value to the beings of water, forests and soil. For other cultures, even the subsoil inhabitants, from the bowels of the earth, were part of time and space, with no discontinuity between life and death. As a common denominator, one can affirm that in almost all ancient cultures the desire to know and belong prevailed, instead of the desire to dominate (Sicard, 2009).

One of the main characteristics of the masculine world has been, precisely, its arrogant and distanced attitude in relation to nature. Masculine culture did not try to reach an understanding or equilibrium with nature because, arrogantly, the masculine pattern relies on certain superiority in relation to nature (to know in order to control). The ecological movements have constantly denounced this misunderstanding – this mistake by which our civilization has stood in opposition to nature. In this sense, today, ecology is an ally of women who decide to feminize the world (Oliveira, 2012). So does Agroecology!

Important characteristics of the feminine culture did not have space in the public scene, for example: attention to human relations, bond with nature and intuition as a developed form of perception. These characteristics were depreciated and repressed by the authority given to the instruments and by the unrestricted appeal to scientific reason as the only possible way to name the mystery (Oliveira, 2012). Ecofeminism shows that, through the centuries, the exploitation of nature has gone hand in hand with the exploitation of women. This ancient association between women and nature is the source of a natural link between feminism and ecology (Merchand, 1980). Oliveira (2012) supports that over the next years women proposing to feminize the world will probably find the status already known as a minority, with all the originality and differentiation that characterizes it: the radicalism of a desire and an aura of utopia. They will talk/write/teach, for example, about the need of more reciprocity between humans and nature, since between women and nature there is an ancestral relationship that can be transmuted into a new alliance.

In this context, the concept of Spiritual Intelligence can be of great help and it is accessible to everyone, to women and men of good will. Danah Zohar and Ian Marshall wrote together the first book on Spiritual Intelligence. They explain that Intelligence Quotient (IQ) became very popular in the end of the XX century and tests were developed to measure it. This is the intelligence that we use to solve logical problems, but it is not the only intelligence we have. In the 1990’s, Daniel Goleman popularized the concept of Emotional Intelligence (EQ), which is as important as the IQ and measures our capacities of perceiving our feelings and the others feelings. This intelligence gives us empathy, compassion, motivation, and ability to react appropriately to pain and pleasure. At the end of the twentieth century, a set of data, not yet assimilated, showed that there is a third quotient, the Spiritual Intelligence (SQ). By SQ, Zohar and Marshal refer to the intelligence with which we approach and solve problems of meaning and value; the intelligence with which we can place our actions and our lives in a broader, richer and more meaningful connection; the intelligence with which we can evaluate what makes the most sense,
which has more purpose. The QS is the necessary foundation for the effective functioning of IQ and EQ – it is our ultimate intelligence. It is important to clarify that SQ does not necessarily have a connection with religion. For some people, SQ may find a way of expression by traditional religions. Being religious, however, does not guarantee high SQ. Several humanists and atheists have a very high SQ, while several religious have very low SQ values. Spiritual intelligence requires us to become aware of our deep selves, our personal center, which is rooted in the center of our existence, in the quantum vacuum (Zohar and Marshall, 2012). This is the hardest part and that is why not all of us want to strive to develop it. Perhaps most of us are not aware, even intuitively, of this possibility of intelligence and of the possibility of acting in the world through it.

Ervin Laszlo, Hungarian philosopher of science, systems theorist and integral theorist, in his book Quantum Shift in the Global Brain, presents his Manifesto on Planetary Consciousness, written in collaboration with the Dalai Lama and adopted by the Budapest Club in 1996. At some point of the Manifesto the authors say: “if we keep obsolete values and beliefs and a self-centered spirit, we will also keep goals and behaviors obsolete and such behaviors held by a large number of people will block the transition to an interdependent and, therefore, peaceful and cooperative global society. There are today a moral obligation and a practical obligation - for each one of us - to look beyond the surface of events, beyond the polemics of political action, sensationalistic media, and ephemerals lifestyles and work, an obligation to feel the big waves behind the events and to perceive the direction that they are taking; to develop the consciousness and the spirit that can allow us to recognize problems and opportunities - and to influence them” (Laszlo, 2012).

The transformation of the world is intrinsically dependent on the transformation of individuals, of each individual. The change of mentality happens first in the individual person. The Letter of Planetary Citizenship, signed at the First World Spiritual Forum in Brasilia, 2006, states: “The world is us (...) and we have the power to transform it into a better world. Each of us is a link of the chain that unites all creatures. It is necessary to create the collective consciousness of individual responsibility (...), and the letter suggests as a statement: “ Aware that the building of a just society depends on the individual transformation of each human being, I undertake to act - with love, intelligence and solidarity - using the best of my abilities, to build a free, egalitarian and fraternal society, protecting planetary life, promoting a fair and dignified social organization, and recognizing that my family is the humanity and that I am united with all living beings” (Riedel, 2011).

CONCLUSIONS

The key to reach clean, fair and really sustainable agrifood systems and to transform rural realities relies on the possibility of small farmers have the tools to produce healthy, diverse and low-cost food, strengthening local markets and contributing to regional quality of life. Agroecology is the key. However, it is urgent to consolidate it as science, practice and movement, and also to place it in the center of major political decisions; otherwise, Agroecology can be coopted by the greening process of industrial agriculture and/or it can be relegated to an eternal “marginal” place.

Perhaps the consolidation of Agroecology as a science is one of the greatest challenges for those who work with it, mainly because most conventional scientists are, consciously or unconsciously, disconnected from the true purpose of science (which is to work for the common good), ignoring the ethical and social/political effects of their actions, and the ideologies, often excluding, that move them.

This paradigm shift in science - with agroecology in the agrarian sciences - needs a change of mentality. In fact, this change of mentality is necessary not only to strengthen agroecology as science, but to strengthen all science, all art, all politics and all human action, aiming at a fairer, more egalitarian, more solidarity and more natural world. This change will happen through the reconnection with nature, which we have lost through the centuries and which has gone hand in hand with the subjugation of women; is also based on the perception of interconnection - the web of life that connects everything and everyone; and it also depends on the certainty that our guidelines in this almost collapsing world must be a greater sense and purpose for the good of all lives.
Science is changing and there are several scientists and thinkers who have collaborated to broaden our vision. What we must do is to collaborate with these processes of transformation and to broaden our perception to new ways of seeing the world and acting in the world, to more generous and supportive ways. This we can and must do as human beings, citizens and professionals. In science, it is our responsibility to collaborate for a better world and we can do our part in this process through Agroecology.

This essay is only a starting point for discussion - I do not have all the answers, but I have the hope and the desire that we can think together about how to act consciously, as agroecologists, and how to contribute, courageously, to transform rural realities and food systems. I invite you to search the answers together, while we go ahead.

REFERENCES

• Prigogine I. 1996. O fim das certezas, tempo, caos e as leis da natureza. São Paulo: UNESP.
DIAGNÓSTICO DEL POTENCIAL PRODUCTIVO AGRARIO EN EL TÉRMINO MUNICIPAL DE CÓRDOBA EN EL MARCO DEL PROCESO (MÁS ALLÁ DEL) PACTO DE MILÁN-ALIMENTANDO CÓRDOBA (AC)

González Muñoz M*, Vara Sánchez I**, Gallar Hernández D**

*Red Andaluza de Semillas “Cultivando Biodiversidad”. Caracola del CIR, Parque San Jerónimo s/n, E-41015 Sevilla; Correo: mgomun@gmail.com; Telf. (+34) 616072666
**AISEC. Universidad de Córdoba. Carretera Nacional IV, km 396, E-14014 Córdoba

RESUMEN: El objetivo de este estudio es elaborar un diagnóstico productivo del término municipal (TM) de Córdoba, a través del análisis de usos y superficies agrícolas, y la identificación de productores/as y organizaciones relacionadas con la producción de alimentos “alimentando Córdoba” (AAC). El trabajo forma parte de un proceso participativo iniciado en Córdoba a partir de la firma del Pacto de Milán.

Para esta investigación se ha realizado un análisis del territorio y sus usos agrarios a partir de fuentes secundarias (censo agrario, mapas, SIGPAC, y bases de datos públicas) y revisión bibliográfica. Además se han definido transectos de diagnóstico en el territorio e identificado aquellas parcelas óptimas para el cultivo de AAC (pendiente inferior al 15% y acceso a regadío). En una segunda fase se realizó un mapeo de actores relevantes en el mapa productivo y una serie de entrevistas semiestructuradas. El estudio concluye que este TM es esencialmente agrario, con tendencia a disminuir superficie agraria y número de explotaciones. Cerca del 15% de la superficie agraria cumple los criterios de tierras ideales para AAC principalmente en las márgenes de los ríos Guadalquivir y Guadajoz. El 19% de esta superficie es olivar. Es necesaria una escala mayor, incluir la ganadería y otros sectores (huevos, queso, miel, etc) y profundizar en los contactos e implicación de los actores del TM. Se recomienda junto con un análisis de distribución y consumo, definir estrategias de abastecimiento para el mercado local.

Palabras clave: AAC (Alimentos Alimentando Córdoba), Pacto de Milán, sistema agroalimentario sostenible, soberanía alimentaria, superficie agraria

1Los AAC son los que cumplen una serie de criterios definidos previamente en un proceso de articulación hacia una alimentación sana y sostenible en Córdoba (VSF-ISEC-Ayto, con FDNC). Estos criterios son, alimentos frescos, locales, de temporada, relación directa o proximidad, producción sostenible y también sostenibles desde lo social.
CUMPLIMIENTO DE ODS CON UN MODELO DE AGROECOLOGÍA EN EL CENTRO KULBAALIB XE’CHULUB, NEBAJ (GUATEMALA)

Fernández-Roca Baquero MP; Raigón MD

Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
maferba9@etsiam.upv.es; mdraigon@qim.upv.es

Resumen: Los pueblos indígenas contribuyen muy positivamente al debate sobre la agricultura familiar gracias a la riqueza de conocimientos tradicionales y su capacidad para gestionar el ecosistema. Constituyen un grupo de diversidad que se ha adaptado a vivir en numerosos ecosistemas diferentes, pero siempre en estrecha relación con la naturaleza. En concreto, sus sistemas alimentarios son integrales y combinan la recolección silvestre, la pesca, la caza y la ganadería y agricultura autóctona respetuosa con el medio ambiente donde habitan. Las familias de las comunidades del municipio de Nebaj, Guatemala, y en general de la Región Ixil (región indígena que más sufrió los efectos de la guerra civil guatemalteca formada por los municipios de Nebaj, Cotzal y Chajul), realizan un modelo de agricultura familiar basada en el autoconsumo y la pequeña comercialización de los excedentes. Las metodologías que emplean están basadas en las técnicas de agricultura ecológica donde el cierre de círculos en el sistema es la base de la economía aplicada. El principal objetivo de este trabajo consiste en la implantación de un modelo agroecológico en el Centro Kulbaalib Xe’Chulub (CEKUXE), Nebaj en Guatemala y relacionarlo con el cumplimiento de los Objetivos de Desarrollo Sostenible (ODS) de la agenda 2030. El CEKUXE es una asociación indígena que lucha por la Seguridad y Soberanía alimentaria de la región, además de llevar a cabo estrategias para mantener las técnicas tradicionales de cultivo, las semillas criollas y la agricultura ecológica. Técnicamente la implantación contiene una estrategia para garantizar el incremento de la biodiversidad en el sistema, a través de un modelo de policultivos, la siembra escalonada, el aprovechamiento de residuos para la producción de abono y la producción de semillas propias. Los resultados de la implantación de este modelo deben contribuir a obtener beneficios que permitan fijar población en el territorio, mejorar la calidad de vida indígena, ser referente como centro de formación y capacitación y contribuir a disminuir las diferencias en tema de género, metas incluidas en los ODS.

Palabras clave: agricultura familiar, autoconsumo, asociación de cultivos, agricultura ecológica, comunidades indígenas

KEY WORDS: Native communities, family farming, self-consumption, association of crops, organic agriculture.

INTRODUCTION

Descripción de la Asociación Centro Kulbaalib Xe’chulub

La comunidad indígena guatemalteca fue la más perjudicada y la que más consecuencias negativas sufrió durante la guerra civil de Guatemala (1960 – 1996). Tras la guerra la población se fue asentando en las zonas montañosas, por lo que, las condiciones de sus tierras de cultivo presentan terrenos muy inclinados, en medio de la selva y en zonas elevadas. En Guatemala en 1996, los pueblos indígenas se unieron para, tras las firmas de los tratados de paz, luchar por sus tierras y sus prácticas agrícolas tradicionales y ancestrales, en este momento surgió la unión de los diferentes familias ixiles que más adelante formarían la Asociación Centro Kulbaalib Xe’Chulub (CEKUXE).

La CEKUXE se constituyó legalmente en marzo del 2011 para impulsar la defensa del territorio y de los bienes naturales, con el objetivo específico que “las comunidades indígenas mayas del Municipio de Nebaj (El Quiché) aumenten sus capacidades para garantizar su soberanía alimentaria y un saneamiento ambiental adecuado, siendo actores fundamentales de este proceso las mujeres”. La CEKUXE, cuyo nombre en ixil significa “Reunión bajo el roble”, es una asociación indígena formada por 14 comunidades de la región ixil, lo que representa 17054 familias socias, que provienen de 22 aldeas o comunidades de Nebaj. La región ixil, es una zona donde las comunidades viven el día a día. Trabajan para conseguir su propio alimento y sobrevivir, son pobres económicamente, pero ricos en cuanto a cultura, recursos, tierra y valores.
Los objetivos de CEKUXE están enfocados en lograr la seguridad y soberanía alimentaria, a través de actividades agropecuarias y agroindustriales utilizando técnicas propias y ancestrales, la búsqueda de alternativas de comercialización, implementación de proyectos forestales, de salud y servicios y la educación de la población en estos temas a través de capacitaciones.

El CEKUXE, en estos momentos, es el intermediario entre comunidades y familias, además de proveedor de los materiales y capacitaciones necesarias para llevar a cabo la agricultura integral o familiar. Cuenta con un espacio para la cría de gallinas y por tanto para la producción de huevos, espacio suficiente para pasto de ovejas y vacas, una bodega abonera, otra bodega para vermicompost (coqueta roja), dos letrinas secas, dos bodegas, una sala procesadora para transformar sus productos, tres almacenes, un huerto, un semillero y dos terrazas para cultivar sus propios cultivos. Además, cuenta con una cocina, un salón, dos oficinas, habitaciones para hospedaje de personal de mantenimiento y un espacio con camas. En el Centro se realiza producción propia de pan de amaranto, para fomentar su cultivo tradicional, y su ingesta entre la población, además de buscar mercado para el mismo. También cuenta con la elaboración de diferentes productos cuya materia prima llega de las diferentes comunidades asociadas a él. Los productos que se procesan son harinas, galletas, café, atol preparado (bebida guatemalteca en la que se le añade cualquier tipo de harina al agua mientras esta hierve) o amaranto reventado, una especie de “palomitas” que se realiza con amaranto en lugar de maíz.

Una gran dificultad con la que se encuentra la Comunidad, es la consideración externa de ser “enemigas del desarrollo”, siendo acusadas desde sectores económicos del país. Además, la presión de las grandes multinacionales, el crecimiento del monocultivo, como el de la palma en la selva del norte del departamento de Petén, la desaparición de zonas de manglar, para el establecimiento de cultivos hortícolas de exportación, la pérdida de biodiversidad, los problemas de contaminación de los recursos por parte de la industria minera del noreste del país, en el departamento de Izabal, y otros problemas colaterales son la lucha constante que realizan los pueblos indígenas guatemaltecos (Velásquez et al., 2017).

Agroecología y Objetivos de Desarrollo Sostenible

La agenda 2030 plantea 17 objetivos que abarcan las esferas económica, social y ambiental, cada uno de estos Objetivos de Desarrollo Sostenible (ODS) proponen una serie de metas, para garantizar el grado el cumplimiento de los mismos en todos los países y territorios. Los 17 objetivos son:

Objetivo 1. Poner fin a la pobreza en todas sus formas y en todo el mundo.
Objetivo 2. Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible.
Objetivo 3. Garantizar una vida sana y promover el bienestar de todos a todas las edades.
Objetivo 4. Garantizar una educación inclusiva y equitativa de calidad y promover oportunidades de aprendizaje permanente para todos.
Objetivo 5. Lograr la igualdad de género y empoderar a todas las mujeres y las niñas.
Objetivo 6. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos.
Objetivo 7. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos.
Objetivo 8. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos.
Objetivo 9. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación.
Objetivo 10. Reducir la desigualdad en los países y entre ellos.
Objetivo 11. Lograr que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles.
Objetivo 12. Garantizar modalidades de consumo y producción sostenibles.
Objetivo 13. Adoptar medidas urgentes para combatir el cambio climático y sus efectos.
Objetivo 14. Conservar y utilizar sosteniblemente los océanos, los mares y los recursos marinos para el desarrollo sostenible.
Objetivo 15. Proteger, restablecer y promover el uso sostenible de los ecosistemas terrestres, gestionar sosteniblemente los bosques, luchar contra la desertificación, detener e invertir la degradación de las tierras y detener la pérdida de biodiversidad.

Objetivo 16. Promover sociedades pacíficas e inclusivas para el desarrollo sostenible, facilitar el acceso a la justicia para todos y construir a todos los niveles instituciones eficaces e inclusivas que rindan cuentas.

Objetivo 17. Fortalecer los medios de implementación y revitalizar la Alianza Mundial para el Desarrollo Sostenible.

La naturaleza entrelazada, interdependiente y en constante evolución de los sistemas socioecológicos, junto con las incertidumbres que caracterizan la realidad contemporánea, cuestiona la relevancia de todos los Objetivos. La diversidad de objetivos es esencial y fundamental. Aprender de las iniciativas en sociales y productivas que se han llevado a cabo en el Sur Global, como el caso de la Agroecología, podría allanar el camino hacia el cambio de paradigma y la filosofía de la Agenda 2030 (Moore, 2015).

Para cumplir con el objetivo número 2 es necesario llevar a cabo una profunda reforma del sistema agroalimentario mundial, que puede comprometer a otros objetivos, así como del modelo de consumo, que compromete directamente al objetivo 12. Es decir, se necesita un cambio en los procesos productivos, realizar un giro hacia los modelos agroecológicos, que permitan una gestión adecuada de la agricultura, la silvicultura y la acuicultura, sobre todo ante la situación global de cambio climático y que fruto de la buena gestión productiva se ofrezca comida nutritiva a todo el planeta, así como unos ingresos dignos a los productores, apoyando el desarrollo sostenible del modelo rural y la protección del medio ambiente. La Agroecología, más allá de la reducción de fertilizantes y plaguicidas de síntesis y las correspondientes certificaciones (de tercera parte y/o participativas), se acredita por enfrentarse a la producción industrial a gran escala de alimentos, a la gran distribución mundial y a la colocación de la competitividad como exclusivo y excluyente, principio de realidad de los sistemas agroalimentarios.

Además, los 17 objetivos están unidos por una línea conductora que es la producción de alimentos de calidad. Si bien es cierto que el sector agrícola y ganadero ofrece soluciones claves para el desarrollo y es fundamental para la eliminación del hambre y la pobreza, la sobreexplotación del modelo productivo imperante, la degradación de los recursos (suelo, bosques, agua potable, océanos y biodiversidad), unido a los efectos de cambio climático, que repercuten sobre los recursos y aumenta la vulnerabilidad de las zonas de producción de alimentos, están poniendo en riesgo el fin último de la agricultura y la ganadería, así como la posibilidad de que los agricultores y ganaderos puedan ganarse la vida en las tierras que trabajan, lo que vulnera directamente a otros ODS, forzando a emigrar a otras zonas en busca de oportunidades (Smith, 2018).

La Agroecología no es viable sin una cooperación lineal y recíproca entre producción, distribución, logística y consumo responsables. En esta cooperación cada eslabón de la cadena alimentaria es producto de los eslabones anteriores y premisa para los posteriores. La lógica dialogante y de responsabilidad compartida sólo fluye cuando cada eslabón secunda –y no traiciona- la cooperación. En el caso de los ODS, tanto los Objetivos que favorecen la Alimentación Agroecológica como los Objetivos que son favorecidos por ella, presentan un carácter integral y transversal. Por ello, será difícil el éxito de un Objetivo, separado de un avance armónico del conjunto de los Objetivos.

El principal objetivo del presente trabajo es relacionar el grado de alcance de la implementación del modelo de agricultura familiar, basada en técnicas agroecológicas, en CEKUXE (Nebaj, Guatemala) con el cumplimiento de los Objetivos de Desarrollo Sostenible de la agenda 2030. Para ello, se pretende valorar en qué medida, las familias ixíles de Nebaj, con la puesta en marcha de modelos de agricultura integral cubren con las necesidades alimenticias y nutricionales, recomendadas, como eje principal de los ODS.

El trabajo está enmarcado en las actividades que realiza CEKUXE, donde entre sus objetivos está el poner en marcha acciones agroecológicas para “cerciorar que la alimentación familiar y comunitaria mediante la implementación de la agricultura orgánica, las granjas integrales y las tecnologías apropiadas”, es adecuada con la aportación de recursos adaptados a las condiciones productivas e higiénico-sanitarias.
METODOLOGÍA

El trabajo se llevó a cabo en CEKUXE constituido por comunidades indígenas mayas del Municipio de Nebaj (El Quiché, Guatemala). El Quiché es un departamento que se encuentra situado en la región noroccidental de la República de Guatemala. Se trata de un territorio principalmente vinculado a la agricultura de subsistencia, rodeado de las grandes superficies de agricultura intensiva, principalmente dedicadas al cultivo de la caña de azúcar, maíz y algodón. La altitud oscila entre los 2310 y 1196 msnm; por consiguiente, el clima es muy variable, predominando el frío y el templado, aunque hay algunas zonas de clima cálido. En el departamento de El Quiché, por su clima, tipos de suelo y la topografía del terreno, se cultiva gran diversidad de cultivos anuales, permanentes o semipermanentes, como cereales, hortalizas, árboles frutales, café, caña de azúcar, etc. Además de presentar aptitudes para la cría de varias clases de ganado.

La Junta Directiva de CEKUXE junto con los representantes comunitarios elaboran anualmente el plan de trabajo que se centra en las siguientes metas y objetivos:

• Asegurar la alimentación familiar y comunitaria: agricultura orgánica, granjas integrales, tecnologías apropiadas.
• Salud y nutrición: formación de facilitadores de nutrición comunitaria, fortalecimiento de las promotoras de salud y nutrición, fortalecimiento de comadronas, cursos de preparación de alimentos, elaboración de pan y otros productos de amaranto.
• Fortalecimiento organizativo: reuniones de la Junta Directiva, organización de socios en las comunidades, liderazgo comunitario con jóvenes, coordinación con otras organizaciones, grupos e iniciativas locales.

En las comunidades se conforman equipos de trabajo de manera voluntaria, con tareas específicas, para ir alcanzando los objetivos de CEKUXE. Con los fondos propios de CEKUXE sólo se paga a un administrativo y al guardián que desarrolla las tareas de mantenimiento del Centro.

Para realizar este trabajo se ha utilizado una base de datos, con toma de datos en el territorio, a través de una batería de entrevistas, reuniones y visitas de campo, a las diferentes familias indígenas de las comunidades de la Región Ixil. Las encuestas realizadas se grabaron en formato digital.

Algunas de las preguntas formuladas han sido:

¿Tiene granja familiar? Sí _____ No _____

¿Cuáles son los principales problemas que tienen las familias para desarrollar su granja integral?

¿Ha aumentado la producción agrícola en su familia por los proyectos que ha realizado la Asociación?
 Muy poco _____
 Regular _____
 Bastante _____

¿En qué les ha mejorado o ayudado a sostener su economía familiar?

¿Ha recibido alguna capacitación sobre huertos familiares de parte de la Asociación?
 Sí _____ No _____ En caso afirmativo, ¿sobre qué temas?

¿Cuánto de su alimentación cubre con lo que produce en la granja familiar y/o la parcela diversificada?
 Muy poco _____
 Regular _____
 Bastante _____

¿Ha participado en actividades sobre protección de bienes naturales, promovidas por la Asociación?
 Sí _____ No _____

148
En caso afirmativo, ¿cuáles?

¿Cuál es el rol de las mujeres en el desarrollo de las granjas integrales?

Con las respuestas de las entrevistas individuales y colectivas, se ha llevado a cabo un contraste de los datos recopilados y observados, con documentación ya existente.

RESULTADOS Y DISCUSIÓN

La figura 1 muestra el circuito cerrado que se establece con los recursos, donde se observa que no se generan desperdicios, ni prácticamente gastos extras. La actividad principal es la agricultura, se cultivan hortalizas, se siembran cereales y legumbres, además existe una amplia colección de árboles frutales. Las materias primas obtenidas de la producción agraria sirven de alimento y los desechos tanto de la producción primaria como de la cocina son alimento para los animales, de los que obtienen la principal fuente de proteína. Los recursos sobrantes (restos de la cosecha, restos de cocina, excrementos de animales y los desechos apagados con cenizas de las letrinas) se compostan y generan el abono necesario para incorporar al suelo. De los cultivos, se reserva una parte para la producción de semillas. De esta manera son prácticamente autosuficientes en alimentación e insumos como semillas y abono. La producción excedentaria se vende para obtener ingresos económicos.

Figura 1. Esquema de círculo productivo realizado en CEKUXE

Los resultados del estudio muestran que cada familia, generalmente, cuenta con varias parcelas que se encuentran dispersas, distribuidas más o menos de la siguiente forma; un terreno con superficies que oscilan entre 1–2 cuerdas de 20 varas cuadradas (279.5–559 m²), donde construyen la vivienda, un terreno para cultivo de hortícolas y para alojar a los animales y, otros terrenos alejados de la vivienda, donde se cultiva maíz o pasto para el ganado. Todo ello a pequeña escala y con unas dimensiones que permiten la obtención de productos suficientes para alimentar y mantener a la familia (Fernández-Roca Baquero y Ortiz Miranda, 2018).

Los resultados de las encuestas informan que los productores han obtenido un incremento de las cosechas, aproximadamente un 10% más de producción que antes de la implantación del modelo agroecológico. El
incremento de la producción ha ido acompañado de un incremento en los calibres. Se ha conseguido que las familias, con una granja integral y aplicando conocimientos agroecológicos, produzcan más del 50% de sus necesidades alimentarias básicas, además de ser una producción variada (25% más en la diversidad de alimentos) y saludable. Las ventas de excedentes han incrementado la economía familiar en un 25%. En conjunto producen frijol negro, papa (patata), chile pimiento (pimiento), chile chamborón (pimiento picante), hierbamora, güisquil, milpa (maíz), malanga, remolacha, cebolla, trigo, zanahoria, amaranto, plantas medicinales, tomate de palo (tomate de árbol) (figura 2), repollo, ciruela, manzana, durazno (melocotón) y aguacate, entre otras verduras, frutas y hortalizas; además de carne de cerdo, vaca, conejo, aves y huevos. Gracias a la diversidad de cultivos, los constituyentes del núcleo familiar tienen mayor variedad de comidas, en mayor cantidad y en calidad, apreciando según el resultado de las encuestas, que han notado cambio en la alimentación y en la salud, por la menor incidencia de enfermedades. La diversidad cultivada tiene repercusiones en las elaboraciones diversas en cocina, por lo que la transmisión del conocimiento y la cultura a través de la comida juega un papel clave.

Figura 2. Chile chamborón (arriba izquierda), güisquil (arriba centro y derecha), hierbamora (abajo izquierda), malanga (abajo centro), tomate de palo (abajo derecha).

Con esta diversidad de alimentos producidos, es más fácil completar la “canasta básica de alimentos” (CBA) en Guatemala, que está formada por 34 productos. El precio de la CBA ronda los Q 3537 al año (1 € = Q 8.75 junio 2018). El Q=quetzal es la moneda oficial de Guatemala, lo que supone un gasto aproximado de Q 85 diarios para abastecer las necesidades (INE Guatemala, 2018). Gracias a la producción propia de alimentos, se consigue completar la CBA sin, prácticamente, gasto económico adicional; la dependencia del mercado es muy baja, limitándose a la compra de pequeños productos que las familias no pueden producir en sus tierras.

En general, la granja de manejo integral agroecológico, se caracteriza por una alta diversidad de cultivos, una adecuada rotación y un manejo orgánico de los cultivos, con empleo de subproductos para compostar y retornar al suelo en forma de abono y la nula aplicación de sustancias fitosanitarias. Además, las técnicas que cada agricultor desarrolla, se complementan con la diversidad de la granja, un ejemplo de ello es el modelo de agricultura respetando las curvas a nivel. Las metodologías de aprendizaje campesino a campesino han sido eficientes para optimizar el uso de las semillas, sustituyendo las técnicas de siembra a boleo, por la técnica del “hoyo por semilla”, consiste en colocar en cada hoyo entre 1 y 3 semillas dependiendo del cultivo, un margen que asegura la germinación, rentabiliza el uso de las semillas, optimiza los recursos del suelo para la germinación y se ordenan los cultivos en las parcelas.
El grado de cumplimiento de los ODS ha sido posible gracias al escenario social alcanzado en CEKUXE, bajo un sistema de gobernanza política y colaboraciones en torno a buenas ideas que han brindado valor social, económico y ambiental a la Comunidad. Además, las innovaciones técnicas incorporadas sobre todo con el manejo de la materia orgánica en el suelo a partir del compostaje de los residuos han ofrecido nuevas posibilidades y oportunidades, rentabilizando la economía global y contribuyendo en la disminución de contaminantes. Estas mejoras técnicas también han contribuido a establecer formas de colaboración entre los técnicos y los agricultores locales y con el movimiento comunal. Es un ejemplo práctico de cómo los desafíos ambientales y el bienestar humano mejorado requieren la reorganización de los valores e instituciones sociales.

Poner en práctica las tecnologías agroecológicas ha sido posible ha sido posible por la apuesta en innovación, adecuada a los recursos tecnológicos, a los cambios en las políticas agrícolas y a los cambios socioeconómicos, pero sobre todo una comprensión más profunda de las complejas interacciones a largo plazo entre los recursos, las personas y su entorno.

Los ODS representan una agenda transformadora y dirigida por las personas cuyos fundamentos son la transparencia, la participación y la inclusión. De forma general, el proyecto CEKUXE en Guatemala contempla principios y acciones basados en los ejes de la lucha contra la pobreza, el cuidado del planeta y la disminución de las desigualdades. Estos principios son articulaciones en los objetivos de desarrollo sostenible. De forma directa las iniciativas desarrolladas inciden directamente en los siguientes ODS de la agenda 2030:

La seguridad alimentaria y la disponibilidad de alimentos son factores críticos para lograr que las personas salgan de la pobreza. El alto nivel de autogestión, así como el mayor acceso a los recursos y servicios básicos y alcanzar un modelo de economía circular en CEKUXE, han permitido salir de la pobreza extrema a sus familias. Además, se consigue complementos de la renta económica por la venta de los excedentes y por los transformados que se comercializan en los mercadillos locales. Todas estas actividades son líneas para alcanzar las metas del objetivo 1.

El acceso de todas las personas, en especial los niños y niñas de la Comunidad, a una alimentación suficiente, variada y nutritiva se alcanza durante todas las épocas del año. La ingesta y por tanto la dieta ha cambiado, siendo mucho más variada y las necesidades nutritivas se logran con los alimentos que se producen en la propia Comunidad. Las prácticas agrícolas sostenibles, el acceso igualitario a la tierra, y a la producción y la tecnología son metas que han permitido alcanzar las metas del objetivo 2.

Las encuestas informan de la menor incidencia de enfermedades. Se ha realizado procesos de capacitación a matronas, que atienden a los partos en la Comunidad y por tanto facilitar y dar apoyo a las mujeres en los momentos de los alumbramientos. Incidir de nuevo en que la alimentación es más diversa y saludable, y por ello se produce mayor prevención a través de la alimentación, alcanzado mayor bienestar de vida. La eliminación de las sustancias químicas en agricultura también contribuye al mayor bienestar ambiental, y todos estos alcances representan un audaz compromiso para poder conseguir el objetivo 3.

La igualdad de género es un aspecto de derecho básico. Hay que mencionar que se ha trabajado la disminución de la brecha de género, algo que se ha manifestado por la mayor presencia de las mujeres en las capacitaciones, impartidas por los técnicos agrícolas comunitarios y las mujeres han mostrado un gran interés e iniciativas para realizar las labores agropecuarias, además muestran una gran capacidad de emprendimiento. El empoderamiento de la mujer en la Comunidad y el respeto a las niñas han tenido un efecto sobre el crecimiento económico y el desarrollo. Las mujeres llevan la explotación agraria y la transformación y ocupan cargos de responsabilidad, alcanzando de lleno el objetivo 5.
La comunidad indígena ha mejorado considerablemente las condiciones de saneamiento, a través de las letrinas secas, pero todavía tiene mucho trabajo por delante para alcanzar la eficiencia hídrica y apoyar tecnologías de tratamiento para mejorar la calidad del agua y con ello las metas del objetivo 6.

Los indígenas de la Comunidad CEKUXE han mejorado sus condiciones laborales y creado empleo pleno y productivo y un trabajo decente para todos los hombres y mujeres. El crecimiento económico se ha alcanzado mediante el aumento de los niveles de productividad y la innovación aplicada con los sistemas de compostaje, la optimización de las parcelas con las rotaciones de cultivos y la extracción y conservación de las semillas, con ello se han alcanzado las metas del objetivo 8.

Para lograr crecimiento económico y desarrollo sostenible, la Comunidad ha sido capaz de reducir la huella ecológica mediante un cambio en los métodos de producción y consumo de bienes y recursos. El consumo satisface las necesidades básicas, sin desperdicio de alimentos, siendo acciones vitales para alcanzar las metas del objetivo 12.

La puesta en marcha de prácticas de agricultura y ganadería ecológica, tienen repercusiones directas en las acciones por el clima. Según el cuarto Informe de Evaluación del Panel Intergubernamental sobre el Cambio Climático, las recomendaciones sobre cómo la agricultura podría mitigar las emisiones de gases de efecto invernadero son principalmente cuatro (Smith et al., 2007), la realización de rotaciones de cultivos, el manejo de nutrientes y estiércol en el suelo; el manejo de ganado; el mejoramiento de los forrajes y de los pastos; y el mantenimiento de la fertilidad del suelo, así como la restauración de tierras degradadas. Acciones todas que la Comunidad CEKUXE lleva a cabo con el manejo ecológico de sus actividades agropecuarias y con ello para alcanzar las metas del objetivo 13.

El empleo de variedades criollas, las prácticas agroecológicas, las prácticas de policultivo, la utilización de los subproductos compostados, con repercusiones en incremento de la biodiversidad del ecosistema, y el mantenimiento medioambiental de los recursos son fundamentales para alcanzar las metas del objetivo 15. Pero además la Comunidad CEKUXE se encuentra inmersa en zonas rurales y forestales, y la propia idiosincrasia de la Comunidad que toma el nombre de “Reunión bajo el roble”, es un ejemplo de la importancia del ecosistema para las familias de la Comunidad y para alcanzar las metas de este objetivo.

Dentro de la Comunidad se alcanzan niveles permanentes de paz, seguridad y prosperidad. El fortalecimiento del Estado de derecho y la promoción de los derechos humanos es fundamental para alcanzar los logros entre los indígenas y con el objetivo 16.
Del resto de ODS algunas metas son alcanzables de forma indirecta, por ejemplo, con el objetivo 4 (Educción de Calidad), las metodologías campesino a campesino permiten una formación y una trasmisión del conocimiento que alcanza logros exitosos y perdurables.

La actividad humana de la Comunidad CEKUXE ha sido el principal impulsor del cambio, generando con sus actividades agropecuarias, espacios operativos seguros, alimentación variada y gestión para dar forma al progreso social, económico, político y tecnológico, y con ello a la prosperidad global y sostenible de la Comunidad. El cumplimiento de los Objetivos de Desarrollo Sostenible de la Agenda 2030 alcanzan un nivel de cumplimiento alto, quedando algunos aspectos técnicos pendientes y una continuidad por el trabajo colectivo.

CONCLUSIONES

Las principales conclusiones obtenidas del presente trabajo son:

La puesta en marcha de sistemas agroecológicos en la Comunidad CEKUXE tiene la finalidad de contribuir al ejercicio efectivo del derecho de los pueblos indígenas guatemaltecos a articular procesos de desarrollo sostenible, aumentando sus capacidades para la aplicación efectiva de sus derechos de territorio, a la soberanía alimentaria y a la salud desde principios de igualdad y según su propia cosmovisión.

La agroecología es un muy buen ejemplo de procesos de cambio sostenible impulsados por circunstancias locales, medioambientalmente en línea para mitigar y adaptar los cambios del clima. Su gran fortaleza reside en que el valor productivo, genera autosuficiencia alimentaria y un plus económico que incrementa la renta y el bienestar social.

Las innovaciones sociales y económicas han sido esenciales y se han convertido en el motor del cambio, con un compromiso mucho más serio hacia las formas colectivas de participación, con incorporación de la mujer en los órganos de decisión.

El logro de los ODS ha sido posible gracias a que los diferentes actores de CEKUXE han trabajado juntos, adoptando estrategias flexibles, compartiendo la información mediante las técnicas de campesino a campesino, midiendo adecuadamente los progresos y con consciencia de la interconexión entre los diferentes objetivos.

REFERENCIAS

2. PRODUCCIÓN VEGETAL, VITIVINICULTURA Y SANIDAD VEGETAL

IMPACTO DE LA IMPLEMENTACIÓN DE CUBIERTAS VEGETALES: EFECTO EN LOS INSECTOS DEPREDADORES DE PLAGAS DE LA VID

Vicente-Díez I 1,2, Sáenz-Romo MG 1, Veas-Bernal A 1, Carvajal-Montoya LD 1, Ibáñez-Pascual S 2, Martínez-García H 1, Martínez-Villar E 1, Pérez-Moreno I 1, Marco-Mancebón VS 1

2Departamento de Viticultura. Instituto de las Ciencias de la Vid y el Vino (ICVV). Finca La Grajera. Carretera de Burgos, km 6, 26071. Logroño, La Rioja. España.

RESUMEN: El uso (y abuso) de tratamientos químicos para el control de plagas en la vid han causado, entre otros efectos indeseados, la disminución significativa de sus enemigos naturales, tanto depredadores como parasitoides, comúnmente presentes en el cultivo. La creación de infraestructuras ecológicas adecuadas, como las cubiertas vegetales, que permitan aumentar la abundancia y la diversidad de enemigos naturales, es fundamental para la incorporación del Control Biológico por Conservación en el manejo integrado de plagas de la vid.

En este estudio se ha evaluado el efecto de diferentes manejos del suelo (laboreo, cubierta vegetal espontánea y cubierta vegetal florícola) sobre la abundancia y la diversidad de familias de artrópodos depredadores en viña, concretamente sobre Vitis vinifera var. Tempranillo, en la Finca de La Grajera de Logroño, durante primavera y otoño de 2017. Cada tratamiento se distribuyó en tres bloques de aproximadamente 1200 m², en los que se utilizaron tres métodos de muestreo: trampas pitfall, trampas cromáticas amarillas y aspiración sobre la vegetación del viñedo. Fueron capturados un total de 6701 ejemplares, el mayor número de ellos en cubierta espontánea (3298), y el menor en laboreo (1139). De las 18 familias de artrópodos identificadas Formicidae fue la que sumó mayor número de capturas (4146). Sin embargo, tan sólo para la familia Miridae se observaron diferencias significativas entre tratamientos, con una menor abundancia de depredadores en laboreo respecto a las cubiertas vegetales. Estos resultados señalan la importancia de profundizar en el impacto que estas infraestructuras ecológicas ejercen sobre la estabilidad de enemigos naturales de plagas en viña.

Palabras clave: biodiversidad funcional, control biológico por conservación, depredadores, infraestructura ecológica, viñedo.

INTRODUCCIÓN

La agricultura intensiva, que se viene desarrollando desde mediados del siglo XX con el inicio de la revolución verde, ocupa aproximadamente el 40% de la superficie cultivable de La Tierra y está generando problemas tan graves como la degradación del suelo, el uso excesivo e ineficiente del agua, contaminación ambiental y una reducción de la diversidad genética que supone el principal factor en la caída de biodiversidad que se está experimentando en todo el Planeta. Por su parte, la viticultura es uno de los cultivos más importantes a nivel mundial, tanto en la producción de uva para vinificación como en la producción de uva de mesa. La superficie mundial destinada a la producción vitícola en el año 2017 fue de 7.6 millones de hectáreas, siendo España el país del mundo que más hectáreas cultivó con un total de 967000 ha (OIV report 2018, www.oiv.int). Parece, por tanto, necesario tomar medidas en lo referido al modelo de producción vitícola a nivel mundial.

En la mayoría de los agroecosistemas vitícolas, el uso de productos fitosanitarios ha sido durante mucho tiempo un factor clave para aumentar y estabilizar los rendimientos y la composición de los frutos en las viñas. A pesar de que los pesticidas se desarrollan mediante estrictos procesos que procuran reducir el impacto de
los mismos tanto para la salud humana como para el medio ambiente, se han ido planteando serias preocupaciones referidas a la exposición que existe a residuos fitosanitarios tanto a través de los alimentos como del agua (Damasas & Eleftherohorinos, 2011; Gonz & Cancho-Grande, 2009). Recientemente, como consecuencia de ello, se han adoptado normas más estrictas para el registro de plaguicidas y la protección de los recursos naturales, especialmente en Europa, a la vez que se ha potenciado la implantación de medidas de Manejo Integrado de Plagas (IPM) en el contexto vitícola, con el fin de reducir lo máximo posible la utilización de productos fitosanitarios (Pertot et al., 2016).

Paradójicamente, es evidente que la práctica de producción convencional no ha conseguido eliminar la presencia de plagas y enfermedades en los cultivos, incluso en ocasiones, su empleo provoca un aumento de la misma, incluido el caso de los agroecosistemas vitícolas (Gutiérrez et al., 2012). Esto sucede, entre otros factores, por las consecuencias que un uso indiscriminado y masivo de productos fitosanitarios trae consigo: aparición de resistencias, aparición de plagas secundarias o la destrucción de la fauna auxiliar y, dentro de ella, de los enemigos naturales. Además, a estos problemas hay que añadir el efecto que el cambio climático puede tener en la viticultura, en general, y en la presencia de plagas y enfermedades en los viñedos, en particular (Hannah et al., 2013).

La tendencia a la utilización de variedades con mejores características productivas y cualitativas, pero menos rústicas, y por ello, muchas veces menos adaptadas al ataque de plagas, se ha extendido durante muchos años. Sin embargo, esta mentalidad está cambiando poco a poco. Son muchos los programas de mejora que se están llevando a cabo, y que representan hoy en día una alternativa potencial para controlar, entre otros problemas, el del mildiu o el oídio de la vid (Buonassisi et al., 2017; Töpfer et al., 2011). Es decir, no solo se busca el aumento de producción y la calidad de la uva, sino mejorar la resistencia de las uvas a las plagas y enfermedades. Otra propensión de la agricultura actual es la práctica de monocultivo, que contribuye a una drástica reducción en la biodiversidad y pone en riesgo al conjunto de la producción al provocar una disminución enorme de las poblaciones de enemigos naturales de plagas y enfermedades.

Pero ¿a qué nos referimos cuando hablamos de biodiversidad? Y, ¿por qué es importante la biodiversidad en el manejo de plagas? La biodiversidad, como concepto, es entendida como todas las formas de vida que existen en el Planeta. Puede abarcar diferentes niveles de rango, como, por ejemplo: biodiversidad genética, biodiversidad de especies, etc. Los servicios ecosistémicos de los agroecosistemas son llevados a cabo por la llamada diversidad funcional, la cual se divide en grupos funcionales. Se considera que un grupo funcional es un conjunto de especies que tienen un papel semejante en el funcionamiento del ecosistema (Moonen & Bàrberi, 2008). Uno de los grupos funcionales más importantes en cualquier agroecosistema lo constituyen los organismos que se alimentan de las plagas de los cultivos, es decir, los enemigos naturales, que proporcionan uno de los servicios ecosistémicos más importantes del agroecosistema: el Control Biológico de Plagas.

Una elevada diversidad total puede asegurar la optimización de los procesos ecosistémicos claves y el buen funcionamiento de los agroecosistemas (Crowder & Jabbour, 2014). Los artrópodos constituyen el componente más importante de la biodiversidad de cualquier ecosistema. La diversidad de artrópodos está correlacionada con la diversidad vegetal (ya sean plantas cultivadas o no). En general, una mayor diversidad de plantas implica una mayor diversidad de fitófagos, y esto determina, a su vez, una mayor diversidad de enemigos naturales, formándose cadenas tróficas complejas (Ribera & Foster, 1997). Por ello, una forma de aumentar la biodiversidad de depredadores y parasitoides en los cultivos se basa en incrementar la diversidad vegetal creando infraestructuras ecológicas adecuadas dentro y alrededor del cultivo (Ratnadass et al., 2012), ya que proporcionan refugio y fuentes alternativas de alimento constituyéndose, de este modo, en un elemento esencial del Control Biológico por Conservación. De entre esas infraestructuras ecológicas destacan las cubiertas vegetales, ya que son utilizables, a su vez, como una valiosa herramienta dentro de las técnicas de mantenimiento del suelo.

Si bien el uso de cubiertas vegetales permite reducir el uso de herbicidas en los viñedos su uso tiene, además, importantes implicaciones en lo que a gestión del suelo se refiere, tanto a nivel agronómico como medioambiental. Las cubiertas mejoran la estructura del suelo, disminuyen la escorrentía y la erosión, incrementan sus niveles
de materia orgánica, reducen la compactación, mejoran, físicamente, el acceso en suelos muy húmedos y generan un ambiente más fresco y húmedo (importante entre otras cosas para la coloración del fruto). Además, son especialmente importantes en la conservación de la biodiversidad. Las cubiertas vegetales, desde el punto de vista fitosanitario, deben contribuir al control de plagas mediante el incremento del grupo funcional de los enemigos naturales. En muchas ocasiones, se ha considerado como un aspecto en contra de las cubiertas, una mayor incidencia de plagas y de enfermedades en el cultivo: caracoles, roedores, podredumbres, etc. Sin embargo, se ha comprobado cómo, por ejemplo, la presencia de cubierta disminuye la aparición de podredumbres en el viñedo (Valdés-Gómez et al. 2008).

Por todo ello, el presente trabajo de investigación pretende contribuir a analizar el efecto del tipo de mantenimiento del suelo sobre la abundancia y riqueza de artrópodos en el viñedo, centrándose especialmente en el grupo funcional de los depredadores. Este conocimiento contribuirá a analizar el papel que puede tener la presencia de cubierta en el Manejo Integrado de las Plagas de la vid y, por tanto, en la puesta en práctica de una viticultura sostenible.

MATERIALES Y MÉTODOS

Área de estudio

El estudio ha sido realizado en la finca “La Grajera”, propiedad de la Comunidad Autónoma de La Rioja. La gestión de la parcela se basa en el Manejo Integrado de Plagas (IPM). La parcela de ensayo se encuentra registrada catastralmente como Parcela 1 del Polígono 34, perteneciente al Término Municipal de Logroño (La Rioja). Sus coordenadas UTM son X: 539866.07; Y: 4698910.41, hallándose a una altitud de 455 m y presentando una pendiente próxima al 0.85%.

La parcela de ensayo fue plantada en el año 1995 con una orientación E-0-10º y un marco de plantación de 1.15 m entre cepas y 2.90 m entre líneas. El sistema de conducción adoptado es tanto en vaso tradicional como en espaldera, con una altura de 40 y de 70 cm, respectivamente. El viñedo, en su etapa productiva, ha venido siendo podado con 4-5 pulgares y 2 yemas por pulgar, ajustándose a la carga propuesta por el Reglamento del Consejo Regulador de la D.O. Ca. Rioja.

La variedad de Vitis vinifera cultivada es Tempranillo (clon R-26), injertada sobre el patrón 110-Richter. El tempranillo, considerado autóctono de La Rioja, es la variedad más característica de esta Denominación de Origen Calificada, ocupando el 75% de la superficie de cultivo de la misma. La motivación para su plantación y empleo en el estudio radica en la calidad para vinificación, así como en su comportamiento agronómico (es resistente a sequía y condiciones adversas), pero es sensible a plagas y enfermedades.

Diseño del experimento

Para llevar a cabo la investigación se utilizó un Diseño Completamente Aleatorizado (DCA), en el cual se han estudiado tres tratamientos: 1) laboreo (LAB), 2) cubierta vegetal espontánea (ESP) y 3) cubierta vegetal florícola sembrada (SEM). Cada uno de los tratamientos cuenta, a su vez, con tres repeticiones, disponiendo cada unidad experimental de una extensión aproximada de 1200 m² y de unas 360 cepas.

En las parcelas se distribuyeron cuatro tratamientos diferentes, de los cuales tres, fueron objeto de estudio (Figura 1):

Laboreo: tratamiento en el que se realiza la labranza de las calles manteniendo el suelo libre de toda vegetación prácticamente durante todo el año. Tradicionalmente, el laboreo ha sido y sigue siendo la técnica de mantenimiento del suelo más empleada en los viñedos de clima mediterráneo.
Cubierta vegetal espontánea: tratamiento que consiste en el mantenimiento de una cubierta vegetal integrada por especies de vegetación espontánea. Es decir, se emplea como cobertura la flora adventicia espontánea que se da en la parcela. Esta cubierta resulta ser la alternativa más sencilla y económica de las tres. En cuanto a su mantenimiento, la labor principal consiste en practicar la siega mecánica utilizando una desbrozadora. Esta labor se realiza entre primavera y verano, teniendo por objeto controlar el crecimiento de la cubierta, para evitar una competencia excesiva con el viñedo. Además de esta operación principal de siega, cuando la altura de la cubierta así lo aconseje, se realiza otra labor previa de siega durante el periodo de riesgo de heladas primaverales. La altura recomendada para la cubierta es de entre 15 y 20 cm.

Cubierta vegetal florícola sembrada: tratamiento que mantiene una cubierta vegetal sembrada en las calles. Las especies florícolas elegidas en este caso han sido: Calendula officinalis, Centaurea Cyanus, Cosmos pinnatus y Eschscholzia californica.

Comunidad de arvenses y estudio de clima

Para el tratamiento de cubierta vegetal espontánea se llevó a cabo la determinación de la comunidad de arvenses que constituyen la flora adventicia presente en el agroecosistema. La determinación se realizó en las calles, en muestras de 1 m² de cubierta. El número de muestras tomadas fue de 3 por cada parcela de estudio y la identificación de las especies de arvenses se llevó a cabo utilizando las webs de botánica: www.tela-botanica.org y flora-on.pt.

Por su parte, los datos de clima empleados para la discusión fueron los registrados por la estación climatológica de La Grajera (www.larioja.org/agricultura/es/informacion-agroclimatica/).

Método de muestreo e identificación de artrópodos

La dinámica de las poblaciones de artrópodos presentes en el viñedo puede estudiarse a través de diferentes métodos de muestreo, que permiten hacer un estudio de densidad de poblaciones, al igual que permiten estudiar la evolución de las mismas a lo largo del tiempo. Los métodos de muestreo que se elijan deben ser
rigurosos, proporcionar resultados que sean representativos y que otorguen un determinado nivel de signifi-
cación estadística. Los métodos seleccionados han sido:

Trampa cromática: se trata de una trampa consistente en un simple panel amarillo pegajoso. El color ama-
rillo resulta atractivo para los artrópodos que quedan atrapados por la sustancia pegajosa cuando con-
tactan con la trampa.

Trampas pitfall: se trata de un recipiente al que se le añade etilenglicol como conservante, que está co-
locado por debajo de la superficie del terreno de estudio, y que captura a los artrópodos cuando van cayen-
don por gravedad en su interior.

Aspiradores: se trata de trampas de succión. Consisten en un ventilador eléctrico que aspira el aire al interior de un vaso forrado con una gasa o malla que recoge los artrópodos. En cada muestreo, las trampas se manti-
enen en funcionamiento durante dos minutos. Para cada tratamiento, se tomaron muestras tanto en la parte aérea de la vid como en la cubierta vegetal, en su caso.

Para la identificación de los artrópodos capturados en las trampas cromáticas se han utilizado las claves taxonómicas del libro: An introduction to the study of insects, (Ed. 3). Los depredadores fueron identificados hasta familia, a excepción del orden Araneae, ya que debido a su complejidad taxonómica únicamente se pudo llegar a orden.

Las fechas de recogida de muestras durante el año 2017 han sido las coloreadas en amarillo en la siguiente imagen:

![Figura 2. Calendario de muestreo de 2017 en el proyecto CUVEGENAT. Primera fecha corresponde al punto azul y el resto de fechas en color amarillo.](image)

Análisis estadístico

Para llevar a cabo la comparación de medias se utilizó el test ANOVA de una vía seguido del test de com-
paraciones múltiples HSD.test. Previamente se comprobó la normalidad (test de Shapiro) y la homocedasticidad (test de Levene) de los datos de las distintas poblaciones. Cuando fue necesario, los datos fueron transformados mediante el cambio de variable log₁₀(n+1) (Sanguankeo & León, 2011). Los análisis se llevaron a cabo me-
diante el programa de análisis estadístico R, que dispone de diferentes paquetes de análisis. En este caso, se utilizaron los paquetes PASWR2, agricolae y vegan.

Finalmente, para la obtención de los Índices de Simpson y Shannon se empleó el programa PAST. 3.
RESULTADOS

Tratando de comprender mejor el comportamiento de las familias depredadoras en función del tipo de mantenimiento del suelo, se estudió si existían diferencias significativas entre las medias de capturas en función del tratamiento. Fueron capturados un total de 6701 ejemplares, el mayor número de ellos en cubierta espontánea (3298), y el menor en laboreo (1139), tal y como se demuestra en el Cuadro 1. De las 18 familias de artrópodos identificadas, Formicidae fue la que sumó mayor número de capturas (4146). Sin embargo, tan sólo para la familia Miridae se observaron diferencias significativas entre tratamientos, con una menor abundancia de depredadores en laboreo respecto a las cubiertas vegetales.

Cuadro 1. Resultados de capturas totales de depredadores en función del tipo de mantenimiento del suelo: Laboreo, Florícola y Espontánea.
* indica diferencias significativas entre medias calculadas de las tres repeticiones (ANOVA seguido de HSD; p<0.05).

<table>
<thead>
<tr>
<th>Taxón</th>
<th>Familia</th>
<th>Laboreo</th>
<th>Florícola</th>
<th>Espontánea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Abundancia Total</td>
<td>Abundancia Relativa (%)</td>
<td>Abundancia Total</td>
<td>Abundancia Relativa (%)</td>
</tr>
<tr>
<td>Araneae</td>
<td></td>
<td>200</td>
<td>17,56</td>
<td>335</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>Carabidae</td>
<td>64</td>
<td>5,62</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>Coccinellidae</td>
<td>27</td>
<td>2,37</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Staphylinidae</td>
<td>11</td>
<td>0,97</td>
<td>17</td>
</tr>
<tr>
<td>Diptera</td>
<td>Syrphidae</td>
<td>4</td>
<td>0,35</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cecidomyiidae</td>
<td>25</td>
<td>2,19</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Tachinidae</td>
<td>0</td>
<td>0,00</td>
<td>2</td>
</tr>
<tr>
<td>Heteroptera</td>
<td>Anthocoridae</td>
<td>1</td>
<td>0,09</td>
<td>4</td>
</tr>
<tr>
<td>Miridae*</td>
<td></td>
<td>9 (b)</td>
<td>0,79</td>
<td>4,68</td>
</tr>
<tr>
<td></td>
<td>Geocoridae</td>
<td>0</td>
<td>0,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Reduviidae</td>
<td>3</td>
<td>0,26</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Coreidae</td>
<td>0</td>
<td>0,00</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Nabidae</td>
<td>0</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>Formicidae</td>
<td>636</td>
<td>55,84</td>
<td>1235</td>
</tr>
<tr>
<td></td>
<td>Vespidae</td>
<td>12</td>
<td>1,05</td>
<td>3</td>
</tr>
<tr>
<td>Neuroptera</td>
<td>Chrysopidae</td>
<td>28</td>
<td>2,46</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Hemerobiidae</td>
<td>0</td>
<td>0,00</td>
<td>2</td>
</tr>
<tr>
<td>Thysanoptera</td>
<td>Aeolothripidae</td>
<td>119</td>
<td>10,45</td>
<td>218</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1139</td>
<td>100</td>
<td>2264</td>
</tr>
</tbody>
</table>

A pesar de que no se encontraron diferencias significativas para los tratamientos, tal y como se muestra en la Figura 2, la distribución de artrópodos depredadores tiene mayor semejanza entre los tratamientos de Florícola y Laboreo que con respecto a la cubierta Espontánea, que es la que muestra más diferencias y un mayor número de capturas.

Finalmente, en el Cuadro 2. se muestran los valores de los índices de Simpson y de Shannon para las capturas de artrópodos pertenecientes a las familias de depredadores.
Cuadro 2. Índices de Simpson e Índices de Shannon respecto a artrópodos depredadores capturados en función de la cubierta.

<table>
<thead>
<tr>
<th>Índices</th>
<th>Laboreo</th>
<th>Florícola</th>
<th>Espontánea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simpson (1-D)</td>
<td>0,6414</td>
<td>0,6601</td>
<td>0,5053</td>
</tr>
<tr>
<td>Shannon (H’)</td>
<td>1,465</td>
<td>1,525</td>
<td>1,211</td>
</tr>
</tbody>
</table>

Figura 2. Cluster del número de capturas en función de la práctica en el manejo del suelo realizada.

Los índices de Shannon inferiores a 2 indican que no existe una gran diversidad de familias. Del mismo modo, el Índice de Simpson toma valores altos, próximos a 1, lo que indica que no hay una riqueza elevada de familias de depredadores en los tratamientos estudiados.

DISCUSIÓN

En líneas generales, la evidencia experimental demuestra que un aumento en la biodiversidad puede jugar un papel importante a la hora de reducir plagas y enfermedades en diferentes agroecosistemas, y esto puede ser una importante herramienta dentro de un nuevo sistema de agricultura moderno y en especial en la viticultura del futuro (Pertot et al., 2017). Entre otras evidencias que soportan esto, está la clara correlación entre la presencia de enemigos naturales y el aumento del control biológico (Crowder & Jabbour, 2014). Diferentes fuentes bibliográficas demuestran que paisajes heterogéneos, con diferentes cultivos, cubiertas vegetales, etc. pueden ayudar a estabilizar las comunidades de artrópodos, y esto puede ser una importante medida de IPM, reduciendo drásticamente el empleo de plaguicidas en los cultivos (Nicholls, 1998). Sin embargo, los datos obtenidos en el presente trabajo (Cuadro 1) no demuestran que la presencia de cubiertas vegetales en viñedo (florícola y espontánea) suponga un aumento significativo en el número de artrópodos presente, frente a suelos labrados. Este resultado ofrece datos opuestos a un gran número de publicaciones (Altieri et al., 2005; Murphy et al., 1996; Wilson et al., 2018) que establecen claras tendencias positivas entre las heterogeneidad del paisaje y la presencia de insectos funcionales con un papel de control biológico. Probablemente, la hipótesis de partida no se cumple con las capturas totales porque el efecto del mantenimiento del suelo necesita de un periodo mayor para hacerse patente; además, hay que considerar la elevada variabilidad intragrupos y que el estudio de biodiversidad en función de la cubierta instaurada es altamente complejo y, por el momento, no se puede...
establecer con certeza hasta qué punto la biodiversidad puede alterarse modificando el patrón del paisaje sin provocar otros cambios importantes (Fahrig et al., 2011).

CONCLUSIONES/ RECOMENDACIONES

El estudio realizado sobre las capturas de artrópodos no ha revelado un incremento en la abundancia total de artrópodos depredadores en función del sistema de mantenimiento del suelo. Aun así, las limitaciones del estudio (por ejemplo el pequeño tamaño de la parcela) impiden sacar conclusiones definitivas únicamente mediante este trabajo.

Existen muy pequeñas diferencias dentro de familias concretas (por ejemplo: Miridae), que hacen apuntar en cierta medida que a lo largo del tiempo las cubiertas pueden llegar a cumplir el papel deseado y colaborar en el incremento de enemigos naturales. Hay que recordar que, aunque las cubiertas no hayan simbolizado en este estudio el incremento esperado de depredadores, tampoco han supuesto su descenso.

En cuanto a la riqueza de especies medido por el Índice de Simpson y de Shannon para insectos depredadores, muestra que hay muy baja biodiversidad por el momento en las parcelas de estudio.

Finalmente, concluir que es necesario seguir con los estudios en este ámbito y ampliar el número de datos para llegar a conclusiones más definitorias.

REFERENCIAS

CUBIERTA VEGETAL: UNA HERRAMIENTA INDISPENSABLE PARA EL MANTENIMIENTO DEL SUELO EN VIÑEDO ECOLÓGICO

Ibáñez Pascual S

Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja). Finca La Grajera, Carretera de Burgos km 6, 26071 Logroño, La Rioja.

RESUMEN: Las técnicas de mantenimiento del suelo resultan fundamentales de cara a gestionar adecuadamente una plantación vitícola. Aunque tradicionalmente el laboreo ha sido la técnica más empleada en los viñedos españoles, existen alternativas como las cubiertas vegetales que presentan una serie de ventajas sobre el mismo. En este sentido, la cubierta vegetal se muestra eficaz para el desarrollo de un modelo de viticultura respetuoso con el entorno. Proporciona una adecuada protección contra la erosión y la escorrentía y contribuye a mejorar la calidad del suelo. También promueve un aumento de la biodiversidad, estableciendo un soporte eficaz para la proliferación de enemigos naturales de las plagas habituales del viñedo. Asimismo, propicia una reducción en el uso de inputs agrarios, fundamentalmente herbicidas y plaguicidas, limitando así el riesgo de transferencia de agroquímicos a las aguas. En consecuencia, todos estos aspectos contribuyen al manejo racional y sostenible del cultivo, muy acorde con los planteamientos de la agricultura ecológica.

Además de las cualidades citadas, el empleo de cubiertas vegetales constituye un método adecuado para controlar los excesos de rendimiento y vigor, cada vez más problemáticos en zonas productoras de uva de calidad, favoreciendo una mejor exposición y microclima de racimos y logrando así aumentar la calidad de los vinos obtenidos.

En el presente trabajo se pretende mostrar algunos de los resultados alcanzados en el ámbito de las cubiertas vegetales, en el que el Instituto de Ciencias de la Vid y del Vino (ICVV) lleva trabajando desde 2004 a través de distintos ensayos experimentales.

Palabras clave: cubierta espontánea, cubierta sembrada, rendimiento, vigor, sostenible.

INTRODUCCIÓN

Las técnicas de mantenimiento del suelo integran un conjunto de operaciones culturales que tienen la finalidad de lograr y mantener un soporte propicio para el equilibrio de las fases sólida, gaseosa y líquida del suelo, permitiendo, a su vez, favorecer el desarrollo adecuado de las plantas y de su sistema radicular, mejorar el contenido en materia orgánica y la fertilidad del terreno, controlar la vegetación espontánea, mejorar la capacidad de retención de agua en el suelo, evitar la formación de costra superficial y facilitar el manejo del cultivo (Giralt et al., 2011).

Tradicionalmente, el laboreo ha sido la técnica de mantenimiento del suelo más empleada en los viñedos españoles. Por lo general, el laboreo se ha justificado por los diversos efectos favorables que aporta, entre los que se puede destacar la facilidad que este sistema confiere para la incorporación de abonos y enmiendas, la infiltración de agua, la limitación de la evaporación por capilaridad y la aireación del perfil labrado. Sin embargo, la existencia de ciertos inconvenientes añadidos como la formación de suela de labor, el aumento de la erosión, la degradación de la estructura por debajo de los horizontes labrados o la dificultad de circulación de maquinaria agrícola en periodos lluviosos, ha hecho plantearse otros sistemas alternativos de mantenimiento del suelo. En este sentido, se dispone de una gran variedad de técnicas: aplicación de herbicidas, utilización de mulching orgánico, acolchado plástico, o técnicas mixtas, si bien una de las más interesantes para el cultivo de la vid es el sistema de mantenimiento del suelo con cubierta vegetal, en el que toda la superficie del viñedo, o parte de ella, permanece protegida con vegetación espontánea o sembrada de forma temporal o permanente.

La cubierta vegetal constituye una técnica de gran ayuda para la puesta en marcha de una viticultura respetuosa con su entorno. No cabe duda que, en los últimos tiempos, el desarrollo sostenible ha adquirido una gran relevancia a nivel político, económico y social. Por este motivo, la consideración de la sostenibilidad es uno de
los aspectos más importantes a valorar en la elección de un sistema de mantenimiento del suelo. En este sentido, la cubierta proporciona una adecuada protección contra la erosión, mejora la estructura del suelo, suministra un aporte de materia orgánica a través de los restos de la propia cubierta, promueve la activación de la vida microbiana del suelo y reduce la probabilidad de formación de suela de labor (Tostovrsnik y Dimos, 2008). Además, desde el punto de vista sanitario, la diversidad biológica fomentada por la cubierta vegetal, sirviendo de hábitat y reservorio alimentario a los enemigos naturales de las plagas del viñedo, favorece la aplicación de un control integrado, limitando el uso de herbicidas y plaguicidas, con la consecuente disminución del riesgo de transferencia de agroquímicos a las aguas. Las cubiertas también impulsan el manejo racional del cultivo a través de su capacidad de mejorar el microclima de la zona de racimos y reducir, de este modo, el riesgo de enfermedades de carácter fúngico (Gut y Delabays, 2007) que, por otra parte, pueden ser tratadas con mayor eficacia, al poder transitar la maquinaria incluso en periodos de lluvia gracias a esta cobertura vegetal.

Pero además de la sostenibilidad ambiental, las cubiertas vegetales también promueven la sostenibilidad económica. En este sentido, la inversión, puesta en marcha y mantenimiento realizados en las cubiertas pueden ser compensados, no sólo por la reducción de los costes ambientales, sino también por la menor necesidad de laboreo del suelo, con la consiguiente merma de los costes energéticos, así como por la limitación en el uso de plaguicidas y herbicidas.

No obstante, el empleo de cubiertas vegetales se está extendiendo en muchas zonas dedicadas a la producción de vinos de calidad que, bien por un posicionamiento inicial productivista, bien por una descertificación, implantación de las parcelas de viñedo o bien por un manejo inadecuado de los factores de la producción vitícola, se ven en la necesidad de controlar los excesos de rendimiento y de vigor que se generan en estas situaciones. En este contexto, el mantenimiento del suelo mediante cubierta vegetal se presenta como una herramienta adecuada para contener, a través de la competencia establecida con el viñedo por el agua y los nutrientes (especialmente por el nitrógeno), tanto la expresión vegetativa del viñedo como su potencial productivo. A partir de estas condiciones, resulta factible alcanzar un equilibrio adecuado entre la componente productiva y vegetativa, lo que a su vez puede favorecer una mejor exposición y microclima de racimos, logrando aumentar la calidad de los mostos y vinos producidos (Ibáñez et al., 2011).

Pero para que la competencia hídrica, ejercida por la cubierta sobre la vid, no se convierta en un problema, resulta fundamental controlar el manejo de dicha cubierta, de tal forma que no interfiera con la cepa durante las fases de acumulación de fotoasimilados en la baya. De este modo, y aunque habitualmente las cubiertas vegetales se han utilizado en zonas de pluviometría alta, su empleo se está adaptando a zonas mediterráneas en las que se pueda disponer de agua de riego o incluso a secanos en los que, mediante labores de siega y una elección adecuada de las especies herbáceas que integran la cubierta y de su ciclo vegetativo, pueda regularse convenientemente la sinergia cubierta-viñedo. En todo caso, siendo el factor hídrico uno de los más condicionantes a la hora de implantar cubierta vegetal, resulta necesario estimar el estado hídrico del viñedo, así como analizar posibles estrategias de riego asociadas al empleo de la cubierta.

El manejo y la monitorización del riego, constituyen una técnica muy apropiada para la obtención de cosechas ajustadas, tanto a nivel cualitativo como cuantitativo, a los requerimientos del mercado (Van Leeuwen et al., 2003). Para monitorizar el riego, las técnicas basadas en el seguimiento del estado hídrico de la planta son las más adecuadas (Asenjo y Yuste, 2003), utilizando adecuadamente las referencias aportadas por el potencial hídrico y no sólo la cantidad de agua suministrada (García-Escudero et al., 2006).

Según la experiencia de muchos investigadores (Carbonneau et al., 2004; Deloire et al., 2004 y Ojeda et al., 2005), uno de los métodos más empleados para determinar el estado hídrico de la planta, por su precisión, fiabilidad y sencillez, es el de la medición del potencial hídrico foliar mediante la cámara de presión (Scholander et al., 1965), en el que se cuantifica la tensión con la que una hoja retiene el agua xilemática. Este parámetro es un indicador del estado hídrico del sistema suelo-planta-atmósfera, puesto que su valor dependerá de la combinación de factores tales como la demanda hídrica de la hoja, el agua disponible en el suelo, la conductividad hidráulica interna de la cepa, la regulación estomática y la evapotanspiración de la planta (Maigre y Aerny, 2001). La utilización del potencial hídrico foliar ha permitido establecer umbrales de...
referencia consistentes, validados a nivel mundial (Ojeda, 2006). Si bien existen diferentes variantes a la hora de analizar este indicador, el potencial hídrico de base (Ψ_h), medido antes del amanecer, cuando los estomas están cerrados y la cepa ha logrado una rehidratación nocturna en función del contenido de humedad del suelo (Asenjo y Yuste, 2003), existiendo en estas condiciones un buen equilibrio entre el estado hídrico de la planta y la reserva de agua del suelo (Ojeda et al., 2003), es la determinación preferida por muchos autores (Choné et al., 2001 y Deloire et al., 2004).

Girona (2006) indicó que las técnicas de riego en vid no pueden desligarse de los diferentes estados fenológicos o de desarrollo de la bayas, puesto que el fruto no es constantemente sensible al estrés hídrico a lo largo de su desarrollo. Este autor recomendó adoptar rangos de Ψ_{hm} (potencial hídrico foliar medido al mediodía solar) comprendidos entre -0,6 y -0,8 MPa desde brotación hasta mediados de la Fase II de desarrollo de la bayas (finales de junio), manteniendo este potencial en torno a -1,2 MPa desde julio a vendimia. A pesar de ello, conviene considerar que hay ocasiones en las que los valores de Ψ_{hm} pueden no ser la mejor referencia. En este sentido, Intrigliolo y Castel (2006) han comprobado en sus experiencias sobre la variedad Tempranillo que, en situaciones de cierto estrés hídrico, la cepa cierra sus estomas al mediodía, por lo que los valores de Ψ_{hm} tienden a igualarse, independientemente del déficit hídrico de la planta. Estos autores detectaron que esta situación se producía cuando el Ψ_h se situaba por debajo de -0,54 MPa.

Con estas premisas, el objetivo del riego consistiría en imponer un déficit hídrico progresivo desde brotación a maduración, que permitiera una adaptación en el tiempo de la planta a la sequía impuesta durante el verano, pero impidiendo que ésta llegue a ser limitante. La aplicación de un estrés medio mediante déficit de riego en la época del envero, sin afectar significativamente los procesos de fotosíntesis, reduce la competencia por carbohidratos de los puntos de crecimiento, favoreciendo la parada de crecimiento, la translocación de azúcares hacia el fruto y la acumulación de compuestos fenolíicos, incrementando por consiguiente la calidad de la bayas (Ojeda, 2006).

En este marco de actuación, la cubierta vegetal juega un papel fundamental, a través de la competencia que establece con la vid por el agua (Celette et al., 2005), en la fase comprendida entre brotación y floración y, sobre todo, en el periodo cuajado-envero, donde resulta conveniente reducir progresivamente la disponibilidad de agua para limitar un excesivo desarrollo de la bayas, conteniendo igualmente el crecimiento vegetativo, para que éste cese en el inicio del envero. En este momento, se habrá de alcanzar una adecuada relación superficie foliar/volumen de cosecha, compatible con las posibilidades de la planta. Asimismo, debe asegurarse una disponibilidad de agua durante la maduración, que mantenga una actividad fotosintética acorde con los procesos de acumulación de fotoasimilados en la baya y, de este modo, conseguir una vendimia de calidad. En general, se admite que un estrés hídrico progresivo y moderado favorece la acumulación de azúcares, antocianos y compuestos polifenólicos, pudiendo reducir la acidez en algunos casos (Van Leeuwen et al., 2003).

Otro aspecto importante a tener en consideración es el conocimiento de las distintas alternativas y especies herbáceas que se pueden utilizar en cada viñedo y entorno particular (Lisa et al., 1996). La elección de la especie que conforma la cubierta vegetal viene dada en función del objetivo que se pretenda buscar: abonado en verde, control de la erosión, limitación del rendimiento y del vigor, medioambiental) y según el tipo de cubierta vegetal que se pretenda implantar. Además, conviene tener en cuenta las condiciones edafoclimáticas, la edad del viñedo, las posibilidades de riego y el manejo de la cubierta (Yuste, 2005). En esta decisión, resulta conveniente decantarse por especies suficientemente competitivas frente a las adventicias, evitando fenómenos de invasión a corto plazo y garantizando, especialmente para especies de carácter plurianual o con alta capacidad de autosiembra, una buena implantación y permanencia de la cubierta. Asimismo, otro aspecto fundamental se centra en la aptitud de la especie para desarrollar un volumen de biomasa determinado en función de las características edafoclimáticas de cada zona, condicionando, de esta manera, el grado de competencia que se establece con el viñedo.

En el ámbito de las cubiertas vegetales, el Instituto de Ciencias de la Vid y del Vino (ICVV) viene realizando ensayos experimentales desde el año 2004, contando para ello con financiación del Gobierno de La Rioja, a través de ayudas del Fondo Europeo de Desarrollo Regional del Programa Operativo FEDER, así como con financiación del MINECO a través de los Proyectos RTA2009-00101-00-00 y AGL2014-53336-R.
MATERIAL Y MÉTODOS

Aunque han sido muchas las experiencias desarrolladas con cubiertas vegetales, en esta comunicación vamos a abordar algunos de los resultados obtenidos en tres ensayos concretos.

Ensayo 1

Este ensayo se llevó a cabo en una parcela ubicada en la finca La Grajera (Logroño), propiedad del Gobierno de La Rioja, plantada en el año 1995 con la variedad Tempranillo sobre el patrón Richter 110 y dispuesta en un marco de plantación de 2,90 x 1,15 m, con un sistema de conducción en vaso. Se establecieron cinco tratamientos: 1) Laboreo (LAB); 2) Cubierta vegetal sembrada (SEM) con Bromus catharticus; 3) Cubierta vegetal espontánea (ESP); 4) Sistema mixto laboreo-cubierta sembrada (LAB/SEM) y 5) Sistema mixto laboreo-cubierta espontánea (LAB/ESP). En los tres primeros tratamientos, se mantuvo el sistema de gestión del suelo propio a ambos lados de la línea de plantación, mientras que en los sistemas mixtos una calle se situó con cubierta vegetal y la calle alterna permaneció labrada. El diseño experimental se estableció con tres repeticiones por tratamiento y 40 cepas por repetición. Se estudiaron las campañas 2005 a 2010, salvo la de 2008 en la que no fue posible obtener resultados debido a un accidente climático.

Durante la fase de maduración de los años 2009 y 2010, se evaluó la superficie foliar desarrollada por las cepas mediante la estimación del índice de área foliar LAI (m² hojas/m² suelo), según el método propuesto por Carbonneau (1976), y de la superficie foliar expuesta SFE (m² hojas/m² suelo).

En el momento de la vendimia, se determinaron diversos componentes del rendimiento como la producción unitaria (kg/cepa), el número de racimos por cepa, el peso medio de 100 bayas (g) y el peso del racimo (g). Asimismo, como parámetros de calidad del mosto, se analizaron grado Baumé (ºBé), acidez total (g/l de ácido tartárico), pH, ácido tartárico (g/l), ácido málico (g/l) y potasio (mg/l). A través de microvinificaciones de 100 l se obtuvieron los siguientes parámetros de calidad del vino: grado alcohólico (%vol), intensidad de color, antocianos (mg/l) e Índice de Polifenoles Totales (IPT 280nm). Por último, en el momento de poda, se determinaron el peso de madera de poda (kg madera/cepa) y el peso medio del sarmiento (g).

El análisis estadístico de los datos resultantes se ha elaborado mediante técnicas de análisis de la varianza (ANOVA), con el programa SPSS para Windows versión 12.0. En las tablas adjuntas, los asteriscos se refieren al nivel de significación (g.s.). Así, *: p<0,05; **: p<0,01; ***: p<0,001 y n.s.: no significativo. Por su parte, las letras distintas que siguen a los valores en una misma fila, sirven para reflejar las diferencias entre tratamientos, estimadas a través de un test de separación de medias (Tukey).

Ensayo 2

Este ensayo se ha ubicado en una parcela de la finca institucional La Grajera (Logroño) plantada en el año 1995 con la variedad Tempranillo sobre Richter 110 y adoptando un sistema de conducción en espaldera (doble cordon Royat) con un marco de 2,90 x 1,15 m. En el diseño experimental se han dispuesto cuatro tratamientos, cada uno establecido en dos calles contiguas: Laboreo sin riego (L), Laboreo con riego (LR), Cubierta sin riego (C) y Cubierta con riego (CR). La distribución de las parcelas ha sido con bloques completos con tres repeticiones y 30 cepas por repetición. El mantenimiento del suelo se ha realizado mediante la aplicación localizada de herbicida en la línea de plantación y dos sistemas de mantenimiento diferentes en la calle en función del tratamiento asignado: a) laboreo y b) cubierta vegetal sembrada en el otoño de 2011 con Vulpia myuros L. Los datos recogidos en este trabajo se refieren a las campañas 2012 y 2013.

Para la estimación de la dosis de riego se ha utilizado como indicador el potencial hídrico foliar medido antes del amanecer (Ψ₀), adaptando los rangos recomendados por Girona (2006) para la medida del mediodía solar (que puede resultar poco representativa del estado hídrico de la planta en condiciones de alto déficit de presión de vapor propias de la época estival) a la medida de antes del amanecer. Así, en los tratamientos con riego se ha procurado establecer un rango de Ψ₀ comprendido entre -0,2 a -0,3 MPa desde brotación hasta...
mediados de la Fase II o de parada del crecimiento de la bayas, manteniendo posteriormente Ψ_0 entre -0,3 y -0,5 hasta la Fase III o de maduración y fijando Ψ a partir de este momento, y hasta vendimia, en torno a -0,5 MPa. Las mediciones de Ψ_0 se efectuaron semanalmente a partir de la fase de cuajado y hasta las proximidades de la recolección. Para ello, mediante la técnica de la cámara de presión, se ha utilizado un equipo Plant Moisture Measurement (Skye Instruments Ltd., Llandrindod, Wells, U.K.) que dispone de un manómetro con precisión de 0,02 MPa. En todos los casos se han realizado medidas sobre hojas adultas del tercio medio del pámpano, a razón de 3 hojas por tratamiento y repetición.

Las mediciones de parámetros productivos y vegetativos, se hicieron siguiendo la misma metodología y dinámica que en el Ensayo 1. Igualmente, las determinaciones estadísticas han seguido el mismo procedimiento analítico.

Ensayo 3

Con este ensayo se ha pretendido únicamente conocer y evaluar el comportamiento agronómico de las diversas especies planteadas, gramináceas y leguminosas principalmente, de cara a su posible implantación en diferentes viñedos experimentales o comerciales, sin contemplar en este caso el efecto que pudieran ejercer sobre el desarrollo del viñedo.

La selección de especies para la colección se ha realizado con la intención de disponer de alternativas suficientes como para poder satisfacer las necesidades del viticultor en función de cuál sea el objetivo que se quiera lograr con la cubierta vegetal. De este modo, se ha pretendido contar con variabilidad en cuanto al ciclo vegetativo de la cubierta y a su grado de competencia (estimado indirectamente a través de la biomasa generada por la cubierta vegetal). Asimismo, se ha prestado atención a aspectos que se consideran importantes como la capacidad de autosiembra, la resistencia a la invasión de otras especies, la altura de la cubierta, el número de labores de siega requeridas y la dosis de siembra. La valoración de estos parámetros se ha establecido, de cara a una interpretación sencilla, con los criterios que se muestran en la Tabla 1, considerándose los datos medios tomados durante las campañas 2010 y 2011.

Tabla 1. Valoración de los distintos parámetros propuestos.

<table>
<thead>
<tr>
<th>Capacidad de autosiembra</th>
<th>Asentamiento frente a especies invasoras</th>
<th>Ciclo vegetativo (en función del momento de agostamiento de la cubierta)</th>
<th>Biomasa generada (t.m.s./ha) (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta >90%</td>
<td>Alto</td>
<td>Largo post envero</td>
<td>Alta >3</td>
</tr>
<tr>
<td>Alta 75-90%</td>
<td>Alto invasión <5%</td>
<td>Medio largo próximo a envero</td>
<td>Alta-invaco barbaco</td>
</tr>
<tr>
<td>Media 50-75%</td>
<td>Medio invasión 5-15%</td>
<td>entre cierre de racmio e inicio de envero</td>
<td>Media-alta 2-3</td>
</tr>
<tr>
<td>Baja-media 25-50%</td>
<td>Medio-alto invasión 15-25%</td>
<td>entre post cuajado y cierre de racmio</td>
<td>Media-alta 1-2</td>
</tr>
<tr>
<td>Baja < 25%</td>
<td>Bajo invasión >25%</td>
<td>Corto medio</td>
<td>Baja <1</td>
</tr>
<tr>
<td>Corto</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) t.m.s./ha: toneladas de materia seca por hectárea
La parcela experimental, plantada en 1999, se localizó en el término municipal de Agoncillo (La Rioja), desarrollándose el ensayo sobre un viñedo de la variedad Garnacha Tinta, injertada sobre el patrón Richter 110 y dispuesta en un marco de 2,90 x 1,15 m con un sistema de conducción en cordón Royat bilateral. Las cubiertas vegetales instaladas fueron: Cubierta Espontánea, Trébol (Trifolium resupinatum), Cebada (Hordeum vulgare), Veza (Vicia sativa), Veza+Avena (Vicia sativa + Avena sativa), Bromo (Bromus catharticus), Medicago (Medicago truncatula), Vulpia (Vulpia myuros), Festuca (Festuca ovina) y Ryegrass (Lolium perenne).

RESULTADOS Y DISCUSIÓN

Ensayo 1

Los resultados observados para el cómputo global del periodo 2005-2010 confirman la capacidad de las cubiertas vegetales para controlar el desarrollo vegetativo y productivo del viñedo (Tabla 2). En el caso del rendimiento, las cubiertas vegetales SEM y ESP han logrado reducir éste entre un 35-40% con respecto al laboreo, mientras que en los tratamientos mixtos LAB/SEM y LAB/ESP esta disminución se ha situado en torno al 15%. Estos descensos en el rendimiento unitario, favorecidos por el efecto competitivo de la cubierta vegetal, se manifestaron a través de un menor número de racimos por cepa y de pesos del racimo y de la baya más bajos que en el caso del laboreo.

<table>
<thead>
<tr>
<th></th>
<th>LAB</th>
<th>SEM</th>
<th>ESP</th>
<th>LAB/SEM</th>
<th>LAB/ESP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nº Racimos/ cepa</td>
<td>9,62a</td>
<td>8,45ab</td>
<td>7,76b</td>
<td>9,15ab</td>
<td>9,05ab</td>
</tr>
<tr>
<td>Rendimiento unitario</td>
<td>2,72a</td>
<td>1,81b</td>
<td>1,59b</td>
<td>2,32ab</td>
<td>2,31ab</td>
</tr>
<tr>
<td>Peso racimo</td>
<td>277,8a</td>
<td>215,0b</td>
<td>204,0b</td>
<td>252,2ab</td>
<td>248,7ab</td>
</tr>
<tr>
<td>Peso 100 Bayas</td>
<td>204,2a</td>
<td>171,7bc</td>
<td>155,2c</td>
<td>185,4ab</td>
<td>180,0ab</td>
</tr>
<tr>
<td>Peso madera/cepa</td>
<td>0,639a</td>
<td>0,469ab</td>
<td>0,400b</td>
<td>0,586ab</td>
<td>0,504ab</td>
</tr>
<tr>
<td>Peso sarmiento</td>
<td>89,35a</td>
<td>65,25ab</td>
<td>57,00b</td>
<td>79,28a</td>
<td>73,15ab</td>
</tr>
</tbody>
</table>

Los valores obtenidos para el peso medio de la madera de poda y el peso medio del sarmiento, han mostrado el efecto limitante de la cubierta vegetal sobre la componente vegetativa y el vigor de la vid. En este sentido, los dos parámetros citados han disminuido, con relación al laboreo, entre un 25-35% en los tratamientos con cubierta total SEM y ESP, y un 10-25% en el caso de los tratamientos mixtos LAB/SEM y LAB/ESP. La disminución del desarrollo de superficie foliar a partir de los indicadores LAI y SFE, ha evidenciado una reducción significativa de la expresión vegetativa de las cepas procedentes de los tratamientos con cubierta vegetal. Observando en la Tabla 3 el porcentaje con que contribuyen los nietos sobre el total del LAI, por un lado, y el porcentaje del LAI aportado por las hojas principales, por otra parte, parece claro que la disminución de la superficie foliar detectada en las cepas mantenidas con cubierta vegetal ha sido debida al menor crecimiento experimentado por los nietos en estos tratamientos. Teniendo en consideración que el menor desarrollo foliar secundario, alcanzado en las cubiertas con respecto al laboreo, se encuentra asociado a una menor relación LAI/SFE y, por tanto, manifiesta la existencia de un menor solapamiento de hojas, parece lógico deducir que la cubierta vegetal propicia...
unas condiciones microclimáticas más favorables, tanto en la zona en la que se sitúan los racimos como en el conjunto de la cepa.

<table>
<thead>
<tr>
<th></th>
<th>LAB</th>
<th>SEM</th>
<th>ESP</th>
<th>LAB/SEM</th>
<th>LAB/ESP</th>
<th>g.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAI</td>
<td>1,62<sub>a</sub></td>
<td>1,09<sub>b</sub></td>
<td>1,08<sub>b</sub></td>
<td>1,27<sub>ab</sub></td>
<td>1,30<sub>ab</sub></td>
<td>***</td>
</tr>
<tr>
<td>SFE</td>
<td>1,31<sub>b</sub></td>
<td>1,03<sub>b</sub></td>
<td>1,04<sub>b</sub></td>
<td>1,14<sub>ab</sub></td>
<td>1,13<sub>ab</sub></td>
<td>**</td>
</tr>
<tr>
<td>% LAI de hojas principales</td>
<td>32,3<sub>b</sub></td>
<td>44,9<sub>a</sub></td>
<td>48,8<sub>a</sub></td>
<td>39,5<sub>ab</sub></td>
<td>39,9<sub>ab</sub></td>
<td>*</td>
</tr>
<tr>
<td>% LAI de nietos</td>
<td>67,7<sub>a</sub></td>
<td>55,1<sub>b</sub></td>
<td>51,2<sub>b</sub></td>
<td>60,5<sub>ab</sub></td>
<td>60,1<sub>ab</sub></td>
<td>*</td>
</tr>
<tr>
<td>LAI/SFE</td>
<td>1,28<sub>a</sub></td>
<td>1,07<sub>c</sub></td>
<td>1,04<sub>c</sub></td>
<td>1,13<sub>bc</sub></td>
<td>1,16<sub>ab</sub></td>
<td>*</td>
</tr>
</tbody>
</table>

En referencia a los parámetros que determinan la calidad del mosto y del vino (Tablas 4 y 5), cabe señalar una incidencia significativa de las cubiertas vegetales en el aumento del grado Baumé y del grado alcohólico, así como del contenido en potasio. Estos incrementos podrían vincularse tanto a la disminución del rendimiento unitario como a la variación de la relación fuente/sumidero inducidas por efecto de las cubiertas vegetales. Aunque no han llegado a detectarse variaciones significativas entre tratamientos, ni para la acidez total de los mostos ni en los valores mostrados por los principales ácidos orgánicos de la uva, sí se ha observado que el mayor nivel de potasio alcanzado por los tratamientos de cubierta vegetal ha condicionado significativamente el pH del mosto, otorgando los mayores valores de este parámetro a dichos tratamientos. Por lo general, los sistemas de mantenimiento mixtos han presentado valores intermedios entre las cubiertas totales y el laboreo.

<table>
<thead>
<tr>
<th></th>
<th>LAB</th>
<th>SEM</th>
<th>ESP</th>
<th>LAB/SEM</th>
<th>LAB/ESP</th>
<th>g.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado Baumé</td>
<td>13,48<sub>b</sub></td>
<td>14,11<sub>a</sub></td>
<td>13,96<sub>a</sub></td>
<td>13,75<sub>ab</sub></td>
<td>13,60<sub>ab</sub></td>
<td>*</td>
</tr>
<tr>
<td>pH</td>
<td>3,63<sub>b</sub></td>
<td>3,63<sub>a</sub></td>
<td>3,62<sub>a</sub></td>
<td>3,56<sub>ab</sub></td>
<td>3,57<sub>ab</sub></td>
<td>*</td>
</tr>
<tr>
<td>Acidez Total</td>
<td>4,93</td>
<td>4,54</td>
<td>4,48</td>
<td>4,91</td>
<td>4,77</td>
<td>n.s.</td>
</tr>
<tr>
<td>Ác. Tartárico</td>
<td>5,75</td>
<td>5,72</td>
<td>5,67</td>
<td>5,67</td>
<td>5,63</td>
<td>n.s.</td>
</tr>
<tr>
<td>Ác. Mático</td>
<td>1,75</td>
<td>1,79</td>
<td>1,72</td>
<td>2,08</td>
<td>1,88</td>
<td>n.s.</td>
</tr>
<tr>
<td>Potasio</td>
<td>1.433,3<sub>c</sub></td>
<td>1.685,2<sub>a</sub></td>
<td>1.622,6<sub>ab</sub></td>
<td>1.625,2<sub>ab</sub></td>
<td>1.554,5<sub>bc</sub></td>
<td>**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>LAB</th>
<th>SEM</th>
<th>ESP</th>
<th>LAB/SEM</th>
<th>LAB/ESP</th>
<th>g.s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grado</td>
<td>12,63<sub>b</sub></td>
<td>13,59<sub>a</sub></td>
<td>13,88<sub>a</sub></td>
<td>13,31<sub>ab</sub></td>
<td>13,28<sub>ab</sub></td>
<td>**</td>
</tr>
<tr>
<td>Intensidad color</td>
<td>9,25<sub>b</sub></td>
<td>11,59<sub>a</sub></td>
<td>12,16<sub>a</sub></td>
<td>10,01<sub>ab</sub></td>
<td>10,28<sub>ab</sub></td>
<td>*</td>
</tr>
<tr>
<td>IPT 280 nm</td>
<td>51,44<sub>b</sub></td>
<td>64,76<sub>a</sub></td>
<td>65,63<sub>a</sub></td>
<td>58,80<sub>ab</sub></td>
<td>59,38<sub>ab</sub></td>
<td>**</td>
</tr>
<tr>
<td>Antocianos</td>
<td>769,80<sub>b</sub></td>
<td>927,81<sub>a</sub></td>
<td>912,28<sub>a</sub></td>
<td>833,64<sub>ab</sub></td>
<td>839,82<sub>ab</sub></td>
<td>**</td>
</tr>
</tbody>
</table>
En cuanto a parámetros que intervienen en la carga polifenólica del vino (Tabla 5), cabe señalar una incidencia destacada de las cubiertas vegetales en la mejora de la misma. Concretamente, la intensidad de color del vino ha experimentado un aumento entre el 25% y el 30% en los tratamientos bajo cubierta vegetal con respecto al laboreo, mientras que en los tratamientos mixtos esta diferencia se ha situado en torno al 10%. Asimismo, las cubiertas vegetales han llegado a incrementar en un 20% la acumulación de antocianos en la bayas con relación al laboreo. En este caso, los tratamientos mixtos han tenido un comportamiento más discreto, presentando un 8% más de antocianos que en el tratamiento testigo. Paralelamente, el índice de polifenoles totales de los vinos procedentes de cubiertas vegetales ha aumentado una media del 25% sobre los niveles alcanzados por el laboreo. Los tratamientos mixtos también lograron mejorar en un 15% los valores de IPT 280 nm obtenidos para el testigo. Entre las causas que puedan explicar este incremento en el color de los vinos procedentes de parcelas con cobertura vegetal, se puede señalar la incidencia del estrés hídrico moderado en la acumulación de sustancias polifenólicas (fundamentalmente antocianos), la existencia de una proporción hoja/pulpa mayor y la importancia del aumento de la iluminación y de la temperatura de las bayas durante la fase de maduración.

Ensayo 2

A la hora de analizar los resultados de este ensayo, es necesario considerar las características meteoro-lógicas de cada una de las campañas para lograr una interpretación adecuada. Para ello, se ha dispuesto de los datos ofrecidos por la estación agrometeorológica situada junto a la parcela de estudio (Figura 1). Como puede observarse, la campaña 2012 resultó extremadamente seca, con unas precipitaciones acumuladas de 244 mm desde el 1 de octubre de 2011 hasta la vendimia del 11 de septiembre de 2012. Especialmente preocupante fue la escasez de pluviometría en el periodo otoño-invierno previo a la brotación de la planta (93 mm desde el 1 de octubre de 2011 al 31 de marzo de 2012), lo que repercutió notoriamente en el desarrollo productivo y, sobre todo, vegetativo de la cepa. En estas condiciones, los tratamientos con riego LR y CR recibieron un aporte suplementario de agua por esta vía de 150 mm, repartidos a lo largo del ciclo, con el objeto de mantener a estos tratamientos en los rangos de potencial hídrico predeterminados para cada momento. Ante el preocupante estado vegetativo de las cepas, se tomó la decisión de aplicar una dotación extraordinaria de agua de 60 mm a los tratamientos de secano R y C, suministrando el riego entre finales de junio y principios de julio. Por el contrario, la campaña 2013 registró precipitaciones cuantiosas desde enero a junio, originando una recarga importante del perfil hídrico del suelo que permitió un desarrollo vegetativo y productivo mucho más intenso que en la campaña anterior. A diferencia de 2012, en 2013 únicamente se aportaron 35 mm en los tratamientos de riego para situarlos en los umbrales establecidos. Así, la evolución estacional de los potenciales hídricos de base de cada uno de los tratamientos considerados queda reflejada para cada campaña en la Figura 2.

![Figura 1. Precipitación acumulada. Años 2011-2013.](image_url)
Como puede advertirse en la Tabla 6, los componentes del rendimiento se han visto parcialmente condicionados por los dos factores analizados según el año de estudio. De este modo, la sequía sufrida en 2012 afectó a todos los tratamientos de forma considerable, mostrando rendimientos muy bajos en el conjunto de la experiencia. A pesar de ello, y tomando el tratamiento L como testigo, la cubierta C redujo la producción unitaria en un 30%, mientras que el riego (tratamiento LR) incrementó la misma un 20%. Por su parte, el tratamiento de cubierta y riego (CR) aumentó un 10% el rendimiento con respecto a L. En esta campaña, el número de racimos por cepa no presentó diferencias entre tratamientos, mientras que tanto el peso del racimo como el de la bayas registraron los valores más reducidos en el tratamiento C, existiendo para estos parámetros diferencias significativas entre el riego y el secano. Por el contrario, en la campaña 2013 el agua no fue un factor limitante para el peso del racimo ni para el de la bayas, no reflejándose diferencias significativas entre tratamientos. En cambio, el rendimiento unitario sí que estableció diferencias estadísticas, situando al tratamiento C con los niveles más bajos y a los tratamientos de riego por encima de los de secano. Concretamente, C disminuyó la producción un 20% con respecto a L, mientras que LR y CR aumentaron la misma un 14% y un 12%, respectivamente. Las variaciones del rendimiento fueron debidas al número de racimos por cepa de cada tratamiento, entendiendo que la sequía del año anterior influyó, de alguna manera, sobre la fertilidad de la campaña 2013, haciéndolo con mayor intensidad en el tratamiento C, debido a la competencia de la cubierta en ausencia de riego, y estableciendo asimismo diferencias entre los tratamientos con riego y sin riego, siendo más acusadas las variaciones entre los dos tratamientos con cubierta que entre los dos tratamientos labrados.

En lo que respecta a los parámetros vegetativos (peso de la madera de poda y peso del sarmiento), no se ha observado un efecto manifiesto ni del riego ni del sistema de mantenimiento del suelo. Las diferencias estadísticamente significativas que aparecen en la campaña 2012 para el peso de la madera de poda no son cuantitativamente importantes, a tenor de los débiles índices mostrados en global para este año. En este sentido, puede considerarse que, un año por escasez hídrica y otro año por abundancia, los cuatro tratamientos planteados no han permitido establecer una discriminación entre ellos en base a su grado de desarrollo vegetativo.

Observando los resultados que aparecen en las Tablas 7 y 8, y de forma similar a la experiencia mostrada en el Ensayo 1, se puede determinar que tanto el grado probable del mosto como el grado alcohólico del vino han visto, en general, aumentados sus valores en los tratamientos con cubierta vegetal con respecto a los labrados, independientemente del factor riego. Por su parte, los distintos parámetros que intervienen en la
acidez del mosto no ofrecen, en conjunto, diferencias manifiestas entre tratamientos. Como excepción, cabe citar un ligero aumento del pH en 2012 asociado a los tratamientos de secano y, posiblemente, relacionado con situaciones limitantes de estrés hídrico y con una menor síntesis de ácido tartárico (fundamentalmente en el tratamiento C). Como aspecto destacado, y a diferencia de los resultados mostrados en el Ensayo 1, también sobre la variedad Tempranillo, en donde la cubierta vegetal ha originado una pérdida de acidez como consecuencia del incremento de la concentración de potasio en la baya, fruto a su vez de una modificación de la relación fuente/sumidero, la introducción de la estrategia de riego propuesta en este Ensayo 2 no sólo ha amortiguado este efecto sino que, incluso, ha logrado incrementar la acidez del mosto, en términos de pH, con respecto al tratamiento testigo L, si bien este aumento no ha resultado estadísticamente significativo.

<table>
<thead>
<tr>
<th></th>
<th>Año</th>
<th>L</th>
<th>LR</th>
<th>C</th>
<th>CR</th>
<th>g.s. T</th>
<th>g.s. R</th>
<th>g.s. C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° racimos/cepa</td>
<td>2012</td>
<td>8,90</td>
<td>8,63</td>
<td>8,05</td>
<td>8,70</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>11,00<sup>ab</sup></td>
<td>12,29<sup>a</sup></td>
<td>8,19<sup>b</sup></td>
<td>12,01<sup>a</sup></td>
<td>**</td>
<td>**</td>
<td>n.s.</td>
</tr>
<tr>
<td>Rendimiento unitario</td>
<td>2012</td>
<td>1,00</td>
<td>1,19</td>
<td>0,71</td>
<td>1,09</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>3,15<sup>ab</sup></td>
<td>3,59<sup>a</sup></td>
<td>2,56<sup>b</sup></td>
<td>3,54<sup>a</sup></td>
<td>*</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td>Peso de racimo</td>
<td>2012</td>
<td>109,65<sup>ab</sup></td>
<td>138,90<sup>a</sup></td>
<td>87,31<sup>b</sup></td>
<td>125,48<sup>ab</sup></td>
<td>*</td>
<td>**</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>287,49</td>
<td>295,37</td>
<td>311,81</td>
<td>302,33</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Peso de 100 bayas</td>
<td>2012</td>
<td>142,45<sup>ab</sup></td>
<td>161,20<sup>a</sup></td>
<td>106,95<sup>b</sup></td>
<td>159,37<sup>a</sup></td>
<td>*</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>217,40</td>
<td>218,33</td>
<td>220,53</td>
<td>220,97</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Peso madera/cepa</td>
<td>2012</td>
<td>0,11<sup>ab</sup></td>
<td>0,19<sup>a</sup></td>
<td>0,08<sup>b</sup></td>
<td>0,16<sup>ab</sup></td>
<td>*</td>
<td>**</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>0,93</td>
<td>1,00</td>
<td>0,94</td>
<td>0,93</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>Peso sarmiento</td>
<td>2012</td>
<td>12,29<sup>ab</sup></td>
<td>19,80<sup>a</sup></td>
<td>8,87<sup>b</sup></td>
<td>16,94<sup>ab</sup></td>
<td>*</td>
<td>*</td>
<td>n.s.</td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td>89,01</td>
<td>99,87</td>
<td>91,73</td>
<td>86,72</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

g.s. = grado significación (T: conjunto de los cuatro tratamientos; R: riego frente a no riego; C: cubierta frente a laboreo)

Por su parte, la implantación de la cubierta vegetal, tanto en régimen de secano como de regadío, ha tenido una incidencia significativa en el aumento de la carga polifenólica del vino (Tabla 8), condicionando positivamente el color del mismo, tal y como ya se había constatado en el Ensayo 1. Así, mientras el factor riego no ha mostrado diferencias entre tratamientos, el mantenimiento del suelo con cubierta vegetal ha manifestado un incremento en el índice de polifenoles, en el contenido de antocianos y en la intensidad de color del vino, siendo estas variaciones más destacadas en los tratamientos de secano que en los regados.

Del estudio agronómico de las especies que integran la colección de cubiertas vegetales se han obtenido una serie de resultados que se sintetizan en la Tabla 9.

Analizando el conjunto de especies planteadas, se pudo comprobar que existe suficiente variabilidad como para disponer de distintas alternativas en función del objetivo pretendido para nuestro viñedo. En este sentido, Festuca y Ryegrass, por su ciclo vegetativo largo, y Veza+Avena, por el elevado desarrollo de biomasa, fueron las especies más adecuadas para controlar el rendimiento y el vigor cuando estos se producen en la cepa de una forma intensa. Por su parte, Cebada, Vulpia y Veza, debido a sus ciclos cortos o cortos-medios, son especies más...
aconsejables cuando este control se quiere realizar de forma moderada. Por otro lado, la buena capacidad de auto-
tosiembra de especies como Vulpia, Festuca, Bromo o Ryegrass supone un importante ahorro económico en semilla.

Las especies leguminosas como Veza, Medicago y Trébol, pueden contribuir a mejorar los niveles de nitróge-
no en el suelo, tanto por la vía de fijación biológica de nitrógeno atmosférico y su posterior mineralización en
el suelo, como por la vía de la matera seca procedente de la propia cubierta, siendo buenas alternativas para
plantear la cubierta vegetal como una forma de abono de invierno.

<table>
<thead>
<tr>
<th>Especie/ tipo de cubierta vegetal</th>
<th>Capacidad de autosiembra</th>
<th>Asentamiento frente a especies invasoras</th>
<th>Dosis de Siembra (kg/ha)</th>
<th>Ciclo vegetativo</th>
<th>Altura sin siega (cm)</th>
<th>Biomasa generada</th>
<th>Nº de Siegas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espontánea</td>
<td>media</td>
<td>-</td>
<td>-</td>
<td>medio</td>
<td>40</td>
<td>media</td>
<td>1</td>
</tr>
<tr>
<td>Trébol</td>
<td>media</td>
<td>medio</td>
<td>30</td>
<td>medio</td>
<td>41</td>
<td>media</td>
<td>1</td>
</tr>
<tr>
<td>Cebada</td>
<td>baja</td>
<td>alto</td>
<td>100</td>
<td>corto</td>
<td>82</td>
<td>alta</td>
<td>2</td>
</tr>
<tr>
<td>Veza + Avena</td>
<td>baja-media</td>
<td>medio</td>
<td>70</td>
<td>medio</td>
<td>85</td>
<td>alta</td>
<td>2</td>
</tr>
<tr>
<td>Medicago</td>
<td>media</td>
<td>bajo</td>
<td>40</td>
<td>medio</td>
<td>15</td>
<td>baja</td>
<td>0-1</td>
</tr>
<tr>
<td>Vulpia</td>
<td>alta</td>
<td>alto</td>
<td>15</td>
<td>corto-medio</td>
<td>54</td>
<td>media-alta</td>
<td>1</td>
</tr>
<tr>
<td>Festuca</td>
<td>alta</td>
<td>medio-alto</td>
<td>40</td>
<td>largo</td>
<td>58</td>
<td>media</td>
<td>1</td>
</tr>
<tr>
<td>Bromo</td>
<td>muy alta</td>
<td>alto</td>
<td>50</td>
<td>medio-largo</td>
<td>65</td>
<td>media-alta</td>
<td>1-2</td>
</tr>
<tr>
<td>Ryegrass</td>
<td>muy alta</td>
<td>alto</td>
<td>40</td>
<td>largo</td>
<td>55</td>
<td>media</td>
<td>1</td>
</tr>
</tbody>
</table>

Observando la resistencia a la invasión de otras especies, las cubiertas de Veza y Medicago han presentado
un desarrollo proclive a la invasión de flora espontánea, por lo que a corto-medio plazo tienden a perder su
carácter de cubierta monoespecífica.

Atendiendo a las labores de siega, las cubiertas de Cebada y Veza+Avena han requerido de un mayor
número de cortes con respecto al resto de las estudiadas, mientras que la cubierta de Medicago ha necesitado
de esta labor en menor medida.

CONCLUSIONES

De acuerdo con los resultados obtenidos en estas experiencias, el mantenimiento del suelo mediante cubier-
tas vegetales ha contribuído a lograr, con respecto al sistema de laboreo, rendimientos más equilibrados y un
desarrollo vegetativo más contiendo, situación que ha favorecido a su vez una mejor exposición de racimos.
Asimismo, los tratamientos con cubierta vegetal han inducido paulatinamente un menor número de racimos
por cepa, así como tamaños de baya y pesos de racimo más reducidos que en laboreo. En estas condiciones,
se ha observado una clara incidencia de la cubierta vegetal sobre el aumento de la carga polifenólica de los
vinos obtenidos. Por otro lado, la concentración de azúcares de los mostos y el grado alcohólico de los vinos
han expresado, de forma paralela a la reducción de rendimiento, un aumento de valor en los tratamientos con
cubiertas. Por su parte, el factor que más ha condicionado la acidez de los mostos ha sido la variación en el
contenido de potasio entre tratamientos, mostrándose las cubiertas vegetales proclives hacia una mayor acumu-
lación de este elemento en la baya, con el correspondiente efecto sobre el aumento del pH. Por lo general, los
tratamientos mixtos han adoptado valores intermedios, entre los del laboreo y los dos tipos de cubierta vegetal,
Agroecología
Sociedad Española de
Agricultura Ecológica

para los distintos parámetros estudiados.

En lo relativo a las experiencias de riego asociado a cubierta vegetal, y teniendo en cuenta que las dos campañas mostradas han resultado limitantes bien por sequía o bien por ausencia de estrés hídrico hasta prácticamente el final de la campaña, la consideración más positiva de este ensayo es que la estrategia de riego desarrollada ha permitido paliar el principal problema que, hasta la fecha, se había encontrado en el establecimiento de cubiertas vegetales en viñedos de la variedad Tempranillo: la pérdida de acidez asociada al mismo. De este modo, el tratamiento con cubierta y riego no sólo ha logrado atenuar este problema, sino que además ha proporcionado mejores niveles de acidez real (pH) que el tratamiento testigo (laboreo en secano). Asimismo, los tratamientos con cubierta, tanto en riego como en secano, han mantenido uno de los efectos habitualmente observados en este sistema de gestión del suelo y que se refiere a la mejora de la carga polifenólica del vino.

El estudio de una colección de diez especies de cubierta vegetal, ha permitido determinar que existen alternativas suficientes para su utilización según las necesidades de cada viñedo, por lo que esta técnica de mantenimiento del suelo puede extenderse a parcelas con diferentes características y requerimientos.

En definitiva, los resultados de este trabajo llevan a concluir que, siempre que no existan factores limitantes (de tipo edafológico o hídrico, principalmente) que condicionen negativamente el desarrollo de la vid y siempre que el tipo de cubierta elegida, así como su gestión, sean adecuados a los objetivos pretendidos, la cubierta vegetal es el sistema de mantenimiento del suelo más aconsejable para el viñedo (Ibáñez et al., 2013). Asimismo, las posibilidades que ofrece la cubierta vegetal de cara a un manejo sostenible del cultivo, mejorando las interacciones de la viticultura con el medio ambiente y mejorando también la calidad de los vinos así obtenidos, confieren a este sistema de mantenimiento del suelo una gran utilidad en el marco de la agricultura ecológica. En términos similares se pronuncia la Organización Internacional de la Viña y el Vino (OIV) en su Guía sobre la Vitivinicultura sostenible (O.I.V., 2005), promoviendo la eficacia de las cubiertas vegetales para crear condiciones óptimas para la planta, evitando la erosión y el apisonado del suelo, la lixiviación de nutrientes, y favoreciendo al mismo tiempo la diversidad biológica.

REFERENCIAS

- Ojeda H. 2006. Modelo para el control del estado hídrico del viñedo en función del tipo de vino buscado. XXIX Congreso Mundial de la Viña y el Vino, Logroño (La Rioja).

EMPLEO DE VINAZAS DE REMOLACHA PARA EL CONTROL DE NEMATODOS EN UNA ROTACIÓN TOMATE RESISTENTE-PEPINO

Bello A(1), Diez MA(2); López JA(3), Torres JM(4)

(1)Profesor de Investigación en Ciencias Agrarias.
(2)Métodos Servicios Agrícolas S.L. 33550 Albarán. Murcia. Tel. 690330945
(3)Centro de Investigación Apícola y Agroambiental de Marchamalo (CIAPA), C/Camino San Martín s/n, 19180 Marchamalo (Guadalajara) Tel. 949885014
(4)Escuela Internacional de Doctorado. Ctra. Sacramento s/n. La Cañada de San Urbano 04120 Almería. jmtorres@ingenieroagricola.org Tel. 636229997

RESUMEN: La mejora de las propiedades físicas de los suelos y la autogestión de la materia orgánica en los invernaderos ecológicos puede originar importantes problemas nematólogicos. Un invernadero en el que se aplican los restos de cosecha y estiércol en la capa de arena finaliza el cultivo de sandía injertada con más del 63% de las plantas afectadas con un índice de nodulación promedio del 6,25 tras realizar un muestreo en malla 4x1.
El tratamiento utilizado es de restos de cosecha (2,5 kg/m²) con estiércol (2,5 kg/m²) en carillas y varias dosis de vinaza (2, 1,5, 1, 0,75 y 0 l/m²) combinadas con solarización. Tras esta se planta tomate racimo injertado en agosto y pepino en marzo. En cada cultivo se determina la producción acumulada y el estado nematológico al finalizar cada ciclo de cultivo. Además, se estudian las poblaciones presentes de los grupos tróficos representativos y la dinámica de las poblaciones de nematodos fitoparásitas presentes.
Los resultados demuestran que los restos de cosecha y estiércol fresco contribuyen a la reducción de costes de explotación y al combinarse con la solarización a la reducción de los daños provocados por nematodos en el sistema radicular. La adición de las vinazas reduce el porcentaje de plantas afectadas en el cultivo de pepino hasta el 4,7% con un índice de nodulación del 0,16 para la dosis máxima de vinaza. Las producciones no se ven afectadas en ninguno de los tratamientos para la rotación evaluada siendo 1 y 1,5 l/m² la dosis optima de vinaza.

Palabras clave: biodesinfección, carillas, invernaderos, materia orgánica, solarización

ANTECEDENTES

La superficie dedicada a producción ecológica e invernadero en Almería supera las 2000 hectáreas censadas. Desde hace algunos años se viene aplicando técnicas de autogestión de restos vegetales en suelos arenados con criterios ecológicos (Torres, 2014). El triturado de los restos en la superficie de cultivo y su incorporación a la capa de arena mezclada con estiércol en la capa de arena no permite desencadenar las funciones de la biodesinfección (Torres, 2013).

El restablecimiento de la fertilidad de los suelos arenados tiene en el “retranqueo” la tecnología clave: retirada de la arena, el labrado del suelo, la aplicación del estiércol con una aplicación de rotovator, la aplicación de una capa de estiércol y la restitución de la capa de arena (Serrano, 1976; Torres et al., 2007).

El empleo de variedades resistentes contribuye a reducción de los daños provocados por nematodos en parcelas infectadas pero su uso reiterado permite la selección de especies y biotipos capaces completar su ciclo en variedades resistentes (Verdejo-Lucas et al., 2012). Siendo el empleo de tomates resistentes y pimientos las opciones de manejo para complementar la acción de la desinfección del suelo en el tiempo (Colyer et al., 1998; Thies et al., 2005).

Los nematodos del género Meloidogyne se caracterizan por ser termófilos (necesitar de temperatura en el suelo superior a 18ºC para completar su ciclo), sedentarios (su capacidad de migración es reducida) y un ambiente acuático en el suelo (Diez-Rojo et al., 2008).
MATERIALES Y MÉTODOS

Localización y programa de producción

Los trabajos se realizan en un invernadero de una finca familiar certificada en producción ecológica situada en San Isidro de Nijar (Almería).

Tras un cultivo de sandía variedad Fashion injertada en un patrón de calabaza RS-841 (100 días de cultivo desde marzo a junio) resistente a nematodos se biodesinfecta el suelo y se transplanta tomate ramillete variedad Racymo (180 días desde agosto a febrero), tras el que se transplanta pepino variedad Bowing (80 días de marzo a junio).

Diseño experimental

El diseño de las parcelas se realiza tomando 6 calles de cultivo (15 m x12 m). Los niveles de infección son evaluados en las parcelas con el índice de nodulación tomando una planta cada 2 m². Basados en estos valores se establecen las parcelas experimentales que componen las repeticiones o bloques realizando un diseño en bloques al azar con cuatro repeticiones tal y como se muestra en la Fig. 1.

Trabajo de campo

Antes de comenzar a realizar el retranqueo se efectúa una limpieza previa de los restos del cultivo anterior, y la retirada de los elementos de acolchado plástico utilizados en el cultivo anterior de sandía, así como de los ramales portagoteros. Las plantas se trituran en el camino de servicio con la trituradora de cuchillas, manteniéndose en el camino hasta su aplicación.

La carilla se inicia retirando la arena de forma mecánica con un apero denominado “carillera” que va acoplado al tractor, evitando en lo posible la mezcla de las capas de suelo y arena. Con una pala trasera de 600 litros de capacidad y de accionamiento manual acoplada al tractor se transporta desde el exterior del invernadero tanto el estiércol como los restos de cultivo mezclados de forma homogénea con la trituradora y se reparten en las calles limpias de arena para después volver a aportar la arena en las franjas que ya se ha repartido la materia orgánica. Esta operación realiza de forma homogénea en toda la superficie.

Una vez concluida la operación se procede a la distribución de los ramales portagoteros, colocando los goteros sobre la franja en la que se aplica la materia orgánica. El plástico de la cubierta se lava con objeto de eliminar el encalado que se emplea para refrigerar el invernadero en los últimos meses de cultivo.

Para mejorar la eficacia de los tratamientos de biodesinfección se realiza el sellado de toda la superficie del invernadero con una lámina de plástico transparente de polietileno de 100 galgas. Tras sellar el suelo con la lámina de plástico se realiza un riego de 48 mm durante 8 horas de forma ininterrumpida (48 mm) inyectando a la vez mediante un venturi las dosis de vinazas de remolacha y se cierra el invernadero durante los 30 días, no efectuando ninguna aplicación de agua adicional.

Materia orgánica

La dosis de materia orgánica que se utiliza está formada por una mezcla homogénea de estiércol fresco de ovino mezclado con los restos de cosecha a la proporción estiércol fresco de ovino/restos de cosecha = 1. Los restos de cosecha de tomate y sandía se incorporaron en la mezcla en la proporción de tomate/sandía = 1. A todos los tratamientos, incluso el testigo con el que comparamos, se les aplica 5 kg/m² de la mezcla de materiales orgánicos. Los distintos tratamientos se diferencian unos de otros en función de la dosis de vinaza de remolacha incorporada, que fue de 2, 1,5, 1, 0,75 l/m².
Figura 1. Esquema del experimento realizado en el invernadero comercial de San Isidro de Níjar (Almería) con las dosis de vinaza de remolacha utilizada.

Evaluación de la evolución de la enfermedad

El análisis de los índices de nodulación (Bridge and Page, 1980) se realizó mediante un muestreo en malla estudiando el 20% de las plantas de invernadero.

El estado de desarrollo de la población determina mediante el análisis visual de 4 plantas de los estadios de desarrollo presentes en 10 gramos de raíz mediante los métodos de (Coolen, 1979) y Nombela y Bello (1983) y el fitopatómetro con tomate var. Marmande en la muestra de suelo equivalente.

Efecto en los grupos funcionales de nematodos y enquitreidos

El efecto de la biodesinfección se evalúa al finalizar el primer ciclo de cultivo tomando tres submuestras por parcela. Las muestras son procesadas en laboratorio mediante centrífugación con azucar y Flegg modificado (Nombela and Bello, 1983) para la cuantificación de Meloidogyne, Dorilaymidos, Rabditidos y enquitreidos extraídos.

Evaluación de la producción

La producción integral es recolectada de cada parcela en envases de campo y contabilizada para obtener la producción por parcela. La producción es llevada a la comercializadora para su venta.

Análisis estadístico

En este trabajo se utiliza el test paramétrico de análisis de la varianza (ANOVA de un factor, test DMS) y prueba de MDS (mínimas diferencias significativas). Cuando se trata de comparar resultados de un mismo experimento, pero en distintas fechas se utiliza como prueba no paramétrica entre series relacionadas la prueba de los rangos con signo de Wilcoxon. Los análisis estadísticos se realizan con el programa SPSS para el entorno WINDOWS (versión estándar 17.0, SPSS Inc. 2007), a partir de matrices de datos elaboradas específicamente para ello.

RESULTADOS Y DISCUSIÓN

Estudio inicial

El estudio de las prácticas de manejo agronómico de nematodos tiene importantes limitaciones. La presencia de focos o rodales pueden invalidar los experimentos. El muestreo en malla de las raíces del cultivo anterior de sandía triploide cv “Fashion” con el polinizador cv “Premium 4001” permite agrupar las repeticiones en función de la magnitud e intensidad de la infección. Las parcelas asignadas a los tratamientos no presentan diferencias estadísticamente significativas (Cuadro 1)

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Índice medio de nodulación</th>
<th>% plantas infectadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retranqueo + solarización</td>
<td>7,97 ± 1,04 a</td>
<td>81,67 ± 12,86 a</td>
</tr>
<tr>
<td>0,75 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>7,40 ± 0,78 a</td>
<td>71,43 ± 3,89 a</td>
</tr>
<tr>
<td>1 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>7,58 ± 2,0 a</td>
<td>77,38 ± 17,98 a</td>
</tr>
<tr>
<td>1,5 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>7,89 ± 1,20 a</td>
<td>63,10 ± 26,48 a</td>
</tr>
<tr>
<td>2 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>6,25 ± 1,27 a</td>
<td>75,0 ± 20,34 a</td>
</tr>
</tbody>
</table>

Los resultados de los índices de nodulación medios obtenidos después asignar las parcelas a cada tratamiento, observando que el grado de la enfermedad es elevado según la escala de Bridge y Page (1980), así como que la gran mayoría de plantas están infectadas por nematodos formadores de nódulos del género Meloidogyne.

Efecto en los grupos funcionales de nematodos y enquitreidos

Al finalizar el cultivo se realiza una toma de muestras para cuantificar las poblaciones de nematodos de la rizosfera en todas las parcelas (Cuadro 2). Los resultados de los análisis de nematodos y enquitreidos del suelo después del cultivo de tomate muestran diferencias estadísticamente significativas entre los distintos tratamientos para las poblaciones de nematodos del suelo, pero no para las de enquitreidos, que disminuyen en los tratamientos con vinazas de remolacha. No se detecta la presencia de J2 de Meloidogyne en ninguna de las parcelas en las que se ha aplicado vinazas de remolacha, mientras que en tres de las cuatro parcelas del testigo se encuentran J2 de Meloidogyne. Para las poblaciones de nematodos del grupo de los doriláimidos también se encuentran diferencias estadísticamente significativas entre el testigo y el tratamiento con vinazas de remolacha a las dosis de un 1 y 1,5 l/m² quedando el resto de tratamientos en una situación intermedia. No se detecta una tendencia clara en función de dosis, sin embargo, si que se observa que las poblaciones son menores en los tratamientos con vinazas de remolacha. Al contrario de lo que ocurre para las poblaciones de doriláimidos, se observa que las poblaciones de rhabditidos aumentaron en los tratamientos con vinazas de remolacha, existiendo diferencias estadísticamente significativas entre el testigo y la dosis más alta de vinazas de remolacha (2 l/m²), quedando el resto de los tratamientos en una situación intermedia.

Cuadro 2. Poblaciones de nematodos y enquitreidos después del cultivo de tomate en el invernadero de San Isidro de Níjar (Almería). Métodos de centrifugación en azúcar y Flegg modificado para doriláimidos (Individuos/100 cm³ suelo). (*)

Cuadro 1. Valores medios de índices de nodulación (BRIDGE & PAGE 1980) del cultivo de sandía anterior a la realización del experimento.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Meloidogyne (J2)</th>
<th>Doriláimidos</th>
<th>Rhabditidos</th>
<th>Enquitreidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retranqueo + solarización</td>
<td>46,0 ± 81,49 b (†)</td>
<td>3,75 ± 2,06</td>
<td>65,50 ± 26,95 a</td>
<td>6,25 ± 5,91 a</td>
</tr>
<tr>
<td>0,75 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0,0 ± 0,0 a</td>
<td>2,75 ± 2,22 ab</td>
<td>128,0 ± 34,53 ab</td>
<td>2,25 ± 0,96 a</td>
</tr>
<tr>
<td>1 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0,0 ± 0,0 a</td>
<td>0,0 ± 0,0 ab</td>
<td>138,50 ± 26,0 a</td>
<td>3,75 ± 2,06 a</td>
</tr>
<tr>
<td>1,5 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0,0 ± 0,0 a</td>
<td>0,75 ± 0,96 a</td>
<td>124,50 ± 58,68 ab</td>
<td>2,00 ± 2,31 a</td>
</tr>
<tr>
<td>2 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0,0 ± 0,0 a</td>
<td>1,0 ± 2,0 ab</td>
<td>193,0 ± 81,67 b</td>
<td>4,25 ± 4,03 a</td>
</tr>
</tbody>
</table>

Sig. asintótica: 0,010, 0,043, 0,040, 0,438

(†) Comparaciones mediante ANOVA MSD (minima diferencia significativa) La misma letra o letras en la misma columna no manifiestan diferencias estadísticamente significativas (α = 0,05). Las cifras corresponden a la media ± desviación típica.
Efecto en el cultivo de tomate resistente

Además, se estudiaron diversas variables de tomate en campo, después de haber realizado un muestreo en malla del 20% de las plantas del invernadero (Cuadro 3). Los resultados obtenidos tras el análisis mediante un muestreo en malla del 12,5% de las plantas de cada parcela, con objeto de establecer las zonas donde *Meloidogyne* estaba presente. Se encuentran diferencias estadísticamente significativas entre los tratamientos en los que se aplicó vinazas de remolacha y el testigo para los valores de índice medio de nodulación y porcentaje de plantas infectadas por *Meloidogyne*. Se observa, además, sobre todo en el % de plantas infectadas, que según aumentaba la dosis de vinazas de remolacha, disminuían los daños causados por los nematodos formadores de nódulos del género *Meloidogyne* en las plantas. Se comprueba al realizar el muestreo en malla que en los tratamientos testigo la aparición de plantas infectadas en el interior de las parcelas es mayor, mientras que, en el resto de los tratamientos, donde la gran mayoría las plantas infectadas aparecen en los bordes de las parcelas.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Índice medio de nodulación</th>
<th>% plantas infectadas</th>
<th>Producción kg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retranqueo + solarización</td>
<td>1.83 ± 0.51 b</td>
<td>30.53 ± 2.12 b</td>
<td>4.64 ± 0.35</td>
</tr>
<tr>
<td>0.75 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0.74 ± 0.38 a</td>
<td>12.02 ± 5.36 a</td>
<td>4.47 ± 0.18</td>
</tr>
<tr>
<td>1 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0.34 ± 0.30 a</td>
<td>7.74 ± 8.09 a</td>
<td>4.10 ± 0.74</td>
</tr>
<tr>
<td>1.5 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0.42 ± 0.36 a</td>
<td>7.74 ± 6.26 a</td>
<td>4.08 ± 0.34</td>
</tr>
<tr>
<td>2 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>0.20 ± 0.20 a</td>
<td>3.13 ± 2.45 a</td>
<td>4.08 ± 0.73</td>
</tr>
</tbody>
</table>

Cuadro 3. Variables de planta estudiadas después del cultivo de tomate en el invernadero.

El estudio de población de nematodos en cuatro plantas al finalizar el ciclo de cultivo de tomate confirma la Devido a que el cultivo de tomate se realiza en invierno, época más desfavorable para el desarrollo de las especies termófilas de nematodos del género *Meloidogyne*, (Cuadro 4).

<table>
<thead>
<tr>
<th>Parcela</th>
<th>Tratamiento</th>
<th>Índice nodulación</th>
<th>Estadio de desarrollo Meloidogyne</th>
<th>Huesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Retranqueo + solarización</td>
<td>4</td>
<td>ausencia</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>Retranqueo + solarización</td>
<td>6</td>
<td>ausencia</td>
<td>52</td>
</tr>
<tr>
<td>12</td>
<td>0.75 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>6</td>
<td>presencia</td>
<td>22</td>
</tr>
<tr>
<td>14</td>
<td>1 l/m² vinaza de remolacha + retranqueo + solarización</td>
<td>6</td>
<td>presencia</td>
<td>16</td>
</tr>
</tbody>
</table>

Cuadro 4. Análisis de 10 g de raíces de tomate noduladas al final del cultivo en el invernadero.
En la raíz analizada de la parcela 17, la que mayor índice de nodulación presentaba, no se observó la presencia de individuos J2, J4 ni de huevos, mientras que en el resto de raíces analizadas, si se observó la presencia los todos los estados posibles, con la excepción de la raíz de la parcela 10 en la que no se observó ningún juvenil J2 (Cuadro 4.51). Si a su vez analizamos los datos obtenidos de la extracción de nematodos de suelo mediante el método de centrífugación en azúcar (NOMBELA & BELLO 1983) de la parcela 17 observamos, que tampoco se detectó la presencia de individuos J2 (Cuadro 4). Para comprobar estos resultados, se sembraron tomates cv “Marmande” en macetas con 250 g de suelo, con parte de la muestra recogida en campo. Se volvieron a comprobar los resultados, obteniendo la planta de la parcela 17 un índice igual a (0). Estos resultados nos confirman, que algunos años, en los cuales las temperaturas del ciclo de cultivo de otoño-invierno en Almería no son muy elevadas las plantas pueden actuar como “trampa”, eliminando parte de las poblaciones de J2 de *Meloidogyne*.

No sólo nos interesa la producción, sino también es la recolección en el tiempo (Figs 2 y 3). Se observa que la producción de tomate aumenta según disminuyen las dosis de vinazas de remolacha.

![Figura 2. Evolución de la producción de tomate en invernadero en el tiempo.](image)

![Figura 3. Producción de tomate en el tiempo.](image)
Sin embargo, al inicio de la recolección, el tratamiento con vinazas de remolacha a la dosis más elevada obtiene la mayor cantidad de producto de primor, pero en cambio al final del cultivo es la que menos produjo (Fig. 4). Para las dosis de 1 y 1,5 l/m² las producciones se encuentran en una situación intermedia. Se observa que la curva de producción en el tiempo de la dosis de 2 l/m², la más elevada las ensayadas, siempre se encuentra por debajo de la curva de producción del testigo, salvo al comienzo de la recolección.

Efecto en el cultivo de pepino

Posteriormente se realizó un cultivo de pepino cv “Bowing” que duró desde marzo hasta mediados de junio. Una vez que se finalizó el periodo de cultivo del pepino se procedió a realizar un muestreo en malla del 20% de las plantas del invernadero para ver los resultados obtenidos después del segundo cultivo realizado tras la biodesinfección (Cuadro 5).

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>Indice de nodulación medio</th>
<th>% plantas infectadas</th>
<th>Producción kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retranqueo + solarización</td>
<td>4.44 ± 1.54 b</td>
<td>56.55 ± 19.18 a</td>
<td>4.47 ± 0.49 a</td>
</tr>
<tr>
<td>0,75 l/m² vinaza de remolacha +</td>
<td>2.39 ± 2.35 b</td>
<td>31.28 ± 32.85 a</td>
<td>4.64 ± 0.15 a</td>
</tr>
<tr>
<td>retranqueo + solarización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 l/m² vinaza de remolacha +</td>
<td>2.26 ± 2.62 b</td>
<td>29.17 ± 31.01 a</td>
<td>4.95 ± 0.51 a</td>
</tr>
<tr>
<td>retranqueo + solarización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,5 l/m² vinaza de remolacha +</td>
<td>1.46 ± 1.26 b</td>
<td>21.43 ± 16.03 a</td>
<td>4.86 ± 0.34 a</td>
</tr>
<tr>
<td>retranqueo + solarización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 l/m² vinaza de remolacha +</td>
<td>0.16 ± 0.11 a</td>
<td>4.17 ± 2.99 a</td>
<td>4.72 ± 0.67 a</td>
</tr>
<tr>
<td>retranqueo + solarización</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 5. Variables de planta estudiadas después del cultivo de pepino en invernadero.
Tras el cultivo de pepino (Cuadro 5) se encuentran diferencias estadísticamente significativas para el índice medio de nodulación entre el tratamiento que lleva 2 l/m² de vinazas de remolacha en relación con el resto, mientras que no se observan diferencias cuando se analizó el porcentaje de plantas infectadas. Por otro lado, la producción aumenta según lo hacen las dosis de vinazas de remolacha, a la vez que se observa que tanto el índice medio de nodulación como el porcentaje de plantas infectadas disminuye según aumentaba la dosis de vinazas de remolacha.

Al realizar un muestreo en malla (Fig 8), se observa que en el tratamiento con 2 l/m² las plantas que aparecieron infectadas en todas las parcelas de dicho tratamiento se encuentran cercanas a los bordes, donde por otro lado se conoce que disminuye la eficacia en la desinfección de suelos con cualquier alternativa. Según disminuye la dosis de vinazas de remolacha la distribución de las plantas infectadas ocupa más superficie, encontrando sólo una parcela de las cuatro que forman el tratamiento de 1,5 l/m² con un rodal de plantas infectadas en el interior de la superficie. En el tratamiento con 1 l/m² ocurre lo mismo con dos de las cuatro parcelas en las que aparecen mayor número de rodales, mientras que para el tratamiento de 0,75 l/m² tres parcelas tienen la mayoría de la superficie ocupada por rodales salvo una parcela donde no aparece ninguna planta infectada. Por último, en el tratamiento que no lleva dosis de vinazas de remolacha las cuatro parcelas del tratamiento tienen la mayoría la superficie ocupada por rodales. Por otro lado, no se observan diferencias estadísticamente significativas entre los tratamientos en la producción del cultivo, que es mayor en los tratamientos con vinazas de remolacha con respecto al testigo. A la hora de analizar los resultados del ensayo se deben de tener en cuenta los dos cultivos que se realizan en el año. Por un lado, la producción del cultivo del tomate es mayor en el testigo (Cuadro 5), sin embargo en el cultivo de pepino, el testigo fue el que menos producción registra.

Al igual que en el cultivo de tomate, para el cultivo de pepino nos interesa también conocer cómo se distribuye la producción en el tiempo (Figs 4 y 5). En este caso no se observaron tantas diferencias como en el cultivo anterior de tomate (Figs 3 y 4). Sin embargo, si se puede observar que las producciones aumentaban según lo hacía la dosis de vinazas de remolacha empleada, con la excepción de la dosis máxima de 2 l/m² quizás por la existencia de cierta fitotoxicidad. Las dosis de 1 y 1,5 l/m² fueron las más adecuadas en la técnica de manejo del enarenado propuesto en este trabajo.

Figura 5. Producción de pepino en el tiempo en invernadero
Figura 6. Producción de pepino en el tiempo.

Figura 7. Producción de pepino en el tiempo en el invernadero de San Isidro de Níjar (Almería). (*)(*ddt: días después del transplante, VR 0 l/m² retanqueo + solarización, VR 0,75 l/m² retanqueo + 0,75 l/m² vinazas de remolacha + solarización, VR 1 l/m² retanqueo + 1 l/m² vinazas de remolacha + solarización, VR 1,5 l/m² retanqueo + 1,5 l/m² vinazas de remolacha + solarización, VR 2 l/m² retanqueo + 2 l/m² vinazas de remolacha + solarización).
CONCLUSIONES

Se puede concluir de este ensayo que el retranqueo utilizando estiércol fresco de ovino y restos de cosecha para reducir costes, combinado con la solarización puede ser una alternativa eficaz de manejo de los nematodos formadores de nódulos del género *Meloidogyne*. La eficacia mejora cuando además se complementa con la utilización de vinazas de remolacha, disminuyendo el índice medio de nodulación y el porcentaje de plantas infectadas según aumenta la dosis. Sin embargo, para las dosis altas la producción obtenida es menor, por lo que se recomiendan dosis intermedias de 1 y 1,5 l/m² aunque el control de *Meloidogyne* no sea el que obtenga más eficacia.

BIBLIOGRAFÍA

Índice de nodulación

- 0-2
- 2-4
- 4-6
- 6-8
- 8-10

Figura 8. Mapas de nodulación del ensayo de biodesinfección con vinazas y rotación tomate resistente-pepino.
CONTRIBUCIÓN A LA MEJORA DE LA BIODIVERSIDAD EN VITICULTURA ECOLÓGICA EN LA D.O. PENEDÈS

Chamorro L¹, Fernández S¹, Bartra E²

Tel. +34 934039871. E-mail: lchamorro@ub.edu
² Institut Català de la Vinya i el Vi (INCAVI). Generalitat de Catalunya.
Plaça de l’Àgora, 2-3 (Polígon Industrial Domensys II), E-08720, Vilafranca del Penedès. Tel. +34 93 890 02 11. E-mail: ebartra@gencat.cat

RESUMEN: La instalación de cubiertas vegetales en viñedo ecológico, ya sean temporales o permanentes, naturales o inducidas, tiene como objetivo prevenir la erosión, mejorar la calidad del suelo y aumentar la biodiversidad del agrosistema. En la primavera de 2018 se estudiaron 57 parcelas en 25 fincas de la Denominación de Origen Penedès (Cataluña), para evaluar como diferentes tipos de cubiertas vegetales (permanentes, temporales, silvestres o sembradas) en viñas ecológicas frente al laboreo convencional afectaban a la diversidad florística de los viñedos y su importancia para diversos grupos de fauna (aves, polinizadores y otros invertebrados). Además, se analizó el efecto del paisaje sobre la biodiversidad de arvenses y su importancia para la fauna, tanto a escala de parcela como a escala de finca y paisaje.

Para ello se identificaron las arvenses de las viñas en transectos de 20m y se determinaron diferentes métricas de parcela, de finca y del paisaje circundante (proporción de usos del suelo). La diversidad de las arvenses se analizó en función de la gestión (ecológica o convencional), del tipo cubierta vegetal y de las características del paisaje.

La mayor biodiversidad de arvenses se observó en viñedos ecológicos y con cubiertas permanentes, donde predominaron especies de interés para las aves, y para los polinizadores, destacando la abundancia de leguminosas. La distancia al bosque y la alta densidad de parcelas, así como la mayor proporción de cultivos en el paisaje circundante redujeron la biodiversidad de la flora en los viñedos. También se detectaron especies invasoras en algunas parcelas con cubiertas.

Palabras clave: arvenses, cubiertas vegetales, ecología del paisaje, servicios ecosistémicos

INTRODUCCIÓN

Los sistemas agrícolas europeos han sufrido importantes pérdidas de biodiversidad en los últimos decenios (Preston et al., 1992; Bengtsson et al., 2005) por lo que existe la necesidad de establecer un equilibrio entre la producción agrícola y la conservación de la diversidad y los múltiples servicios que ésta proporciona (Zhang et al., 2007). Las especies arvenses, denominadas tradicionalmente malas hierbas, pueden competir con el cultivo hasta el punto de limitar su crecimiento y reducir su producción entre otras posibles problemáticas. Pero la flora arvense también tiene un papel importante en las redes tróficas de los agrosistemas ya que interacciona con otros componentes del sistema ofreciendo diversas funciones ecológicas y agronómicas como la polinización, el control de plagas (Caballero-López et al., 2012; Baraíbar, 2013), o el refugio y alimento para otros grupos de fauna como aves o invertebrados (Marshall et al., 2003).

Diversos autores han puesto de manifiesto la disminución de la riqueza y abundancia de las especies arvenses durante las últimas décadas en relación con la intensificación agrícola, tanto a escala regional o de paisaje, como a escala local o de campo (Storkey et al., 2012; Richner et al., 2015). En el contexto de la vegetación de los cultivos de secano mediterráneo las arvenses se caracterizan por su adaptación a perturbaciones regulares y su incapacidad para tener éxito en hábitats más competitivos (Romero et al., 2008; José-Maria et al., 2010). Entre ellas, las especies más raras, características de los hábitats cultivados, también han visto reducidas severamente sus poblaciones en los últimos decenios debido a la intensificación agrícola (Albrecht, 2003; Rotchés-Ribalda et al., 2015). Esta disminución ha sido tan intensa que algunas de ellas se han hecho muy raras o
incluso se han extinguido en algunos territorios de centro Europa y también en España (Baessler & Klotz, 2006; Chamorro et al., 2007, 2016; Cirujeda et al., 2011). Sin embargo, recientemente se ha observado que la diversidad de la flora arvense podría incrementarse debido a la aparición de especies exóticas, como constatan Monteiro et al. (2012) en viñedos.

Por otro lado, los estudios que comparan sistemas ecológicos y convencionales han demostrado que la biodiversidad de la flora local se ve incrementada en los cultivos ecológicos (Hole et al., 2005; Roschewitz et al., 2005), incluyendo las especies características y raras (Romero et al., 2008; José-Maria et al., 2010; Chamorro et al., 2007, 2016) y las especies interesantes para las aves, los invertebrados (Hyvönen, 2007) y los insectos polinizadores (Holzschuh et al., 2007, 2008). Además de la gestión, las características del paisaje circundante también pueden afectar la biodiversidad de las especies arvense y sus servicios ecosistémicos. Generalmente los paisajes más complejos y diversos, con mayor proporción de áreas forestales respecto a la proporción de suelo agrícola conllevan un incremento de la biodiversidad de las arvenses (José-Maria et al., 2010; Sans et al., 2013; Roschewitz et al., 2005).

Dentro de los cultivos de secano, la viticultura experimenta un cambio gradual hacia prácticas de producción más sostenibles y muchos productores ven en la agricultura ecológica una alternativa agrícola atractiva y una oportunidad de aumentar sus ventas además de potenciar la biodiversidad y mejorar los suelos. En Cataluña la vid es actualmente el cultivo mayoritario en producción ecológica, el cual supone un 40% de la superficie cultivada en eco, con 13.852 ha, entre las cuales la comarca del Alt Penedès reúne la mayor concentración de hectáreas de viñedo ecológico con un 46% (CCPAE, 2015, 2017). Actualmente en la D.O. Penedès existen alrededor de 180 bodegas (Escobar & Gil, 2015) y unos 2.815 viticultores, de los cuales un 25% practican viticultura ecológica.

Aunque los viñedos son cultivos económicamente relevantes en ciertos países, pocos estudios han evaluado los efectos de las prácticas de gestión sobre la biodiversidad (Bruggisser et al., 2010; Porte et al., 2014; Ratax et al., 2015).

La mayoría de las investigaciones sobre biodiversidad en agricultura ecológica se han llevado a cabo en cultivos extensivos y pastos en el norte y centro de Europa, mientras que son pocos los estudios en agrosistemas mediterráneos de secano, como las viñas, a pesar de su importancia económica (Monteiro, 2012; Nascimbene et al., 2012, 2013; Puig-Montserrat, et al., 2017). En el caso de Cataluña son escasos los trabajos publicados que han abordado la biodiversidad de fauna y flora en los cultivos de vid (Sáenz, 2005; Bartra et al., 2017; Puig-Montserrat, et al., 2017) siendo algunos de ellos estudios de ámbito local.

Una de las prácticas agrícolas más empleada en agricultura ecológica a diferencia del cultivo convencional es el mantenimiento de cubiertas vegetales en el suelo. Estas cubiertas pueden ser espontáneas, compuestas por la flora autóctona silvestre, o inducidas mediante la siembra con mezclas de diversas especies. El uso de cubiertas es una herramienta potencial para proporcionar o mejorar los servicios ecosistémicos en los cultivos. Constituye un sistema eficaz que contribuye a mejorar la retención del agua y el arrastre de residuos en los cultivos. Contribuye a la regulación del clima y mejora la estructura del suelo, mejorando la salud del suelo. Además, puede aumentar la biodiversidad y la proliferación de enemigos naturales de las plagas habituales de la viña (Danne et al., 2005) e incluso actuar como un método de control de la flora arvense (Kruidhof et al., 2008).

El uso de cubiertas es aún controvertido, a pesar de las numerosas ventajas, ya que la costumbre de los agricultores de realizar laboreos frecuentes para el control de las arvenses está todavía muy arraigada (Zaragoza, C., 1998; Abad, 2004). Para evitar la competencia sobre la producción por la implantación de cubiertas, en ocasiones solo se establece la cubierta en calles alternas, o se mantiene solamente durante parte del año. Las cubiertas temporales son más propias de climas más cálidos y secos mientras que las cubiertas permanentes son aquellas que se encuentran activas durante todo el año que se pueden controlar mediante siegas y que se establecen principalmente en zonas de climas húmedos y frescos (Ingels et al., 1998; Abad, 2004). Generalmente se utilizan especies de leguminosas y gramíneas, o bien se dejan las cubiertas naturales formadas por una selección de especies adventicias.
OBJETIVOS

En este trabajo se ha evaluado la diversidad vegetal de las viñas ecológicas y convencionales de la región vitivinícola del Penedès (Cataluña) con diferentes prácticas agrícolas como son las prácticas ecológicas versus las prácticas convencionales. Además se han comparado los efectos del uso de diferentes cubiertas vegetales con el laboreo tradicional más intenso, con el objetivo de determinar qué prácticas de gestión conllevan una mayor biodiversidad de la flora de los viñedos y si estos afectan algunos de sus servicios ecosistémicos. Así, se han analizado la riqueza y abundancia de diferentes viñedos ecológicos y convencionales en diferentes localidades de la D.O. Penedès, con realidades paisajísticas diferentes, más o menos complejas según su composición en los usos del suelo, para conocer si la intensificación agrícola a nivel de parcela y paisaje circundante puede afectar la biodiversidad de la flora de los viñedos y sus implicaciones en el agrosistema.

Para ello se han planteado diferentes hipótesis:

1. Los cultivos de vid ecológicos presentan una mayor biodiversidad de especies vegetales que los cultivos convencionales.
2. El uso de cubiertas vegetales en viñas proporciona una mayor biodiversidad de la flora arvense que en los viñedos gestionados con laboreo convencional.
3. Las viñas situadas en paisajes más complejos, con una mayor diversidad de usos del suelo contienen más biodiversidad de flora arvense que las viñas en paisajes más uniformes y con una elevada proporción de suelo agrícola.
4. La gestión ecológica, el uso de cubiertas vegetales y los paisajes más complejos conllevará una mayor riqueza de las especies interesantes para la fauna, tales como aves, invertebrados y polinizadores.

MATERIAL Y MÉTODOS

Área de Estudio

El estudio se llevó a cabo en el territorio de la Denominación de Origen Penedès, en las comarcas del Alt Penedès, Anoia, y Garraf, a unos 30-40 km al suroeste de Barcelona (41.36528 °N, 1.68194 °E). Las localidades están ubicadas en los municipios de Piera, Gelida, Sant Sadurní d’Anoia, Torrelavit, Subirats, Sant Martí Sarroca, La Granada, Pals del Penedès y Sant Pere de Ribes y tienen una altitud media de 246.2 m.s.n.m. (entre 95 y 299 m). La mayoría de parcelas estudiadas se sitúan en la comarca de Alt Penedès, que es un zona interior formada por la depresión del Penedès y rodeada por las sierras de Garraf y del Ordal que la separan de la costa. El clima es de tipo mediterráneo con temperaturas medias en invierno que oscilan entre los 6-8ºC y en verano entre los 23-24ºC. La precipitación media anual es aproximadamente de 650 mm, con una distribución irregular a lo largo del año presentando un intervalo de varios meses de sequía durante el invierno, por lo que el régimen de humedad del suelo es de tipo xérico. El área forma parte de la Depresión terciaria del Penedès, que incluye calcilutitas (margas) con areniscas y conglomerados ocasionales. Los suelos están compuestos por sedimentos marinos de textura fina que provienen de la época del Plio-Pleistoceno y están clasificados como típicos Xerorthents y típicos Calcixerepts. Los viñedos son el principal uso de la tierra ("Denominación de origen", DO Penedès) y representan el 80% del área cultivada (Ramos & Martínez-Casasnovas, 2007) donde hay una fuerte influencia de la actividad humana ya que predominan los métodos de labranza tradicional dejando suelos desnudos y expuestos la mayor parte del año (Prosdocimi et al., 2016).

Las parcelas estudiadas pertenecen a 14 fincas ecológicas (40 parcelas) y 11 fincas convencionales (17 parcelas). Las fincas ecológicas llevan un mínimo de 11 años practicando agricultura ecológica. La mayoría de los agricultores fueron entrevistados para conocer la gestión y edad de las cubiertas. De cada finca se estudió un mínimo de 2 parcelas. En el caso de las fincas con diversos tipos de manejo se estudiaron los diferentes tipos de laboreo o cubiertas existentes. No se encontraron cultivos convencionales con cubiertas vegetales. En las parcelas sin cubiertas, las labores del suelo se llevaron a cabo con cultivador, tanto en los cultivos ecológicos como en los convencionales. Los diferentes tipos de cubiertas vegetales se agruparon en tres tipos: 1) cubiertas
temporales con vegetación arvense autóctona silvestre y terminación con laboreos esporádicos (laboreo reducido), 2) cubiertas permanentes sembradas con mezclas de semillas y terminación con siega y 3) cubiertas permanentes con vegetación arvense silvestre y terminación con siega. Dentro de estas últimas, destacan aquellas con un período de instalación de entre 9 y 12 años. Las cubiertas sembradas estaban formadas generalmente por diferentes combinaciones de Sinapis alba (mostaza), Avena sativa (avena), Vicia sativa o Vicia villosa (veza) y Vicia ervilia (yero). Estas cubiertas permanecen verdes hasta la siega (generalmente durante el mes de mayo) formando un acolchado durante la época seca que proporciona nutrientes y materia orgánica (Abad, 2004 y observaciones personales).

Estudio de la biodiversidad vegetal

El muestreo se llevó a cabo durante el mes de mayo y la primera quincena de junio de 2018. Se prospectaron 57 parcelas de viñedo, 17 de ellas con gestión convencional y 40 con gestión ecológica. En cada una de las parcelas se prospectaron 2 transectos de unos 20 x 2,5 m, a lo largo de 2 calles de viña no adyacentes y separadas al menos 5 metros, con lo que se obtuvo un área aproximada de 100 m² por parcela. En esta área se realizó un inventario de las especies arvenses para obtener la riqueza florística, y también se estimó la abundancia total de las arvenses y la abundancia de cada una de ellas de manera visual, mediante un valor de porcentaje de recubrimiento en relación al área muestreada. Las especies fueron identificadas según la Flora Manual dels Països Catalans (de Bolòs et al., 2005).

A partir de los valores de riqueza y abundancia se calculó la diversidad de arvenses mediante los índices de diversidad y equitatividad de Shannon. El índice de Shannon (H) se calculó como: \(H' = \sum p_i \ln p_i \), donde \(p_i \) corresponde a la cobertura de una especie en relación al recubrimiento total de especies en el inventario y la equitatividad como: \(J' = \frac{H'}{\ln S} \) (siendo \(S \) el número de especies por inventario). Para cada parcela, se identificaron además las especies arvenses de interés para las aves, polinizadores y otros invertebrados, haciendo énfasis en las familias de relevancia según sus funciones ecosistémicas, como las leguminosas. También se identificaron aquellas especies consideradas raras dentro de los cultivos de secano (de Bolòs et al., 2005; Chamorro et al., 2016) y las especies invasoras del territorio catalán (Andreu & Pino, 2013).

Las características de la parcela y del paisaje circundante se evaluaron mediante el uso de editores de datos geográficos sobre ortoimágenes. Como variables de la parcela, se evaluó la altitud, el perímetro y el área de cada parcela a partir del editor de datos Vissir3 del Instituto Cartográfico y Geológico de Cataluña (ICGC, 2018). Además, se calcularon las variables de composición del paisaje circundante como la distancia al bosque y el número de parcelas de cultivo y la proporción de usos del suelo en un sector circular de 500 m de radio cuyo centroide fue la parcela donde se realizó el muestreo de arvenses. Los datos se obtuvieron a partir de la base de datos SigPac, a partir de los que se calculó el porcentaje de usos del suelo tales como: Bosques, Matorrales, Pastos, Edificaciones y Zonas Urbanas, Vías de comunicación, Huertos, Frutales de secano, Olivos, Viñas, Cultivos anuales, Superficie de agua, e Impotativo.

Análisis de datos

El análisis estadístico se ha llevado a cabo con el programa SPSS v22 (2013). La riqueza, abundancia y los índices de diversidad de especies se analizaron en relación al tipo de gestión empleada (ecológica o convencional) y el tipo de manejo del suelo y de las cubiertas (laboreo intenso, cubierta temporal silvestre con laboreo reducido, cubierta permanente sembrada y segada, y cubierta permanente silvestre y segada) mediante análisis de la varianza de un factor (ANOVA). Para evaluar los servicios ecosistémicos de las arvenses sobre la fauna, se evaluó el número de especies importantes para aves, polinizadores y otros invertebrados y las especies raras, en relación con el tipo de gestión y el tipo de manejo de las cubiertas mediante ANOVA de un factor respectivamente.

Las características de la parcela, como el área, perímetro y altitud, y del paisaje, como el número de campos en el paisaje circundante y la distancia al bosque, y la proporción de los diferentes usos del suelo se analizaron también mediante un análisis de la varianza según el tipo de gestión. La relación entre estas variables continuas
y la riqueza de especies totales y la riqueza de especies interesantes para los diferentes grupos de fauna se evaluó mediante el análisis de correlación de Pearson. Para satisfacer los requisitos de normalidad y homocedasticidad, se utilizó la transformación logarítmica o raíz cuadrada en los datos cuando fue necesario. Las diferencias entre los diferentes niveles dentro de un factor fueron analizadas con el test de Tuckey de comparación de medias con una significación menor de 0,05.

RESULTADOS Y DISCUSIÓN

Diversidad de las arvenses respecto a la gestión

Durante el proceso de muestreo en las parcelas, se registraron un total de 164 especies, en su mayoría especies anuales, 157 en cultivos ecológicos y 63 en convencionales, siendo las más abundantes las pertenecientes a las familias de las compuestas, leguminosas y las gramíneas (45,57%).

Las especies más frecuentes que aparecieron en más del 50% de los campos estudiados fueron *Diplotaxis erucoides*, presente en 48 de los 57 campos, junto con *Convolvulus arvensis* (en un 28,0% de campos), *Lolium rigidum* (25,6%), *Stellaria media* (20,1%), *Calendula arvensis* y *Hordeum murinum* (ambas presentes en el 18,2% de campos respectivamente). Otras especies frecuentes los cultivos convencionales fueron *Sonchus oleraceus* (14,9%) y *Chenopodium album* (13,4%), así como en los viñedos ecológicos.

El promedio (+ error estándar) de la abundancia de las arvenses (estimada a partir del porcentaje de cobertura) fue significativamente mayor en los viñedos ecológicos (50,25% + 5,36) que en los convencionales (24,6 % + 5,36), a causa de que gran parte de los cultivos ecológicos se han gestionado mediante cubiertas (Cuadro 1). Así mismo, la riqueza de especies por inventario fue significativamente mayor en los cultivos ecológicos con un promedio de 19,8 (+ 1,65) especies, en comparación con las 13,5 (+ 1,05) especies presentes en los convencionales. Estos resultados coinciden con investigaciones precedentes que sugieren que la agricultura convencional reduce la riqueza de especies debido al uso recurrente de fertilizantes químicos de síntesis y herbicidas, y la labranza intensiva (Nascimbene et al., 2012, 2013; Bruggisser et al., 2010).

El promedio de la biodiversidad vegetal evaluada mediante los índices de diversidad y equitatividad de Shannon fue más elevado en las parcelas ecológicas que en las convencionales (Cuadro 1). Esto indica que en los viñedos ecológicos presentan una mayor equifrecuencia de las especies expresada en su abundancia y una distribución más homogénea que en el caso de los convencionales, donde existen menos especies pero más dominantes. Sin embargo, cuando se analizaron por separado los viñedos ecológicos o los convencionales sin cubiertas sometidos a un laboreo tradicional más intensivo, la abundancia, la riqueza de especies y los índices de diversidad no presentaron diferencias significativas entre los dos tipos de gestión. Tan solo el número de especies raras por inventario fue significativamente mayor (p = 0,016) en los cultivos ecológicos con laboreo (con 0,47 + 0,15 especies de promedio por inventario) respecto a los cultivos convencionales (0,06 especies + 0,05).

El análisis de la riqueza, la abundancia y la diversidad según los diferentes tipos de manejo de las arven ses reveló que las cubiertas permanentes ofrecían mayor biodiversidad vegetal, con unos valores promedio más elevados de riqueza total de especies y cobertura. En los cultivos con laboreo intensivo predominaron *Diplotaxis erucoides*, *Lolium rigidum*, *Convolvulus arvensis* y *Sonchus tenerrimus*. Dentro de los diferentes tipos de cubiertas, en las cubiertas temporales con un laboreo reducido las especies dominantes fueron *Diplotaxis erucoides*, *Lolium rigidum*, *Anacyclus clavatus*, *Convolvulus arvensis*, *Hordeum murinum* y *Stellaria media*. En los cultivos con cubiertas permanentes silvestres segadas predominaron *Hordeum murinum*, *Calendula arvenses* y *Convolvulus arvenses*, y en las cubiertas sembradas lo hicieron las mezclas de especies de vetas, avena y mostaza comentadas anteriormente.

Hay que destacar que el análisis de la flora rara e invasora en el territorio puso en evidencia que las cubiertas permanentes sembradas albergaban mayor número de especies raras (p<0,001) que en otros tipos de
cubierta, a causa de algunas especies procedentes de las mezclas de semillas utilizadas, como es el caso de Centaurea cyanus, o el propio yero (V. ervillia). Sin embargo, las cubiertas silvestres segadas albergaron especies invasoras como Conyza bonariensis y C. sumatrensis, aunque no de modo significativo.

Cuadro 1. Efecto de la gestión (ecológica y convencional) y el diferente manejo del suelo y las cubiertas: 1) Sin cubiertas o laboreo tradicional intenso (LT); 2) cubiertas temporales (CT) silvestres y laboreo reducido (LR); 3) cubiertas permanentes segadas (CPS) de arvenses silvestres, y 4) cubiertas permanentes segadas (CPS) con especies sembradas, sobre la riqueza y abundancia y los índices de diversidad (H') y equitatividad (J') de Shannon. Se muestran los datos promedio (+ el error estándar, E.S.). Las letras diferentes indican diferencias significativas con el test de Tuckey (p< 0,05) entre los distintos niveles del mismo factor.

<table>
<thead>
<tr>
<th>Tipo de gestión</th>
<th>Riqueza especies</th>
<th>Abundancia (%)</th>
<th>Diversidad de Shannon (H')</th>
<th>Equitatividad (J')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecológica</td>
<td>19,7 + 0,060a</td>
<td>50,25 + 5,3 a</td>
<td>0,76 + 0,08 a</td>
<td>0,58 + 0,05 a</td>
</tr>
<tr>
<td>Convencional</td>
<td>13,5 + 1,05 b</td>
<td>24,50 + 4,2 b</td>
<td>0,49 + 0,05 b</td>
<td>0,38 + 0,03 b</td>
</tr>
<tr>
<td>Tipo de cubierta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin cubiertas (LT)</td>
<td>13,3 + 0,9 a</td>
<td>21,3 + 2,57a</td>
<td>0,51 + 0,06 a</td>
<td>0,17 + 0,02 a</td>
</tr>
<tr>
<td>CT silvestres (LR)</td>
<td>19,0 + 2,1 ab</td>
<td>40,0 + 9,03 a</td>
<td>0,57 + 0,07 a</td>
<td>0,45 + 0,04 a</td>
</tr>
<tr>
<td>CPS silvestres</td>
<td>28,5 + 3,3 b</td>
<td>85,3 + 1,74 b</td>
<td>1,02 + 0,16 b</td>
<td>0,83 + 0,06 b</td>
</tr>
<tr>
<td>CPS sembradas</td>
<td>20,2 + 2,9 ab</td>
<td>87,5 + 3,22 b</td>
<td>1,25 + 0,23 b</td>
<td>0,81 + 0,01 b</td>
</tr>
</tbody>
</table>

Fig. 1. Riqueza de especies de las familias gramíneas, leguminosas y de las especies de importancia para los insectos polinizadores, otros invertebrados, y las aves en cada uno de los diferentes tipos de manejo del suelo en viñedo: (1) suelos sin cubiertas con laboreo intensivo, (2) cubiertas temporales con laboreo reducido, (3) cubiertas permanentes con vegetación silvestre y (4) cubiertas permanentes sembradas. Las distintas letras indican diferencias significativas con el test de Tuckey (p< 0,05).
Servicios ecosistémicos

En los agrosistemas, los niveles tróficos superiores son más vulnerables a las perturbaciones que los inferiores, los cuales proporcionan refugio y fuente de alimento a los primeros (Bruggisser et al., 2010). La riqueza de arvenses que presentan beneficios para determinados taxones de aves, polinizadores y otros invertebrados, puede estar influenciada en su mayor parte por el tipo de gestión y por las características del paisaje.

El análisis de las especies interesantes para los grupos de fauna hizo destacar unos valores significativamente mayores en el número de arvenses importantes para las aves y polinizadores en viñedos ecológicos que en convencionales ($p=0.055$ y $p=0.045$ respectivamente) mientras que el número de especies interesantes para los invertebrados no mostró variación respeto a la gestión. Además, la riqueza de especies de leguminosas, familia importante por el efecto de la fijación de nitrógeno y por su importancia para las aves, también fue mayor en los cultivos ecológicos, como ya ha sido demostrado en otros estudios en cultivos de secano (Romero et al., 2008; Chamorro et al., 2016). El análisis del manejo del suelo y las cubiertas puso de manifiesto que las cubiertas vegetales ofrecen entornos con un mayor número de especies interesantes para los polinizadores y para las aves (Fig 1).

Características de la parcela y del paisaje

El tamaño de las parcelas estudiadas de las fincas ecológicas y convencionales no fue significativamente distinto ($1.2 ha + 0.2 y 1.6 ha + 0.2$ en parcelas convencionales y ecológicas respectivamente), mientras que el número de campos que rodean a las parcelas en un radio de 500 m fue significativamente mayor en las ecológicas (53.03 campos de promedio $+ 2.8$) que en las convencionales ($41.6 + 4.5$, $p=0.035$).

La diversidad de las especies de los cultivos puede estar influenciada por las características del paisaje que lo rodea (Bengtsson et al., 2005; Holzschuh et al., 2007). En las viñas estudiadas, la distancia al bosque más cercano y el número de campos circundantes [en un área de radio de 500 m] afectó a la riqueza y diversidad de arvenses. La diversidad (Shannon) disminuyó con la distancia al bosque (R de Pearson: -0.34; $N=57$; $p=0.009$), así como el número de especies arvenses (R de Pearson: -0.26; $N=57$; $p=0.048$ para logN especies) independientemente de la gestión, aunque esta correlación fue más significativa en los campos convencionales (R de Pearson: -0.52; $N=17$; $p=0.029$) que en los ecológicos. La riqueza de arvenses también disminuyó en un paisaje circundante con mayor número de campos, aunque esta relación solo fue significativa en los campos ecológicos (R de Pearson: -0.43; $N=40$; $p=0.005$). El número de arvenses interesantes para las aves y los invertebrados no se vio influenciado por el número de campos aunque sí lo fue significativamente en los campos ecológicos por la distancia al bosque (Aves: R de Pearson: -0.29; $N=40$; $p=0.025$; Invertebrados: R de Pearson: -0.27; $N=40$; $p=0.004$) lo que puede sugerir que en entornos con más intensificación agrícola la diversidad de especies en estos grupos funcionales se vea más afectada.

La variedad de usos del suelo en el paisaje determina cierta heterogeneidad que puede influir tanto en la diversidad como en la abundancia de las especies (Kehinde & Samways, 2016). En los paisajes circundantes de las parcelas estudiadas se observó que una mayor proporción de bosques y olivos se relacionaba significativamente con una mayor diversidad de especies ($p<0.001$ y $p<0.001$ respectivamente), mientras que una mayor proporción de viñedos y de tierras cultivadas [porcentaje total de suelo agrícola] se correlacionó negativamente con el número de especies por inventario ($p=0.049$ y $p=0.013$ respectivamente). La riqueza de especies importantes para las aves y los polinizadores también obtuvo una correlación significativamente positiva con la proporción de bosques y olivos y negativa con la proporción total de área agrícola.

Estos resultados son consistentes con otros autores que demuestran que el porcentaje de tierras cultivadas tiene un efecto sobre la diversidad de especies vegetales en los campos de cultivo y puede ser utilizado como un indicador de la intensificación agrícola (Sans et al., 2013; Bengtsson, 2005). En general la mayor proporción de viñedos no favorece la presencia de una gran diversidad de fauna, en concreto de especies aves, que pueden disminuir con las prácticas convencionales (Assandri et al., 2017; Pithon et al., 2016). Por ello la gestión ecológica y el uso de cubiertas vegetales es recomendable para un aumento de su diversidad, ya que
las especies de aves reconocen las cubiertas como un hábitat abierto a pesar de la presencia de hileras de vid. Además, la diversidad de aves también se vería favorecida por paisajes en mosaico heterogéneo con ambientes arbolados y forestales (Assandri et al., 2017).

CONCLUSIONES (RECOMENDACIONES)

Los viñedos ecológicos de la D.O. Penedès tienen una mayor riqueza, abundancia y diversidad de especies arvenses que los convencionales siempre que no se lleve a cabo un laboreo muy intensivo.

Dentro del manejo ecológico, son las cubiertas vegetales las que albergan mayor biodiversidad, y entre los tipos de cubiertas, aquellas que son permanentes, ya sea sembradas con mezclas de leguminosas, crucíferas y gramíneas, o las cubiertas permanentes de especies silvestres con periodos de instalación de al menos 10 años.

En las parcelas ecológicas, y aquellas con cubiertas permanentes se favorecen ciertos servicios ecosistémicos, como las especies que ofrecen alimento y refugio para las aves y los insectos polinizadores.

Algunas variables del paisaje como la distancia al bosque y el número de campos podrían determinar una tendencia a la reducción de la diversidad de las especies de flora incluyendo aquellas interesantes para las aves y polinizadores en paisajes agrícolas más intensificados donde las parcelas están alejadas de las áreas forestales y rodeadas de un mayor número de campos cultivados.

La proporción de bosques y olivos en un paisaje agroforestal heterogéneo tiende a favorecer la biodiversidad de la flora local y su importancia para refugio y alimento de aves y polinizadores, mientras que la mayor proporción de superficie agrícola y viñedos reduciría la riqueza de las avrenses. La presencia de masas forestales y la conservación de áreas de vegetación natural o seminatural podrían beneficiar la biodiversidad de flora y fauna de estos agrosistemas intensivos. Futuros estudios son necesarios para aportar más conocimiento en la relación entre la heterogeneidad del paisaje en las viñas del Penedès, y la diversidad de las especies y sus servicios ecosistémicos.

Para obtener los beneficios que conlleva una mayor biodiversidad de las arvenses en el viñedo, tanto de la cubierta del suelo como de los servicios ecosistémicos, se propone llevar a cabo laboreos reducidos, gestionando cubiertas vegetales temporales de especies silvestres o bien cubiertas permanentes mediante la siembra de mezclas de semillas gestionadas, terminadas con siega. Se puede recomendar una reducción del laboreo siempre que no comprometa la viabilidad económica del viñedo a causa de la menor producción.

REFERENCIAS

• Bruggisser, O.T, Schmidt-Entling M.H; Bacher, S. 2010. Effects of vineyard management on biodiversity at three trophic levels. Biological conservation 143, pag 1521-1528

RESPUESTA A LA INFECCIÓN POR CARBÓN VESTIDO (TILLETIA CARIES) DE UNA COLECCIÓN DE VARIEDADES LOCALES DE TRIGO BLANDO (TRITICUM AESTIVUM) DEL PAÍS VASCO Y ESTRATEGIA DE CONTROL

Ruiz de Arcaute Rivero R 1, Ortiz Barredo A

NEIKER – Tecnalia – Campus Agroalimentario de Arkaute, 01192 Arkaute (Álava)
1ruizdearcaute@neiker.eus – 608 963 505

RESUMEN: Se presentan los resultados preliminares del comportamiento de algunas variedades locales de trigo blando evaluadas frente a la infección del hongo denominado carbón vestido (Tilletia caries o T. tritici) y el efecto del cobre en la semilla como método de control. Este hongo está presente habitualmente en las zonas de cultivo del País Vasco, infectando los trigos sembrados sin tratamiento en la semilla cuando se dan condiciones ambientales adecuadas en las primeras etapas del cultivo, y afecta especialmente a los productores ecológicos cuando utilizan para siembra partidas que contienen granos contaminados.

Durante la campaña 2016-2017 se ha ensayado en la finca experimental ecológica situada en el centro NEIKER de Arkaute (Álava) una colección de 17 variedades locales de trigo blando (Triticum aestivum ssp. vulgare L.) con el objetivo de valorar su comportamiento frente a la infección del hongo Tilletia caries (DC.) Tul. & C. Tul. (Carbón vestido). El ensayo se realizó de acuerdo a un diseño de bloques completos al azar con dos repeticiones en micro-parcelas de 10 m2 con dosis de siembra de 350 semillas/m2 incluyendo en el ensayo la variedad Rex como testigo por su buen comportamiento en condiciones de infección en ensayos previos. En todas las parcelas se introdujeron 0,3 g de semillas infectadas con el hongo para asegurar que la infección tuviera lugar.

Se presentarán los resultados de la incidencia de la infección en la cosecha, valorando las diferencias obtenidas en el comportamiento varietal y en cuanto al tratamiento.

Palabras clave: carie del trigo, “common bunt”, “Heritage Cereals”, trigo “Paysannes”
EXPERIENCIAS EN INCORPORACIÓN DE ESPECIES NATIVAS DE CULTIVO DE COBERTURA Y FLORA AUXILIAR EN VIÑEDOS ORGÁNICOS DE CHILE CENTRAL

Pino C¹, Barbosa O², Larraín J¹, Torres C¹, Salazar A¹, Carter M², Moreno N¹

¹Centro I+D en Agroecología. Carrera 164 of. 6. Curicó, Región del Maule, Chile
cpino@agroecologia.cl +569752326010
²Instituto de Ecología y Biodiversidad. Las Palmeras 3425, Ñuñoa, Región Metropolitana, Chile
olgabarbosa@gmail.com

RESUMEN: La experiencia se enmarca dentro de un contrato asociativo I+D realizado entre 2015-18, en viñas Veramonte, Odfjell, Emiliana, Caliterra y Cono Sur, en el centro sur de Chile, cuyo objeto fue conocer el desarrollo y evaluación de servicios ecosistémicos en base a biodiversidad funcional usando cultivos de cobertura y flora auxiliar nativa en sistemas vitícolas. Siendo un trabajo inédito que busca alternativas al uso de coberturas y flora exótica en cabeceras de viñedos y corredores biológicos. Se realizó una exploración bibliográfica de alternativas de uso de flora nativa, se colectaron especies nativas en cerros y terrenos circundantes a viñedos, se propagaron y domesticaron 12 especies de cobertura en unidades de propagación y se evaluaron 10 especies arbustivas de cabecera en viñedos establecidos. Observándose diferencias en variables fenotípicas entre especies nativas de cobertura en Asimilación neta, Eficiencia del uso de agua y tiempo de germinación, siendo en general de buen desempeño especies del género Hordeum, Clarkia, Gilia, Phacelia, Amsinckia y Camissonia, mientras que en flora auxiliar se ven tendencias favorables en relación a regulación de plagas hacia el interior del viñedo, entre septiembre y marzo. Cuyo desempeño se evaluó satisfactoriamente a través de indicadores agroecológicos y modelo conceptual, sin relación entre variables de regulación hídrica y biótica, en relación al vigor de la vid.

Palabras clave: diversificación funcional, manejo agroecológico, servicios ecosistémicos
OÍDIO (LEVEILLULA TAURICA (LÉV.) ARN.), ENFERMEDAD EMERGENTE POTENCIALMENTE DANÍNA EN PIMIENTO ECOLÓGICO

Morales-Manzo II 1, Fita AM 1, San Bautista A 2, Rodríguez-Burruezo A 1

1Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Edificio 8E, Acceso J.
2Departamento de Producción Vegetal. Universitat Politècnica de València (UPV). Camino de Vera s/n E-CP 46022.
adrodbur@doctor.upv.es

RESUMEN: El pimiento (Capsicum annuum L.) está considerado una de las hortícolas más importantes y un producto de exportación de alto retorno económico para España. En los últimos años, debido a la combinación de varios factores como el cambio climático, el monocultivo o el uso cada vez más limitado de fitosanitarios, un nuevo agente patógeno está cobrando gran importancia en este cultivo: el oídio (L. taurica) o mildiu polvoso, cenicilla u oidiopsis. Se trata de un hongo biótrofo endosimbiótico obligado que pertenece al grupo de los ascomicetes, afectando el rendimiento y la calidad. Esta infección fúngica, focalizada en las hojas, tiene muchos hospedantes y un amplio rango de cultivos para dañar. Como un hongo endosimbiótico, es difícil su erradicación una vez que el micelio ha crecido dentro de la hoja. Algunas veces, se presenta también la defoliación como una respuesta hiperensible (RH) ante la infección. La situación climática cambiante y límites cada vez mayores hacia los fitosanitarios en pos de una agricultura con menor impacto ambiental, hacen necesaria la búsqueda de fuentes de resistencia genética y el desarrollo de programas de mejora vegetal, en particular en producción ecológica. En esta contribución se revisan las principales estrategias de fitomejoramiento y manejo agronómico del cultivo para abordar este nuevo reto en los próximos años. Así, están cobrando importancia el número de estudios y cribados para resistencias y factores genéticos implicados en las mismas, así como prácticas agronómicas y estudios para el aporte racional y limitado de azufre.

Palabras clave: cambio climático, Capsicum annuum, fitomejoramiento, manejo agronómico, oidiopsis.

INTRODUCCIÓN

El pimiento (C. annuum) está considerado entre los cultivos hortícolas más importantes a nivel mundial, siendo el segundo lugar por área cultivada entre las solanáceas (FAOSTAT, 2016) y como un producto de exportación de alto retorno económico para España, tanto en fresco, encurtido o seco y en polvo (MAPA, 2018). Este cultivo ha sido amenazado por diferentes patógenos desde hace años, pero existe una amenaza creciente, impulsada por el cambio climático y los monocultivos, especialmente dentro de los sistemas de cultivo protegido en el sureste del país. La amenaza es el oídio (L. taurica), también conocido como mildiu polvoso, cenicilla u oidiopsis, un hongo biótrofo endosimbiótico obligado patógeno de plantas que pertenece al grupo de los ascomicetes, afectando al rendimiento y la calidad de los frutos. Esta infección fúngica que está focalizada en las hojas tiene muchos hospedantes, teniendo una baja especificidad y amplio rango de cultivos para dañar. El manejo común de la infección es mediante tratamientos preventivos, con aplicaciones mensuales de fungicidas foliares o control biológico mediante hongos y bacterias antagonistas. Como un hongo endosimbiótico, es difícil su erradicación una vez que el micelio ha crecido dentro del hospedador (las hojas).

Manejo agronómico en sistemas convencionales y orgánicos

Se recomiendan diferentes prácticas agronómicas generalistas preventivas como evitar la siembra de cultivos jóvenes (plántulas) próximos a otros más viejos e infectados que, aunque pertenezcan a otras familias, el amplio rango de hospedantes que abarca el oídio no limita su potencial infección. También, si se conoce la época más frecuente de infección, hacer una siembra temprana si las condiciones lo permiten, ganando de esta manera tiempo al pico de desarrollo de la infección. Otra alternativa puede ser establecer una densidad de siembra adecuada y eliminar las hojas basales para estimular la aireación, en especial cuando se empiecen a ver síntomas en el cultivo (Palti, 1971). Además, existen diferentes tratamientos para su control, tanto en cultivo convencional como ecológico. Algunas de las opciones comunes autorizadas se recogen en los Cuadros 1 y 2, respectivamente.

<table>
<thead>
<tr>
<th>Materia activa</th>
<th>Presentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZOXISTROBIN</td>
<td>12, 20 y 25%</td>
</tr>
<tr>
<td>DIFENOCONAZOL</td>
<td>12.5%</td>
</tr>
<tr>
<td>TEBUCONAZOL</td>
<td>20%</td>
</tr>
<tr>
<td>CIPROCONAZOL</td>
<td>0.8 y 10%</td>
</tr>
<tr>
<td>BUPIRIMATO</td>
<td>25%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materia activa</th>
<th>Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azufre elemental</td>
<td>Sublimación de azufre en plantaciones con antecedentes o cuando aparecen los síntomas</td>
</tr>
<tr>
<td>Compuestos de cobre</td>
<td>Hidróxido de cobre, oxiclururo de cobre, óxido de cobre, caldo bordelés y sulfato tribásico de cobre</td>
</tr>
<tr>
<td>Equisetum arvense L.</td>
<td>Extractos de la planta rociados en aplicaciones foliares.</td>
</tr>
<tr>
<td>Hidroclorhidrato de quitosano</td>
<td>Rociado en soluciones de agua</td>
</tr>
<tr>
<td>Hidrogenocarbonatos de potasio y de sodio</td>
<td>También denominados bicarbonato de potasio y de sodio, rociado en soluciones de agua</td>
</tr>
<tr>
<td>Lactosuero</td>
<td>Rociado en soluciones de agua.</td>
</tr>
<tr>
<td>Lecitinas</td>
<td>Rociado en soluciones de agua.</td>
</tr>
</tbody>
</table>

No obstante, la situación climática cambiante y los límites legales y cada vez mayores hacia los fitosanitarios en pos de una agricultura de menor impacto ambiental, hace necesaria la búsqueda de fuentes de resistencia genética y el desarrollo de programas de mejora vegetal. De hecho, incluso dentro de la agricultura ecológica se busca un manejo agronómico con menor aporte de fungicidas como el azufre (S) o el cobre (Cu), incluso estando permitidos, con objeto de ajustarse a la filosofía de mínimo impacto ambiental. No sólo en pimiento, sino también en otras hortícolas.

En el caso del S, existe evidencia que el uso excesivo de éste disminuye la mineralización del nitrógeno (N) y del carbono (C), cuando las aplicaciones superan los 10 kg ha⁻¹. Además, el comportamiento en el suelo del S puede ser problemático, al tener una baja movilidad e insoluble en el agua, permaneciendo en él por mucho tiempo. Cuando llega a aguas superficiales, es acumulado en los sedimentos. Es tóxico tanto para algas verdes y pulgas de agua, como para varios artrópodos terrestres depredadores naturales. Entre estos últimos se ha identificado a Amblyseius spp, el cual es una forma de control para ácaros, los cuales no tienen otra forma de control aprobada en sistemas de producción orgánica, siendo así la única opción para mantener un balance natural (De Kok y Schnug, 2005).

Situación de la mejora vegetal respecto al patosistema Oídio - Pimiento.

Se han realizado varios intentos por producir variedades de pimientos resistentes al oídio, teniendo tres enfoques principales: 1) búsqueda y análisis de loci cuantitativos para el carácter (QTL, por sus siglas en inglés)
desde diferentes fuentes de resistencia; ii) búsqueda y análisis de genes S (de Susceptibilidad) del “Locus O de resistencia a Mildiu” (MLO, por sus siglas en inglés) y iii) cribados para buscar nuevas fuentes de resistencia. En el primer enfoque, gracias a la secuenciación de clones de cDNA de tomate (Ganal et al. 1998), en 2002 fue posible construir un mapa de ligamiento saturado del pimiento (Lefebvre et al., 2002). Con este mapa y la identificación por Bai et al. de un QTL en tomate relacionado con la resistencia al oídio (Bai et al., 2003), se identificaron cinco QTLs (P5, P6, P9, P10 y P12) relacionados con la resistencia al oídio en pimiento (Lefebvre et al., 2003). Por otro lado, en 2016 y 2017, se otorgaron dos patentes en Estados Unidos, respectivamente, la US9351451B2 para Eggink et al. (Rijk Zwaan, compañía de semillas) con la introgresión de un QTL (grupo de ligamiento, LG 1/8) que explicaba más del 57% de la variación fenotípica pero de origen no mencionado; y la US9689045B2 para Gabor et al. (Seminis, compañía de semillas) aparentemente con otro QTL del parental PBC167. Este enfoque, es difícil y costoso para ser llevado a cabo debido al tiempo que toma y el laborioso trabajo que implica la introgresión de QTLs en general. Aunque actualmente no hay tal cual variedades de pimiento resistentes disponibles para el agricultor y mucho menos enfocadas al productor orgánico, existen variedades con una tolerancia media en el mercado. En el Cuadro 3 se mencionan algunas de estas variedades comerciales.

Cuadro 3. Material vegetal (pimiento) comercial disponible en España en la actualidad con tolerancias medias al oídio.

<table>
<thead>
<tr>
<th>Compañía</th>
<th>Variedades tolerantes</th>
<th>Tipo Resistencia - Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enza Zaden</td>
<td>E20B.10242, E20B.10247, E20B.10269 y E20B.10270</td>
<td>Resistencia intermedia *5 fuentes de resistencia, poligénico</td>
</tr>
<tr>
<td>Sur Seeds</td>
<td>Capitán</td>
<td>Resistencia intermedia</td>
</tr>
<tr>
<td>Syngenta</td>
<td>Abakara, Alonso, Angus, Beniel, Bily, Gacela, Kabuki, Kiruna, Miyabi y Yazir</td>
<td>Resistencia intermedia</td>
</tr>
</tbody>
</table>

Por otro lado, el segundo enfoque fue iniciado por Zheng (2012), y fue posible gracias al conocimiento previo en Arabidopsis thaliana L., arroz (Oryza sativa L.), cebada (Hordeum vulgare L.), guisante (Pisum sativum L.), maíz (Zea mays L.) y vid (Vitis vinifera L.), donde habían sido identificados varios genes MLO. Al realizar análisis filogenéticos con estas secuencias y compararlas con las obtenidas en esa misma investigación de tomate cherry (Solanum lycopersicum var. cerasiforme (Dunal) D.M. Spooner, G.J. Anderson & R.K. Jansen) fueron identificados diferentes clados, siendo el clado V donde se encontraban agrupados los homólogos MLO necesarios para que el patógeno pudiera infectar a su hospedero, respectivamente. Después se realizó una búsqueda bioinformática por similitudes en el genoma del pimiento para estos genes. A partir de los resultados se seleccionaron dos como genes candidatos, CaMlo1 y CaMlo2. Aunque ambos estaban relacionados con la resistencia al oídio, se realizó el silenciamiento de ambos para probar la hipótesis de resistencia. En cada experimento hubo evidencia de que el silenciamiento de CaMlo2 tenía un efecto mayor que el de CaMlo1 contra el oídio, pero también teniendo un detrimento en la eficacia biológica (fitness) de los mutantes CaMlo2 (plantas enanas). Después de esto, la investigación se ha ampliado para incluir más cultivos del grupo de las solanáceas como la berenjena, la patata y el tabaco (S. melongena L., SmMlo; S. tuberosum L., StMlo y Nicotiana tabacum L., NtMlo, respectivamente), incrementando así la amplitud del análisis (Appiano et al., 2015).
Por último, el tercer enfoque, referente al trabajo de cribado para el descubrimiento de nuevas y diferentes formas de resistencia, es un trabajo prácticamente continuo a nivel internacional desde hace décadas, si bien el número de estudios se ha incrementado considerablemente en los últimos años, siendo principalmente las regiones del mediterráneo, oriente medio y el sudeste asiático las áreas con mayor interés en su investigación (Palti, 1971; Ullasa, et al. 1981; Deshpande et al. 1984; Ravindra, 1992; Allagui, 1993, Özer, 2018), así como Brasil donde se han evaluado una plétera de accesiones, incluyendo C. annuum y otras especies relacionadas como C. baccatum y C. chinense, encontrando materiales interesantes de probada cruzabilidad hacia C. annuum (Blat et al., 2005a, 2005b, 2005c y 2006).

Otro caso que vale mencionar es el mapa de ligamiento publicado por Jo et al. 2017), donde se identificó un gen candidato en el cromosoma 4, estableciendo una hipótesis sobre su origen. Tras la secuenciación, comparación y análisis bioinformáticos, concluyeron que era una introgresión desde C. baccatum.

Como se ha establecido, existen diferentes fuentes resistencia al oídio, ya sean homólogos de genes MLO o QTLs, dentro del reino vegetal y en especial dentro del grupo de la solanáceas, pero existen vacíos en el conocimiento dentro del género Capsicum por explorar y, además, comprender sobre el rol de estos genes a distintos niveles como el transcriptómico o el metabolómico.

AGRADECIMIENTOS

El presente trabajo ha sido parcialmente financiado por el proyecto INIA RTA2014-00041-C02-02, fondos FEDER. Iván Ilich Morales Manzo agradece la concesión de una beca predoctoral a Conacyt-Gobierno del Estado de Puebla 2015.

REFERENCIAS

RECONVERSIÓN A AGRICULTURA ECOLÓGICA DE UNA FINCA HORTÍCOLA DE 4.59 HECTÁREAS EN CORTES (NAVARRA)

Continente J, Virto I, De Soto I, Enrique A

Campus de Arrosadía. E-31.006 Pamplona (Navarra)
alberto.enrique@unavarra.es

RESUMEN: Se presenta un estudio para conversión de una explotación hortícola de 4.59 has a manejo ecológico, en la localidad navarra de Cortes.
El objetivo consiste en planificar la rotación de cultivos a seguir, diseñar el nuevo manejo que se adoptará al trabajar en régimen ecológico y comparar económicamente el resultado esperado con la nueva situación, frente a si se continuara con la agricultura tradicional. En ambos casos la producción obtenida se vende a congeladoras de la zona.
Para adoptar la solución se hace un estudio climático de la zona, otro edafológico del propio suelo de la finca, la normativa que hay que seguir en agricultura ecológica, las características de los cultivos que se implantan en la rotación (trigo, cebada, maíz, habas, veza, brócoli y calabacín), la fertilidad del suelo y el programa de fertilización propuesto, las opciones de lucha frente a plagas y enfermedades (ligado con la incorporación de setos y bandas floridas), el sistema de riego adoptado y como conclusión una comparación de los flujos de caja que cabe esperar entre las dos opciones: la de llevar a cabo el proyecto o seguir tal y cómo está ahora.
De los datos obtenidos comparando los “cashflow”, se puede observar que con el manejo ecológico de esa finca se obtienen mayores beneficios que en agricultura convencional, en cualquiera de las tres hipótesis de trabajo. Las hipótesis que se consideran son: que la producción fuera del 90%, 80%, y 60% de producción convencional. Consiguiendo rentabilidades superiores del 19,4% 70% y 96,6%.

Palabras clave: agricultura ecológica, biodiversidad, suelo, fertilidad

INTRODUCCIÓN

Se diseña la reconversión de una explotación de 4,59 hectáreas hortícola convencional a ecológico, ubicada en el término de Cortes de Navarra situada a orillas del río Ebro, a 5 kilómetros del casco urbano de la localidad. La explotación la constituyen dos parcelas (según el registro de la propiedad, aunque en la práctica la segunda de ellas se divide en dos) denominadas de aquí en adelante como: parcela 1 (Polígono 6, Parcela 418, de 1,25 ha), parcela 2 1 (Polígono 6, Parcela 417, de 1,85 ha) y parcela 2 2 (Polígono 6, Parcela 417, de 1,4 ha).

El objetivo es comparar económicamente la situación actual (en régimen tradicional) frente a la futura (en régimen ecológico). Para ello se hace un estudio de cómo se encuentra gestionada y se definen las prácticas agronómicas a aplicar bajo el manejo ecológico.

En primer lugar se hace un estudio edafológico para conocer las propiedades y cualidades del suelo (estructura, textura, densidad aparente, pH, conductividad eléctrica, contenido en carbonatos alcalinotérreos, CRAD y materia orgánica).

Después se lleva a cabo otro estudio climático para caracterizar el clima de la zona y determinar posibles restricciones (si las hay) para el cultivo de ciertas especies vegetales.

En tercer lugar se define la situación actual: qué se cultiva, dónde se comercializa, qué sistema de riego se ha adaptado, con qué maquinaria cuenta la explotación…
Partiendo de los datos de los estudios anteriores se define una rotación de cultivos que cumpla con dos hipótesis: desde el punto de vista medioambiental, ha de contribuir a incrementar el contenido en materia orgánica en el suelo; y desde el punto de vista económico, ha de ser tal, que genere ingresos constantemente y además sean cultivos de valor (hortícolas).

Definida la rotación de cultivos y con el estudio edafológico se hace un estudio de la fertilidad del suelo: balance de nutrientes y del contenido en materia orgánica.

Se proponen las técnicas de lucha frente a plagas y enfermedades: físicas, químicas (Reglamento (CE) n° 889/2008), biológicas y culturales.

En séptimo lugar y muy ligado con el apartado anterior se propone la introducción de setos y bandas floridas como reservorios de biodiversidad.

Se adoptan distintas técnicas para combatir malas hierbas.

Se implanta sistema de riego localizado de alta frecuencia.

Finalmente se concluye con el estudio económico, en éste se comparan los flujos de caja generados bajo uno y otro manejo, teniendo en cuenta diferentes escenarios de producción ecológica: 90%, 80% y 60% respecto a la producción bajo el régimen tradicional.

MATERIAL Y MÉTODOS

Para el estudio edafológico se toman muestras en las dos parcelas. Se analizan los siguientes parámetros:

a) Densidad aparente, Da:

\[
Da \left(\frac{g}{cm^3} \right) = \frac{\text{Masa suelo seco}}{\text{Volumen total}}
\]

b) Textura: siguiendo el método de Boyoucos, se determina el porcentaje de las distintas fracciones: arcilla, limo y arena.

c) Capacidad de Retención de Agua del Suelo, CRAD: siguiendo el criterio USDA, se determinan tres puntos: humedad a saturación, Hs; capacidad de campo, Cc; punto de marchitamiento, Pm. Finalmente se calcula la CRAD aplicando la siguiente ecuación:

\[
CRAD \ (mm) = (Cc - Pm) \ast Da \ast \text{espesor horizonte} \ast 10^{-1}
\]

d) pH: es una expresión molar de la concentración molar de iones H⁺. Este valor se llama acidez o pH actual. El método seguido consiste en hacer una mezcla de suelo y agua destilada en proporción 1:2 (20g de suelo con 40 ml de agua) y después se mide con un pHmetro, el cual habrá sido previamente calibrado con una solución tampón estándar.

e) Conductividad eléctrica, CE: mide la concentración de sales solubles en el suelo. Se basa en el hecho de que las disoluciones iónicas se caracterizan por conducir la corriente eléctrica de forma proporcional a su concentración. Con la misma solución que se prepara para medir el pH se mide la CE, con un aparato de medida conocido como conductivímetro.

f) Carbonatos alcalinotérreos, el carbonato cálcico, CaCO₃: desde el punto de vista agronómico es interesante saber de la presencia de caliza, porque afecta a la nutrición, la permeabilidad, estructura etc. Para medirla se seguirá el método del Calcímetro de Bernard.
g) Materia orgánica, MO(%): debido a los procesos de mineralización y humificación los suelos están sometidos a procesos de enriquecimiento y pérdida de M.O. Se hace un balance de las entradas y salidas de materia orgánica en el sistema agrícola y se busca el punto de equilibrio húmico (Urbano Terrón, 2010). Para determinar el contenido inicial de M.O se sigue el método Walkley-Black.

Las pérdidas, P:

\[
P \frac{[kg]}{[ha]} = M.O \text{ medida} \times \text{Velocidad mineralización}
\]

\[
= 10 \times \text{profundidad muestra} \times Da \times M.O
\]

\[
\times \text{Velocidad mineralización}
\]

Las ganancias, G: se deben a los aportes de los restos de cosecha, RF, y los fertilizantes orgánicos (F.O):

\[
G \frac{[kg]}{[ha]} = F.O + RF \times \text{materia seca (}) \times \text{coeficiente isohúmico}
\]

El balance, B:

\[
B = P - G
\]

El punto de equilibrio húmico de los suelos:

\[
mo^* = \left(\frac{rc \times ms \times K1}{} + \frac{fo \times ms' \times K1'}{} \right)
\]

\[
10^*2 \times p \times da \times Vm
\]

Donde: rc es la cantidad de residuos dejados por las cosechas (t/ha); ms es la materia seca de los residuos (%); K1 es el coeficiente isohúmico de los residuos de cosechas; fo la cantidad de fertilizantes orgánicos aportados (t/ha); ms’ la materia seca de los fertilizantes orgánicos aportados (%); K1’ coeficiente isohúmico de los fertilizantes orgánicos; p la profundidad considerada del suelo (m); da el peso específico del suelo (t/m³); Vm la velocidad de mineralización (%anual); mo* se expresará en tanto por ciento.

La clasificación climática se hace siguiendo el modelo propuesto por Papadakis, para ello hace falta manejar datos de precipitación, temperatura y evapotranspiración de la estación meteorológica más cercana: Buñuel (Navarra).

El sistema de clasificación agroclimatía de Papadakis es útil para saber si determinados cultivos pueden ser o no cultivados en una región concreta. Tiene en cuenta la ecología de los cultivos: requerimientos de los cultivos en cuanto a la resistencia a heladas, necesidades hídricas y las necesidades de temperatura en invierno y en verano. A cada uno de esos tres factores se les asigna una sigla y el conjunto de las tres define la fórmula climática de Papadakis.

Para definir la rotación de cultivos se van tener en cuenta diferentes aspectos: ¿Qué cultivos se implantan?, ¿Cuáles cumplen con un fin comercial y cuáles como abono verde?, ¿Se aportan enmiendas orgánicas?, ¿Cuál es el manejo con los restos de cosecha?... Se proponen los siguientes criterios (algunos derivan del horticultor):

a) Que todos años se cultive brócoli.

b) Que todos años se cultive calabacín.

c) Rotar constantemente con leguminosas, sobre todo antes de maíz y calabacín (cultivos muy exigentes en nitrógeno).

d) El año que sólo haya una hoja de brócoli procurar que sea una de las grandes.
e) La veza y las habas generalmente hacen un ciclo de octubre a mayo, pero como son cultivos para envolver se permite un margen de flexibilidad reduciendo el ciclo de noviembre a abril.

f) El brócoli también tendrá flexibilidad en el ciclo, pudiendo ser un ciclo largo (septiembre a final de febrero) o corto (de finales de julio/primeros de agosto a finales de octubre/principio de noviembre).

g) Durante los dos años que dura la conversión el objetivo será preparar la explotación mediante aportes de materia orgánica quedando en un segundo plano la rentabilidad económica de la finca. En esos años los beneficios residen en los cultivos que se comercialicen no como ecológicos sino como “residuo cero”.

h) Cumplir con la normativa del REGLAMENTO (CE) 889/2008 por la que se establece un límite de 170 kg N/ha y año que se puede aportar como enmienda orgánica.

Respecto a los dos cultivos hortícolas de la rotación: el brócoli se regará por inundación, por lo que podrá cultivarse en todas las hojas, sin embargo, el calabacín se regará con riego localizado lo que limita la posibilidad de cultivarlo sólo en las parcelas 1 y 2.1 que son las que están preparadas para instalar el sistema de goteo.

En quinto lugar se hace un estudio sobre fertilización. Se calcula el balance de nutrientes y de materia orgánica en el suelo a futuro. Partiendo de la rotación propuesta y de los valores propuestos en los cuadros 1 y 2 (INTIA) se calcula el balance de nutrientes. Para el balance de la materia orgánica en el suelo se calcula el contenido de humus, que es la materia orgánica en su estado más estable, inicial y el resultado a final de la rotación, (Urbano Terrón, 2010).

\[
\text{Humus inicial} \left(\frac{t}{ha}\right) = M.O(\%) \times \text{prof. radicular} \times 10000 \left(\frac{m2}{m3}\right) \times Da \left(\frac{tm}{m3}\right)
\]

\[
\text{Humus perdido} \left(\frac{t}{ha y \, \, \, \, \, \, \, \, \, \, ano}\right) = \text{Humus inicial} \times \text{Velocidad mineralización}
\]

\[
\text{Humus aportado} \left(\frac{t}{ha y \, \, \, \, \, \, \, \, \, \, ano}\right) = \text{Materia fresca} \left(\frac{t}{ha}\right) \times \text{Materia seca (\%)} \times K1
\]

Cuadro 1. Exigencias de nutrientes (kg/ha)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P<sub>2</sub>O<sub>5</sub></th>
<th>K<sub>2</sub>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigo</td>
<td>150</td>
<td>60</td>
<td>140</td>
</tr>
<tr>
<td>Cebada</td>
<td>130</td>
<td>55</td>
<td>125</td>
</tr>
<tr>
<td>Maíz</td>
<td>325</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>Calabacín</td>
<td>215</td>
<td>115</td>
<td>275</td>
</tr>
<tr>
<td>Brócoli</td>
<td>195</td>
<td>65</td>
<td>325</td>
</tr>
</tbody>
</table>
Cuadro 2. Aportes de nutrientes (Kg/ha)

<table>
<thead>
<tr>
<th>Entradas</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enmiendas orgánicas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estiércol ovino (25 t/ha)</td>
<td>167,5</td>
<td>112,5</td>
<td>280</td>
</tr>
<tr>
<td>Estiércol ovino (10 t/ha)</td>
<td>67</td>
<td>45</td>
<td>112</td>
</tr>
<tr>
<td>Abonos verdes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veza</td>
<td>150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habas</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restos cosechas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigo</td>
<td>24</td>
<td>4</td>
<td>48</td>
</tr>
<tr>
<td>Cebada</td>
<td>20</td>
<td>4</td>
<td>44</td>
</tr>
<tr>
<td>Maíz</td>
<td>120</td>
<td>36</td>
<td>180</td>
</tr>
<tr>
<td>Calabacín</td>
<td>80</td>
<td>35</td>
<td>100</td>
</tr>
<tr>
<td>Brócoli</td>
<td>145</td>
<td>45</td>
<td>205</td>
</tr>
</tbody>
</table>

Cuadro 3. Valor humígeno de los fertilizantes orgánicos (K1) (Urbano, 2010)

<table>
<thead>
<tr>
<th></th>
<th>K1</th>
<th>%m.s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estiércol bien descompuesto</td>
<td>0,45</td>
<td>0,34</td>
</tr>
<tr>
<td>Residuos cosecha (secos)</td>
<td>0,15</td>
<td>0,75</td>
</tr>
<tr>
<td>Residuos de cosecha verdes</td>
<td>0,25</td>
<td>0,175</td>
</tr>
</tbody>
</table>

Cuadro 4. Aportes de M.O (t/ha) de los residuos de cosecha

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>t/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restos cosecha</td>
<td></td>
</tr>
<tr>
<td>Brócoli</td>
<td>47,25</td>
</tr>
<tr>
<td>Maíz</td>
<td>10</td>
</tr>
<tr>
<td>Calabacín</td>
<td>20</td>
</tr>
<tr>
<td>Trigo</td>
<td>4</td>
</tr>
<tr>
<td>Cebada</td>
<td>4</td>
</tr>
<tr>
<td>Abono verde</td>
<td></td>
</tr>
<tr>
<td>Habas</td>
<td>25</td>
</tr>
<tr>
<td>Veza</td>
<td>25</td>
</tr>
</tbody>
</table>

Respecto al manejo de plagas y enfermedades hay que alcanzar el equilibrio del ecosistema y ello implica tolerar la presencia (en cifras bajas) de poblaciones de organismos plaga y también de sus enemigos, consiguiendo así que el ecosistema se autorregule. Se recurrirá métodos de control de distintas categorías: físicos, químicos, biológicos y culturales (Fontanet i Roig & Vila Pascual, 2014):

a) Métodos físicos: uso de trampas-cebo, o sustancias repulsivas

b) Métodos químicos: ligada con lo anterior, consiste en emplear sustancias químicas de origen natural, como
las feromonas que sirven para tramppear y confundir sexualmente. Otras como el cobre o el azufre que también se permiten usar por ser de origen mineral.

c) Métodos biológicos: es el principal método de lucha, puede ser de varios tipos: mediante el uso de depre-
dadores naturales y parasitoides que atacan a los parásitos de las plantas. Hay que tratar de procurar que hacer
de la explotación un entorno atractivo a éstos favoreciendo su establecimiento en ella. Son organismos de distinta
clase: insectos y ácaros (fitoséidos, míridos, antocóridos, coccinéídos, crisopas…), mamíferos, aves, microorganis-
mos (Bacillus thuringiensis, spinosad, Beauveria bassiana…). Otra opción es aplicar la técnica de biofumigación
que consiste en controlar patógenos por acción de las sustancias tóxicas que se liberan en el proceso de descom-
posición de algunas plantas (en especial crucíferas) lo cual ya se ha comentado anteriormente. También se pue-
den emplear preparados de origen vegetal, que son biopreparados de plantas que se usan por contener alguna
sustancia insecticida o fortaleciente para las plantas (ortiga, caléndula, diente de león…) también se pueden hacer
tratamientos con piretrinas y azadiractina de origen natural.

d) Métodos culturales: empleo de variedades resistentes, practicar rotaciones, hacer un manejo adecuado del
abanado (evitando el exceso de nitrógeno que estimula la presencia de pulgones) y colocar setos y bandas flori-
das para aumentar la biodiversidad.

La inserción de setos y bandas floridas en las lindes de la parcela serán de importancia porque además de
atraer enemigos naturales, atraen a las plagas favoreciendo así su puesta sobre ellos y resultándoles más fácil de
alcanzar a los auxiliares. Entre otras razones también interesan por contribuir a aumentar la biodiversidad, atraer
polinizadores y actuar de cortavientos. A la hora de plantarlos hay que cultivar plantas cuyas flores sean atractivas
para ellos, pintorescas, tratar de combinar plantas con distintas floraciones que abarquen a ser posible todos los
meses del año. Por ello, se alternarán crucíferas con leguminosas y con asteráceas. Mientras que el periodo inver-
nal quedará refugio en las especies que conforman los setos (Biurrun, 2014).

En la lucha frente a malas hierbas los métodos más eficientes son: la técnica de la rotación de cultivos (porque
así se consigue impedir que las mismas plantas adventicias se establezcan en la parcela: al no completar el ciclo
anual, no producen semillas o si producen semillas el año próximo habrá un cultivo diferente en la finca con el
que puede que no se desarrollen tan fácilmente y vean mermada su capacidad de supervivencia), el laboreo (en
especial la vertedera al enterrar en profundidad el banco de semillas del suelo, se reduce considerablemente la
cantidad de éstas en la capa superficial), uso de cubiertas inertes (el acolchado plástico biodegradable), laboreo
reducido inter-líneas (uso de máquinas binadoras entre las líneas de cultivo para eliminar las malas hierbas que
hubieran germinado)…

Como punto final antes de pasar a hacer el balance económico, se considera oportuno comentar qué estrate-
gia de riego se va a adoptar: riego por inundación para todos los cultivos a excepción del calabacín en el que
se implantará riego localizado de alta frecuencia. Los cálculos que se hacen para dimensionar el subsistema de
riego por goteo (Casalí, 2017) requieren del programa Autocad (para diseñar), Excel (para calcular) y Qgis (para
obtener los datos del terreno).

Por último se valora económicamente si al agricultor le conviene o no llevar a cabo la reconversión. Al no tener
que llevar a cabo ninguna obra ni ninguna inversión en maquinaria no se hace una valoración económica como
tal, pues no hay una amortización que se tenga que contemplar, sino que se hace una comparación de los dife-
rentes flujos de caja que se producirán practicando la agricultura ecológica o la convencional.

Los datos se han obtenido de distintas fuentes: Cooperativa Agrícola de Cortes (Navarra), Ultracongelados
Virto, Congelados Navarra, Lonja del Ebro, invernaderos INVERPRAO, (MAPAMA, 2018), (Gobierno de Navarra,
2014) y CPAEN.

En convencional es sencillo evaluar la rentabilidad de una cosecha, porque hay datos tanto del precio y canti-
dad de inputs necesarios como del precio y cantidad de las cosechas medias obtenidas, sin embargo no hay datos
de producción en ecológico, así que se plantean tres escenarios posibles:
- Hipótesis 1: se da un 60% de la producción que cabría esperar en convencional
- Hipótesis 2: se da un 80% de la producción que cabría esperar en convencional
- Hipótesis 3: se da un 90% de la producción que cabría esperar en convencional

A la hora de calcular el beneficio que se obtiene con cada cosecha no se tiene en cuenta el gasto en mano de obra propia (la del promotor), sí se tiene en cuenta el gasto de gasóleo, abonos, semillas, plantas, seguros etc.

En segundo lugar, una vez que se conoce el beneficio que se espera con cada cultivo, se calcula la cantidad de beneficios anuales que se van a generar en cada parcela, y ahí además del resultado de las cosechas también se incluyen otros gastos (contribución, amortización de la concentración, agua, inscripción en CPAEN, gastos en bandas floridas…) e ingresos (subvenciones).

Finalmente se calcula el beneficio que genera la explotación al año y también a lo largo de los cuatro años de rotación. Con estos datos se hace una comparación entre el balance económico en régimen tradicional y en régimen orgánico (tres hipotéticos casos).

RESULTADOS

En primer lugar se presenta un cuadro en el que se resumen los valores obtenidos en el estudio edafológico:

Cuadro 5. Propiedades físico químicas del suelo

<table>
<thead>
<tr>
<th>Estructura</th>
<th>Parcela 1</th>
<th>Parcela 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bloques subangulares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Densidad aparente (g/cm³)</td>
<td>1,64</td>
<td>8,58</td>
</tr>
<tr>
<td>Textura</td>
<td>Franca</td>
<td>Franca</td>
</tr>
<tr>
<td>pH</td>
<td>8,58</td>
<td>8,59</td>
</tr>
<tr>
<td>Conductividad (mS/cm)</td>
<td>0,527</td>
<td>0,373</td>
</tr>
<tr>
<td>CaCO₃ (%)</td>
<td>27,2</td>
<td>28,2</td>
</tr>
<tr>
<td>M.O (%)</td>
<td>2,079</td>
<td>3,307</td>
</tr>
</tbody>
</table>

En la parcela 1 el contenido de materia orgánica es bueno, pero habrá que tratar de aumentarlo puesto que según los valores que se presentan de pH, arcilla (19,2%) y carbonatos es algo escaso.

En la parcela 2 no hay problemas de ningún tipo, el contenido de materia orgánica es muy bueno.

El clima de la zona, según la clasificación Papadakis es “AvOMe”, en otras palabras: mediterráneo templado seco. Se caracteriza por ser un clima con inviernos fríos y veranos calurosos. La temperatura media anual es de 14.5 °C, mientras que la temperatura media del mes más caliente, en julio, es de 24ºC, por el contrario la temperatura del mes más frío, enero, es de 6ºC. El régimen anual de precipitaciones es de 376.5 mm, en el que el mes más húmedo es mayo con 45mm de lluvia y el más seco julio con 20mm. La evapotranspiración es elevada en la época estival de hasta 147.5mm lo que significa que va a hacer falta un aporte de agua mediante riego para satisfacer las necesidades hídricas de los cultivos. La rotación que se va a proponer en la que entran los siguientes cultivos: trigo, cebada, maíz, calabacín, brócoli, veza y habas; no presenta problemas agroclimáticos, por lo que bajo ese punto de vista no habrá limitaciones.

Actualmente la explotación está gestionada por un agricultor que cuenta con toda la maquinaria necesaria para llevar a cabo las labores de preparación del terreno, siembra, cosecha, aplicación de fertilizantes y fitosanitarios… Por lo que no va a ser necesario contemplar ninguna inversión en maquinaria para gestionarla de manera ecológica.
La explotación se encuentra en las proximidades del río Ebro, por lo que se inunda periódicamente, lo cual resulta muy favorable por la cantidad de sedimentos que se depositan con cada avenida. Fue sometida a un proceso de concentración parcelaria y se le entregó al propietario en el año 2010, tras este proceso se le asignaron dos sistemas de riego: por inundación y riego localizado. El agua proveniente del Canal Imperial de Aragón llega hasta ella a través de una acequia en la que se han colocado siete compuertas, pero además se colocó una tubería para la toma de agua subterránea.

Todo el proceso de comercialización es llevado a cabo por la Cooperativa Agrícola de Cortes, y así va a seguir contemplándose en el caso de pasar al régimen ecológico.

A continuación se muestra el plan de rotación propuesto: veza, brócoli, calabacín, trigo, habas, maíz y cebada. El primer cuadro se corresponde con los años de reconversión y el segundo define el plan que se establecerá una vez que la explotación sea considerada como ecológica, que será cíclico con una duración de 4 años. Las marcas representadas por una línea vertical de color rojo se corresponden con el momento en el que se aplican las enmiendas orgánicas que van a ser de 25 t/ha a excepción de la que se realiza el cuarto año en la parcela 2.1 que va a ser de 10 t/ha.

Cuadro 6. Plan de rotación durante los años de reconversión a A.E.

<table>
<thead>
<tr>
<th>Parcela</th>
<th>Superficie (ha)</th>
<th>AÑO 1 CONVERSIÓN</th>
<th>AÑO 2 CONVERSIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
<td>VEZA</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>1.85</td>
<td>CALABACÍN</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>1.4</td>
<td>VEZA</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 7. Plan de rotación de cultivos en A.E.

Sobre la fertilidad del suelo se lleva a cabo dos estudios: un balance de nutrientes y otro de materia orgánica para cada una de las parcelas. En las siguientes gráficas se aprecia que se obtienen unos resultados favorables: al balance nutricional es positivo para cada uno de los macroelementos analizados y el de materia orgánica también, tanto es así que a lo largo de la rotación se incrementará el contenido en humus, relacionado con respecto al volumen total del suelo: un aumento anual de un 0.083% en la parcela 1; un 0.036% en la parcela 2.1 y un 0.06% en la parcela 2.1.
Gráfica 1. Balance de nutrientes a lo largo de la rotación

Gráfica 2. Balance anual del contenido en M.O del suelo (%).

Para combatir las plagas y enfermedades se podrán aplicar productos fitosanitarios que estén autorizados por la normativa vigente (Reglamento (CE) nº 889/2008). Algunos ejemplos son los que se muestran en el cuadro que continúa, en el que se indica el nombre comercial la composición y el objetivo a controlar.

Cuadro 8. Productos fitosanitarios autorizados en A.E

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Composición</th>
<th>Uso para el control de:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heliosufre</td>
<td>Azufre 72%</td>
<td>Acaricida y fungicida (oidio)</td>
</tr>
<tr>
<td>Sergomil PM</td>
<td>Cobre 15%</td>
<td>Fungicida</td>
</tr>
<tr>
<td>AQ-10</td>
<td>Ampelomyces quisqualis M10 58%</td>
<td>Fungicida (oidio)</td>
</tr>
<tr>
<td>Vikin GO</td>
<td>Mn (1%) + Zn (1%)</td>
<td>Pulgón</td>
</tr>
<tr>
<td>Neem Azal-T/S</td>
<td>Azadiractina 1%</td>
<td>Orugas, pulgón, mosca blanca, trips, araña roja</td>
</tr>
<tr>
<td>Ultra-Prom</td>
<td>Aceite de parafina 54,6%</td>
<td>Ácaros, pulgón, mosca blanca</td>
</tr>
<tr>
<td>Cordalene</td>
<td>Bacillus thuringiensis v. kurstaki cepa EG 2348.24 mill. U.I./ml</td>
<td>Orugas de lepidópteros</td>
</tr>
<tr>
<td>Naturalis-L</td>
<td>Beauveria bassiana, Cepa ATCC 74040 2,3%</td>
<td>Mosca blanca, pulgón, trips, araña roja, gusano del alambre</td>
</tr>
</tbody>
</table>
La composición y dimensión de las infraestructuras ecológicas será la que sigue:

Bandas floridas: se colocarán en dos filas de 1 metro de ancho y 200 metros de largo cada una, distribuidas a lo largo de la divisoria que separa las parcelas 1, 2.1 y 2.2, respectivamente. Las especies vegetales que se sembrarán serán las propias que se encuentran en el producto comercial “RUSTIFLORE”, en el que hay semillas de: *Cosmos sulphureus*; *Coreopsis tinctoria*; *Helianthus annus*; *Zinnia elegans*; *Calendula officinalis*; *Cosmos bipinnatus*; *Crysantenum sp.*; *Centaurea cyanus*.

Setos: los setos se van a colocar alrededor de la parcela a una distancia entre ellos de 1 metro, distribuidos por la margen de la finca (que suma un total de 600 metros), a excepción de la parte que limita con el río. Las especies plantadas (por ser las más atractivas para auxiliares y por sus características morfo-fisiológicas): un 85% boj; 4.5% coronilla; 10% durillo y 0.5% madroño.

Cabe destacar que además de las infraestructuras ecológicas, todos años va a haber algún cultivo de leguminosas que va a ser un atractivo muy fuerte para los auxiliares, y la proximidad al río es otra de las ventajas porque en él hay cobijo para mucha fauna auxiliar por toda la vegetación espontánea de la orilla.

La técnica para combatir las malas hierbas será la siguiente: uso de acolchado plástico será muy útil en el cultivo de calabacín. Presenta más ventajas que las de impedir germinar hierbas, y es que se mantiene mejor la humedad en el suelo y la temperatura elevada. Se utiliza acolchado biodegradable que es el más respetuoso con el medio ambiente: al cabo de un año el 80% se habrá disipado en forma de CO₂ y el resto será materia orgánica. Por otra parte, respecto a la tarea de laborear inter-líneas: se recurrirá a la máquina binadora (ya disponible en la explotación) se trata de un apero que es lastrado por el tractor y se compone de un chasis sobre el que se colocan unos brazos flexibles con unas azadas. Los brazos van colocados a una distancia tal que cuando trabajan dejan un pasillo sin tocar (la línea de cultivo). Esta herramienta podrá emplearse en cultivos en líneas: brócoli y maíz (calabacín no es necesario al haber cubierta inerte y la línea descubierta no regarse, será muy fácil controlar las hierbas). Para los cultivos de abono verde no es necesario controlar las malas hierbas y en los cultivos cerealistas de trigo y cebada existen unas gradas de púas flexibles que se están utilizando, pero tampoco se considera un problema mayor las malas hierbas en ellos pues con la técnica del laboreo se controlan bastante hierbas hasta que estos germinan, crecen y cubren toda la superficie de la parcela.

Cabe destacar que la escarda en brócoli ha de realizarse pronto, a los 10 días del trasplante (cuando las semillas están todavía germinando) y así sucesivamente hasta que el propio cultivo cubre la superficie y ya al hacer sombra impiden la nacencia de la flora arvense.

Teniendo en cuenta las necesidades hídricas del cultivo (INTIA) y la capacidad de la unidad de riego (se ha calculado en 34.700 l/h en la parcela 2.1 y de 21.800 l/h en la parcela 1), se establece un programa de riego, para julio, de alrededor de 6 horas cada dos días.

En la gráfica 10 y el cuadro 9 se ve la diferencia de ingresos anuales, desde el primer año de reconversión, que es cuando todavía no se comercializa bajo el sello de ecológico y la merma en las producciones (ahí sí que se ha valorado que serán de un 60%, ya que la tierra todavía no es lo suficientemente fétil ni se ha establecido todavía la fauna auxiliar en la parcela) hará que el convencional sea más rentable que ecológico pues descendrían las cosechas pero se mantendrá el mismo precio (en cereal) o algo superior (en hortalizas comercializadas como “residuo cero”).
Cuadro 9. Resultado del ejercicio (€) bajo 4 manejos diferentes: convencional, ecológico (H1, H2, H3)

<table>
<thead>
<tr>
<th></th>
<th>Convencional</th>
<th>Ecológico (H1)</th>
<th>Ecológico (H2)</th>
<th>Ecológico (H3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Año 1 recoversión</td>
<td>11.973,37</td>
<td>9.196,4935</td>
<td>9.196,4935</td>
<td>9.196,4935</td>
</tr>
<tr>
<td>Año 1</td>
<td>14.825,02</td>
<td>15.870,538</td>
<td>22.791,438</td>
<td>26.252,1205</td>
</tr>
<tr>
<td>Año 2</td>
<td>13.889,15</td>
<td>18.347,9785</td>
<td>26.481,4085</td>
<td>30.548,2785</td>
</tr>
<tr>
<td>Año 3</td>
<td>15.575,66</td>
<td>17.677,4315</td>
<td>25.091,0515</td>
<td>28.797,9315</td>
</tr>
<tr>
<td>Año 4</td>
<td>11.257,16</td>
<td>14.412,324</td>
<td>20.555,639</td>
<td>23.627,389</td>
</tr>
</tbody>
</table>

Cuadro 10. Resultado del ejercicio (€/año) bajo 4 manejos diferentes: convencional, ecológico (H1, H2, H3)

Finalmente se hace una comparación gráfica de la rentabilidad económica que supondrá la rotación bajo cada uno de los escenarios, considerando el convencional como el punto de partida (100%).

Cuadro 11. Rentabilidad económica a lo largo de la rotación
Como se observa en las gráficas 3 y 4, practicando agricultura ecológica se va a lograr incrementar los beneficios de la explotación. Los primeros dos años serán problemáticos porque al no poder comercializar con el sello de producto biológico, la producción será baja, y el precio de venta será el mismo que en convencional (o sea barato). Una vez pasen los dos años de periodo de conversión que obliga la ley y estar registrado como productor ecológico el precio de venta de los productos se disparará y aunque la producción se reduzca hasta un 60% de lo que se venía obteniendo años antes, la rentabilidad de la explotación aumentará en un 20%, 70% según la hipótesis 2 y casi un 100% según la hipótesis 3.

CONCLUSIÓN

El paso de agricultura tradicional a ecológica es una posibilidad que hay que valorar, tanto por resultar económicamente viable (a priori) como por que los cambios en el manejo agronómico que hay que hacer de una explotación hortícola no difieren mucho de los que se precisa en el régimen convencional. El canal de comercialización puede parecer uno de los aspectos más conflictivos pero en este caso destinándolo todo a industria no ha supuesto un problema mayor. Otra de los grandes problemas que parecen surgir de inicio es el manejo de plagas y enfermedades. Al estar acostumbrados a la agricultura convencional parece inconcebible que se pueda cultivar sin productos químicos que erradiquen las plagas de la parcela, pero el problema pasa por ahí, por la mala costumbre. Hay que cambiar la concepción sobre el manejo de éste problema y hay que tratar de convivir con él, procurando mantenerlo siempre en niveles bajos y eso se consigue aumentando la biodiversidad, que es otro de los aspectos que no se favorecen con la agricultura tradicional como consecuencia del monocultivo. Otro de los factores que hay que valorar es el cuidado del suelo, en agricultura tradicional se sirven los nutrientes en su forma asimilable para las plantas, mientras, en agricultura biológica no. Hay que promover la actividad de vida en el suelo que consiga hacer de la materia orgánica fresca el alimento de las plantas, de modo que, volviendo a lo anterior: aumente la biodiversidad.

Se deduce que agricultura ecológica concibe la actividad agrícola como la perfecta conjunción entre: suelo, vida, agua. En la tradicional cada uno se considera de forma independiente de modo que no se favorecen los nexos entre ellos, resultando en una serie de problemas que a futuro van a ser graves las consecuencias.

REFERENCIAS

¿CÓMO AFECTA A LA ABUNDANCIA Y DIVERSIDAD DE INSECTOS EL TIPO DE CUBIERTA VEGETAL EN VIÑEDO?

Sáenz-Romo MG¹, Veas-Bernal A¹, Vicente-Díez I¹, Carvajal-Montoya LD¹, Martínez-García H¹, Ibáñez-Pascual S², Marco-Mancebón VS¹, Martínez-Villar E¹, Pérez-Moreno I¹

¹Departamento de Agricultura y Alimentación. Universidad de La Rioja. C/ Madre de Dios 53. E-26006-Logroño. La Rioja
²Departamento de Viticultura. Instituto de las Ciencias de la Vid y el Vino (ICVVI). Finca La Grajera. Carretera de Burgos, km 6, E-26071. Logroño, La Rioja
masaeni@unirioja.es

RESUMEN: El uso de cubiertas vegetales es una técnica interesante para el mantenimiento sostenible del suelo y el manejo del hábitat, al favorecer el aumento de la diversidad funcional en el agroecosistema. Se ha evaluado el efecto de dos tipos de cubierta vegetal, una espontánea y otra florística sembrada, sobre la abundancia y diversidad de insectos en un viñedo de La Rioja (España) durante los años 2016 y 2017.

La vegetación de la cubierta espontánea estuvo dominada por plantas dicotiledóneas (62%). La cubierta floristica estuvo compuesta mayoritariamente por Calendula officinalis, Centaurea cyanus y Eschscholzia californica. Para capturar los insectos se utilizó un aspirador Insecta-Zooka durante dos minutos sobre la cubierta vegetal. Las muestras fueron recogidas cada dos semanas, desde mayo a septiembre.

Se capturó un total de 4.888 ejemplares, que fueron clasificados en 19 órdenes y 72 familias. En la cubierta espontánea se encontró un número significativamente mayor de insectos (solo en 2017). Con relación a los depredadores y parasitoides, se observaron diferencias significativas a nivel de la familia Cecidomyiidae (solo en 2016), así como en Braconidae y Scelionidae (solo en 2017), siendo superiores en la cubierta espontánea. En cuanto a los fitófagos, también la cubierta espontánea atraía significativamente a las familias Cicadellidae y Rhopalidae (ambas solo en 2016). Sin embargo, esas diferencias no fueron significativas cuando se comparó la abundancia de grupos con diferentes hábitos tróficos (depredadores, parasitoides, fitófagos y polinizadores). Por otro lado, los índices de biodiversidad fueron superiores en la cubierta espontánea solo en Coleoptera y Heteroptera.

Palabras clave: biodiversidad, cubierta espontánea, cubierta florística, depredadores, enemigos naturales, parasitoides
IMPACTO DE LA IMPLANTACIÓN DE CUBIERTAS VEGETALES EN VIÑEDOS RIOJANOS EN LA DISTRIBUCIÓN NATURAL Y ACTIVIDAD DE LOS NEMATODOS ENTOMOPATÓGENOS

Blanco-Pérez R1,2, Sáenz-Romo MG1, Vicente-Diez I2, Ibáñez-Pascual S2, Martínez-Villar E1, Pérez-Moreno I1, Marco-Mancebón VS1, Campos-Herrera R2

1Departamento de Agricultura y Alimentación, Universidad de La Rioja, Calle Madre de Dios, 51, E-26006, Logroño
2Instituto de Ciencias de la Vid y del Vino (CSIC-Universidad de La Rioja-Gobierno de La Rioja), Finca La Grajera, Ctra. de Burgos Km. 6, E-26007 Logroño
E-mails: rublanco@unirioja.es; raquel.campos@icvv.es
teléfono : +34 941 894980 ext: 410102; Fax: +34 941 899 728

RESUMEN: La viticultura, amenazada por numerosos fitófagos, sigue los principios del manejo integrado de plagas. Entre las prioridades de esta estrategia de control está la búsqueda de herramientas alternativas basadas en prácticas preventivas y de bajo impacto. La implantación de cubiertas vegetales permite aumentar la biodiversidad de enemigos naturales de plagas en la zona aérea del cultivo. Por el contrario, su influencia en la distribución y actividad entomopatogénica de aquellos del suelo, como los nematodos entomopatógenos (NEPs), está poco estudiada. Nuestra hipótesis es que su uso en viñedo favorecerá el mayor desarrollo de rizosfera, incrementando la presencia de NEPs. Durante primavera y otoño de 2017 y 2018, se evaluó la presencia y actividad entomopatogénica de NEPs en un viñedo de Vitis vinifera var. Tempranillo en La Rioja, comparando tres tipos de cubiertas vegetales: espontánea, sembrada-florícola (n=5 especies), y sembrada de Bromus sp. (Poaceae), con laboreo (n=3 por tratamiento, diseño al azar). Fueron tomadas 48 muestras de suelo por campaña (2 en fila y 2 en calle, por parcela). La actividad entomopatogénica y presencia de NEPs se evaluó mediante el método insecto-trampa. Pese a la falta de diferencias significativas, se observaron dos tendencias: actividades entomopatogénicas más elevadas en las cubiertas sembrada-florícola y sembrada de Bromus en la primavera de 2017 (de acuerdo con nuestra hipótesis pero sin continuidad en posteriores muestreos); e igualmente superiores en calles que en líneas (excepto en espontánea). Estos resultados sirven de base a futuros estudios sobre los servicios ecosistémicos proporcionados por el uso de cubiertas vegetales en viñedo.

Palabras clave: entomopatógenos, control biológico, estructuras ecológicas, viña
ENTOMOFAUNA AUXILIAR ASOCIADA A LOS CULTIVOS DE CAQUI (Diospyros kaki Thunb.), GRANADO (Punica granatum l) Y CÍTRICOS (Citrus spp.) CON MANEJO ECOLÓGICO.

Sánchez-Domingo A1, González-Cavero S1, Domínguez-Gento A2, Vercher R1

1Instituto Agroforestal del Mediterráneo (IAM), ETSIAMN, Universitat Politècnica de València (UPV). Camino de Vera s/n E46.022 (Valencia) 963879264 rvercher@eaf.upv.es
2Servei de Producció Ecològica, innovació i tecnologia, DG DRIPAC, GVA. Estación Experimental Agraria de Carcaixent. Pd. del Barranquet s/n, E46740 Carcaixent (Valencia), dominguez_alf@gva.es

RESUMEN: Los cítricos (Citrus spp.) han sido el cultivo por excelencia en la zona mediterránea, pero en los últimos años han surgido otros cultivos como el caqui (Diospyros kaki Thunb.) y el granado (Punica granatum l). La demanda creciente de un sistema de cultivo más respetuoso con el medio ambiente exige una gestión sostenible de plagas adecuada y por ello, resulta de máxima importancia conocer la entomofauna auxiliar presente.

Con este objetivo, en 2017 se llevaron a cabo seguimientos con trampas amarillas pegajosas desde finales de abril hasta finales de octubre en dos parcelas de caquis, dos de granados y una parcela de cítricos cultivados con manejo ecológico, localizadas al sudeste de Valencia, en condiciones ambientales similares.

Los resultados indican que en general, el cultivo del cítrico alberga una mayor entomofauna auxiliar, seguido del granado y por último del caqui. Estas diferencias pueden ser en parte debidas a que, al ser el caqui un cultivo caduco, ofrece un hábitat más inestable a los enemigos naturales. En cuanto a la distribución de enemigos naturales en los tres cultivos, los himenópteros parasitoides fueron los más abundantes, con diferencia. Los depredadores fueron muy escasos en caqui, y muy abundantes en cítrico, destacando los neurópteros y coccinéidos.

Palabras clave: agroecosistema, depredadores, frutales, Hymenoptera, parasitoides, plagas.

INTRODUCCIÓN

Los cítricos (Citrus spp.) han sido el cultivo por excelencia en la zona mediterránea, pero en los últimos años han surgido otros cultivos como el caqui (Diospyros kaki Thunb.) y el granado (Punica granatum l) que están reemplazando al cultivo tradicional del cítrico en muchas zonas españolas.

La producción de cítricos en España en los últimos diez años ha disminuido alrededor de 1 millón de toneladas (FAO 2016). Mientras tanto, otros cultivos como el granado, con una producción de algo más de 65.000 t, han duplicado su producción en los últimos cinco años (Fernandez-Zamudio et al. 2014, MAGRAMA 2017). Este incremento se ha debido sobretodo a sus buenas cualidades agronómicas, como su gran adaptabilidad climática y a diferentes suelos, así como a sus bajos requerimientos de agua, lo que hace que se adapte bien a suelos marginales (Cocuzza et al. 2016). El caso del caqui tiene la misma tendencia, ha aumentado en España su producción hasta convertirse ésta en el principal productor en Europa, por delante de Italia (Sánchez-Domingo 2018).

MATERIALES Y MÉTODOS

Las parcelas muestreadas fueron dos de caqui, dos de granado y una de cítrico, todas ellas con manejo ecológico y con cubierta vegetal.

Las parcelas de caqui se trataron con tierra de diatomeas, jabón potásico, cobre y extracto de tomillo y las de caqui y cítricos con aceite parafinico. Para la gestión del piojo rojo de California en cítricos se utilizó confusión sexual. La cubierta vegetal de todas las parcelas fue segada periódicamente al alcanzar los 50 cm de altura.

Los muestreos se han llevado a cabo quincenalmente a través de la colocación de trampas cromáticas pegajosas amarillas (10 x 25 cm) en parcelas de caqui, granado y cítrico (Fig. 2), todas ellas con manejo ecológico, de abril a octubre de 2017 (Fig. 1).

En las parcelas de caqui y granado se colocó una trampa por parcela, mientras que en la de cítricos se localizaron tres puntos de muestreo, de tres repeticiones cada uno, lo que supone un total de nueve trampas por muestreo. En total se han recogido 56 trampas en cítrico, 35 en caqui y 15 trampas en granado, sumando un total de 106 trampas. Estas parcelas están localizadas al sudeste de la provincia de Valencia y presentan condiciones ambientales similares.

Fig. 1: Detalle de tres de las parcelas de manejo ecológico muestreadas de caquis (arriba a la izquierda), granado (arriba a la derecha) y cítrico (abajo), todas ellas localizadas en la zona de La Ribera, sudeste de la provincia de Valencia.
Para la contabilización e identificación de los diferentes insectos se utilizó una lupa binocular. Los artrópodos conocidos fueron clasificados hasta el nivel de especie. Otras especies, pertenecientes a taxones bien caracterizados con biologías similares, llegaron a ser identificadas hasta género o familia.

Fig. 2: Detalle de trampas amarillas pegajosas en las ramas de árboles de caqui, granado y cítrico en parcelas de manejo ecológico, localizadas al sudeste de la provincia de Valencia de finales de abril a finales de octubre de 2017.

RESULTADOS Y DISCUSIÓN

Se han identificado un total de 35.809 artrópodos pertenecientes a 11 órdenes distintos de la clase Insecta y Arachnida, siendo la más importante la primera. Del total de capturas, 10.951 artrópodos fueron encontrados en caqui, 4.989 artrópodos en granado y 19.869 en cítricos. Esto representa, teniendo en cuenta el número de trampas total por cultivo, 166 artrópodos por trampa y semana en caqui, 165 en granado y 160 en cítrico (Cuadro 1).

<table>
<thead>
<tr>
<th>Artrópodos/trampa y semana</th>
<th>Caqui</th>
<th>Granado</th>
<th>Cítrico</th>
<th>% Caqui</th>
<th>Granado</th>
<th>Cítrico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera</td>
<td>106,9</td>
<td>88,7</td>
<td>72,1</td>
<td>64,6</td>
<td>53,7</td>
<td>45,0</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>33,1</td>
<td>49,7</td>
<td>48,3</td>
<td>20,0</td>
<td>30,1</td>
<td>30,1</td>
</tr>
<tr>
<td>Neuroptera</td>
<td>9,0</td>
<td>2,2</td>
<td>18,7</td>
<td>5,4</td>
<td>1,3</td>
<td>11,6</td>
</tr>
<tr>
<td>Thysanoptera</td>
<td>5,5</td>
<td>6,0</td>
<td>3,2</td>
<td>3,5</td>
<td>3,7</td>
<td>2,0</td>
</tr>
<tr>
<td>Diptera</td>
<td>5,5</td>
<td>12,3</td>
<td>4,4</td>
<td>3,3</td>
<td>7,4</td>
<td>2,7</td>
</tr>
<tr>
<td>Psocoptera</td>
<td>3,3</td>
<td>3,4</td>
<td>9,1</td>
<td>2,0</td>
<td>2,1</td>
<td>5,6</td>
</tr>
<tr>
<td>Coleoptera</td>
<td>1,6</td>
<td>2,5</td>
<td>3,7</td>
<td>1,0</td>
<td>1,5</td>
<td>2,3</td>
</tr>
<tr>
<td>Araneae</td>
<td>0,4</td>
<td>0,2</td>
<td>0,5</td>
<td>0,2</td>
<td>0,1</td>
<td>0,3</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>0,1</td>
<td>0,1</td>
<td>0,3</td>
<td>0,0</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>Blattodea</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

Cuadro 1: Clasificación de los órdenes de artrópodos más abundantes y sus porcentajes, encontrados en trampas amarillas pegajosas, respecto de un total de 35.809 artrópodos. Representados como (artrópodos/trampa y semana) en cultivos ecológicos desde finales de abril hasta finales de octubre de 2017, en dos parcelas de caquis, dos de granados y una parcela de cítricos, localizadas al sudeste de la provincia de Valencia.
Si estudiamos los órdenes encontrados en cada uno de los cultivos, se observa que el orden Hemiptera y el Hymenoptera son los más importantes en todos ellos, con un 65% y 20% en caqui, un 54% y un 30% en granado y un 45% y un 30% en cítrico, respectivamente (Cuadro 1).

En tercer lugar de importancia destaca en cítricos y caquis el orden Neuroptera, con un 12% y 5%, respectivamente, mientras que en granado encontramos el orden Diptera con un 7% (Cuadro 1).

El orden Hemiptera está representado fundamentalmente por moscas blancas (Aleyrodidae), que durante los últimos años ha incrementado su presencia en los cultivos de la zona. También se observa presencia de cicadélidos en granado y de cóccidos diaspídidos en cítricos (Cuadro 1).

El orden Hymenoptera, segundo grupo más numeroso en todos los cultivos, engloba casi en su totalidad a enemigos naturales parasitoides.

En función del nicho alimenticio, se observa que en los tres cultivos los más abundantes son los fitófagos, en caqui el 69%, en granado 58% y en cítrico 48% de las capturas. En cuanto a los enemigos naturales (EN), encontramos que en caqui el 16% son parasitoides y un 8% depredadores, en el cultivo del granado el 30% son parasitoides y sólo el 8% depredadores y por último, en el cultivo del cítrico el 30% son parasitoides y algo más de la mitad son depredadores (un 16%) (Fig. 4).

Los enemigos naturales están respresentados por los órdenes depredadores Hemiptera, Hymenoptera, Neuroptera, Diptera, Coleoptera y la clase Arachanida y por los parasitoides del orden Hymenoptera. Podemos observar que son más numerosos en cítricos y granados (73 y 62 artrópodos/trampa y semana, respectivamente) que en caqui (40 artrópodos/trampa y semana) (Fig 3).

Si estudiamos lo que ocurre con cada grupo de enemigos naturales, vemos que los depredadores son más numerosos en cítricos (25 artrópodos/trampa y semana) que en granado y caqui (13 artrópodos/trampa y semana en los dos cultivos) (Fig 3).

El orden Neuroptera representa el 11% de las capturas en cítricos, el 5% en caqui y sólo el 1% en granado, destacando en cítricos los coniopterígidos Semidalis aleyrodiformis Stephens y Conwentzia psociformis (Curtis), siendo la más destacada en caqui y granado S. aleyrodiformis (Cuadro 2). Vercher et al. (2017a) ya observaron en estudios previos que el orden Neuroptera era característico también de las infraestructuras ecológicas asociadas al cultivo de los cítricos.

![Enemigos naturales por cultivo](image)

Fig. 3. Número de enemigos naturales, parasitoides y depredadores por cultivo, como promedio de artrópodos/trampa y 7 días. Encontrado en trampas amarillas pegajosas desde finales de abril hasta finales de octubre de 2017, en dos parcelas de caquis, dos de granados y una parcela de cítricos, todas ellas de cultivos ecológicos, localizadas al sudeste de la provincia de Valencia.
Las capturas de depredadores dentro del orden Hemiptera han sido muy bajas en los tres tipos de cultivo, sólo obteniéndose alguna captura esporádica de depredadores de las familias Miridae, Anthocoridae o Lygaeidae (Cuadro 2).

Las capturas de depredadores dentro del orden Coleoptera han pertenecido casi exclusivamente a la familia Coccinellidae. A pesar de que las capturas han sido bajas, representado el 2% en cítricos y escasas en caqui y granado, han estado representadas por un gran número de especies en los tres cultivos, destacando en cítricos Rodolia cardinalis (Mulsant), Delphastus catalinae (Horn), Stethorus punctillum (Weise), Scymnus interruptus (Goeze) y Scymnus subvillosus (Goeze), destacando en granado Sc. interruptus, Sc. subvillosus, St. punctillum y Propylaea quatuordecimpunctata L., por último, destacamos en caqui Sc. interruptus, Sc. subvillosus, R. cardinalis, Pr. quatuordecimpunctata y D. catalinae (Cuadro 2).

En cuanto al orden Diptera, este está representado por las familias Cecidomyiidae y por el género Platypalpus (Hybotidae) fundamentalmente. De manera que los cecídómites representan en un 5% en granados, un 2% en cítricos y 1% en caquis (Cuadro 2).

Fig 4. Distribución de artrópodos según cultivo (caqui, granado y cítrico) en función de su nicho alimenticio. Muestreos realizados con trampas amarillas pegajosas de finales de abril a finales de octubre de 2017, en dos parcelas de caquis, dos de granados y una parcela de cítricos, todas ellas de cultivos ecológicos, localizadas al sudeste de la provincia de Valencia.

Cuadro 2. Abundancia relativa de órdenes y familias de depredadores, respecto de un total de 35.809 artrópodos, Cálculos realizados como (artrópodos/trampa y semana) encontrados en trampas amarillas pegajosas, en cultivos ecológicos de finales de abril a finales de octubre de 2017, en dos parcelas de caquis, dos de granados y una parcela de cítricos, localizadas al sudeste de la provincia de Valencia.
Si además de estudiar la abundancia de depredadores en cada uno de los cultivos, analizamos la diversidad de especies encontradas (s), observamos que esta es mayor en el cítrico (24 especies) y en el caqui (22 especies) que en el granado (18 especies) (Fig. 5).

En cuanto a los parasitoides, al igual que ocurría con los depredadores, el caqui es el que menor número alberga (27 artrópodos/trampa y semana), comparado con el granado y el cítrico (49 y 48 artrópodos/trampa y semana) (Fig. 3). Estos datos son similares a los encontrado por Vecher et al. (2017b), donde mostraron que el cultivo del caqui alberga una baja entomofauna auxiliar.

Dentro del orden Hymenoptera, la superfamilia más importante de parasitoides fue la Chalcidoidea en todos los cultivos, con un 27% de las capturas en cítricos, un 20% en granado y un 10% en caqui.

En cuanto a importancia de familias de calcidoideos, en los cítricos los parasitoides mas numerosos han sido los Encyrtidae, encontramos a las especies del género Metaphycus sp. (parasitoides de coccidos del género Coccus), la segunda familia en importancia son los Aphelinidae con especies como Cales noacki Howard (parasitoides de Aleurothrixus floccosus (Maskell) y Aphytis sp. (parasitoides de coccidos Diaspididae). (Cuadro 3).

En cuanto a las familias más importantes encontradas en el cultivo del granado, destacan la familia Encyrtidae con los géneros Metaphycus sp. y Syrphophagus sp., (parasitoides del género Coccus e hiperparasitoide, respectivamente), entre los Aphelinidae encontramos a la especies C. noacki y especies del género Aphelinus sp. (parasitoides de pulgones) y especies del género Aphytis sp., entre los Mymaridae destacan los género Alaptus sp. y Gonatocerus sp.(parasitoides de huevos de Psocoptera y huevos de Cicadellidae, respectivamente, García-Mari 2012; Cuadro 3).

Para el cultivo del caqui destacan las familias Aphelinidae con especies como Encarsia sp. (parasitoides de moscas blancas y de coccidos diapídidos; García-Mari 2012), entre los Encyrtidae destacan especies del género Metaphycus sp. y entre los Mymaridae especies del género Alaptus sp. (Cuadro 3).

Fig. 5. Número total de especies de parasitoides y depredadores por cada cultivo, encontrados en trampas amarillas pegajosas desde finales de abril hasta finales de octubre de 2017, en dos parcelas de caquis, dos de granados y una parcela de cítricos, todas ellas de cultivos ecológicos, localizadas al sudeste de la provincia de Valencia.
Cuadro 3. Listado de los parasitoides del órden Hymenoptera y las superfamilias y familias más importantes, con sus porcentajes encontrados en trampas amarillas pegajosas, respecto de un total de 35,809 artrópodos. Representados como (artrópodos/trampa y semana) en cultivos ecológicos desde finales de abril hasta finales de octubre de 2017, en dos parcelas de caquis, dos de granados y una parcela de cítricos, localizadas al sudeste de la provincia de Valencia.

Tras los calcidoideos, en cítricos aparece en segundo lugar en importancia la superfamilia Ichneumonoidea (1%), representada fundamentalmente por la familia Braconidae, y seguida de la superfamilia Platygastroidea (0.9%), destacando en ella la familia Scelionidae. En cuanto al cultivo del caqui, encontramos tras los calcidoideos la superfamilia Platygastroidea (2%), siendo también los Scelionidae los más importantes. Le siguen en abundancia Ceraphronoidea (1.8%) e Ichneumonoidea. Por último, en el cultivo del granado, además de los Chalcidoidea encontramos las superfamilias Ceraphronoidea (1%) y Platygastroidea (0.9%) (Cuadro 3).

Al igual que ocurría con la diversidad de especies de depredadores en los diferentes cultivos, encontramos una mayor diversidad de especies de parasitoides en el cultivos del cítrico (55 especies), que en el cultivo del caqui y del granado (47 y 44 especies, respectivamente) (Fig. 5).

CONCLUSIONES

Los resultados indican que en general, el cultivo del cítrico alberga una mayor entomofauna auxiliar, seguido del granado y por último del caqui. Estas diferencias pueden ser en parte debidas a que, al ser el caqui un cultivo caduco, ofrece un hábitat más inestable a los enemigos naturales. El cítrico es un árbol grande con mucho follaje y puede que presente un hábitat más favorable a los enemigos naturales que el granado, cuyo porte e índice foliar, en parcelas comerciales, es mucho menor. En cuanto a la distribución de enemigos naturales en los tres cultivos, los himenópteros parasitoides fueron los más abundantes, con diferencia.

Entre los parasitoides han abundado los himenópteros calcidoideos, destacando en cítricos las familias Encyrtidae y Aphelinidae, (principalmente el género Metaphycus sp. y la especie Cales noacki). En el cultivo del
granado destacan las familias Encyrtidae, Aphelinidae y Mymaridae (principalmente los géneros Metaphycus sp. y Syrphophagus sp.). Asimismo las familias de parasitoides que más han destacado en el cultivo del caqui son Aphelinidae, Encyrtidae y Mymaridae, concretamente el género Aphelinus sp.

Los depredadores fueron muy escasos en caqui, y muy abundantes en cítrico, destacando los neurópteros S. aleyrodiformis y C. psociformis y la familia de los coccinélidos.

Este estudio forma parte del “Conveni per a la investigació i experimentació d’estratègies agroecològiques per al maneig de la biodiversitat i implementació de la transferència i demostració d’aquet tipus de models en l’agricultura ecològica valenciana” entre la Generalitat Valenciana y la Universitat Politècnica de València.

REFERENCIAS

INFLUENCIA DEL TIPO DE CUBIERTA EN LA DIVERSIDAD Y ABUNDANCIA DE ENTOMOFAUNA AUXILIAR EN CÍTRICOS ECOLÓGICOS

Ramírez-Ferrer G1, González-Cavero S1, Sánchez-Domingo A1, Rubio A2, García A3, Cuenca F2, Domínguez-Gento A2, Vercher R1

1Instituto Agroforestal del Mediterráneo (IAM), ETSIAMN, Universitat Politècnica de València (UPV). Camino de Vera s/n, E-46022 (Valencia); 963879264; rvercher@eaf.upv.es
2Servei de Producció Ecològica, Innovació i Tecnologia – DG DRIPAC. Estació Experimental Agrària de Carcaixent. Pd. del Barranquet s/n E-46740, Carcaixent (Valencia)
dominguez_alf@gva.es
3Estación Experimental Agraria de Villarreal, Carretera CV-20, E-12540 Villarreal (Castellón)

RESUMEN: Los cítricos (Citrus spp.) han sido un cultivo predominante y de notable importancia económica en la región mediterránea. El coste medioambiental de la citricultura convencional y la demanda social exigen métodos de gestión de plagas sostenibles. El uso de cubiertas vegetales, como infraestructura ecológica capaz de albergar entomofauna auxiliar útil para el control de las plagas de cítricos, se postula como un método independiente de insumos y que promueve la abundancia y diversidad de la entomofauna auxiliar.

Se ha diseñado un ensayo de campo con tres tipos de cubiertas vegetales (dos sembradas y una espontánea), en un diseño de bloques al azar con 4 repeticiones. Se ha colocado una trampa cromática amarilla pegajosa en cada repetición, quincenalmente durante la primavera y el verano de 2018. Se ha realizado un seguimiento de la entomofauna auxiliar y de la composición vegetal de las cubiertas. Se ha estudiado la abundancia y diversidad de depredadores, parasitoides y fitófagos en cada cubierta, para dilucidar si la variación en la composición vegetal influye en la presencia y abundancia de los enemigos naturales de las plagas de cítricos. Los resultados indican que las cubiertas vegetales albergan un 21% de enemigos naturales, encontrándose diferencias entre las distintas cubiertas.

Este estudio forma parte de los resultados obtenidos en el "Conveni per a la investigació i experimentació d’estratègies agroecològiques per al maneig de la biodiversitat i implementació de la transferència i demostració d’aquest tipus de models en l’agricultura ecològica valenciana" entre la Generalitat Valenciana y la Universitat Politècnica de València.

Palabras clave: citicultura, depredadores, infraestructuras ecológicas, parasitoides, plagas

INTRODUCCIÓN

Dentro de las prácticas de manejo de la infraestructura ecológica, tales como el mantenimiento de setos, zonas sin cultivar, zonas de vegetación natural o bandas con vegetación, el uso de cubiertas vegetales resulta una medida de interés para aumentar la fertilidad del suelo a nivel físico y químico (Domínguez-Gento et al. 2011), disminuir el riesgo de erosión, mejorar la gestión hídrica (Gómez et al. 2011) y mejorar el control de plagas al aumentar la diversidad y número de enemigos naturales (Altieri 1999, Hartwig & Ammon 2002, Domínguez-Gento et al. 2005, Vercher et al. 2008). Las cubiertas vegetales promueven la diversidad florística y permiten la conservación de los enemigos naturales al proporcionar fuentes de alimento complementarias (néctar o polen), presas o huéspedes secundarios, atracción hacia especies vegetales específicas, formación de microclimas y refugios aptos como protección a perturbaciones ambientales (Bugg & Pickett 1998; Boller et al. 2004; Bianchi et al. 2006, Jonsson et al. 2008).

Aunque existen estudios que avalan la eficacia de las cubiertas vegetales en control biológico en citicultura y que la postulan como una técnica de interés agroecológico (Bugg, & Waddington 1994, Vercher et al. 2012), se carece de información suficiente en cuanto a la entomofauna auxiliar específica asociada a los diferentes tipos
de cubiertas vegetales. Tampoco se conoce con detalle cómo las distintas composiciones de especies vegetales pueden ayudar a promover o conservar la presencia de entomofauna útil en el agroecosistema.

Los objetivos principales de este estudio serán, por tanto, (1) conocer la entomofauna auxiliar asociada a tres cubiertas vegetales en una parcela de cítricos ecológicos y (2) comparar la abundancia de artrópodos de interés para el control de plagas de cítricos entre distintas cubiertas vegetales.

MATERIALES Y MÉTODOS

Los estudios se llevaron a cabo en una parcela de cítricos ecológicos con riego por goteo (variedades Moncalina y Murina sobre portainjertos Forner-Alcaide 5), con árboles de 2 años de plantación, ubicada en la Estación Experimental Agraria de Carcaixent (Valencia). En esta parcela se estableció una cubierta vegetal espontánea (T1) y se sembraron dos tipos de cubiertas vegetales (T2 y T3). La siembra de las cubiertas se llevó a cabo en octubre de 2016, siendo la composición inicial la mostrada en el Cuadro 1.

T1	Vegetación espontánea
T2	Lolium perenne L. 50% + Trifolium repens L. 50%
T3	Bromus inermis Leyss 15% + Dactylis glomerata L. 10% + Lolium rigidum Gaudin 10%, Onobrychis viciifolia Mill 15% + Vicia sativa L. 15% + Medicago sativa L. 15%

Cuadro 1: Composición de las mezclas de semillas sembradas en 2016 en las distintas tesis experimentales en la parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia).

Los muestreos se realizaron mediante la colocación quincenal de trampas amarillas pegajosas (10 x 25 cm) en estacas sobre la cubierta vegetal. En total se recogieron 154 trampas amarillas, 52 trampas de la cubierta T1, 52 trampas de la T2 y 50 trampas de la T3. Se realizaron cuatro repeticiones de cada una de las tesis ensayadas, distribuidas en cuatro bloques al azar, tal y como se muestra en la Fig. 1.

Fig. 1: Croquis de la distribución de las tesis experimentales en la parcela de cítricos ubicada en Estación Experimental Agraria de Carcaixent (Valencia). T1 representa a la cubierta vegetal espontánea y T2 y T3 a dos cubiertas vegetales sembradas.
Fig. 2: Detalle de las trampas amarillas colocadas sobre las cubiertas vegetales en el estudio realizado para conocer la entomofauna auxiliar asociada a ellas. Parcela ubicada en la Estación Experimental Agraria de Carcaixent (Valencia).

Para el recuento e identificación de los artrópodos capturados se empleó una lupa binocular. Los artrópodos conocidos fueron clasificados hasta el nivel de especie. Otras especies, pertenecientes a taxones bien caracterizados con biologías similares, llegaron a ser identificadas hasta género o familia.

La composición de las comunidades vegetales de cada tesis varió desde el momento inicial de siembra por lo que resultó necesario un seguimiento de la flora adventicia. Se alzaron inventarios mensuales de la vegetación presente en cada tesis mediante evaluación visual. Se estimó el índice de abundancia-dominancia (Braun-Blanquet 1932), basado en la cobertura relativa de cada especie vegetal, en una zona considerada de 10m² alrededor de cada trampa.

Se han procesado los datos de abundancia de artrópodos y realizado análisis de varianza (ANOVA) factoriales para comparar los distintos grupos de enemigos naturales, así como para conocer la abundancia y diversidad de artrópodos según el tipo de cubierta. Se ha utilizado para la separación de las medias el Test de Mínima Diferencia Significativa (MDS) y cuando ha sido necesario para homogenizar los datos, se ha realizado una previa transformación logarítmica en base diez de los datos expresados como individuos/trampa y 7 días.
RESULTADOS Y DISCUSIÓN

Las cubiertas, inicialmente sembradas en 2016 han ido evolucionando con resultado diferente según la tesis, de tal manera que la cubierta T2 tiene una composición actualmente muy distinta a la sembrada, mientras que la tesis T3, mantiene una parte de la cubierta original mayoritariamente compuesta de *M. sativa* L. (alfalfa). Esta variación también se ha dado a lo largo del periodo de estudio, siendo distinta la composición a lo largo de la primavera y el verano (Cuadro 2).

Cuadro 2: Vegetación representativa en los inventarios mensuales realizados en 10m² alrededor de las trampas localizadas en las repeticiones de cada tesis, desde principios de abril a principios de septiembre de 2018. Los índices de abundancia-dominancia “+, 1, 2, 3, 4, 5” junto a las especies representan un 5-15%, 15-25%, 25-50%, 50-75% y 75-100% de cobertura respectivamente. Inventarios realizados en en tres tipo de cubiertas vegetales una espontánea (T1) y otras dos sembradas (T2 y T3) de una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia).

Por otra parte, la cubierta T3 se mantuvo con *M. sativa* como especie dominante durante toda la duración del ensayo, desapareciendo prácticamente el resto de especies sembradas.

Durante los meses de verano las cubiertas mostraron agostamiento, lo que limitó la diversidad de especies y la superficie ocupada por vegetación viva disminuyó (Cuadro 3).
Cuadro 3: Parámetros de agostamiento según el porcentaje de cobertura viva, riqueza de especies (s), nivel de floración y altura de las cubiertas entre abril y septiembre de 2018 en una parcela de cítricos ubicada en Estación Experimental Agraria de Carcaixent (Valencia).

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Tesis</th>
<th>Agostamiento</th>
<th>% Cobert viva</th>
<th>Riqueza (s)</th>
<th>Nivel de floración</th>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Abril 2018</td>
<td>T1 Verde</td>
<td><90%</td>
<td>25</td>
<td>Alto</td>
<td><20 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2 Verde</td>
<td><90%</td>
<td>26</td>
<td>Medio</td>
<td><20 cm</td>
<td></td>
</tr>
<tr>
<td>7-Mayo 2018</td>
<td>T1 Verde</td>
<td>80%</td>
<td>20</td>
<td>Bajo</td>
<td><20 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2 Verde</td>
<td>70%</td>
<td>21</td>
<td>Medio</td>
<td>20-40 cm</td>
<td></td>
</tr>
<tr>
<td>4-Junio 2018</td>
<td>T3 Verde</td>
<td><90%</td>
<td>18</td>
<td>Medio</td>
<td>>40 cm</td>
<td></td>
</tr>
<tr>
<td>9-Julio 2018</td>
<td>T1 Verde</td>
<td>50%</td>
<td>18</td>
<td>Bajo</td>
<td><20 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2 Verde</td>
<td>40%</td>
<td>26</td>
<td>Medio</td>
<td>>40 cm</td>
<td></td>
</tr>
<tr>
<td>6-Agosto 2018</td>
<td>T3 Verde</td>
<td>80%</td>
<td>17</td>
<td>Medio</td>
<td><20 cm</td>
<td></td>
</tr>
<tr>
<td>4-Septiembre</td>
<td>T1 Agostada</td>
<td>40%</td>
<td>10</td>
<td>Bajo</td>
<td><20 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2 Agostada</td>
<td>30%</td>
<td>11</td>
<td>Bajo</td>
<td><20 cm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3 Verde</td>
<td>60%</td>
<td>10</td>
<td>Bajo</td>
<td>>40 cm</td>
<td></td>
</tr>
</tbody>
</table>

La cubierta T3 destaca por haberse mantenido verde durante todo el verano, principalmente junto al borde de la línea de riego, aunque a finales de agosto se secó, quedando con menos de un 50% de cobertura. Sin embargo, a principios de septiembre se observa cómo brotó de nuevo (Cuadro 3).

En cuanto a la entomofauna encontrada, en total se han identificado 73.130 artrópodos de la clase Insecta y Arachnida, correspondiendo la gran mayoría a la primera (Cuadro 4). Los insectos más abundantes pertenecieron a los órdenes Thysanoptera y Hemiptera (principalmente a las familias Aphididae, Aleyrodidae y en menor medida Cicadellidae), que representaron el 70% de las capturas. Cabe destacar que la cubierta T3 ha albergado significativamente mayor cantidad de artrópodos que la T2 y esta última más que T1 (F=10,98 gl=2, 151; p=0,0000).

<table>
<thead>
<tr>
<th>Órdenes</th>
<th>T1 Artrópodos</th>
<th>T2 Artrópodos</th>
<th>T3 Artrópodos</th>
<th>TOTAL Artrópodos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemiptera</td>
<td>7,457</td>
<td>7,546</td>
<td>11,100</td>
<td>26,103</td>
</tr>
<tr>
<td>Thysanoptera</td>
<td>5,664</td>
<td>7,830</td>
<td>11,020</td>
<td>24,514</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>2,481</td>
<td>3,868</td>
<td>3,798</td>
<td>10,147</td>
</tr>
<tr>
<td>Diptera</td>
<td>2,624</td>
<td>2,839</td>
<td>3,277</td>
<td>8,740</td>
</tr>
<tr>
<td>Otros</td>
<td>1,194</td>
<td>1,319</td>
<td>1,113</td>
<td>3,626</td>
</tr>
<tr>
<td>Total</td>
<td>19,420</td>
<td>23,402</td>
<td>30,308</td>
<td>73,130</td>
</tr>
</tbody>
</table>

Cuadro 4: Número total de artrópodos capturados en los muestreos realizados en las cubiertas vegetales de una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia) entre abril y septiembre de 2018. La categoría “otros” agrupa a la clase Arachnida y los órdenes de insectos Coleoptera, Neuroptera y Psocoptera.
Con respecto a la distribución de los artrópodos por tipo de alimentación, es decir, enemigos naturales, fitófagas y otro tipo de alimentación (saprófagos, etc.) (Fig. 3), se ha observado una abundancia significativamente mayor de fitófagos en la cubierta T3 ($F=14,66$, $gl=2,151$, $p=0,0001$). Aunque la cantidad de depredadores ha sido similar en las tres tesis, los parasitoides fueron significativamente más abundantes en las cubiertas T2 y T3 ($F=6,08$, $gl=2,151$, $p=0,0029$). No se observan diferencias significativas entre los diferentes órdenes de depredadores (Fig. 4), a excepción de los hemípteros depredadores, que fueron más abundantes en la cubierta T3 ($F=3,16$, $gl=2,151$, $p=0,0451$), pertenecientes todos ellos a las familias Anthocoridae, Myridae, Lygaeidae y Nabidae. Los tisanópteros depredadores capturados pertenecieron exclusivamente a la familia Aeolothripidae.

Los dipteros depredadores pertenecieron mayoritariamente a la familia Cecidomidae (79%) y al género Platypalpus (Hybotidae) (19%). Se observó presencia del género Coenosia y algunos sírfidos en la cubierta T3. Los neurópteros fueron escasos en los tres tipos de cubiertas, perteneciendo el 72% de ellos a la familia Coniopterygidae, de los cuales el 53% fueron Semidalis aleyrodiformis Stephens, seguido de Conwentzia psociformis Curtis con un 37%.

Entre los coccinélidos depredadores capturados, el 54% perteneció a la familia Coccinellidae mientras que el 46% restante fueron de la familia Staphylinidae. Las principales especies de coccinélidos identificadas fueron: Scymnus spp (38%), Propylea quatuordecimpunctata L. (16%), Coccinella septempunctata L. (10%), Rodolia cardinalis Mulsant (4%), Clithostethus arcuatus (Rossi) (3%), Stethorus punctillum Weise, Rhyzobius lophantae Blaisdell, Adonia variegata Goeze, Chilocorus bipustulatus L. Cabe destacar que los principales coccinélidos capturados fueron depredadores de áfidos.

Con respecto a los parasitoides capturados, pertenecieron en su totalidad al orden Hymenoptera (Fig. 5), de los cuales la superfamilia Chalcidoidea fue la más importante, con un 68% de las capturas, seguida de las superfamilias Platygastroidea (27%), Ceraphronoidea (4%) e Ichneumonoidea (0,7%). Las superfamilias Chrysoidea y Cynipoidea fueron anecdóticas.
Prácticamente la totalidad de los Platygastroidea correspondieron a individuos de la familia Scelionidae. En cuanto a la abundancia de Ceraphronoidea, compuesta por las familias Ceraphronidae (37%) y Megaspillidae (18%). En cuanto a los ichneumonoideos, los Aphidiinae (Braconidae) fueron muy escasos y aparecieron principalmente a finales de Julio tras el pico de población de los pulgones.

En cuanto al principal grupo de parasitoides, los calcidoideos, el promedio de capturas por semana fue significativamente mayor en la T3 y T2 que en la T1 (F=5.81, gl=2,151, p=0.0037). Las principales familias encontradas fueron Encyrtidae (40%), Trichogrammatidae, (29%), Eulophidae (11%), Pteromalidae (10%), Mymaridae (7%) y Aphelinidae (2%), variando su abundancia en función de la cubierta vegetal estudiada. En la cubierta T3 se capturaron significativamente más encírtidos (F=7.23, gl=2,151, p=0.0010) y mimáridos (F=7.00, gl=2,151, p=0.012) que en T1; en las cubiertas T3 y T2 fueron significativamente mayores los eulófidos (F=3.13, gl=2,151, p=0.0464) y los pteromáldidos (F=3.13, gl=2,151, p=0.0291).

Fig. 4: Promedio de artrópodos depredadores capturados por trampa amarilla pegajosa y semana, en tres tipo de cubiertas vegetales una espontánea (T1) y otras dos sembradas (T2 y T3) en una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia). Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).
Fig. 5: Promedio de himenópteros parasitoides (agrupados por superfamilias) capturados por trampa amarilla pegajosa y semana, en tres tipo de cubiertas vegetales una espontánea (T1) y otras dos sembradas (T2 y T3) en una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia). Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).

Fig. 6: Promedio de calcidoideos capturados por trampa amarilla pegajosa y semana, en tres tipo de cubiertas vegetales una espontánea (T1) y otras dos sembradas (T2 y T3) en una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia). Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).
Dentro de la familia Encyrtidae (Fig. 7) fue frecuente Syrphophagus aphidivorus Mayr (71%), siendo su presencia significativamente más importante en la cubierta T3 (F=5.98, gl=2,151, p=0.032) que en las otras dos. También fueron significativamente más abundantes el grupo de “otros afelínidos” en la cubierta T3 que en las otras dos (F=4.08, gl=2,151, p=0.0187). Las tres cubiertas presentaron niveles similares de Metaphycus spp. (F=0.38, gl=2,151, p=0.6859).

Los eulófidos (Fig. 8) fueron representados mayoritariamente por las especies Ceranisus menes Walker y Ceranisus lepidotus Graham (35% el género Ceranisus), seguidos de Baryscapus sp. (13%), Citrostichus phyllocnistoides Narayan (4%), Cirrospilus sp. (2%), Diglyphus sp. (1%), Pnigalio sp. (1%). En la cubierta T3 fueron significativamente más abundantes las capturas de C. phyllocnistoides (F=4.04 gl=2,151, p=0.0196) y de Baryscapus sp (F=3.57, gl=2,151, p=0.0307) que en las otras cubiertas.

Entre los mimáridos (Fig. 9) Gonatocerus sp (68%) fue el género significativamente más abundante en la cubierta T3 que en las otras (F=4.67 gl=2,151, p=0.0108). Otros mimáridos capturados fueron, Anagrus atomus L. (3%), Alaptus spp. (3%), Polynema spp. (2%) y Stithynium triclavatum Enoch (1%), Anaphes spp. (1%).

Dentro de los afelínidos (Fig. 10) encontramos presencia de los géneros Aphelinus spp. (39%), Aphytis spp. (12%), Encarsia spp. (12%), Centrodora spp. (3%) y de la especie Cales noacki Howard (2%, no presente en la cubierta T1). En la cubierta T1 se encontraron significativamente más individuos de la familia Aphelinidae sin identificar en las otras tesis (F=3.85, gl=2,151, p=0.6859).
Fig. 8: Promedio de eulófidos capturados por trampa amarilla pegajosa y semana en tres tipo de cubiertas vegetales una espontánea (T1) y otras dos sembradas (T2 y T3) en una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia). Barras de error estándar con la misma letra no presentan diferencias significativas ($p \leq 0.05$).

Fig. 10: Promedio de mimáridos capturados por trampa amarilla pegajosa y semana, en tres tipo de cubiertas vegetales una espontánea (T1) y otras dos sembradas (T2 y T3) en una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia). Barras de error estándar con la misma letra no presentan diferencias significativas ($p \leq 0.05$).
Fig. 11: Promedio de afelinidos capturados por trampa amarilla pegajosa y semana, en tres tipo de cubiertas vegetales: una espontánea (T1) y otras dos sembradas (T2 y T3) en una parcela de cítricos ubicada en la Estación Experimental Agraria de Carcaixent (Valencia). Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).

DISCUSIÓN

El hecho de que las coberturas T1 y T2 albergaran menos insectos que la cobertura dominada por alfalfa en la T3 puede estar relacionado con su mayor agostamiento durante el verano. Esto postula a *Medicago sativa* como una interesante cubierta perenne adaptada al estrés hídrico.

Se ha observado que la mayoría de los enemigos naturales capturados están relacionados con los insectos fitófagos presentes en las cubiertas. Éste fue el caso de los parasitoides *Syrphophagus aphidivorus*, *Baryscapus* spp, *Aphelinus* spp o bracónidos *aphidiinos* y depredadores frente a la abundancia de áfidos (Michelena et al. 1994, Muller et al. 1999, Bañol et al. 2012, Gómez-Marco et al. 2012). Similarmente, los eulófidos *C. menes* y *C. lepidotus* se hallaron principalmente en coincidencia con la abundancia de trips (Loomans & Van Lenteren 1995). También se observaron algunos pocos parasitoides de aleyródidos, que fueron abundantes a final del verano, como *Encarsia* spp. (Soto et al. 2001).

Los mimáridos parasitoides de huevos de cicadélidos *Anagrus atomus* y *Gonatocerus* spp. (Baquero & Jordana 2002) fueron más abundantes dónde se observó mayor cantidad de estos fitófagos, que en este caso fue la cubierta T3. La mayor presencia de parasitoides de minadores (como *Phyllocnistis citrella* Stainton), en la cubierta T3, tales como *C. phyllocnistoides* o *Cirrospilus* sp. podría implicar que esta cubierta podría estar actuando como reservorio de estos enemigos naturales (Vercher et al., 1995; Schauff et al., 1998).

La presencia de *Metaphycus* spp. y *Aphytis* spp. en todas las cubiertas, aunque escasa, resulta de especial interés, ya que parasitan hemípteros de las familias Coccidae y Diaspididae, respectivamente (Soler et al. 2002, Sorribas et al. 2008). Estas plagas son de gran relevancia en cítricos, pero no afectan a las especies vegetales...
Las cubiertas vegetales sembradas, en las condiciones mediterráneas, van variando de composición con el tiempo, hacia una cubierta de especies mixtas sembradas y espontáneas. De entre todas las especies sembradas, la que mostró mayor arraigo y presencia fue Medicago sativa. Del resto de especies sembradas en 2016, su presencia en 2018 era anecdótica o estacional. Los resultados muestran que las cubiertas albergaron diferentes proporciones de fitófagos y enemigos naturales durante la primavera y el verano, y respondieron de manera diferente al estrés hídrico. Se constató una gran diversidad de artrópodos y sobretodo de enemigos naturales en todas las cubiertas vegetales. Este estudio confirma que la variación en la composición vegetal de las infraestructuras ecológicas influye en la composición y abundancia de la entomofauna auxiliar. Así, la cubierta T3, dominada por M. sativa, presentó mayor número de parasitoides calcidoideos de interés para el control de fitófagos.

REFERENCIAS

- Altieri M A. 1999. The ecological role of biodiversity in agroecosystems. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes (pp. 19-31).

COMBINACIÓN DE LA BIOSOLARIZACIÓN CON TORTA DE COLZA E INJERTO PARA EL CONTROL DE MELOIDOGYNE INCOGNITA EN PIMIENTO

Ros C¹, Lacasa A¹, Esteban A¹, Lacasa CM¹, Cano A³, Beltrán C³, Martínez V, Guirao P⁴, Fernández P²

¹Dpto Protección de Cultivos, IMIDA, C/ Mayor s/n, E-30150 La Alberca Murcia
caridad.ros@carm.es
²Oficina Comarcal Agraria Vega Alta, Ctra de Murcia, s/n, E-30530 Cieza. Murcia
³Servicio de Sanidad Vegetal, Ctra. de Mazarrón km 2. El Palmar E-30120. Murcia
⁴Dpto. de Producción Vegetal y Microbiología Universidad Miguel Hernández Escuela Politécnica Superior de Orihuela. Ctra. de Beniel, km 3.2, E-03312 Orihuela (Alicante)

RESUMEN: En la Región de Murcia hay unas 250 ha de cultivo de pimiento ecológico bajo invernadero donde Meloidogyne incognita es uno de los principales problemas del suelo. La alta densidad poblacional en algunos invernaderos hace difícil su control. Se evaluó la combinación de la biosolarización (BS) empleando torta de colza (TC) como enmienda orgánica y el injerto con portainjertos portadores del gen Me3 de resistencia a M. incognita. Los ensayos se realizaron en un invernadero experimental del IMIDA en el Campo de Cartagena (Murcia), con el suelo naturalmente infectado de una población de M. incognita virulenta a Me3. La biosolarización se inició en agosto u octubre durando 6 semanas, repitiendo los tratamientos en las mismas parcelas durante tres años consecutivos. El diseño experimental fue de bloques al azar con tres repeticiones, teniendo como referencia testigo sin desinfectar con plantas injertadas y sin injertar. La BS en octubre resultó igual de eficaz para el control del nematodo que la BS en agosto en la primera campaña pero no en las otras dos y mejoró con el injerto. La eficacia de BS en octubre + injerto se ha mantenido estable en el tiempo. Las producciones en BS en octubre más el injerto fueron similares a las de BS en agosto y plantas sin injertar mientras que la altura fue algo inferior. La BS con TC en octubre más el injerto ofrece buenas prestaciones para el control del M. incognita en el cultivo del pimiento en los invernaderos del Campo de Cartagena.

Palabras clave: Brassica napus, Capsicum annuum, desinfección no química, invernadero ecológico, nematodos, resistencia
EL SISTEMA AGROECOLÓGICO DEL VIÑEDO: RESERVORIO DE LA BIODIVERSIDAD DE LEVADURAS PARA LA ADAPTACIÓN AL CAMBIO CLIMÁTICO

Blanco P, Castrillo D

Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Ponte San Clodio S/N, E-32428, Leiro, Ourense, e-mail: david.castrillo.cachon@xunta.gal, tel. 34-988-788091, fax: 34-988-788099

RESUMEN: Los sistemas agroecológicos son una práctica en auge por su importancia medioambiental, pero también como generadores de valor socioeconómico añadido y por contribuir a una producción más saludable, sostenible y segura. España es el mayor viñedo biológico del mundo con una tendencia a aumentar. Este estudio tuvo como objetivos la comparación de la población de levaduras en uvas de cultivo ecológico y convencional en distintas regiones, así como evaluar el potencial enológico de algunas cepas autóctonas ante los retos del cambio climático; por ejemplo, frente al excesivo grado alcohólico, falta de acidez y perfiles aromáticos atípicos en los vinos. Para ello, se analizaron muestras de uva de viñedos ecológicos y convencionales de cuatro Denominaciones de Origen de Galicia durante tres años consecutivos. La diversidad de levaduras fue significativamente mayor en las muestras ecológicas, con mayor riqueza y variación en la frecuencia de especies minoritarias; algunas de ellas con potencial uso en la industria bioquímica o de depuración de residuos, más allá del campo enológico. Se observaron diferentes patrones de la población de levaduras entre sistemas de cultivo y regiones (terroir microbiano) que influyen en la tipicidad del vino. Además, algunas cepas autóctonas no-Saccharomyces demostraron la capacidad de mejorar el aroma, disminuir el grado alcohólico y/o aumentar la acidez de los vinos. Por tanto, la preservación de la biodiversidad de levaduras es una herramienta útil para paliar los efectos del cambio climático y seguir obteniendo vinos y bebidas fermentadas de calidad diferenciada adaptados a los nuevos gustos y necesidades.

Palabras clave: Galicia, levaduras autóctonas, levaduras no-Saccharomyces, riqueza de especies, terroir microbiano
LAS FEROMONAS COMO HERRAMIENTA EFICIENTE EN LA TRANSICIÓN ECOLÓGICA

Navarro Llopis V¹, Vacas González S¹, Domínguez-Gento A²

²Servei De Producció Ecològica, Innovació i Tecnologia, de la Conselleria d’Agricultura, Medi Ambient, Canvi Climàtic i Desenvolupament Rural. Generalitat Valenciana (GVA). Carrer de la Democràcia, 77, E-46018 València

RESUMEN: La utilización de las feromonas en el control de plagas presenta una serie de ventajas esenciales como ser un producto natural producido por los propios insectos, ser específico de la plaga, no dejar ningún tipo de residuo en la cosecha, no ser peligroso para el aplicador, no provocar desequilibrios en la fauna natural, no generar resistencias y resultar medioambientalmente inocuo. Pero todas estas ventajas no serían suficientes si no desarrollamos métodos de aplicación que lo hagan rentable y competitivo frente a otros métodos de lucha. En este sentido se están desarrollando u optimizando nuevos métodos de lucha contra varias plagas clave de la agricultura valenciana a través del convenio entre la UPV y la GVA. Las plagas estudiadas han sido la avisilla del almendro (Eurytoma amigdali), el melazo denominado “Cotonet de Les Valls” (Delottococcus aberiae), el barrenador del caqui (Cryptoblades gridiella) y la polilla del racimo (Lobesia botrana). Los estudios han ido encaminados a buscar un atrayente eficaz para la avisilla del almendro y el cotonet de Les Valls, optimizar el uso de nebulizadores para el control del barrenador del caqui y estudiar la eficacia y duración de los diferentes sistemas de confusión sexual existentes en el mercado en la polilla del racimo. Los resultados muestran que existe una feromona de la avisilla y del cotonet aun por identificar y una mejora en los sistemas de confusión del barrenador y de la polilla del racimo.

Palabras clave: atrayente, captura masiva, confusión sexual, semioquímico
ENSAYO PRELIMINAR DE EFICACIA DE PRODUCTOS AUTORIZADOS EN AGRICULTURA ECOLÓGICA PARA EL CONTROL DE LA AVISPILLA DEL ALMENDRO (EURYTOMA AMYGDALII ENDERLEIN)

Cuenca F1, Rubio A2, Amorós F2, Domínguez Gento A3

1: Estació Experimental Agrària de Carcaixent, Pda. Barranquet, s/n, 46740 Carcaixent; 034-962469860; cuenca_fran@gva.es
2: Servei de Transferència Tecnològica (DG DRiPAC, GVA), Estació Experimental Agrària de Carcaixent, Pda. Barranquet, s/n, 46740 Carcaixent; 034-962469872; rubio_alf@gva.es
3: Servei de Producció Ecològica, innovació i tecnologia (DG DRiPAC, GVA), Estació Experimental Agrària de Carcaixent, Pda. Barranquet, s/n, 46740 Carcaixent; 034-962469863; dominguez_alf@gva.es

RESUMEN: Desde su detección en Albacete en 2010, la avispilla del almendro (Eurytoma amygdalii Enderlein) se ha extendido rápidamente a las provincias y Comunidades Autónomas vecinas. A final de la Campaña 2015 se detecta su presencia en la Comunidad Valenciana en zonas limítrofes con esta provincia, en las comarcas del Valle de Cofrentes-Ayora y La Plana de Utiel-Requena. En 2017 se detecta su presencia en las comarcas de L’Alt Vinalopó y el Vinalopó Mitjà.

Se trata de una plaga de gran virulencia. El insecto adulto es una avispilla de color negro. Las larvas son de color gris o blanco. Tiene una sola generación por año. La puesta se realiza en las almendras ya cuajadas. Las larvas pasan el verano y el invierno en el interior de la almendra afectada. La emergencia de los adultos se produce entre marzo y abril coincidiendo con la nueva cosecha. La permanencia de frutos en el árbol tras la recolección es uno de los síntomas más llamativos de esta plaga, siendo muy importante en estos momentos la eliminación de los frutos afectados, tanto los que permanecen en el árbol como los que se puedan encontrar sobre el suelo.

En estos momentos, debido a la ausencia de enemigos naturales eficaces y la falta de métodos alternativos como confusión sexual o trampeo masivo, así como a la importancia de los daños, se recomienda tratar al darse la emergencia de los adultos cubriendo todo el periodo de vuelo. Así, se plantea durante 2018 un primer ensayo de eficacia con productos autorizados en agricultura ecológica según la reglamentación europea vigente, al tiempo que se realiza un exhaustivo seguimiento de la biología de la plaga para determinar los momentos adecuados de los tratamientos.

Los resultados, sin ser concluyentes, dan como la materia activa permitida en AE de mayor eficacia a una piretrina natural reforzada con aceite vegetal (de cítricos), marcando el camino a seguir en futuros ensayos con productos que nos permitan un suficiente control de la plaga a un coste económico y ambiental razonable, mientras se desarrollan los trabajos que permitirán en un futuro el control definitivo de la plaga mediante métodos biotécnicos o biológicos.

Palabras clave: avispilla, emergencia, ensayo de eficacia, piretrinas, aceite vegetal.

INTRODUCCIÓN

Eurytoma amygdalii Enderlein es un himenóptero de la Superfamilia Chalcidoidea, Familia Eurytomidae, Género y Especie Eurytoma amygdalii.

Presente en diversos países del área mediterránea, en julio de 2010 se tiene conocimiento de su presencia en nuestro país, en el municipio de Mahora en la provincia de Albacete. Desde entonces se ha extendido rápidamente a las provincias y Comunidades Autónomas vecinas. A final de la Campaña 2015 se detecta su presencia en la Comunidad Valenciana en zonas limítrofes con la provincia de Albacete, en las comarcas del Valle de Cofrentes-Ayora y La Plana de Utiel-Requena. En 2017 se detecta su presencia en las comarcas de L’Alt Vinalopó y el Vinalopó Mitjà.
Se trata de una plaga de gran virulencia. El insecto adulto es una avispa de color negro. Las larvas son de color gris o blanco. Y las pupas, inicialmente blancas, varían su color de blanco a negro. Tiene una sola generación por año. La puesta se realiza en las almendras ya cuajadas. Las larvas pasan el verano y el invierno en el interior de la almendra afectada. La emergencia de los adultos se produce entre marzo y abril coincidiendo con la nueva cosecha.

Las almendras atacadas toman un aspecto momificado. La permanencia de frutos en el árbol tras la recolección es uno de los síntomas más llamativos de esta plaga. Observados estos frutos de cerca se podrá detectar el orificio de salida del insecto si este ha abandonado ya la almendra. Si se abren, se podrá observar la larva en su interior.

Es por tanto importantísima la eliminación de los frutos afectados, tanto los que permanecen en el árbol como los que puedan encontrar sobre el suelo, procediendo a su destrucción mediante la quema o enterrándolos con cal viva.

Se citan algunos enemigos naturales, entre ellos Aprostocetus bucculentus Boucek y Adontomerus amygdalii Boucek.

Para su control se deben aplicar las labores culturales ya mencionadas para reducir el nivel de plaga. Ante la ausencia de enemigos naturales fiables y la falta de métodos alternativos como confusión sexual o trampeo masivo, se recomiendan tratamientos químicos al producirse la emergencia de los adultos cubriendo todo el periodo de vuelo. Por parte de la Conselleria de Agricultura, Medio Ambiente y Desarrollo Rural, se realiza el seguimiento del ciclo, para dar el aviso de tratamiento a los agricultores en el momento adecuado. Es aconsejable la utilización de evolucionarios para determinar la emergencia de los adultos y seguir las indicaciones de las Estaciones de Avisos de los diferentes Servicios de Sanidad Vegetal.

La Conselleria de Agricultura, Cambio Climático y Desarrollo Rural ha declarado la presencia de la plaga en la Comunidad Valenciana mediante la Resolución de 23 de febrero de 2018 del DG de Agricultura, Ganadería y Pesca por la cual se declara la existencia de la plaga provocada por Eurytoma amygdalii en el territorio de la Comunidad Valenciana y se adoptan medidas fitosanitarias de control. Esta Resolución, califica de utilidad pública la lucha contra E. amygdalii en al ámbito territorial de la Comunidad Valenciana de acuerdo con el Artículo 15 de la Ley 43/2002 de 20 de noviembre de Sanidad Vegetal.

Esta resolución ha permitido hacer una autorización excepcional a los agricultores ecólogos para que puedan emplear, solamente durante esta campaña y bajo la pérdida del certificado oficial durante la misma, el insecticida Lambda-cihalothrin para combatir la avispa del almendro, aunque sin poder vender su cosecha como ecológica este año.

MATERIAL Y MÉTODOS

Se plantea un ensayo con el objetivo de comprobar la eficacia de diversos productos autorizados en agricultura ecológica para el control de Eurytoma amygdalii Enderlein en almendros ecológicos. Las aplicaciones son realizadas durante el vuelo de adultos Se realiza un seguimiento de la plaga para determinar los momentos adecuados de los tratamientos.

El ensayo se desarrolla en una parcela de almendros de la variedad Largueta, de más de 30 años de edad, con un marco de plantación de 7 x 7 m y cultivada en secano. Se encuentra localizada en Los Isidros, Requena. El diseño será de bloques al azar con cuatro repeticiones y una parcela elemental de dos árboles. Para las aplicaciones se emplea una carretilla motobomba con manguera y disparador con una boquilla regulable de cono lleno de 1,5 mm de diámetro.

Los productos ensayados son Breaker max, Breaker max+Prevam, Spinosad 48, Azafit, Tierra de diatomeas y se deja un testigo sin tratar, todos ellos autorizados según el Reglamento UE de la Agricultura ecológica. Como producto estándar se emplea Karate-zeón que está autorizado excepcionalmente durante esta campaña para su...
uso en almendro ecológico. En el Cuadro 1 se muestran los productos empleados, así como sus dosis y el número de aplicaciones.

Cuadro I: Tratamientos del ensayo.

<table>
<thead>
<tr>
<th>Nº</th>
<th>PRODUCTO</th>
<th>MATÈRIA ACTIVA</th>
<th>FORM</th>
<th>RÍQ</th>
<th>DOSIS</th>
<th>Nº TRAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BREAKER MAX</td>
<td>PIRETRINAS</td>
<td>EC</td>
<td>4%</td>
<td>P/V 1000cc/ha</td>
<td>4 trat</td>
</tr>
<tr>
<td>2</td>
<td>BREAKER MAX++PREVAM</td>
<td>PIRETRINAS (Extracto de pelitre)+Aceite de naranja</td>
<td>EC SL</td>
<td>4%</td>
<td>6%</td>
<td>1000cc/ha</td>
</tr>
<tr>
<td>3</td>
<td>SPINOSAD 48</td>
<td>SPINOSAD</td>
<td>SC</td>
<td>48%</td>
<td>P/V 0,025%</td>
<td>4 trat</td>
</tr>
<tr>
<td>4</td>
<td>AZAFIT</td>
<td>AZADIRACTINA</td>
<td>EC</td>
<td>3,2%</td>
<td>P/V 83%</td>
<td>0,1%</td>
</tr>
<tr>
<td>5</td>
<td>TIERRA DE DIATOMAES</td>
<td>Tierra de diatomeas</td>
<td>PM</td>
<td></td>
<td></td>
<td>1,6%</td>
</tr>
<tr>
<td>6</td>
<td>KARATE ZEON</td>
<td>Lambda-Cihalotrin</td>
<td>CS</td>
<td>1,5%</td>
<td>0,1%</td>
<td>4 trat</td>
</tr>
<tr>
<td>7</td>
<td>TESTIGO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo a las recomendaciones del Servicio de Sanidad Vegetal, deben comenzarse los tratamientos al inicio del vuelo de los adultos y cubrir toda la duración de este.

Para determinar el inicio de los tratamientos del ensayo, se han colocado evolucionarios en la parcela. Al mismo tiempo, se ha procedido al seguimiento del ciclo biológico de la avispa, lo que nos ha permitido determinar con mayor precisión el inicio del vuelo, la evolución de la emergencia de los adultos y el final del vuelo. En base a estos datos se han realizado los tratamientos que se pueden observar en la figura 1, donde se muestra la evolución de la emergencia de los adultos y los momentos de tratamiento.

![Figura 1. Vuelo de adultos y momentos de tratamiento.](image)

Se realizan cuatro aplicaciones los días 18 de abril, 26 de abril, 3 de mayo y 10 de mayo de 2018 con un gasto aproximado de caldo de 500 litros/ha. Posteriormente, se realizan tres valoraciones de frutos. Los días 31 de julio, 9 de agosto y 30 de agosto.
El día 31-7-18, se valora en campo el % de frutos atacados por parcela elemental. En este momento ya se aprecian con facilidad los frutos afectados que empiezan a mostrarse marchitos. Se valora distinguiendo entre fruto sano y fruto afectado.

En la siguiente evaluación en campo se realiza el día 9-8-18, se cuentan el total de frutos atacados por parcela elemental.

A finales de agosto se procede a la última evaluación, esta vez en la Estación Experimental Agraria de Carcaixent (en adelante EEAC), procediendo a la apertura de frutos previamente recolectados. Se anotan: frutos sanos, con larvas, fallados y otras causas.

RESULTADOS

Se observa un nivel de ataque entre un 15 y un 20% en los testigos; los niveles de ataque más bajos corresponden a las parcelas elementales tratadas con el producto estándar. En los cuadros 2, 3 y 4 se reflejan los datos de los conteos.

Cuadro II: % frutos atacados por parcela elemental (valoración en campo)

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAKER MAX</td>
<td>12,61</td>
<td>11,11</td>
<td>13,48</td>
<td>1,13</td>
<td>9,58</td>
</tr>
<tr>
<td>BREAKER MAX+PREVAM</td>
<td>9,09</td>
<td>2,59</td>
<td>9,52</td>
<td>1,81</td>
<td>5,75</td>
</tr>
<tr>
<td>SPINOSAD 48</td>
<td>34,07</td>
<td>17,44</td>
<td>3,26</td>
<td>5,35</td>
<td>15,03</td>
</tr>
<tr>
<td>AZAFIT+ACEITE</td>
<td>18,42</td>
<td>15,46</td>
<td>17,142</td>
<td>3,22</td>
<td>13,56</td>
</tr>
<tr>
<td>TIERRA DE DIATOMEAS</td>
<td>22,91</td>
<td>16,85</td>
<td>17,04</td>
<td>3,52</td>
<td>15,08</td>
</tr>
<tr>
<td>KARATE ZEON</td>
<td>7,89</td>
<td>1,12</td>
<td>1,075</td>
<td>6,34</td>
<td>4,106</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>29,54</td>
<td>10,63</td>
<td>30,76</td>
<td>7,69</td>
<td>19,65</td>
</tr>
</tbody>
</table>

Cuadro III: n.º total de frutos atacados por parcela elemental (valoración en campo).

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAKER MAX</td>
<td>52</td>
<td>47</td>
<td>43</td>
<td>28</td>
<td>42,5</td>
</tr>
<tr>
<td>BREAKER MAX+PREVAM</td>
<td>73</td>
<td>15</td>
<td>28</td>
<td>19</td>
<td>33,75</td>
</tr>
<tr>
<td>SPINOSAD 48</td>
<td>87</td>
<td>34</td>
<td>8</td>
<td>17</td>
<td>36,5</td>
</tr>
<tr>
<td>AZAFIT+ACEITE</td>
<td>30</td>
<td>31</td>
<td>43</td>
<td>22</td>
<td>31,5</td>
</tr>
<tr>
<td>TIERRA DE DIATOMEAS</td>
<td>73</td>
<td>45</td>
<td>40</td>
<td>22</td>
<td>45</td>
</tr>
<tr>
<td>KARATE ZEON</td>
<td>22</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>34</td>
<td>48</td>
<td>86</td>
<td>25</td>
<td>48,25</td>
</tr>
</tbody>
</table>
Cuadro IV: % frutos atacados por parcela elemental (muestras de campo y abiertas en EEAC).

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAKER MAX</td>
<td>5,45</td>
<td>12,72</td>
<td>6,38</td>
<td>2,17</td>
<td>6,68</td>
</tr>
<tr>
<td>BREAKER MAX+PREVAM</td>
<td>20</td>
<td>0</td>
<td>11,62</td>
<td>3,17</td>
<td>8,69</td>
</tr>
<tr>
<td>SPINOSAD 48</td>
<td>1,66</td>
<td>15,21</td>
<td>3,92</td>
<td>4,76</td>
<td>6,38</td>
</tr>
<tr>
<td>AZAFIT+ACEITE</td>
<td>6,66</td>
<td>5,66</td>
<td>5,88</td>
<td>12,5</td>
<td>7,67</td>
</tr>
<tr>
<td>TIERRA DE DIATOMEAS</td>
<td>14,28</td>
<td>15</td>
<td>11,9</td>
<td>2,32</td>
<td>10,88</td>
</tr>
<tr>
<td>KARATE ZEON</td>
<td>2,08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,52</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>26,08</td>
<td>4,34</td>
<td>20</td>
<td>6</td>
<td>14,11</td>
</tr>
</tbody>
</table>

Cuadro V: Eficacia calculada sobre % frutos atacados por parcela elemental (Valoración en campo).

<table>
<thead>
<tr>
<th></th>
<th>% EFICACIA</th>
<th>DIF. SIGNIF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KARATE ZEON</td>
<td>79,1</td>
<td>a</td>
</tr>
<tr>
<td>BREAKER MAX+PREVAM</td>
<td>70,73</td>
<td>a</td>
</tr>
<tr>
<td>BREAKER MAX</td>
<td>51,24</td>
<td>ab</td>
</tr>
<tr>
<td>AZAFIT+ACEITE</td>
<td>30,99</td>
<td>ab</td>
</tr>
<tr>
<td>SPINOSAD 48</td>
<td>23,51</td>
<td>ab</td>
</tr>
<tr>
<td>TIERRA DE DIATOMEAS</td>
<td>23,25</td>
<td>ab</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>-</td>
<td>ab</td>
</tr>
</tbody>
</table>

Cuadro VI: Eficacia sobre Nº frutos atacados por parcela elemental (Valoración en campo)

<table>
<thead>
<tr>
<th></th>
<th>% EFICACIA</th>
<th>DIF. SIGNIF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KARATE ZEON</td>
<td>75,13</td>
<td>a</td>
</tr>
<tr>
<td>AZAFIT+ACEITE</td>
<td>34,71</td>
<td>ab</td>
</tr>
<tr>
<td>BREAKER MAX+PREVAM</td>
<td>35,15</td>
<td>ab</td>
</tr>
<tr>
<td>SPINOSAD 48</td>
<td>24,35</td>
<td>ab</td>
</tr>
<tr>
<td>BREAKER MAX</td>
<td>11,91</td>
<td>ab</td>
</tr>
<tr>
<td>TIERRA DE DIATOMEAS</td>
<td>6,73</td>
<td>b</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>-</td>
<td>b</td>
</tr>
</tbody>
</table>

Cuadro VII: Sobre % frutos atacados por parcela elemental (muestras de campo, abiertas en EEAC).

<table>
<thead>
<tr>
<th></th>
<th>% EFICACIA</th>
<th>DIF. SIGNIF.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KARATE ZEON</td>
<td>96,31</td>
<td>a</td>
</tr>
<tr>
<td>SPINOSAD 48</td>
<td>54,76</td>
<td>ab</td>
</tr>
<tr>
<td>BREAKER MAX</td>
<td>52,84</td>
<td>ab</td>
</tr>
<tr>
<td>BREAKER MAX+PREVAM</td>
<td>45,48</td>
<td>ab</td>
</tr>
<tr>
<td>AZAFIT+ACEITE</td>
<td>45,62</td>
<td>ab</td>
</tr>
<tr>
<td>TIERRA DE DIATOMEAS</td>
<td>22,89</td>
<td>b</td>
</tr>
<tr>
<td>TESTIGO</td>
<td>-</td>
<td>b</td>
</tr>
</tbody>
</table>
Figura 2. Eficacia de los tratamientos sobre % de frutos atacados a finales de julio.

Figura 3. Eficacia de los tratamientos sobre n° total de frutos atacados a mediados de agosto.

Figura 4. Eficacia de los tratamientos sobre % de frutos atacados a finales de agosto.
RESULTADOS Y CONCLUSIONES

En general, se han dado niveles de ataque bajos en la parcela de ensayo, entre el 15 y el 19% de almendras picadas, a pesar de tener al lado una parcela abandonada con gran cantidad de frutos afectados del año anterior en los árboles y que no se han retirado, lo cual asegura una importante cantidad de plaga. La parcela de ensayo presentaba asimismo almendras afectadas del año anterior que fueron retiradas y destruidas por el dueño antes de la brotación de los almendros.

Muy buenos resultados por parte del producto estándar, Karate-Zeon, con eficacias buenas o muy buenas en todos los casos. Del resto de productos ensayados, y aunque los resultados no son satisfactorios en general, mencionar el comportamiento de Breaker Max, especialmente de Breaker Max+ Preva en que se ha mostrado ligeramente superior a los demás productos ensayados. La tierra de Diatomeas presenta los peores controles del ensayo, aunque probablemente se deba ensayar con aplicaciones anteriores a los demás productos, dado que es una materia activa de efecto repelente, no biocida.

Con estos resultados seguimos sin tener un producto permitido en el Reglamento euroepo de la AE realmente eficaz para combatir a Eurytoma en almendros ecológicos.

Puede ser interesante seguir trabajando con alguno de los productos ensayados, especialmente con la adición de mejorantes o con diferentes formulados que aumenten su efectividad lo que permita a los agricultores ecológicos tener una herramienta que, junto a medidas como la retirada de fruta afectada, le permita combatir la plaga y seguir cultivando mientras se soluciona el problema por medios biológicos o biotécnicos.

BIBLIOGRAFÍA

- Guía de Gestión Integrada de Plagas del Almendro. Ministerio de Agricultura, Alimentación y Medio Ambiente
- Resolución de 23 de febrero de 2018 del DG de Agricultura, Ganadería y Pesca por la cual se declara la existencia de la plaga provocada por Eurytoma amygdali en el territorio de la Comunidad Valenciana y se adoptan medidas fitosanitarias de control.
‘OIDIO DETECTION’, UN PROYECTO PARA UNA APLICACIÓN SOSTENIBLE DE TRATAMIENTOS FITOSANITARIOS EN VID

RESUMEN: El oídio es una enfermedad fúngica del viñedo que entraña tal gravedad que, si las condiciones ambientales son favorables y el manejo no es adecuado, puede provocar la pérdida total de la cosecha.

En La Rioja esta enfermedad es endémica y requiere de una aplicación frecuente de fungicidas para que su incidencia sea sostenible, lo cual tiene unas implicaciones económicas y medioambientales que hacen necesaria una optimización de la toma de decisiones a la hora de aplicar dichos tratamientos.

De esta necesidad, ha surgido el proyecto ‘Oidio Detection’ cuya finalidad es desarrollar una herramienta que ayude a los viticultores a optimizar los tratamientos en base a modelos bioclimáticos que permitan predecir de forma más precisa el riesgo de oídio.

‘Oídio Detection’ es un proyecto financiado por el Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente y el Programa de Desarrollo Rural (PDR) y promovido por Grupo Rioja con la participación de Bodegas Ramón Bilbao, Bodegas del Medievo, Bodegas Patrocinio, Bodegas Aradón, la Federación de Cooperativas Agrarias de La Rioja (FECOAR), el Servicio de Información Agroclimática de La Rioja (SIAR), el Instituto de Ciencias de la Vid y del Vino (ICVV) y Encore Lab.

Para su ejecución, se están monitorizando parcelas en Rioja Alta y Baja mediante sensores de campo integrados en estaciones agroclimáticas, y valorando el estado sanitario en campo, con el fin de cotejar toda esta información con el modelo que sea desea implementar.

Palabras clave: estaciones agroclimáticas, fungicidas, hongos, modelos bioclimáticos, patógenos
EFICACIA DE TRATAMIENTOS ECOLÓGICOS CONTRA LA ARAÑA ROJA TETRANYCHUS URTICAE (ACARI: TETRANYCHIDAE) EN CLEMENTINOS RESIDUO CERO

Gavara-Vidal J¹, López-Olmos S¹, García-Díaz A², Ferragut F¹

¹Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València (UPV), Valencia.
²Servicio de Producción Ecológica-STT. Carretera CV-20, 12540 Villarreal, Castellón.

RESUMEN: La araña roja Tetranychus urticae es una de las principales plagas del clementino. El control biológico es insuficiente y tradicionalmente se han empleado plaguicidas de síntesis para su control. En este trabajo se ha ensayado la eficacia de cuatro tratamientos con productos aptos para agricultura ecológica en una parcela de clementino de la variedad Clemenules en la localidad de Nules (Castellón), destinada a la producción de fruta con residuo cero. Los productos y dosis utilizados fueron aceite parafínico 1,25 l/hl; aceite parafínico 1 l/hl + azadiractina 0,05 l/ hl; Vegex Oricitric 0,5 l/hl + Vegex Crisoil 0,2 l/hl y Prevam 0,35 l/hl. La población de araña roja fue evaluada inmediatamente antes y hasta cinco semanas después de los tratamientos, mediante muestreos semanales con observación de 50 hojas por tratamiento. En cada muestreo se contabilizó el porcentaje de hojas ocupadas por ácaros vivos y el número medio de ácaros por hoja. Los productos más eficaces al final del ensayo fueron el aceite parafínico y la mezcla aceite+azadiractina, que redujeron la abundancia de los ácaros a niveles muy por debajo del umbral de daño antes de las dos semanas del tratamiento y durante todo el ensayo. Sin embargo, estos productos presentaron una baja persistencia, observándose un aumento de la población en el último de los muestreos, a las cinco semanas del tratamiento. Los productos Vegex Oricitric+Vegex Crisoil y Prevam tuvieron un efecto más lento, que se apreció en la tercera semana del ensayo. Después, su comportamiento fue diferente, ya que el primero redujo la plaga a niveles similares al de los aceites, mientras que el Prevam mostró una menor eficacia, encontrándose a las cinco semanas niveles de ocupación de hojas comparables a los previos al tratamiento.

Palabras clave: cítricos, control ácaros, eficacia acaricida, plaguicidas ecológicos
ABUNDANCIA Y DISTRIBUCIÓN TEMPORAL DEL ÁCARO PLAGA EUTETRANYCHUS BANKSI (ACARI: TETRANYCHIDAE) Y EL DEPREDADOR EUSEIUS STIPULATUS (ACARI: PHYTOSEIIDAE) EN CÍTRICOS DE GESTIÓN ECOLÓGICA Y CONVENCIONAL

López-Olmos S¹, Gavara-Vidal J¹, Domínguez-Gento A², Ferragut F¹

¹Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València (UPV), Valencia
²Servicio de Producción Ecológica, Conselleria de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural, Generalitat Valenciana (GVA), Valencia

RESUMEN: El ácaro de Texas Eutetranychus banksi (Acari: Tetranychidae) es una especie invasora que llegó a los cítricos valencianos en 2013 y desde entonces se ha extendido con rapidez en las provincias de Valencia y Alicante, produciendo daños y obligando a realizar tratamientos químicos. La información sobre la plaga es muy escasa, por lo que se ha estudiado su dinámica poblacional en el año 2018, en parcelas de cítricos de gestión ecológica, convencional y residuo cero, así como la presencia y abundancia de los ácaros depredadores. En todas las parcelas, las poblaciones de E. banksi presentaron un máximo poblacional anual en los meses de agosto-septiembre. El tipo de gestión parece influir en la abundancia de la plaga. La plaga fue menos abundante y el crecimiento poblacional se produjo más tarde en las parcelas ecológicas. La mayor abundancia en las parcelas convencionales y residuo cero puede deberse al aporte de fertilizantes químicos, que proporcionan al ácaro nutrientes extra que favorecen su crecimiento. El principal depredador de ácaros en los cítricos fue el fitoseído Euseius stipulatus (Acari: Phytoseiidae). Sus poblaciones fueron altas en invierno, primavera y otoño, desapareciendo en verano, momento en que se produce el crecimiento de la plaga. El depredador fue más abundante en las parcelas ecológicas y residuo cero que en las convencionales. Esta mayor abundancia puede deberse a la ausencia de tratamientos químicos plaguicidas y al porte de los árboles, con copas densas que favorecen a los depredadores.

Palabras clave: cítricos, cultivo ecológico, Eutetranychus banksi, Euseius stipulatus, España

INTRODUCCIÓN

El ácaro de Texas Eutetranychus banksi (McGregor) es una especie invasora de origen americano, que vive en los cítricos americanos desde el sur de Estados Unidos hasta el norte de Argentina. El ácaro se alimenta de las células epidérmicas y parenquimáticas de hojas y frutos, causando defoliación, manchado y desecación. Los daños considerados más graves son los que afectan a los frutos (Figura 1), ya que deprecian su valor comercial.

Figura 1. Daños causados por Eutetranychus banksi en hojas (izquierda), frutos (derecha).
Los primeros ejemplares encontrados en los cítricos españoles se colectaron en Ayamonte (Huelva) en el año 2001 y procedían, seguramente, del sur de Portugal, donde ya había sido citado en los cítricos unos años antes causando daños importantes (Carvalho et al., 1999; García et al., 2003; Gonçalves et al., 2002). Durante muchos años, este ácaro permaneció restringido en los cítricos de la provincia de Huelva, hasta que en 2013 se encontró, por primera vez afectando al cultivo en parcelas de la provincia de Valencia. En los últimos tres años el ácaro se ha extendido con rapidez desde los primeros focos iniciales en la comarca de La Safor, moviéndose en dirección sur y ocupando por completo la provincia de Alicante, y en dirección norte hasta ocupar la provincia de Valencia. Por el momento no se encuentra en parcelas de cítricos de la provincia de Castellón (datos no publicados). Dado que *E. banksi* no se ha encontrado en zonas costeras del este de Andalucía, parece que las poblaciones valencianas proceden directamente de Huelva, vía material vegetal con ácaros.

No existe, prácticamente, información de la biología, daños y comportamiento de la plaga en los cítricos españoles. La mayor parte de la información existente procede de trabajos de los Estados Unidos. Los ataques del ácaro de Texas están asociados principalmente a condiciones de temperaturas elevadas y humedades ambientales bajas. En Florida, donde *E. banksi* es considerado una plaga primaria en el cultivo de los cítricos, sus poblaciones son más altas durante la primavera (marzo-mayo), y suelen disminuir con la llegada del verano, en que se inicia la estación húmeda. En California, con clima mediterráneo más similar al de España, los mayores ataques suelen aparecer al final del verano y pueden extenderse hasta la entrada del invierno. *Eutetranychus banksi* se alimenta principalmente en las hojas, introduciendo sus estiletes en los tejidos de la planta y provocando un daño directo al remover el contenido celular de la hoja y afectar a su capacidad fotosintética. Esta actividad provoca manchas color ámbar y si el daño es severo, puede causar el síntoma conocido como “colapso del mesófilo”, dando por resultado una fuerte defoliación en condiciones de clima seco. El daño que se produce internamente consiste en una reducción de la tasa de fotosintética y de la transpiración, lo que provoca una pérdida del vigor de la planta (French, 1994).

![Figura 2. (A) Hembra y macho de *E. orientalis*, (B) Macho, inmaduro y huevos de *E. orientalis*, (C) Hembra, macho y huevos de *E. banksi*, (D) Macho y huevos de *E. banksi*.](image)

Los productos químicos recomendados por los responsables de Sanidad Vegetal en la Comunidad Valenciana para su control son los mismos que se recomiendan para el control de otros tetraníquidos en cítricos. Sin embargo, prescindir del empleo de productos fitosanitarios de síntesis es necesario desde el punto de vista de un modelo agrícola sostenible. En este sentido, el control biológico de plagas ha demostrado ser una herramienta eficaz en muchos casos. Algunos ácaros e insectos depredadores se alimentan del ácaro de Texas en campo. Los depredadores más importantes son los ácaros fitoseidos, usados como agentes de control biológico en muchos ecosistemas agrícolas en todo el mundo (Gerson et al., 2003). En los cítricos españoles, el fitoseído más importante es *Euseius stipulatus* (Athias-Henriot), que ejerce un buen control sobre el ácaro rojo *Panonychus citri* (McGregor), pero no sobre la araña roja *Tetranychus urticae* Koch. En ensayos previos de laboratorio se ha estudiado la eficacia de este...
fitoseído sobre *E. banksi*. El depredador fue capaz de completar su desarrollo sobre la presa, pero la mortalidad de los inmaduros fue alta y la puesta de huevos muy reducida. Además, se observó como las hembras del fitoseído retenían el huevo dentro de su cuerpo sin llegar a depositarlo en la hoja, dando a entender este comportamiento que el alimento no es favorable (datos no publicados).

En los últimos años ha tenido lugar la llegada y rápida extensión del ácaro de Texas en los cítricos valencianos. Como consecuencia, se ha producido una alarma entre productores y técnicos que se han visto obligados a incluir nuevos tratamientos químicos en la gestión de sus parcelas. A fin de conocer con más detalle el comportamiento y evolución poblacional de la nueva plaga se ha planteado el estudio de la evolución estacional de su abundancia y la de sus enemigos naturales en parcelas de cítricos valencianos.

En estos momentos, en la citricultura valenciana se está prestando una especial atención a la producción ecológica, intentando adaptar la gestión de plagas a un futuro próximo donde se prevé producir frutas con un “residuo cero”. Por ello, en este trabajo se han incluido parcelas con gestión de tipo convencional con tratamientos químicos en el marco de la producción integrada de plagas, parcelas residuo cero y parcelas con gestión ecológica, donde sólo se emplean productos fitosanitarios naturales o autorizados para su uso en agricultura ecológica. El trabajo se ha realizado en el marco de un Convenio de colaboración entre la Generalitat Valenciana (a través de la Conselleria de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural) y la Universidad Politècnica de València para financiar un proyecto de investigación y experimentación de estrategias agroecológicas para el manejo de la biodiversidad e implementación de la transferencia y demostración de este tipo de modelos en la agricultura ecológica valenciana.

MATERIAL Y MÉTODOS

Ubicación y características de las parcelas de estudio

Para realizar el seguimiento poblacional de *E. banksi* y sus depredadores se eligieron 4 parcelas de distintas variedades y con diferente tipo de manejo o gestión de plagas, todas ubicadas en la Comunidad Valenciana, al norte de la provincia de Alicante y la provincia de Valencia. (i) Variedad Oronules: Picassent (Valencia), gestión integrada; Latitud Norte: 39. 325963°, Longitud Oeste: 0. 438343°. (ii) Variedad Ortanique: Picassent (Valencia), gestión ecológica; Latitud Norte: 39. 329520°, Longitud: 0. 498612°. (iii) Variedad Valencialate: Oliva (Valencia), gestión ecológica; Latitud Norte: 38. 889226°, Longitud Oeste: -0. 103483°. (iv) Variedad Navelina: Pego (Alicante), gestión con residuo cero, en que no se aplican tratamientos químicos orgánicos de síntesis, pero el abonado es el tradicional, no el orgánico aceptado por la agricultura ecológica; Latitud Norte: 38. 837375°, Longitud Oeste: 0. 107642°.

Figura 3: (A) Parcela de naranjo variedad Valencia-late y de gestión ecológica situada en la localidad de Oliva (Valencia). (B) Parcela de clementino variedad Oronules y de gestión integrada situada en la localidad de Picassent (Valencia).
Muestreo de ácaros y procesamiento de las muestras

Los muestreos se realizaron de enero a noviembre de 2018. En cada parcela se muestrearon entre 15-30 árboles, lo que suponía, al menos el 10% de árboles de la parcela. Los árboles se marcaron y mantuvieron libres de tratamientos fitosanitarios durante el período de estudio. Entre los meses de enero a junio de 2018 (período de invierno y primavera) se colectaron quincenalmente hojas de los árboles seleccionados, y a partir de julio, con la llegada del verano, los muestreos se realizaron semanalmente hasta el mes de octubre inclusive. En cada muestreo, se revisaron con lupa de mano las hojas, y se colectaron al azar 100 hojas completamente desarrolladas del exterior de la copa, con el fin de estimar la densidad poblacional del ácaro de Texas. Además, también se colectaron 25 hojas del interior de la copa a fin de valorar la densidad poblacional de los fitoseidos. El material vegetal colectado se transportó en bolsas de cartón etiquetadas en una nevera portátil refrigerada. Las muestras fueron procesadas el mismo día de su recolección en el laboratorio.

Se contabilizó el número de *E. banksi* en hojas del exterior de la copa y el número de fitoseidos en las hojas del interior del árbol. En cada muestreo, los ácaros fitoseidos colectados fueron conservados en tubos con alcohol al 70% para su posterior montaje e identificación al microscopio óptico. Además, unas 20 hembras de *Eutetranychus* se conservaron para su posterior identificación microscópica a nivel de especie, a fin de confirmar que se trataba de *E. banksi*.

RESULTADOS

Evolución temporal e influencia del manejo agronómico de la parcela en la abundancia del ácaro de Texas

La Figura 4 muestra la distribución de la densidad poblacional de *E. banksi* en las cuatro parcelas en el período muestreado. Hasta el mes de julio no se observaron los primeros ejemplares de la plaga. A partir de ese momento, la densidad poblacional fue diferente dependiendo de la ubicación de las parcelas y el modo de manejo del cultivo. Las parcelas de las variedades Valencia y Navelina, ubicadas en Oliva y Pego respectivamente, fueron las más adelantadas, presentando picos de población a principios del mes de septiembre. Las parcelas ubicadas en Picassent, presentaron picos poblacionales entre finales de septiembre a principios de octubre.

Los niveles poblacionales en las parcelas de Navelina y Oronules de gestión integrada fueron muy superiores a las de Valencialate y Ortanique de gestión ecológica. La parcela de Oronules fue la que registró una mayor población con un primer pico de 86 ácaros/hoja a mitad de septiembre y un segundo pico a principios de octubre con 47 ácaros/hoja. La parcela de Navelina presentó un único máximo de 64 ácaros/hoja a principios de septiembre. En las parcelas de Ortanique y Valencia-late se encontraron niveles poblacionales inferiores, alcanzando niveles máximos de 23 y 4 ácaros/hoja. Además, los gráficos muestran que el inicio del crecimiento poblacional tuvo lugar antes en las parcelas de gestión integrada, a mediados de julio, que en las de gestión ecológica, que ocurrió a partir de mediados de agosto.

Figura 4. Densidad poblacional de *E. banksi* en las parcelas de gestión ecológica e integrada en Picassent y Pego-Oliva.
Especies de fitoseidos, abundancia y evolución temporal de sus poblaciones

Se recolectaron un total de 2728 fitoseidos en las cuatro parcelas, de los que se identificaron 1853 especímenes adultos repartidos en tres especies, Euseius stipulatus, Typhlodromus phialatus Athias-Henriot y Paraseius talbii (Athias-Henriot) (Tabla 1). La especie más abundante fue E. stipulatus, que representó el 96,4% del total de ácaros depredadores, seguida por T. phialatus con el 2,7% y P. talbii que representó el 0,9%.

Los fitoseidos fueron más abundantes en las parcelas de Ortanique y Navelina y menos abundantes en las de Valencia y Oronules. En las cuatro parcelas el fitoseido predominante fue Euseius stipulatus, que representó entre el 83,4% (Valencia) y el 99% (Navelina) del total. Las restantes especies fueron mucho más escasas.

<table>
<thead>
<tr>
<th>ESPECIE</th>
<th>ORTANIQUE</th>
<th>ORONULES</th>
<th>VALENCIA</th>
<th>NAVELINA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euseius stipulatus</td>
<td>877</td>
<td>141</td>
<td>198</td>
<td>571</td>
<td>1787</td>
</tr>
<tr>
<td>Typhlodromus phialatus</td>
<td>22</td>
<td>1</td>
<td>23</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Paraseius talbii</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

Tabla 1. Especies de fitoseidos encontradas y su abundancia en cada una de las parcelas.

Sus poblaciones se mantuvieron variables en los meses de enero, febrero y marzo, con densidades más altas o bajas, dependiendo de las parcelas (Figura 5). En abril y mayo se inició un crecimiento poblacional que dio lugar a los máximos del año, con valores superiores a 7 fitoseidos/hoja en la parcela de Navelina y cerca de 3 fitoseidos/hoja en la de Oronules. A partir de junio tiene lugar un descenso generalizado, siendo las poblaciones mínimas en los meses de verano y con tendencia a recuperarse en octubre.

DISCUSIÓN

Los resultados obtenidos indican que el comportamiento poblacional de E. banksi en los cítricos valencianos es similar al de otro de los tetraníquidos de los cítricos, el ácaro rojo Panonychus citri. De forma similar, las poblaciones del ácaro de Texas son muy bajas durante la mayor parte del año, aumentando a finales de agosto y alcanzando su máximo poblacional en septiembre-octubre. Toda la información consultada coincide en que las altas temperaturas y bajas humedades ambientales favorecen el crecimiento de las poblaciones de E. banksi (Jeppson et al., 1975; French, 1994). De esta forma, las condiciones climáticas que se producen durante el verano en la Comunidad Valenciana, serían el factor desencadenante del incremento poblacional de E. banksi. Con el inicio
del otoño y el descenso de las temperaturas se produce la rápida desaparición de las poblaciones del ácaro. Sin embargo, otros factores influyen en el momento de inicio del crecimiento y en los valores máximos alcanzados, como lo demuestra el que parcelas de una misma localidad presentan dinámicas muy diferentes. Entre estos factores se encuentra el estado nutricional de las hojas. En este estudio no se ha cuantificado el contenido de nutrientes en las hojas, pero con seguridad puede ser un factor clave para explicar las variaciones en el número de ácaros a lo largo del tiempo. La supervivencia, reproducción, fecundidad, crecimiento poblacional o la dispersión de los tetraníquidos están directamente relacionadas con el valor nutricional del alimento que ingieren (Helle y Sabelis, 1985). Por tanto, la fenología de la planta o variaciones en el contenido de algunos de sus elementos químicos podrían explicar, junto con la temperatura, los cambios en la cantidad de ácaros a lo largo del tiempo.

La abundancia del ácaro de Texas fue diferente según la variedad de cítrico cultivada, y según la relación Oronules > Navelina > Ortanique > Valencialate. Una de las posibles causas puede ser el distintos valor nutricional de hojas y frutos de estas variedades. No hay información sobre la preferencia varietal del ácaro en nuestras condiciones. Sin embargo, observaciones de campo realizadas el verano de 2017 en pleno pico de crecimiento poblacional sugieren que el ácaro es capaz de desarrollar elevadas poblaciones en cualquiera de las variedades y condiciones observadas, incluido el pomelo. Por otro lado, diversas hormonas vegetales, como el ácido jasmónico (JA), están asociadas con el incremento de la expresión de varios genes de defensa, como los que codifican los inhibidores de proteasas (PINs) involucrados en la defensa de las plantas frente a herbívoros (Farmer y Ryan, 1992). La existencia de distintas capacidades de defensa en variedades genéticamente diferentes podría ser un factor relevante en la abundancia que las poblaciones de ácaros pueden llegar a alcanzar, y por lo tanto en el daño que pueden causar en los vegetales.

Otro aspecto que puede influir en la abundancia del ácaro de Texas es la estructura del árbol, ya que los ambientes luminoosos, cálidos y secos favorecen su crecimiento. Estas condiciones se corresponden con los árboles de Oronules (Figura 3B), con copa más abierta que permite un ambiente más ventilado y seco en su interior y mayor luminosidad, pero no con los de Navelina, que se caracterizan por copas más cerradas y con mayor follaje. Por otro lado, las cubiertas vegetales incrementan la humedad en el interior de las parcelas donde se instalan. En este sentido, la cubierta vegetal establecida en la parcela de Valencialate (Figura 3A) podría aumentar la humedad relativa, lo que podría ejercer un efecto negativo sobre el crecimiento y reproducción del ácaro de Texas.

En cuanto a la posible influencia del tipo de gestión agronómica sobre la abundancia del ácaro de Texas, los resultados obtenidos indican claramente que el ácaro es menos abundante en las parcelas de gestión ecológica que en las de gestión integrada y residuo cero. Dado que las dos parcelas del mismo tipo (integrado/residuo 0 o ecológico) se eligieron en distintas zonas para evitar el posible efecto del clima, el estado nutricional de las hojas parece la explicación más adecuada para justificar estas diferencias. El mayor número de ácaros en las parcelas de residuo 0 y gestión integrada (Navelina y Oronules) podría deberse al abonado que se aplica, y que produce niveles superiores de N y aminoácidos en los tejidos de la planta. Mayores concentraciones de esos compuestos proporcionan un mayor valor nutritivo al alimento ingerido por el ácaro, que rápidamente lo transforma en tejidos nuevos en la época de crecimiento o en huevos en la época de reproducción. El efecto positivo de estos compuestos en el crecimiento poblacional de los ácaros fitófagos ha sido suficientemente demostrado en muchos estudios durante las últimas décadas (Henneberry, 1963; Helle y Sabelis, 1985).

Los fitoseídos fueron los más abundantes sobre Navelina y Ortanique. En este hecho, el historial fitosanitario de la parcela, así como el tamaño de la hoja o la estructura de los árboles son factores que podrían ser relevantes. Las parcelas de Navelina y Ortanique, con gestión de tipo residuo 0 y ecológica respectivamente, son las que presentaron mayores niveles de fitoseídos. Sin embargo, la parcela de Valencialate a pesar de ser de gestión ecológica experimentó unos niveles bajos durante todo el periodo de estudio. Ferragu et al., (1988) observaron en los cítricos valencianos elevadas poblaciones de fitoseídos en naranjos del grupo Navel, hecho que puede deberse tanto a la morfología y tamaño de las hojas (hojas grandes y anchas) como a la estructura de los árboles (árboles con copas grandes y densas, con abundante follaje). Se ha comprobado que los fitoseídos prefieren árboles grandes con copas cerradas y abundante follaje, el cual les proporciona áreas sombreadas donde refugiarse (McMurtry et al., 1970). En los árboles de var. Oronules y Valencialate (Figura 3), con motivo del manejo cultural de otras plagas y enfermedades, se llevan a cabo a lo largo de los años podas que eliminan ramas del interior de la copa.
formando copas más ventiladas y abiertas a la entrada de luz. Este hecho que puede resultar beneficioso en el manejo fitosanitario, puede ejercer un efecto perjudicial sobre los fitoseídos.

CONCLUSIONES

1. Las poblaciones del ácaro de Texas aumentaron en verano, presentando sus máximos a finales de agosto o principios de septiembre. Durante el otoño, las poblaciones descienden rápidamente y permanecen indetectables durante los meses de invierno y primavera.

2. Las parcelas de gestión integrada y residuo 0 presentaron niveles claramente superiores de la plaga (con medias máximas de 64 y 86 ácaros/hoja, respectivamente) que las de gestión ecológica (con picos de 23 y 4 ácaros/hoja).

3. El crecimiento poblacional de la plaga se observó antes en las parcelas de gestión integrada y residuo 0 que en las de gestión ecológica. En estas últimas, se produjo un retraso de un mes en el incremento de la población.

4. Los fitoseídos fueron abundantes en las hojas, siendo la especie predominante Euseius stipulatus, que representó el 96,4% del total. Su abundancia anual es variable, alcanzando los máximos poblacionales en abril y mayo y desapareciendo en verano, para recuperarse posteriormente.

5. Los fitoseídos fueron más abundantes en las parcelas de Navelina y Ortanique, donde no se aplicaron plaguicidas orgánicos de síntesis. Además, la estructura de la copa de los árboles, diferente entre variedades, puede influir en su abundancia en las parcelas.

REFERENCIAS

ENSAYO DE EFICACIA EN CAMPO DE DIFERENTES PRODUCTOS FITOSANITARIOS PARA EL CONTROL DE SCAPHOIDEUS TITANUS EN VIÑEDOS ECOLÓGICOS

Mateu J, Antico H

Centro: Servei de Sanitat Vegetal a Girona, Departament d’Agricultura, Ramaderia, Pesca i Alimentació; El Cortsat, E-17486 Castelló d’Empúries; Tel: 972 454310 | Fax: 972 454435
Mail: jordi.mateu@gencat.cat; honorat.sabater@gencat.cat

Una de las amenazas fitosanitarias más graves en Europa es la Flavescencia dorada. Se trata de una enfermedad que afecta a la viña producida por un fitoplasma de origen bacteriano que necesita de un insecto vector [Scaphoideus titanus] para su transmisión. Según las normas de la Orden Reguladora (3/12/96) y la Orden AAR/18/2007 se obliga arrancar las cepas afectadas y realizar tratamientos a explotaciones vitícolas y viveros de viña.

Esta obligación dificulta la certificación de las explotaciones de vid ecológicas, ya que no existe actualmente ningún producto fitosanitario para el control del vector que este registrado en agricultura ecológica.

Este trabajo se realizó en la provincia de Girona, comarca del Alt Empordà, donde se detectaron los primeros focos de la enfermedad en el año 1996. Zona fronteriza con Francia donde la plaga está establecida.

En este ensayo se testan dos productos potencialmente eficaces. Las piretrinas naturales y la azadirectina. Las primeras tienen un efecto de choque y la segunda un efecto residual ya que afecta a la muda de los insectos.

La eficacia de los productos en T1 (5 días después del tratamiento) ha sido del 83,18% en las piretrinas y del 31,78% la azadirectina. En el control posterior T2 (20 días después del tratamiento), no hay diferencia significativa entre los productos. Las eficacias fueron del 56,52% en las piretrinas y del 60,87% en la azadirectina.

Palabras clave: agricultura ecológica, Flavescencia dorada, sanidad vegetal, vid
3. SUELOS, FERTILIZACIÓN, PRÁCTICAS CULTURALES Y USO DEL AGUA

VIDEO DOCUMENTAL “MANTENIMIENTO DEL SUELO VIVO”

López Coma X

CP: E-08028
Dirección postal del autor: C\ Gütenberg, 17. Barberà del Vallés (Barcelona). CP: E-08210

El presente trabajo nace por la necesidad de aprender y compartir información procedente de personas que entienden el suelo como un organismo vivo. A partir de la formación y experiencia del autor, en ámbitos agrarios y audiovisuales, se decide proceder al desarrollo de un video documental. Este proyecto es una producción y realización audiovisual de 30 minutos de duración. Por un lado, pretende aumentar el conocimiento actual del suelo a través de entrevistas a científicos, especialistas y agricultores en el entorno de Cataluña y alrededores. Por otro lado, realizar la difusión de diferentes técnicas agrarias desconocidas o poco valoradas, que generan un impacto positivo para mantener e incrementar la fertilidad del suelo.

El resultado final es un documento formado por 17 entrevistas, donde la información mostrada se divide en 5 apartados totalmente distintos entre ellos, y a la vez, todos intentan mejorar el estado de los suelos agrarios de un modo u otro. Estas secuencias son las siguientes: concepto del suelo y la fertilidad; tracción animal; elaboración de biofertilizantes; cubiertas vegetales; diseño del terreno; análisis de suelo con la cromatografía.

Enlace: https://www.youtube.com/watch?v=yTjgG3oPMMQ

Palabras clave: agroecología, biofertilizantes, cromatografía, fertilidad, manejo
PRODUCCIÓN Y EFICACIA BIOLÓGICA DE SUSTRATOS Y ADITIVOS ECOLÓGICOS, PARA EL CULTIVO DE SETAS SAPRÓFITAS COMESTIBLES Y MEDICINALES SOBRE RESIDUOS AGRÍCOLAS LOCALES.

Díaz Carrasco P, Sulis E, Roselló Oltra J

Carretera CV-5950 (Camino del Barranquet) E.46740 - Carcaixent (Valencia)
Teléfono: 962.430.400
Micologic. C/Pere Bonfill 14-11. E 46008 Valencia. Teléfono: 636713404. micologic@micologic.com

RESUMEN: Las setas comestibles ecológicas tienen interés económico. El uso como sustratos de residuos agrícolas, paja de arroz o paja de chufa, presenta ventajas ambientales, siendo una alternativa para aprovechar residuos locales. Por primera vez, se ensaya el uso de la paja de chufa ecológica y arroz para cultivo de setas.

Según los resultados del estudio, se puede concluir que suplementar la paja pasteurizada mediante método rustico con los aditivos mencionados se ha demostrado eficaz para todas las especies ensayadas, especialmente para P. citrinopileatus y P. ostreatus. Se ha observado como el método de preparación del sustrato, es válido para el desarrollo del micelio y el crecimiento de las especies ensayadas en la paja del arroz, pero con la paja de chufa, debido al exceso de humedad y a las consecuencias que ha provocado, se necesitan ulteriores investigaciones sobre el proceso de cultivo más adecuado y sobre su composición química.

Palabras clave: alternativa, arroz, chufa, ecológico, paja, sustrato, setas, viabilidad.

INTRODUCCIÓN

La producción de setas comestibles es un sector económico de interés ya que gozan de buena aceptación comercial y forman parte habitual de la cesta de compra de los consumidores. También en producción ecológica existe interés por las setas comestibles, los registros indican producciones y consumo crecientes, sin embargo, hay muy poca producción de setas comestibles ecológicas en las comarcas valencianas, las presentes en los puntos de venta provienen, mayoritariamente, de otras comunidades autónomas. Las causas son varias, pero una de ellas es la ausencia de sustrato ecológico para productores de hongos y setas en la Comunidad Valenciana.

El uso como sustratos de residuos agrícolas, como la paja de arroz o la paja de chufa, presenta diversas ventajas ambientales como evitar emisiones de CO₂, debidas a la quema de la paja como forma de eliminación del residuo, al tiempo que es una alternativa para aprovechar residuos locales del cultivo de la chufa ecológica y del arroz, generando una opción productiva de beneficio medio ambiental, social, económico y alimentario.

Por primera vez, se ensaya el uso de la paja de chufa ecológica para un cultivo de setas, con el fin de poner un remedio a su eliminación mediante la quema antes de que llegue a representar un problema ambiental, tal y como pasa con la paja del arroz, favoreciendo la sostenibilidad del cultivo de la chufa ecológica y promoviendo el cultivo ecológico del arroz.

Para poner a punto la producción comercial de pacas inoculadas con hongos comestibles y medicinales, es necesario ensayar el comportamiento de estos materiales para diferentes especies fúngicas de interés y conocer las variables económicas implicadas.
Justificación: El ensayo tiene como objetivo cuantificar la eficiencia biológica (EB) de la producción de setas saprófitas comestibles y medicinales sobre unos sustratos formulados a partir de la paja de arroz, paja de chufa ecológica y la mezcla de algunos aditivos, con el fin de determinar la viabilidad del proceso de cultivo.

Este ensayo permite definir el calendario de producción de sustrato, así como el de cultivo de setas. Así mismo, la duración total de este ensayo, desde la redacción del protocolo hasta el análisis final de los resultados, sirve como base a futuros ensayos de producción.

En el detalle, los objetivos son:

1. Comprobar el crecimiento de las especies ensayadas en paja de chufa ecológica, en paja de arroz y en una mezcla de ambas con el método de pasteurización por inmersión; ensayar la eficacia de dos aditivos (cascarilla y salvado de arroz)
2. Medir la duración del proceso de realización de sustrato y del cultivo de las especies;
3. Medir la EB de cada tratamiento;
4. Determinar la formulación idónea del sustrato y evaluar su viabilidad económica.

MATERIALES Y MÉTODOS

Se ensaya la EB de tres sustratos: paja de arroz, paja de chufa ecológica, paja de chufa ecológica mezclada con paja de arroz (1:1). Se añaden dos aditivos a cada uno de los sustratos: cascarilla y salvado de arroz.

Se ensaya el protocolo de cultivo y la EB en cinco especies: Pleurotus ostreatus, Pleurotus citrinopileatus, Pleurotus djamor, Volvariella volvacea, Hericium erinaceus. El micelio usado en este ensayo proviene del laboratorio Quadrante Natural - Micologia e Ambiente, Lda. (Portugal), con certificación ecológica.

Preparación del sustrato

El proceso de preparación del sustrato prevé varias fases.

Picado: una vez en el lugar de ensayo, los dos tipos de paja se pican por separado con una picadora eléctrica a 5-7 cm. Se almacena picada en contenedores apropiados y se mantiene separada
El siguiente procedimiento se realiza para cada uno de los tres sustratos:

Humectación: La humectación se realiza por inmersión de la paja en agua, dentro de bidones de plástico o recipientes similares. Se hidrata 6-12 horas. Durante este proceso, la paja puede llegar atriplicar su peso (García-Rollán 2007), así que de los 100 Kg secos obtendremos alrededor de 300 Kg de paja húmeda aproximadamente al 75%.

![Ilustración 2: Humectación](image)

Regulación pH: Se mide el pH mediante un pHmetro, para comprobar que esté entre el rango 5.5-6.5. Se añade el 2% de CaCO₃ para corregir posibles desviaciones. Se vuelve a comprobar el pH.

Pasteurización: La paja húmeda es sometida a un tratamiento térmico de pasteurización (75-80°C, 2h), necesario para eliminar plagas, patógenos y hongos competidores. Se sigue el método propuesto por Fernández Michel (2004) para la pasteurización por inmersión. Este tratamiento consiste en introducir la paja dentro de un contenedor adecuado que facilite la introducción y extracción la misma. Una vez terminado el proceso, se escurre y se deja enfriar para su traslado en la sala de inoculación.

![Ilustración 3: Paja arroz/ paja chufa](image) ![Ilustración 4: Pasteurización](image)

Aditivos: Los aditivos (cascarilla y de salvado de arroz) se pasteurizan por separado. Se añade el 10% de aditivo en la paja pasteurizada García Rollán (2007). Cada sustrato resultante se mezcla para obtener una composición homogénea.

![Ilustración 5: Salvado de arroz](image) ![Ilustración 6: Cascarilla de arroz](image)
Diseño experimental

Cada tratamiento se repite en tres réplicas. Cada bolsa que contiene el sustrato (paca) está formada por 3 kg de sustrato húmedo más aditivos, con un total de 27 pacas por especie (135 pacas en total). Cada paca está inoculada con micelio de la especie que le corresponde al 3%; a las pacas tratadas con aditivos se le añade el 10% de cascarilla o salvado de arroz.

Proceso de cultivo

Inoculación: La inoculación se realiza en la medida más aséptica posible. Se añade a cada uno de los 3 sustratos un 3% de micelio de cada especie. Procederemos al llenado de bolsas de polipropileno, microperforadas a 1 cm de distancia para favorecer el proceso de respiración del micelio en fase de crecimiento (entrada de O₂ y salida de CO₂). Las bolsas se cierran y se le asigna su código de ensayo. Al final de este procedimiento, tendremos un total de 27 pacas por especie (135 pacas en total).

Incubación: Las pacas inoculadas se trasladan a una sala de incubación con las condiciones de temperatura, humedad, ventilación y luz adecuadas para el desarrollo del micelio. Se planea un control de la temperatura (25 ± 5 °C) y humedad ambiental (85-90%) idónea mediante termohigrómetros. Durante el periodo de incubación, se realiza un seguimiento diario del cultivo de cada especie, registrando todos los parámetros de las variables analizadas.

Ilustración 7: Inoculación

Ilustración 9: Sala de incubación

Ilustración 10: Desarrollo de hifas
Fructificación: Una vez el micelio haya invadido completamente el sustrato, las especies que necesiten un shock térmico para fructificar serán sometidas a él, con la bajada de temperatura pertinente según especie (aproximadamente de 10 ºC). La sala de fructificación está equipada con sistemas de ventilación, luminosidad y humedad, así como aparatos para su control (termohigrómetros, luxómetros). El seguimiento y la recogida de datos en esta fase serán diarios. La producción de setas se da en intervalos, en este ensayo se considerarán dos cosechas u oleadas.

Recolección: Las setas serán recolectadas y pesadas.

Se prevé una duración del proceso de cultivo de las diferentes especies entre 50 y 90 días según Cuadro 1.

Cuadro 1– Duración media del proceso de cultivo en días para las diferentes especies analizadas.

<table>
<thead>
<tr>
<th>Proceso</th>
<th>Pleurotus spp. (días)</th>
<th>Hericium erinaceus (días)</th>
<th>Volvariella volvácea (días)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incubación</td>
<td>15</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Fructificación 1ª oleada</td>
<td>14</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Fructificación 2ª oleada</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Total, de días (media)</td>
<td>39</td>
<td>50</td>
<td>26</td>
</tr>
</tbody>
</table>
Duración del proceso de cultivo para las diferentes especies analizadas según la bibliografía consultada y las fichas técnicas de los proveedores del micelio para los sustratos convencionales (serrín, astillas de madera, paja trigo). Se considera la media en días del total del proceso de cultivo, con una desviación estándar de ± 20 días debido a diferencia de comportamiento entre las especies ensayadas.

Análisis de los datos

Los datos recolectados se elaboran mediante análisis estadísticos, que permiten comparar medias y varianzas y establecer si hay diferencias significativas entre los tratamientos de cada variable/factor analizado. Los datos obtenidos se sometieron a un análisis de normalidad de Shapiro-Wilk, y de varianza (pruebas de Bartlett o de Levene), seguidos por test paramétricos (ANOVA) y no paramétricos (Kruskal-Wallis y Mann-Whitney U Test) según la distribución de los datos, para verificar la presencia de posibles diferencias entre medias, a las cuales se le aplicó la prueba de Tukey a un 95% de confianza con un margen de error de 0.5% (p<0.05). Los análisis estadísticos y los gráficos se ejecutan mediante el software “R” (R Core Team 2014).

En el ensayo se miden las variables Cuadro 2.

Cuadro 2 –Variables medidas en el ensayo.

<table>
<thead>
<tr>
<th>Medida</th>
<th>Definición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinc</td>
<td>Tiempo de incubación (días), desde la inoculación del micelio en el sustrato hasta la completa colonización (spawn run period)</td>
</tr>
<tr>
<td>Tfr1</td>
<td>tiempo de la 1ª fructificación (días), desde la aparición de los primordios hasta la maduración total de la seta, cuando se hace la 1ª cosecha</td>
</tr>
<tr>
<td>Tfr2</td>
<td>tiempo de la 2ª fructificación (días), desde la aparición de los nuevos primordios hasta la 2ª cosecha</td>
</tr>
<tr>
<td>T</td>
<td>Suma de Tinc, Tfr1 y Tfr2 (crop period)</td>
</tr>
<tr>
<td>P</td>
<td>producción (g) de la cosecha</td>
</tr>
<tr>
<td>EB</td>
<td>eficiencia biológica: peso de las setas frescas (g) sobre el peso del substrato en seco (Royse et al. 2004; Stamets 1993)</td>
</tr>
</tbody>
</table>

RESULTADOS

Proceso de cultivo y desarrollo del micelio

El método de la pasteurización por inmersión se ha demostrado eficaz para la paja de arroz, pero no es el adecuado para la paja de chufa ecológica.

La humedad del sustrato de chufa ecológica ha superado el 80%, resultando excesivo para el desarrollo del micelio en la mayoría de las especies. No obstante, en algunas pacas de chufa ecológica ha conseguido desarrollarse el micelio, por parte de las especies *P. ostreatus* y *P. citrinopileatus*, pero solo parcialmente, no llegando a invadir el sustrato. Por tanto, excluimos los resultados del sustrato de paja de chufa del análisis estadístico de los datos por falta de un número de muestras apreciables.

En la mezcla de paja de chufa ecológica con paja de arroz, se ha desarrollado el micelio, aunque el porcentaje de humedad ha favorecido la contaminación del sustrato por parte de Esciáridos. La contaminación detectada desde los primeros días de la incubación ha afectado a el desarrollo del micelio.
Se detectó la presencia, en 4 pacas, de los llamados “hongos verdes”, denominación que incluye a diferentes hongos (*Trichoderma* spp., *Penicillium* spp., etc.), contaminando el sustrato y afectando a la producción durante la segunda fructificación.

Una vez transcurrido el tiempo de incubación necesario, el micelio de *Volvariella volvacea* no mostró evidencias de desarrollo.

El proceso de cultivo tuvo una duración de aproximadamente 3 meses.

Cuadro 3 – Duración (M ± DS en días) de las diferentes etapas del ciclo vegetativo de las especies ensayadas.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Tinc</th>
<th>Tfr1</th>
<th>Tint</th>
<th>Tfr2</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hericium erinaceus</td>
<td>36.00 ± 3.51</td>
<td>8.00 ± 1.54</td>
<td>15.60 ± 1.19</td>
<td>5.00 ± 1.17</td>
<td>64.60 ± 3.23</td>
</tr>
<tr>
<td>Pleurotus citrinopileatus</td>
<td>30.44 ± 1.26</td>
<td>5.67 ± 0.28</td>
<td>7.44 ± 2.09</td>
<td>4.36 ± 0.29</td>
<td>47.92 ± 2.91</td>
</tr>
<tr>
<td>Pleurotus djamor</td>
<td>24.22 ± 3.02</td>
<td>9.42 ± 2.77</td>
<td>11.03 ± 2.97</td>
<td>6.19 ± 1.71</td>
<td>50.86 ± 4.99</td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>37.72 ± 2.37</td>
<td>5.53 ± 0.34</td>
<td>7.97 ± 1.49</td>
<td>6.19 ± 1.58</td>
<td>57.42 ± 2.36</td>
</tr>
</tbody>
</table>

En general, se destaca un crecimiento más rápido del micelio en mezcla y/o con salvado. La mayoría de los tratamientos ensayados han llegado a fructificar, algunos alcanzando hasta una tercera oleada (en el caso de *P. ostreatus*, *P. djamor* y *H. erinaceus*, no considerada en este estudio). La primera oleada ha durado aproximadamente 6-10 días, mientras la segunda 4-6 días (según la especie; Tabla 1). En total, el ciclo de producción de las especies ensayadas va aproximadamente de 47 hasta 64 días, siendo más breve para las *Pleurotus*.

Pleurotus djamor ha fructificado con antelación con respecto a lo esperado, debido a que es una especie tropical, favorecida por las temperaturas altas. Su rápida incubación y fructificación ha reducido considerablemente los daños en el micelio producidos por parte de Esciáridos.

Cosecha y producción

Fig. 1 – Eficiencia biológica (EB) de los sustratos de paja de arroz (ar) y de paja de chufa ecológica mezclada con paja de arroz (me) sin suplementos (co), suplementados con cascarilla (ca) y con salvado de arroz (sa) para las especies ensayadas (he: *Hericium erinaceus*; pc: *Pleurotus citrinopileatus*; pd: *Pleurotus djamor* y po: *Pleurotus ostreatus*).
Cuadro 4 – Eficiencia biológica

<table>
<thead>
<tr>
<th>Especie</th>
<th>N</th>
<th>sustrato</th>
<th>Aditivo</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>control</td>
<td>cascarilla</td>
<td>salvado</td>
<td></td>
</tr>
<tr>
<td>Hericium erinaceus</td>
<td>9</td>
<td>arroz</td>
<td>17.92 ± 4.06</td>
<td>20.10 ± 7.02</td>
<td>23.16 ± 2.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mezcla</td>
<td>16.64 ± 0.00</td>
<td>-</td>
<td>18.02 ± 1.61</td>
<td></td>
</tr>
<tr>
<td>Pleurotus citrinopileatus</td>
<td>13</td>
<td>arroz</td>
<td>25.21 ± 15.56b</td>
<td>52.64 ± 20.67b</td>
<td>35.87 ± 11.67ab</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mezcla</td>
<td>21.39 ± 1.17a</td>
<td>41.13 ± 9.66b</td>
<td>28.33 ± 7.74ab</td>
<td></td>
</tr>
<tr>
<td>Pleurotus djamor</td>
<td>17</td>
<td>arroz</td>
<td>49.76 ± 24.95</td>
<td>29.14 ± 0.76</td>
<td>71.86 ± 10.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mezcla</td>
<td>47.21 ± 5.09</td>
<td>48.59 ± 2.57</td>
<td>45.96 ± 11.33</td>
<td></td>
</tr>
<tr>
<td>Pleurotus ostreatus</td>
<td>17</td>
<td>arroz</td>
<td>26.72 ± 0.94a</td>
<td>33.51 ± 4.56a</td>
<td>86.51 ± 31.75b</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mezcla</td>
<td>30.96 ± 2.03a</td>
<td>27.84 ± 5.06a</td>
<td>81.22 ± 22.94b</td>
<td></td>
</tr>
</tbody>
</table>

EB (% promedio ± desviación estándar) de los sustratos de paja de chufa ecológica mezclada con paja de arroz y de paja de arroz, suplementados con cascarilla o salvado de arroz, para las especies ensayadas. Medias en la misma línea con diferentes letras (a, b, ab) son significativamente diferentes según la prueba de Tukey (p<0.05).

La EB media obtenida por *H. erinaceus* es mayor en el sustrato de paja de arroz suplementado con salvado, aunque no se hayan observado diferencias estadísticamente significativas entre los tratamientos (p>0.05; Cuadro 4).

Pleurotus djamor ha sido la especie que ha producido más cosecha, y que más se acerca a los valores esperados. La fórmula con EB mayor es el sustrato de paja de arroz suplementado con salvado (Cuadro 4), no obstante, las diferencias entre las medias de los tratamientos no son estadísticamente significativas. Se destaca que, en esta especie, la fórmula de la paja de chufa ecológica mezclada con paja de arroz y suplementada con cascarilla ha dado una EB mayor que el mismo tratamiento en paja de arroz (Cuadro 4).

En el caso de *P. citrinopileatus* no se observan diferencias estadísticamente significativas entre la paja de chufa ecológica mezclada con paja de arroz, y la paja del arroz, pero sí se observan entre aditivos: la cascarilla presenta un porcentaje de EB mayor del control (p<0.05; Cuadro 4), pero sin diferencias significativas con el salvado (p>0.05; Cuadro 4). La EB media obtenida por la *P. ostreatus* tampoco difiere entre sustratos, pero es significativamente influenciado por el aditivo: el salvado incrementa la producción de carpóforos (p<0.05; Cuadro 4) con respeto a la cascarilla y al control, que no difieren entre ellos (p>0.05; Cuadro 4).

DISCUSIÓN

La paja de chufa ecológica ha impedido el desarrollo del micelio de las diversas especies en el sustrato formulado al 100% con ella, debido al exceso de retención ahogando el micelio.

Volvariella volvacea, aun siendo una variedad especialmente virulenta y soportando altas temperaturas y humedades (hasta el límite de 40°C) y con un desarrollo muy rápido con respeto a las demás especies (9 días de incubación) no se ha desarrollado en ninguno de los sustratos formulados.

Consultados los proveedores, nos comunicaron que el micelio procedente de Thailanda ha dado los mismos resultados negativos a otro productor, lo cual nos confirma la inviabilidad del micelio.

La eficiencia biológica depende básicamente de la composición del sustrato (Heredia-Solis et al. 2016), y varía según la especie.
En cuanto a la EB obtenida en conjunto en este ensayo, se destaca un rendimiento mayor en las pacas de paja de arroz que en las de mezcla, debido probablemente al exceso de humedad de la paja de la chufa ecológica. De esta última, desconocemos actualmente el contenido en lignocelulosa y en N (en la paja del arroz está entre 0.63 y 0.92% sobre materia seca; LIFE Eco-Rice).

En general, el salvado de arroz ha incrementado la producción de setas con respeto a la cascarilla y al control (Fig. 1) en la mayoría de las especies (excepto por el P. citrinopileatus), aunque no se destacan diferencias estadísticamente significativas en las especies H. erinaceus y P. djamor (Cuadro 2). De todas formas, el salvado ha demostrado ser un útil suplemento, debido a que no solo ha acelerado el desarrollo del micelio, sino que también ha promovido el rendimiento en peso fresco de las setas. La explicación podría estar relacionada con el posible alto contenido de N del salvado (2.32; González et al. 1987) con respeto a la cascarilla (0.63; Piccioni 1970), que ayuda a rebajar la relación C/N de la paja equilibrando nutritivamente el sustrato, y de lípidos.

(Nair et al. 1989; López Rodríguez et al. 2008) han reportado que los lípidos estimulan el crecimiento del micelio y la producción de cuerpos fructíferos del P. ostreatus, y Bonzom et al. (1999) destacan que adiciendo materiales lipídicos al sustrato se logra un incremento del 20 al 60% de la producción de carpóforos.

No obstante, no en todas las especies se destacan diferencias estadísticamente significativas entre las medias de los tratamientos.

CONCLUSIONES

Este ensayo piloto ha permitido confirmar, por primera vez en la Comunidad Valenciana, la viabilidad del cultivo de cuatro especies de setas saprofitas y medicinales en paja de chufa ecológica y paja de arroz provenientes de restos de cultivo que actualmente representan un problema medio ambiental, social y económico.

De acuerdo con los resultados obtenidos en este estudio, se puede concluir que suplementar la paja pasteurizada mediante método rustico con aditivos provenientes de restos de cultivo del arroz se ha demostrado eficaz para todas las especies ensayadas, especialmente para P. citrinopileatus y P. ostreatus.

En definitiva, se ha observado como el método de preparación del sustrato de tipo rústico mediante la pasteurización por inmersión, es válido para el desarrollo del micelio y el crecimiento de las especies ensayadas en la paja del arroz, pero debido al exceso de humedad y a las consecuencias que ha provocado, se necesitan ulteriores investigaciones sobre el proceso de cultivo más adecuado para la preparación del sustrato de la paja de chufa ecológica (la esterilización) y sobre su composición química.

REFERENCIAS

EQUIPO DE INNOVACIÓN MICORRIZAS: INNOVACIÓN SOCIAL PARA LA REGENERACIÓN DE LOS SUELOS AGRÍCOLAS

Sáenz de Cabezón Irigaray FJ1, Fabón Anchelergues G2, Llobet I2, García Álvaro Mª A3, Beaucourt Le Barzic N1, López-Davalillo Arce J4, Villalba Eguren G2, Roldán Pérez MA4, Ramírez García R1, Fernández Rico Al

Equipo de Innovación “Micorrizas”
1Asociación El Colletero C/Piscinas s/n 26190 Nalda (La Rioja). Teléfonos: 941447186, 646540608. e-mail: jasaeni@hotmail.com; anaisonce@hotmail.com; raquelramirez44@hotmail.com
2Tomateco: Gran Vía 46 7ºIzq. 26002. Logroño (La Rioja).Teléfono: 618700711. e-mail: gabrielfabon@hotmail.com
3Clean-Biotec SL. San José de Calasanz, 11 bajo. 26004. Logroño (La Rioja). Teléfono: 941238261. e-mail: clean@clean-biotec.com
4AGROVIDAR SL. Padre Marín, 24 bajo. 26004. Logroño (La Rioja). Teléfono: 675011066. e-mail: info@agrovidar.com; jorge@agrovidar.com

RESUMEN: Cada vez hay mayor pérdida de fertilidad y funcionalidad biológica en suelos agrarios debido principalmente a un cultivo intensivo y un abuso de insumos químicos. La demanda de herramientas innovadoras que reviertan esta situación de manera más sostenible ha promovido la formación del Equipo de Innovación “Micorrizas”, para con sus resultados contribuir a resolver los principales problemas actuales del suelo: mejorar la calidad de los suelos agrarios de forma natural, incrementar la productividad de sus cultivos, mejorar el estado sanitario de las plantas, reducir costes económicos al disminuir y/o eliminar insumos agrícolas, y producir alimentos de forma más sostenible. Para ello el Equipo cultiva en laboratorio hongos micorrícicos obtenidos de suelos locales, y evalúa la respuesta en el cultivo y en la calidad del suelo. Los resultados del cultivo hasta ahora han permitido inocular plantas de tomate con resultados variados. A su vez, a través de distintas plataformas de información hacemos que la innovación llegue a la sociedad. El uso de hongos productores de micorrizas es una apuesta sostenible que ha demostrado que no solamente aumenta la productividad del cultivo, sino que la simbiosis con el hongo proporciona a la planta un equilibrio nutricional aumentando su resistencia a estreses como sequía y plagas además de proporcionar una mejor estructura al suelo. Mediante el uso de distintas plataformas informativas, pretendemos que la innovación llegue a la sociedad para que esta tenga éxito.

Palabras clave: cultivo, hongos arbúsculo-vesiculares, inoculación, simbiosis, sociedad

INTRODUCCIÓN

Una de las prioridades dentro de la Unión Europea ha sido la de estimular la innovación dentro del desarrollo rural. La Asociación Europea de Innovación (EIP) de agricultura productiva y sostenible, de reciente creación, pretende acelerar la innovación en el sector agrario, mejorando el intercambio y la transferencia de conocimientos (https://www.mapa.gob.es/es/desarrollo-rural/temas/innovacion-medio-rural/eip-agricultura-productivo-sostenible/). La UE define innovación como “… una idea puesta en práctica con éxito…”, incidiendo en la colaboración estrecha entre los distintos actores para conseguir un proceso efectivo (European Commision, 2014). Más allá, de esta concepción de innovación, se encuentra la “innovación social”, que da relevancia a las dimensiones sociales y el papel de la innovación como servicio público (López Cerezo y González, 2013). Así pues, la viabilidad de un producto innovador no solo depende de las empresas, la investigación, sus relaciones y un adecuado respaldo financiero, sino que depende en última instancia de un contexto social receptivo y favorable. La innovación social no es por tanto únicamente aquella que tiene a la sociedad en su fin, sino también la que tiene a la sociedad en su origen (López Cerezo y González, 2013).

Se estima que cerca de 2 mil millones de Ha de recursos de suelo en el mundo se han degradado, es decir, aproximadamente el 22% del total de las tierras de cultivo, pastos y bosques. La 68 Asamblea General de la ONU declaró 2015 como el año internacional de los suelos. La ONU manifestó que “… los suelos constituyen la
base para el desarrollo agrícola, las funciones esenciales del ecosistema y la seguridad alimentaria, y por lo tanto son claves para mantener la vida en la tierra”. Por lo tanto, la degradación del suelo es un problema mundial, un problema a escala Social que debe ser tratado como tal.

El modelo de agricultura intensiva que se ha venido llevando a cabo durante las últimas décadas, ha contribuido enormemente a la degradación del suelo agrícola, a su pérdida de fertilidad y funcionalidad. Es necesario la inclusión de nuevas formas de manejo de suelo, que sirvan para conservar la funcionalidad de este o incluso potenciarla. Es necesario innovar en el manejo del suelo.

Los microorganismos del suelo realizan funciones esenciales que son absolutamente críticas para la supervivencia humana: reciclaje, mineralización, estructuración, fijación de Nitrógeno, fuente de Carbono. Entender este vínculo permite tomar mejores decisiones en la gestión de nutrientes y por lo tanto en un mejor manejo del recurso natural suelo. Dentro de los microorganismos del suelo, los Hongos formadores de Micorrizas Vesicul-Arbusculares (HMVA) (Phylum Glomeromycota), han ganado un creciente interés como ingenieros del ecosistema y biofertilizantes. Estos hongos, establecen una simbiosis mutua con un 90% de especies de plantas, haciendo de puente entre los nutrientes del suelo y las plantas. Como efecto de la simbiosis, se mejora la productividad, producción de semillas y protección de plantas a la sequía y hongos patógenos de la raíz. Por otra parte, tienen un efecto directo sobre el ecosistema, manejan la estructura de las comunidades vegetales y el mejoramiento de la calidad del suelo incrementando su agregación y el contenido de Carbono orgánico (Varma y Amit, 2009). Los HMVA, debido a su papel en la nutrición de las plantas, mejoran la calidad del cultivo no sólo por el enriquecimiento en macronutrientes (es decir, N y P), sino también en micronutrientes (White and Broadley, 2009).

El objetivo de esta comunicación es dar relevancia a la innovación social para asegurar el éxito del proceso innovativo, presentando un proyecto que promueve, dentro de la sociedad, el cultivo de HMVA, para contribuir a disminuir el impacto de la agricultura en el recurso suelo y poder contribuir a reducir su degradación.

MATERIALES Y MÉTODOS

Cultivo de hongos micorrícicos

Tanto para los cultivos trampa como para la toma de datos se siguió la metodología descrita por INVAM (International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi)

Muestreo

Se tomaron muestras de suelo con raíces de plantas (hospedantes de HMVA), de campos de cultivo orgánico y dos de ecosistemas naturales: una pradera y un bosque de repoblación de unos 15 años en los alrededores de Nalda (La Rioja). Se tomaron muestras con pala a unos 20-25 cm, se eliminó la vegetación superior y se introdujo el cepellón con tierra en bolsas de plástico. Las muestras se trasladaron al laboratorio y se conservaron a 4°C hasta su procesado.

Desarrollo cultivos trampa

Las raíces de las muestras anteriores se cortaron en fragmentos de unos 3 cm y se mezclaron completamente con el suelo asociado usando una tijera. A esta mezcla, “inóculo”, se le añadió sustrato compuesto por: arena de sílice autoclavada, vermiculita y compost en relación 1:1:1 (v/v). La mezcla se realizó en bolsas de plástico con cierre. Una vez mezclado se transfirió a un semillero de 35 alveolos; uno para cada tipo de muestra (monte, pradera y huerta). Se sembraron con pala a unos 20-25 cm, se eliminó la vegetación superior y se introdujo el cepellón con tierra en bolsas de plástico. Las muestras se trasladaron al laboratorio y se conservaron a 4°C hasta su procesado.

Las raíces de las muestras anteriores se cortaron en fragmentos de unos 3 cm y se mezclaron completamente con el suelo asociado usando una tijera. A esta mezcla, “inóculo”, se le añadió sustrato compuesto por: arena de sílice autoclavada, vermiculita y compost en relación 1:1:1 (v/v). La mezcla se realizó en bolsas de plástico con cierre. Una vez mezclado se transfirió a un semillero de 35 alveolos; uno para cada tipo de muestra (monte, pradera y huerta). Se sembraron en 14 alveolos 3 semillas de Zea mays y en otros 14 una cucharilla de café de semillas de Paspalum notatum se cubren con la mezcla y se riegan. Los semilleros se dispusieron en invernadero durante varios meses. Cada mes se realizó una comprobación en seis alveolos para cada tipo de inóculo y cada planta y se comprobaron: la densidad de raíces, colonización, esporulación y propágulos. A los dos meses seis de los alveolos de cada especie trampa fueron trasplantados a macetas de mayor tamaño.
Tinción de raíces micorrizadas

Se pesaron 1 g de raíces extraydas del suelo o de la planta (las más finas) y se lavaron durante dos minutos con agua abundante, (comprobando que el pH se encuentra entre 7 y 8 y el nivel de cloro que se encuentre entre 0,2 a 0,8 ppm), luego se colocaron en vasos de vidrio de 250 ml. Se clarificaron con hidróxido de potasio (KOH) al 10% hasta que todas las raíces quedaron cubiertas y se mantuvieron en baño maría a 90 ºC durante una hora (dependiendo del tamaño de la raíz). Posteriormente, se eliminó el hidróxido de potasio (KOH) con agua y se añadió ácido clorhídrico (HCl) al 2% durante una hora a temperatura ambiente, eliminándolo posteriormente. Finalmente, se tiñeron con tinta azul Pelikan acidificada con ácido y se dejaron al baño maría a 90 ºC durante una hora; transcurrido este tiempo se decantó el tinte y las raíces se depositaron en placas de Petri con glicerol para su evaluación.

Determinación el nivel de colonización

Se tomaron varias muestras pequeñas de la masa de raíces al azar. La masa total de esta muestra debe ser de 0,1 a 0,2 g. Se tiñe la muestra según la técnica anterior. Las raíces se disponen aleatoriamente en un placa de contacto de 6 cm de diámetro con filtro de microfibra cuadrículado (Cuadrícula de 0,5 cm²).

Se observan las raíces bajo el microscopio estereoscópico, tomando los siguientes datos bajo lupa binocular a 20-40x: número total de intersecciones entre líneas de la cuadrícula y las raíces (R1). Número total de intersecciones donde la raíz está micorrizada (R2). Calculamos el porcentaje de micorrización observando el número de intersecciones raíz micorrizada respecto al total de intersecciones de las raíces (R1*100/R2).

Recuento de esporas y propágulos

Se colocaron 5 g de suelo fresco en vaso de vidrio con agua destilada. La suspensión se agitó durante 1h a 200 rpm en agitador orbital. El resultado se tamizó de 500 µm, 250 µm (A) y 50 µm (C). Los materiales retenidos en los tamices A y C se colocaron en dos tubos centrífuga con 50 ml de agua. Se centrífugaron durante 5 min a 2000 rpm. Descartamos el sobrenadante de cada tubo. El sedimento se resuspendió en sacarosa al 50% y centrífugó a 2000 rpm 2 min. El sobrenadante se pasó por un papel de filtro, lavándose dos veces con agua destilada, usando vacío. Los papeles se colocaron en placa Petri y se mantuvieron en refrigeración hasta su identificación y conteo.

Cálculo de la densidad de raíces

Para el cálculo de densidad de raíces a lo largo del tiempo, se tomaba muestra del cepellón hacia mitad del contenedor, ayudados de unas tijeras. Se pesan 10 g de suelo (M1) y se aíslan las raíces y se pesan (M2). Se calcula la masa de raíces respecto a la masa total de suelo extraída.

Ensayos en tomate

En mayo se volvió a recoger inóculo, solo del lindero de huerta en ecológico y se realizaron dos pruebas para pasar a campo y a invernadero, y ver el efecto de la inoculación en la germinación y producción vegetativa de las plantas.

Se realizó la misma mezcla inicial con el inóculo recogido.

Para ello se sembraron, 10 semillas por maceta que posteriormente serian utilizadas en cultivo de campo y de invernadero. Se sembraron 12 macetas con inóculo y 12 controles sin inocular. Se anotó la germinación. De las semillas germinadas en cada maceta se dejó sólo una. A partir de aquí que se midieron la longitud desde el suelo y el número de ramas, a partir de las dos semanas de haber germinado, semanalmente durante un mes hasta que se trasplantaron al invernadero y al campo.
Difusión

Para la difusión del proyecto se preparó material informativo (tríptico y charlas) y carteles para informar sobre las charlas. A su vez hemos asistido a 3 ferias. En todos los eventos de difusión se repartieron trípticos y se anotó mediante firma y DNI el haber recibido la información, se distinguió entre personas pertenecientes al sector agrícola, o no. Toda la información sobre el proyecto se incorpora a la página web de este (actividades de difusión, resultados experimentales, así como los resultados del proyecto).

Análisis estadístico

Los datos se analizaron mediante ANOVA y las medias se separaron usando LSD ($p < 0,05$). Los valores porcentuales se transformaron angularmente (arco seno), en todos los casos se presentan los valores no transformados.

RESULTADOS

Comprobación Inóculos iniciales

El mayor porcentaje de colonización y número de esporas se obtuvieron en las muestras tomadas en monte y en huerta. El Cuadro 1 muestra el porcentaje de colonización y el número de esporas para las muestras tomadas en monte, pradera y huerta en los alrededores de Nalda.

Cuadro 1. Porcentaje de colonización y número de esporas para los suelos muestreados en las diferentes localizaciones

<table>
<thead>
<tr>
<th></th>
<th>% Colonización</th>
<th>Nº esporas/propágulos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte</td>
<td>16,3 ± 1,3 a</td>
<td>19,8 ± 1,3 a</td>
</tr>
<tr>
<td>Pradera</td>
<td>7,7 ± 0,9 b</td>
<td>12,8 ± 1,7 b</td>
</tr>
<tr>
<td>Huerta</td>
<td>15,4 ± 1,6 a</td>
<td>19,1 ± 1,8 a</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes $\alpha < 0.05$ (ANOVA, LSD).

Micorrización de los cultivos trampa

Cultivos trampa con Paspalum notatum

A continuación, se muestran los resultados obtenidos en densidad de raíces, porcentaje de colonización y número de esporas obtenidas tras el cultivo de los inóculos obtenidos en las diferentes muestras para *P. notatum* (Cuadros 2 al 4). El desarrollo de raíces es mayor en las muestras de monte y huerta, siendo el porcentaje de colonización y el número de esporas significativamente mayores para la muestra recogida en huerta. Para las tres muestras la colonización no se produce hasta el mes de Mayo, momento en el que también aumenta considerablemente el desarrollo radicular.

Cuadro 2. Densidad mensual de raíces en *Paspalum notatum*

<table>
<thead>
<tr>
<th>Mes de observación</th>
<th>Monte</th>
<th>Pradera</th>
<th>Huerta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marzo</td>
<td>0,70 ± 0,08</td>
<td>0,20 ± 0,04</td>
<td>0,25 ± 0,05</td>
</tr>
<tr>
<td>Abril</td>
<td>1,25 ± 0,15</td>
<td>0,50 ± 0,08</td>
<td>0,62 ± 0,09</td>
</tr>
<tr>
<td>Mayo</td>
<td>2,30 ± 0,29</td>
<td>0,95 ± 0,06</td>
<td>1,50 ± 0,16</td>
</tr>
<tr>
<td>Junio</td>
<td>3,60 ± 0,20</td>
<td>1,80 ± 0,14</td>
<td>2,87 ± 0,34</td>
</tr>
<tr>
<td>Julio</td>
<td>4,97 ± 0,12 a</td>
<td>3,03 ± 0,11 b</td>
<td>4,82 ± 0,24 a</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes $\alpha < 0.05$ (ANOVA, LSD).
Cuadro 3. Porcentaje de colonización en *Paspalum notatum*

<table>
<thead>
<tr>
<th>Mes de observación</th>
<th>Monte</th>
<th>Pradera</th>
<th>Huerta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marzo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abril</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mayo</td>
<td>6,5 ± 1,69</td>
<td>0</td>
<td>3,67 ± 1,29</td>
</tr>
<tr>
<td>Junio</td>
<td>10,67 ± 1,99</td>
<td>2,33 ± 1,01</td>
<td>9,83 ± 2,14</td>
</tr>
<tr>
<td>Julio</td>
<td>15,83 ± 2,01 a</td>
<td>9,00 ± 1,76 b</td>
<td>17,00 ± 2,12c</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes $\alpha<0.05$ (ANOVA, LSD).

Cuadro 4. Número de esporas producidas en *Paspalum notatum*

<table>
<thead>
<tr>
<th>Mes de observación</th>
<th>Monte</th>
<th>Pradera</th>
<th>Huerta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Marzo</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Abril</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mayo</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Junio</td>
<td>4,0 ± 1,02</td>
<td><1</td>
<td>5,5 ± 0,68</td>
</tr>
<tr>
<td>Julio</td>
<td>5,5 ± 1,09 a</td>
<td>3,3 ± 0,97 b</td>
<td>7,2 ± 0,66 a</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes $\alpha<0.05$ (ANOVA, LSD).

Cultivos trampa con Zea mays

A continuación, se muestran los resultados obtenidos en densidad de raíces, porcentaje de colonización y número de esporas obtenidas tras el cultivo de los inóculos obtenidos en las diferentes muestras para *Z. mays* (Cuadros 5 al 7). El desarrollo de raíces y el porcentaje de colonización son significativamente mayores en las muestras de monte y huerta, siendo el número de esporas significativamente mayor para la muestra recogida en huerta. Como en el caso anterior, la colonización no se produce hasta el mes de Mayo, momento en el que también aumenta considerablemente el desarrollo radicular en cada una de las muestras.

Cuadro 5. Densidad de raíces en *Zea mays*

<table>
<thead>
<tr>
<th>Mes de observación</th>
<th>MONTE</th>
<th>PRADERA</th>
<th>HUERTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero</td>
<td>0,58 ± 0,06</td>
<td>0,60 ± 0,06</td>
<td>0,67 ± 0,08</td>
</tr>
<tr>
<td>Marzo</td>
<td>1,27 ± 0,05</td>
<td>1,58 ± 0,08</td>
<td>1,60 ± 0,12</td>
</tr>
<tr>
<td>Abril</td>
<td>2,30 ± 0,12</td>
<td>2,40 ± 0,06</td>
<td>2,52 ± 0,12</td>
</tr>
<tr>
<td>Mayo</td>
<td>3,15 ± 0,10</td>
<td>3,22 ± 0,12</td>
<td>3,53 ± 0,15</td>
</tr>
<tr>
<td>Junio</td>
<td>4,77 ± 0,20</td>
<td>4,20 ± 0,04</td>
<td>4,80 ± 0,17</td>
</tr>
<tr>
<td>Julio</td>
<td>6,12 ± 0,15 a</td>
<td>5,27 ± 0,04 b</td>
<td>6,12 ± 0,14 a</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes $\alpha<0.05$ (ANOVA, LSD).
Cuadro 6. Porcentaje de colonización en Zea mays

<table>
<thead>
<tr>
<th>Mes de observación</th>
<th>Monte</th>
<th>Pradera</th>
<th>Huerta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Marzo</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Abril</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mayo</td>
<td>4,00 ± 1,57</td>
<td>1,67 ± 1,15</td>
<td>3,33 ± 1,15</td>
</tr>
<tr>
<td>Junio</td>
<td>5,33 ± 1,83</td>
<td>1,67 ± 1,15</td>
<td>7,33 ± 1,32</td>
</tr>
<tr>
<td>Julio</td>
<td>12,17 ± 2,46a</td>
<td>4,67 ± 1,83b</td>
<td>11,67 ± 1,91c</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes α<0.05 (ANOVA, LSD).

Cuadro 7. Número de esporas producidas en Zea mays

<table>
<thead>
<tr>
<th>Mes de observación</th>
<th>Monte</th>
<th>Pradera</th>
<th>Huerta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Febrero</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Marzo</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Abril</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Mayo</td>
<td><1</td>
<td><1</td>
<td><1</td>
</tr>
<tr>
<td>Junio</td>
<td>2,8 ± 0,34a</td>
<td>3,0 ± 0,40b</td>
<td>4,2 ± 0,66c</td>
</tr>
<tr>
<td>Julio</td>
<td>4,7 ± 0,54a</td>
<td>3,7 ± 0,46b</td>
<td>5,5 ± 0,84c</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes α<0.05 (ANOVA, LSD).

Ensayos en tomate

Germinación

No se encontraron diferencias en la germinación entre sustrato inoculado y sin inóculo (Cuadro 8)

Cuadro 8. Germinación de semillas de tomate en sustrato con y sin HMVA.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>% Germinación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>89,8 ± 0,28</td>
</tr>
<tr>
<td>HMVA</td>
<td>87,6 ± 0,26</td>
</tr>
</tbody>
</table>

Desarrollo de plántulas de tomate

Se exponen los resultados del desarrollo de las plántulas de tomate para el control y para las inoculadas (Cuadro 9). No se observaron diferencias significativas entre los dos tratamientos, salvo en la longitud de las ramas la cuarta semana, que fueron significativamente más largas en el control.

Cuadro 9. Desarrollo de plántulas de tomate, con o sin HMVA.

<table>
<thead>
<tr>
<th></th>
<th>Semana 1</th>
<th>Semana 2</th>
<th>Semana 3</th>
<th>Semana 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>20,7 ± 0,48</td>
<td>25,3 ± 1,34</td>
<td>38,0 ± 2,15</td>
<td>46,2 ± 0,65a</td>
</tr>
<tr>
<td>Inoculado</td>
<td>20,8 ± 0,36</td>
<td>26,8 ± 0,43</td>
<td>33,8 ± 0,59</td>
<td>41,1 ± 0,69b</td>
</tr>
<tr>
<td>Nº ramas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>5,4 ± 0,13</td>
<td>7,2 ± 0,17</td>
<td>8,7 ± 0,13</td>
<td>9,1 ± 0,14a</td>
</tr>
<tr>
<td>Inoculado</td>
<td>5,2 ± 0,16</td>
<td>7,0 ± 0,17</td>
<td>8,1 ± 0,15</td>
<td>8,8 ± 0,14a</td>
</tr>
</tbody>
</table>

Las medias seguidas por letras distintas son significativamente diferentes α<0.05 (ANOVA, LSD).
Difusión del proyecto

En el cuadro 8 se muestran las actividades de difusión y el impacto medido como el número de personas que recibieron la información. Todas las actividades se llevaron a cabo tanto en Nalda como en Logroño. Dentro de las ferias dos fueron en Nalda y una en Logroño, teniendo un mayor impacto en Nalda.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Nº</th>
<th>Impacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlas</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>Ferias</td>
<td>3</td>
<td>300</td>
</tr>
<tr>
<td>Web</td>
<td>1</td>
<td>160</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>540</td>
</tr>
</tbody>
</table>

DISCUSIÓN

En vista de los resultados obtenidos, podemos concluir que se ha podido iniciar un cultivo de HMVA, utilizando para ello dos especies trampa: *P. notatum* y *Z. mays*. Los inóculos iniciales muestran pequeñas diferencias en cuanto a propágulos/esporas y raíces micorrizadas que parecen tener influencia en la micorrización posterior. Los porcentajes de colonización y esporulación son relativamente bajos con respecto a la bibliografía consultada. Por ejemplo, Koron y col. (2014) obtienen porcentajes mayores al 50 – 80% utilizando diferentes especies de plantas trampa, resultados muy similares a los publicados por Pellegrino y Bedini (2014) que obtienen porcentajes del 40 al 80% en plantas de guisantes. Existen distintos factores que afectan la colonización, pero la abundancia de nutrientes, sobre todo el fósforo, puede reducir la necesidad de la planta de ser colonizada, y por lo tanto reduciendo su índice de colonización. Creemos que la cantidad de nutrientes incorporados mediante el compost aportado a la mezcla, podría ser demasiada como para producir mayores porcentajes de colonización y una mayor esporulación. A pesar de ello y dado que crecieron en las mismas condiciones sí que podemos concluir, que el inóculo que presenta mejores actitudes parece ser el del lindero de huerta con las dos plantas, tanto la producción de propágulos como la colonización, son significativamente mayores con este inóculo.

La inclusión del inóculo en plantas de tomate no produjo diferencias significativas en cuanto a su desarrollo, por lo que en nuestras condiciones de ensayo los HMVA no producen diferencias en la germinación ni en el desarrollo de plántulas, los valores totales son incluso mayores en las plantas no micorrizadas. Creemos que algún error cometido durante el ensayo, el exceso de fertilización, la calidad del sustrato, han podido producir estos resultados. Resultados de experimentos recientes utilizando espinaca, y germinando las plantas con inóculo, sustrato con menor contenido en compost y alveolos más profundos, están mostrando diferencias significativas en el desarrollo, siendo éste mayor en plantas con HMVA, que en los controles sin HMVA (resultados sin publicar).

En cuanto a la difusión hemos llegado a casi 600 personas utilizando 4 canales de comunicación (charlas, ferias, web, tríptico). En las ferias rurales fue cuando pudimos informar a más gente sobre el proyecto, por lo que creemos que la presencia de este tipo de proyectos en eventos rurales incrementará el impacto que estos tienen al llegar a un público diverso.

Hasta la finalización del proyecto en 2021, estaremos realizando nuevos tratamientos en diferentes especies hortícolas, en el marco del presente proyecto, para conocer si alguna especie pueda favorecerse más de la simbiosis. A su vez, también estamos produciendo HMVA en condiciones de campo, para en un futuro poder ofrecer al agricultor una técnica de autocultivo de HMVA siguiendo nuestras experiencias. Todos nuestros resultados se transfieren a la web del proyecto así como las actividades de transferencia del mismo (http://micorrizas.elcolletero.org/).

El proyecto está cofinanciado por Fondos Feader, Ministerio de Agricultura y Gobierno de La Rioja.
REFERENCIAS

- International Culture Collection of [Vesicular] Arbuscular Mycorrhizal Fungi https://invam.wvu.edu/
MANEJO AGROECOLÓGICO DEL SUELO EN INVERNADEROS Y PRODUCCIÓN ECOLÓGICA

López L1, Meca DE2, Torres JM3

Seminario Permanente de Agroecología (UAL)
1Ejiberj SL. Calle los Mayas, 3 (Pol Ind las Tomilleras) 04760 Berja Almería
2Estación Experimental de las Palmerillas. Fundación Cajamar. Puerta de Purchena, 10, 04001 Almería.
jmtorres@ingenieriaagricola.org Tel. 636229997

RESUMEN: La producción ecológica en invernadero está experimentando la implantación de nuevas tecnologías que vienen a facilitar el manejo óptimo del suelo. Los suelos de cultivo tradicionales mantienen el enarenado y su sistema de manejo. El manejo de la materia orgánica y el agua son básicas para abordar con seguridad los objetivos de seguridad y productividad.

El acolchado permanente que brinda el enarenado se confunde con frecuencia con un sistema de cultivo habitual en los cultivos hidropónicos. La compactación de la superficie del suelo debido a la intensidad de las labores que soporta ha mermado la capacidad de las raíces para explorar la capa de suelo fértil. Esta dificultad obliga a desplazar la fertilización hacia el empleo de fertilizantes solubles en cobertura.

La reutilización de los restos de cosecha, el “retranqueo” en franjas, la mezcla de la capa de arena, el manejo de tensiómetros en riego deficitario, la programación balanceada de los aportes y el control nutricional de suelo y del cultivo son herramientas básicas. Pudiendo concluir que existen técnicas y tecnologías que empleadas conjuntamente permiten a los productores afrontar el periodo de conversión a la producción ecológica sin que la integridad de la explotación se vea afectada.

Palabras clave: agua, enarenado, funcionalidad, materia orgánica, nutrientes

HISTORIA DE UNA TÉCNICA DE PRODUCCIÓN

En el año 1973 el Ministerio de Agricultura publicaba una Hoja Divulgadora en la que se recogían todas las herramientas químicas disponibles para desinfectar el suelo en la agricultura del Sureste Peninsular. El arsenal químico heredado de las grandes guerras, adaptado a las premisas de la “revolución verde”, quedaba a disposición de la salvaguarda de las producciones de los indefensos agricultores. Algunas moléculas que se describían se mantienen en la actualidad, aunque los protocolos de ejecución se han modificado (llegándose a obviar).

LA DESINFECCIÓN DEL SUELO ARENADO

Más de 40 años después conviene recordar que el diagnóstico de las enfermedades y las causas que originan las pérdidas de cosecha, es condición previa a emplear cualquier técnica de desinfección. Por desgracia existen casos en los que no podemos identificar un microorganismo como agente causal. En estos casos se apunta a la fatiga del suelo como origen de la reducción de los rendimientos de los cultivos sin que curse enfermedad. La fatiga tiene su origen en el monocultivo y en la reducción de las operaciones de manejo del suelo, que favorecen la pérdida de las propiedades físicas, químicas y biológicas del mismo.

Desde hace más de 20 años la solarización ha intentado tomar el relevo, o ser complemento, de las moléculas químicas. Durante este tiempo la técnica implantada dentro de los sistemas de producción integrada y ecológica se ha venido realizando sin una puesta a punto fundamentada en el método científico. El número de experimentos que hemos podido localizar, recientes, se reducen a los publicados por el IFAPA en el año 2015 (Pérez et al, 2015a; 2015b).
La solarización emplea la radiación solar y una barrera plástica para alcanzar las temperaturas letales que controlan los microorganismos patógenos en los primeros 15 cm del suelo. La mayor parte de los microorganismos que causan enfermedades mueren al alcanzar 50°C (Etxeberria et al. 2013). La temperatura que debe alcanzar la solarización ha de ser superior a 50°C y/o mantenerte su acción en el tiempo (acumulación de grados día). La ejecución de la solarización en los meses de verano en nuestras latitudes, permite alcanzar fácilmente temperaturas superiores a las indicadas.

Existen diferencias entre la solarización en un suelo desnudo y un suelo acolchado con arena (arenado). Con capas de 10 cm de arena la solarización centraría su acción en 5 cm de la capa de suelo. La solarización presenta un potente efecto herbicida, no así el control de nematodos y otros patógenos de suelo.

Viene resultando común en las escasas visitas de los asesores de campo durante la ejecución de la solarización que la reducción de los costes del proceso de solarización lleven a los productores a reducir el espesor de los plásticos (menos de 150 galgas). En estos casos el calor pasa de acumularse en el suelo a hacerlo entre el plástico de cubierta y el de solarización. Consideramos esta observación de gran importancia y fácilmente medible con un termómetro ambiental y otro de infrarrojos.

El uso reiterado de la solarización agota y empobrece los microorganismos del suelo y acelera la descomposición de la materia orgánica (propiciando la aparición de la fatiga). La solarización puede realizarse en franjas en la zona de crecimiento del cultivo, pudiendo reducir los costes de la solarización, que varían entre los 1200 - 1500€/ha.

El empleo de la solarización combinada con el uso de materia orgánica fresca (restos de cosecha o estiércoles) permite limitar la acción de hongos de rápido crecimiento (Pythium y Rhizopus) especializados en alimentarse de carbohidratos (celulosa y hemicelulosa). Por otro lado, la solarización selecciona a aquellos microorganismos especializados en la descomposición.

La solarización beneficia la acción de actinomicetos (actinobacterias). Un conocido grupo de actinomicetos, los Streptomyces fabrican de forma natural moléculas conocidas en agricultura pertenecientes a los grupos Spinosinoides y las Avermectinas (hasta 15 diferentes). La actividad biológica desarrollada por los organismos del suelo permite al finalizar su ciclo de vida la acumulación de moléculas con probado efecto potenciador de la resistencia vegetal (glucosaminas).
Fotografía 2. Materia orgánica triturada para su introducción en el suelo arenado.

Fertirrigación ecológica

El empleo de materias orgánicas líquidas azucaradas en fertirriego podría causar la multiplicación de microorganismos patógenos en el suelo. El compostaje in-situ propuesto con las técnicas de biodesinfección (con o sin plástico) reduce los riesgos fitosanitarios. La biodesinfección del suelo permite la regeneración de los microorganismos a lo largo del ciclo.

Los restos de cosecha y los estiércoles frescos permiten desencadenar los procesos y efectos de la biodesinfección. El empleo de estiércol puede reducirse a 2,5 Kg/m² junto con 0,5 kg/m² de gallinaza (para disponer de nitrógeno en la fase inicial del proceso de compostaje). El aporte de materia orgánica ha de hacerse anualmente y mezclarse en el suelo mediante una labor superficial. La biodesinfección del suelo podría reemplazar las funciones de la rotación de cultivos y la gestión de la sanidad del suelo desde el punto de vista reglamentario.

Las materias orgánicas compostadas fuera del suelo, inoculadas o estabilizadas, emplean todo el potencial desinfectante en higienizar el compost. Al aplicar un compost al suelo los mecanismos químicos y biológicos que generan la biodesinfección están agotados.

La agricultura no está aislada. Se ha puesto en el centro de la Bioeconomía. Se encuentra relacionada con las actividades ganaderas (materias activas de uso veterinario), agroindustriales (materias activas no autorizadas para el cultivo, metales pesados, desinfectantes), selvícolas y de servicios a través de los compost de RSU y depuración de aguas (metales pesados, detergentes ...). Los suelos agrícolas pueden ser destino de contaminantes químicos cuando los procesos no son controlados eficientemente.

RESTOS VEGETALES Y DE COSECHA

Durante más de 30 años el arenado se ha venido manejando con el criterio del “todo dentro, todo fuera”, promoviendo grandes temores al uso de materia orgánica y la reincorporación de los restos vegetales, a la vez que se generan sobrecostos productivos, ambientales y sociales.

La gestión de la materia orgánica sigue constituyendo una herramienta de manejo que presenta grandes necesidades de investigación y transferencia para que esta contribuya a solucionar algunos de los graves problemas ambientales que genera la agricultura protegida. Tradicionalmente la importancia de la materia orgánica ha sido
minusvalorada en favor del uso de los desinfectantes químicos y las técnicas de fertirrigación con sales solubles. A su vez, los restos de cosecha alcanzan el nivel de residuos desde el punto de vista medioambiental y de sanidad vegetal.

El transporte de residuos ha requerido el manejo de poco peso y mucho volumen. Es así que la deshidratación, aunque reduce el peso para su transporte, no constituye una acción segura en el manejo fitosanitario de los residuos si esta no se composta (Gómez et al., 1988). El coste que pagar por la gestión de los residuos, desde la puerta del invernadero hasta la planta de gestión, es considerado el coste máximo para gestionar los restos de cosecha (1350€ por hectárea). El abandono de los restos vegetales por imposibilidad de gestión no es una alternativa.

Existen muy pocos trabajos agronómicos que al evaluar las alternativas de gestión de la materia orgánica incluyan los costes cuando se evalúan la respuesta sobre la producción o los microorganismos patógenos. El manejo requiere de la optimización de la maquinaria existente o el diseño de nuevas técnicas o tecnologías. La gestión agronómica de los restos vegetales, por muy de “sentido común” que pudieran resultar, han debido de ser demostrados técnica, científica y estadísticamente para validar lo que es parte del ciclo de la materia orgánica y de los elementos minerales. A continuación, se extraen algunas cifras relevantes (Torres, 2016; Torres et al., 2007).

Hay dos principios básicos en la gestión del enarenado. El mantenimiento del orden de las capas y el tamaño de las partículas de la materia orgánica. Cuando estos factores se modifican los trabajos llegan a ser imposibles y los resultados irrepetibles.

La cantidad de materia orgánica aportada presenta un peso importante en el coste del mantenimiento de la fertilidad del arenado, con constes que pueden variar desde los 700€ a los 5000 € por hectárea.

La forma en el que se aplica la materia orgánica: directamente, mezclada en el suelo (retranqueo) o en bandas (carillas) modifica el coste de las labores de aplicación. La incorporación de los restos vegetales en verde con el uso de un rotovator bajo la capa de arena (retranqueo) tiene un coste inasumible por el productor y su manejo puede ser inabordable desde el punto de vista de su ejecución (11.000€ por hectárea).

Cuando aportamos la materia orgánica se presenta un factor importante. A dosis crecientes entra a comportarse como un sustrato y esa cualidad se aleja de los objetivos de manejo, de ahí la experiencia de los productores (colocamos 10 kg/m² y el segundo año es mejor que el primero). Claro está que menos del 5% de los invernaderos controlan el movimiento del agua a 15 y 30 cm de profundidad.
La optimización requiere contabilizar el coste de cada una de las tareas requeridas con el fin de elegir las mejores técnicas o tecnologías existentes. Se requieren 6 tareas para gestionar los restos de vegetales en el arenado al finalizar la cosecha con un coste de 1950€ por hectárea.

<table>
<thead>
<tr>
<th>Labor</th>
<th>Coste (€ m(^{-2}))</th>
<th>Coste (€ kg(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separación de restos de los tutoras plásticas</td>
<td>0,045</td>
<td>0,007</td>
</tr>
<tr>
<td>Apertura de la arena</td>
<td>0,051</td>
<td>0,008</td>
</tr>
<tr>
<td>Trituración</td>
<td>0,040</td>
<td>0,006</td>
</tr>
<tr>
<td>Enterrado</td>
<td>0,039</td>
<td>0,006</td>
</tr>
<tr>
<td>Manejo de ramales de riego</td>
<td>0,002</td>
<td>0,000</td>
</tr>
<tr>
<td>Gestión de raíces</td>
<td>0,018</td>
<td>0,003</td>
</tr>
<tr>
<td>Total</td>
<td>0,195</td>
<td>0,031</td>
</tr>
</tbody>
</table>

Esquema de costes de las operaciones de gestión de los restos de cosecha de tomate (Torres, 2016).

La trituración de los restos de cosecha en la capa de arena reduce los costes de gestión derivados del manejo de la arena (1900€ por hectárea), pero la materia orgánica queda expuesta a la acción de la radiación y la falta de agua, dificultando su descomposición y su acción fertilizante en el cultivo posterior. Esta labor puede dañar las propiedades del suelo si este no se realiza con el suelo seco.

La trituración en el camino de servicio permite la gestión posterior de la materia orgánica con las técnicas de manejo del arenado y desencadenando los efectos de la acción biodesinfectante de la materia orgánica en el suelo. La descomposición de los restos de cosecha en el suelo genera en el suelo el ambiente necesario para suprimir a las plagas y enfermedades que completan su ciclo en la parte aérea.

Las podas y deshojes se pueden gestionar durante el cultivo cuando se entierran semi-deshidratados bajo la capa de arena en el centro de la calle, alejada de los sistemas radiculares.

El trabajo de los productores en la optimización de la técnica permite reducir el coste de la mecanización por debajo de los 400 € por hectárea al aplicarlo en el 50% de la superficie y tiene un papel clave en la mejora de la eficiencia y la eficacia, con una reducción del 55% en los costes de la apertura de arena y la trituración.

Por si queda alguna duda: Aquello que se desarrolla en la parte aérea no sobrevive bajo 10 cm de arena, en el suelo, y viceversa.

USO DE INSUMOS ECOLÓGICOS

La aparición en el mercado de productos microbiológicos genera gran incertidumbre entre los encargados de velar por la salud de los cultivos. Los prescriptores encuentran un gran vacío de información en cuanto a las garantías exigibles a los productos fitosanitarios y sus condiciones de empleo. Por otro lado, los productores se muestran reacios a su uso por la falta de información.

La lucha contra las plagas y enfermedades tienen como herramienta la producción masiva de los microorganismos del suelo. Desde hace un tiempo vuelve a enfatizarse esta línea y se ha convertido en objeto de la producción agraria mundial bajo la premisa establecida por la cual los consumidores desean acceder a alimentos sin contaminantes (químicos o microbiológicos). No sólo se plantea el empleo de microorganismos, también el empleo de sustancias de origen alimentario que pueden presentar aplicación en la gestión de la sanidad vegetal.

Los microorganismos capaces de competir con la especie que causa una enfermedad en el cultivo viven en el suelo fértil. Desde principios de la última década del S.XX se aborda el estudio del suelo como ente vivo y
se trabaja en rediseñar los sistemas de producción para que sean capaces de mantenerse sanos. Esta opción, la del manejo de la estructura y función de los sistemas agrarios requiere un gran esfuerzo científico, técnico y productivo. Es en este último (y primer) eslabón donde el manejo agronómico (con el productor orquestando el sistema) cobra especial importancia. Al estar en el primer círculo de lo que ahora denominamos “bioeconomía” (la autogestión a pie de finca) esta se aleja del estímulo inversor para su desarrollo. Los microorganismos y otras sustancias básicas pueden ser balanceados y rápidamente amortizables.

Recientemente Antonieta de la Cal y Paloma Melgarejo han coordinado la elaboración de un libro donde se aborda el Control Biológico de Enfermedades Vegetales con la participación de los mejores grupos de investigación en esta materia (De Cal y Melgarejo, 2017). En el capítulo introductorio queda establecida la dificultad existente en el manejo de organismos vivos que se deriva en la reducida disponibilidad de productos comerciales.

Desde el punto de vista del prescriptor de los productos que contienen microorganismos encontramos que existen productos que informan de su contenido, que se comercializan sin las autorizaciones administrativas exigidas. Se genera la primera pregunta ¿Son seguros para el aplicador, el consumidor y el medio ambiente?

En muchas ocasiones existen productos que contienen microorganismos y que fortalecen las plantas frente al ataque de plagas o enfermedades sin ser fitosanitarios. ¿La causa de esta falta de información es la obtención de resultados que son incapaces de repetir?

A su vez los productos que se formulan a partir de la producción en masa de microorganismos carecen en su etiqueta de la información básica requerida. ¿Se dispone del desarrollo exigido a los productos fitosanitarios que contienen microorganismos?

Por desgracia, el trabajo diario y el control de la seguridad alimentaria lleva a no descartar que los productos comercializados no contienen lo que expresan en la etiqueta y, en ocasiones, pueden contener patógenos para los animales y seres humanos.

Conservar en lugar fresco, seco y alejado de la luz solar no es suficiente. Los formulados no establecen las condiciones óptimas de conservación y, en consecuencia, no contienen lo que expresa en la etiqueta en lo que a cantidades de unidades viables de interés agronómico se refiere. Existen trabajos donde se ha podido mostrar cómo influye la formulación, en sus variantes sólida o líquida, en la viabilidad en el tiempo de los microorganismos. La técnica de aplicación también influye en la instalación de los microorganismos (sólida o líquida).

Se prescribe, compra, aplica y ¿es eficaz? Volviendo atrás al punto inicial muestra que el control de patógenos para los que están indicados los microorganismos no tiene lugar cuando se lleva a ensayos en placa de petri en condiciones de laboratorio. Además se ha podido comprobar como algunos organismos que se encuentran fitosanitariamente aceptados, como las trichodermas, son capaces de limitar el crecimiento de las plantas en ausencia de materia orgánica.

Esta pequeña reflexión obliga a plantear el control biológico de enfermedades como una herramienta integrada en el manejo agronómico de las empresas agrarias, pero que plantea aún numerosas dudas desde el punto de vista práctico.

BIBLIOGRAFÍA

• Pérez, A; Martín, E; Giménez, M; Fernández, MM; Gómez, J. 2015. Eficacia de la solarización y biosolarización en cultivos enarenados contra patógenos fúngicos de suelo. Almería. CAPDR, IFAPA, 20 p.
• Pérez, A; Martín, E; Giménez, M; Fernández, MM; Gómez, J. 2015. Influencia del enarenado en las temperaturas alcanzadas en la solarización y biosolarización en invernadero. Almería. CAPDR, IFAPA, 18 p.
USO DE TÉCNICAS DE DIAGNÓSTICO NUTRICIONAL RÁPIDO EN INVERNADEROS ECOLÓGICOS

Casas A(1), López L(2), Meca DE(3), Martínez E(4), Torres JM(5)

Seminario Permanente de Agroecología (UAL)
(1) Dr. Ciencias Químicas
(2) Ejiberj SL. Calle los Mayas, 3 (Pol Ind las Tomilleras) 04760-Berja Almería
(4) Bioera SL. Carrer de Portugal, 12, 43120 Constantí, Tarragona.
(5) Escuela Internacional de Doctorado. Ctra. Sacramento s/n. La Cañada de San Urbano 04120 Almería. jmtorres@ingenieroagricola.org Tel. 636229997

RESUMEN: Las directrices del EGTOP orientan al sector de la producción ecológica a tomar las decisiones referentes a la fertilización a partir de la realización de un balance de nutrientes adaptado al cultivo. Los nutrientes disponibles para el cultivo dependen de la regulación establecida por el sistema edáfico y se encuentra condicionada por el ambiente aéreo.

Los avances tecnológicos han permitido disponer a un precio asequible de dispositivos de diagnóstico que incorporan electrodos selectivos a determinados iones. Los equipos Horiba Laquatwin® permiten la determinación de nitratos, sodio, potasio y calcio. A estos se suman el pH, la conductividad eléctrica y los grados brix. Además, desde hace más de 15 años se dispone de sondas de extracción del agua del suelo de fácil instalación, que, junto con el análisis de savia, permite conocer la dinámica de nutrientes en el sistema suelo-planta de elementos clave.

El muestreo del agua del suelo y de los pedúnculos de las hojas del cultivo permite disponer de forma rápida y eficaz de la información necesaria para la toma de decisión desde el punto de vista técnico. Esta metodología permite tomar decisiones relacionadas con la fertilidad del suelo y la nutrición del cultivo de modo sistémico, permitiendo corregir aquellos desequilibrios antes de ser visibles los síntomas y afectar a la producción y la calidad.

Palabras clave: Ionómetros, nutrientes, sondas suelo, pedúnculos, dinámica

ANTECEDENTES

La producción ecológica con demasiada frecuencia plantea como necesario el acceso a fuentes de nitrógeno y fósforo fácilmente disponible para los cultivos. Esta necesidad se refuerza en la necesidad de elevar las producciones para ser entregadas a mercados ecológicos internacionales. Esta “dependencia internacional” en ocasiones olvida la existencia de los ciclos naturales de producción, así como la necesidad de mantener el suelo fértil mediante la adición de materia orgánica.

El Reglamento UE 834/2007 Art. 4(b)(iii) establece que los nutrientes necesarios para el cultivo deben provenir del sistema edáfico y sus ciclos biológicos. El Grupo Técnico de Expertos en Producción Ecológica (EGTOP) ha trabajado hasta en tres ocasiones en definir aquellos aspectos claves referentes al empleo y fabricación de fertilizantes para la producción ecológica. Por otro lado, han aparecido en el mercado productos ricos en nitrógeno y fósforo que tienen su origen en la extracción y concentración de nutrientes procedentes de residuos y subproductos de origen animal y vegetal (Art. 5(c) del R(UE) 834/2007) que no se encuentran recogidos en el Anejo I.

En control del uso de nitrógeno mediante el uso de isótopos del nitrógeno se presenta como una herramienta fiable para establecer la trazabilidad de las fuentes del nitrógeno (Vitória et al., 2004) así como el efecto de las prácticas agrícolas (Flores et al., 2007). Esta metodología presenta debilidades al permitir interpretaciones erróneas (Vitória et al., 2004) que han de ser ajustadas antes de ser transferidas como herramienta de control. González y Pomares (2008) abundan en las herramientas para mejorar el empleo de fertilizantes y su balance en sistemas agroecológicos, aunque estas herramientas no se encuentran implantadas en la gestión de las fincas.
Los sistemas de producción se ven en la necesidad de mejorar el uso del nitrógeno en la agricultura con sistemas de gestión basados en el análisis previo del suelo, el establecimiento de un balance de nitrógeno y el empleo de herramientas de control de los niveles en suelo y en planta (Thompson et al., 2014).

Las dificultades de manejo de la materia orgánica y la liberación de los nutrientes son claves en la producción de hortalizas en invernadero (Del Moral, 2010; Del Moral et al., 2012; Tittarelli et al., 2017). Las referencias de la fertilidad del suelo en producción de hortalizas bajo abrigo en sistemas convencionales se centra en la presencia de nutrientes en el extracto saturado y en la masa foliar (Casas y Casas, 1999). Estas herramientas de análisis y su interpretación exigen en empleo de tiempos y recursos no disponibles por el productor y el asesor para la toma de decisión. Timmermans (2012) destaca el control de los nutrientes disponibles que aporta el análisis de savia.

Las técnicas de análisis rápido y su aplicación en agronomía de vienen aplicando desde hace más de 20 años (Hochmuth, 1994). En nuestro entorno desde hace 10 años se viene trabajando en la transferencia de tecnologías adecuadas para el control de los niveles de nitratos en las fincas (Thompson et al., 2009). Recientemente se ha impulsado la transferencia de metodologías desde los centros de investigación relacionados con el análisis rápido del extracto del suelo (Fernandez et al., 2013) y la savia (Llanderel et al., 2018a; Peña-Fleitas, 2015), así como la evaluación de las tecnologías disponibles (Cabrera et al., 2016).

Estas técnicas necesitan ser integradas y manejadas a la par con el fin de permitir la correcta interpretación de los procesos clave que intervienen en la formación de la cosecha desde el punto de vista de la fisiología de los cultivos, sin olvidar que los factores ambientales tienen una gran influencia en el estado nutricional con el fin de evitar problemas económicos consecuencia de un deficiente manejo nutricional.

TÉCNICAS DE EXTRACCIÓN Y PREPARACIÓN DE MUESTRAS

El análisis del extracto del suelo y de la savia del peciolo de la hoja se presentan como herramientas sencillas para el uso a pie de campo.

El extracto del suelo se extrae con un lisímetro copa cerámica y botella de vacío, aunque esta ha sido sustituida por una sonda rizón con tubo de vacío (9 ml y -40 cbar) o con una jeringa (50 ml y -90 cbar) (Rizosphere, 2018). El extracto se rotula y conserva en el tubo de vacío o similar. El modo en que se colocan se documenta por el Instituto de Investigación Agraria, Pesquera y de la Producción Ecológica de Andalucía (IFAPA, 2016).

El número de sondas a utilizar dependerá de la heterogeneidad de la parcela y el objeto de las determinaciones. Un punto de control permite establecer una dinámica en el tiempo, el incremento en el número de puntos de control aumentar la precisión y conocer la variabilidad dentro de la parcela. Las sondas rizón presentan dos grandes ventajas: la facilidad de colocación y su coste.

La extracción de la savia del pedúnculo necesita cortar unas 15 - 20 hojas maduras de la planta (entre la 5ª hoja o coincidente con el punto en el que la planta inicia la floración). Las hojas se preparan retirando el limbo foliar dejando sólo el pedúnculo (Peña-Fleitas, 2015). Una variante de este muestreo consiste en tomar hojas maduras de la zona de crecimiento y la zona basal de la planta con objeto de conocer la dinámica de los nutrientes y su movilidad.

Las muestras pueden ser conservadas durante varios días hasta su análisis en un lugar oscuro y refrigerado. Peña-Fleitas (2015) establecen que el muestreo debe hacerse a primera hora de la mañana, de la hoja joven totalmente expandida y conservada máximo de 8 horas a 4 ºC. Llanderel et al. (2018) aumentan en número de muestras hasta 50 y señalan la presencia de condiciones de cultivo y fenológicas adecuadas.

Peña-Fleitas (2015) realiza el análisis de savia para el monitoreo de los niveles de nitratos troceando y extrayendo la savia directamente del peciolo mediante prensado. Llanderel et al. (2018) recogen un procedimiento más laborioso para la preparación de las muestras en el laboratorio mediante:
• Separación de la hoja del peciolo
• Limpieza del peciolo con agua destilada
• Troceado en fracciones de 0,5 cm
• Adición de éter
• Congelación a -20°C
• Descongelación
• Prensado

Las muestras del extracto del suelo son analizadas sin la necesidad de preparación desde los tubos de vacío en los que se transportan. Las muestras de savia son almacenadas en los tubos de vacío para su análisis posterior.

DETERMINACIÓN MEDIANTE ANÁLISIS RÁPIDO

Una vez preparadas las muestras se determinan con los medidores específicos el pH, la conductividad eléctrica (dS/m), los ° Brix y los niveles de NO₃⁻, K⁺, Ca²⁺ y Na⁺ con electrodos de iones selectivos.

Los ionómetros Horiba Laquatwin ® permiten la determinación de los niveles de cationes y aniones claves en la nutrición vegetal con un alto grado de ajuste (Cabrera et al., 2016; Muñoz-Huerta et al., 2013), solventando en las determinaciones de la solución del suelo la formación de iones-par y la incapacidad del cultivo para absorberlos.

Los dispositivos de medida requieren de una calibración previa. Aunque el dispositivo almacene los valores de la calibración esta puede experimentar variaciones.

INTERPRETACIÓN DE LOS VALORES Y RANGO DE SUFICIENCIA

Los valores claves y sus relaciones de los niveles de nutrientes en el extracto saturado son recogidos por Casas y Casas (1999). El empleo de las sondas rhizon para la extracción del agua del suelo no cumple con las condiciones establecidas en la preparación del extracto saturado. La extracción del agua dos horas después del riego aproximaría el estado del suelo a las condiciones óptimas para el muestreo (Fernandez et al., 2013). Casas, en una comunicación personal, ha trabajado en relacionar los valores del extracto del suelo y su extracto del suelo mediante el uso de un tensiómetro en el punto de extracción del agua de riego.

Los valores de referencia que sirven de base para la iniciación en la técnica han sido optimizados para cultivos en clima tropical húmedo por la Universidad de Florida (Hochmuth et al., 2009; Hochmuth, 1994), pudiendo establecer una relación directa con la cosecha esperada (Locascio et al., 1997).
Cuadro 1. Niveles de suficiencia de nitrógeno y potasio en savia para los principales cultivos hortícolas en Florida en clima tropical húmedo (Hochmuth et al., 2009)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Stage of Growth</th>
<th>Fresh Petiole Sap Concentration (ppm)</th>
<th>K</th>
<th>NO₃-N conc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggplant</td>
<td>First fruit (two-inches long)</td>
<td>4500 to 5000</td>
<td>1200 to 1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First harvest</td>
<td>4000 to 5000</td>
<td>1000 to 1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mid harvest</td>
<td>3500 to 4000</td>
<td>800 to 800</td>
<td></td>
</tr>
<tr>
<td>Muskmelon</td>
<td>First blossom</td>
<td>4000 to 5000</td>
<td>1000 to 1200</td>
<td></td>
</tr>
<tr>
<td>(Cantaloupe)</td>
<td>Fruits 2 inches</td>
<td>3500 to 4000</td>
<td>800 to 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First harvest</td>
<td>3000 to 3500</td>
<td>700 to 800</td>
<td></td>
</tr>
<tr>
<td>Pepper</td>
<td>First flower buds</td>
<td>3200 to 3500</td>
<td>1400 to 1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First open flowers</td>
<td>3000 to 3200</td>
<td>1400 to 1600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fruits half-grown</td>
<td>3000 to 3200</td>
<td>1200 to 1400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First harvest</td>
<td>2400 to 3000</td>
<td>800 to 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second harvest</td>
<td>2000 to 2400</td>
<td>500 to 800</td>
<td></td>
</tr>
<tr>
<td>Tomato (Field)</td>
<td>First buds</td>
<td>3500 to 4000</td>
<td>1000 to 1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First open flowers</td>
<td>3500 to 4000</td>
<td>600 to 800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fruits one-inch diameter</td>
<td>3000 to 3500</td>
<td>400 to 600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fruits two-inch diameter</td>
<td>3000 to 3500</td>
<td>400 to 600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>First harvest</td>
<td>2500 to 3000</td>
<td>300 to 400</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Second harvest</td>
<td>2000 to 2500</td>
<td>200 to 400</td>
<td></td>
</tr>
<tr>
<td>Tomato (Greenhouse)</td>
<td>Transplant to 2nd fruit cluster</td>
<td>4500 to 5000</td>
<td>1000 to 1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2nd cluster to 5th cluster</td>
<td>3500 to 4000</td>
<td>700 to 900</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harvest season (Dec-Jun)</td>
<td>4000 to 5000</td>
<td>800 to 1000</td>
<td></td>
</tr>
<tr>
<td>Watermelon</td>
<td>Vines 8-inches in length</td>
<td>4000 to 5000</td>
<td>1200 to 1500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fruits 2-inches in length</td>
<td>4000 to 5000</td>
<td>1000 to 1200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fruits one-half mature</td>
<td>3500 to 4000</td>
<td>800 to 1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At first harvest</td>
<td>3000 to 3500</td>
<td>600 to 800</td>
<td></td>
</tr>
</tbody>
</table>
Para cultivos hortícolas en clima mediterráneo bajo plástico en España se conocen algunos valores de referencia para los cultivos de tomate, pimiento, berenjena, pepino y melón (Cadahia, 2008; Llanderal et al., 2018a; Peña-Fleitas et al., 2015). Conviene señalar las diferencias en la expresión de los contenidos en nitrógeno total y nitrógeno nítrico, existiendo grandes diferencias en los trabajos revisados.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Estadio</th>
<th>N-NO$_3$</th>
<th>NO$_3$</th>
<th>K$^+$</th>
<th>Ca$^{2+}$</th>
<th>Na$^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomate</td>
<td>Floración</td>
<td>620-797</td>
<td>4300-6400</td>
<td>4600-4900</td>
<td>190-260</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fructificación</td>
<td>664-708</td>
<td>3400-3900</td>
<td>340-490</td>
<td>3200-4425</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5650</td>
<td>4500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engorde de fruto</td>
<td>354-1414</td>
<td>3200-4420</td>
<td>230-700</td>
<td>3000-4300</td>
<td>3550-4400</td>
</tr>
<tr>
<td></td>
<td>Recolección</td>
<td>133-1000</td>
<td>600-4590</td>
<td>280-1420</td>
<td>2300-4100</td>
<td>2567</td>
</tr>
<tr>
<td>Pimiento</td>
<td>Floración</td>
<td>714-915</td>
<td>7000-8000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fructificación</td>
<td>540-1414</td>
<td>6300-6850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4700-6100</td>
<td>6000-7200</td>
<td>4500-5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engorde de fruto</td>
<td>409-955</td>
<td>5620-7200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recolección</td>
<td>311-1203</td>
<td>5620-7250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5400-5500</td>
<td>8500-8600</td>
<td>4500-5000</td>
<td></td>
</tr>
<tr>
<td>Melón</td>
<td>Período vegetativo</td>
<td>1000-1200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5400-5500</td>
<td>8500-8600</td>
<td>4500-5000</td>
<td></td>
</tr>
<tr>
<td>Pepino</td>
<td></td>
<td>200</td>
<td>4000</td>
<td>340-450</td>
<td>50-100</td>
<td></td>
</tr>
<tr>
<td>Berenjena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 2. Valores de referencia para los cultivos en sistema enarenado con el empleo de fertilizantes químicos recogidos por Llanderal et al. (2018a).

No se dispone de técnicas holísticas de diagnóstico nutricional de fácil aplicación que emplee el análisis de savia como lo realiza la norma DRIS (Llanderal et al., 2018b). En este sentido (Hortinova, n.d.) ha trabajado en un sistema de interpretación basado en la determinación de los parámetros de la extracción del limbo de la hoja y sus valores de referencia (Cuadro 3):

- **Brix**: producción de azúcares en la planta. Eficiencia en la fotosíntesis (Mg, Fe, Mn, K) y en la producción de energía química (ATP, NADH ...).
- **pH**: sensibilidad a las enfermedades e insectos. Contribución del calcio y magnesio.
- **CE**: concentración de nutrientes.
- **Potasio**: regulación el estado hídrico, dureza, firmeza.
- **Nitrato**: crecimiento de las plantas

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brix</td>
<td>Bajo</td>
</tr>
<tr>
<td>pH</td>
<td>2</td>
</tr>
<tr>
<td>pH</td>
<td>4,5 (hongos)</td>
</tr>
<tr>
<td>CE</td>
<td>2,5-3,5</td>
</tr>
<tr>
<td>Potasio</td>
<td>1000</td>
</tr>
<tr>
<td>Nitrato</td>
<td>1000</td>
</tr>
</tbody>
</table>

Cuadro 3. Valores de referencia para los principales nutrientes según Hortinova (n.d.).

No se dispone de los valores de suficiencia de los cultivos hortícolas manejados con criterios ecológicos. La técnica permitiría dar respuesta a aspectos fisiológicos y ecológicos como son la falta de nutrientes, la movilidad de nutrientes y sus reservas, el estado metabólico de la planta y la sensibilidad a plagas o enfermedades.
RESULTADOS DE LAS APLICACIONES DE LA TÉCNICA

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Mes</th>
<th>n</th>
<th>CE [dS/m]</th>
<th>pH</th>
<th>° Brix</th>
<th>Nitrato</th>
<th>Potasio</th>
<th>Calcio</th>
<th>Sodio</th>
<th>(meq/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomate Pera</td>
<td>sep</td>
<td>12</td>
<td>4,5</td>
<td>8,1</td>
<td>0,4</td>
<td>2,5</td>
<td>0,8</td>
<td>11,5</td>
<td>27,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>10</td>
<td>4,7</td>
<td>8,7</td>
<td>0,4</td>
<td>0,9</td>
<td>0,4</td>
<td>12,8</td>
<td>26,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>3</td>
<td>5,8</td>
<td>7,5</td>
<td>0,5</td>
<td>0,6</td>
<td>1,5</td>
<td>5,2</td>
<td>31,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>25</td>
<td>4,7</td>
<td>8,3</td>
<td>0,4</td>
<td>1,6</td>
<td>0,7</td>
<td>11,3</td>
<td>27,1</td>
<td></td>
</tr>
<tr>
<td>Tomate Racimo</td>
<td>ago</td>
<td>6</td>
<td>3,3</td>
<td></td>
<td></td>
<td>2,1</td>
<td>1,6</td>
<td>3,8</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sep</td>
<td>31</td>
<td>4,2</td>
<td>7,6</td>
<td>0,3</td>
<td>2,0</td>
<td>2,2</td>
<td>9,1</td>
<td>14,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>31</td>
<td>5,1</td>
<td>7,6</td>
<td>0,4</td>
<td>1,8</td>
<td>2,5</td>
<td>16,3</td>
<td>24,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>30</td>
<td>5,7</td>
<td>8,1</td>
<td>0,5</td>
<td>2,4</td>
<td>3,5</td>
<td>20,3</td>
<td>26,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>36</td>
<td>5,7</td>
<td>8,0</td>
<td>0,5</td>
<td>5,1</td>
<td>3,5</td>
<td>18,0</td>
<td>23,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>25</td>
<td>6,7</td>
<td>7,5</td>
<td>0,8</td>
<td>5,1</td>
<td>3,7</td>
<td>6,8</td>
<td>25,3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>170</td>
<td>5,4</td>
<td>7,8</td>
<td>0,6</td>
<td>3,4</td>
<td>3,0</td>
<td>13,9</td>
<td>22,4</td>
<td></td>
</tr>
<tr>
<td>Berenjena</td>
<td>ago</td>
<td>6</td>
<td>3,3</td>
<td></td>
<td></td>
<td>2,1</td>
<td>1,6</td>
<td>3,8</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sep</td>
<td>11</td>
<td>1,9</td>
<td>8,4</td>
<td>0,3</td>
<td>1,6</td>
<td>1,3</td>
<td>6,6</td>
<td>6,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>5</td>
<td>1,9</td>
<td>8,6</td>
<td>0,2</td>
<td>1,0</td>
<td>0,9</td>
<td>5,1</td>
<td>6,0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>2</td>
<td>9,7</td>
<td>7,8</td>
<td>0,2</td>
<td>0,8</td>
<td>1,4</td>
<td>2,7</td>
<td>7,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>18</td>
<td>2,7</td>
<td>8,4</td>
<td>0,2</td>
<td>1,4</td>
<td>1,2</td>
<td>5,7</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>Sandía</td>
<td>ago</td>
<td>6</td>
<td>3,3</td>
<td></td>
<td></td>
<td>2,1</td>
<td>1,6</td>
<td>3,8</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sep</td>
<td>37</td>
<td>5,9</td>
<td>7,2</td>
<td>0,6</td>
<td>2,4</td>
<td>1,6</td>
<td>17,9</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>52</td>
<td>6,6</td>
<td>21,1</td>
<td>0,6</td>
<td>1,4</td>
<td>2,6</td>
<td>19,2</td>
<td>34,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>32</td>
<td>6,4</td>
<td>7,9</td>
<td>0,6</td>
<td>1,2</td>
<td>2,8</td>
<td>22,6</td>
<td>31,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>44</td>
<td>6,3</td>
<td>8,0</td>
<td>0,6</td>
<td>1,6</td>
<td>3,5</td>
<td>27,9</td>
<td>28,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>24</td>
<td>5,6</td>
<td>7,8</td>
<td>0,5</td>
<td>2,6</td>
<td>2,0</td>
<td>6,4</td>
<td>22,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>11</td>
<td>6,4</td>
<td>8,4</td>
<td>0,6</td>
<td>2,7</td>
<td>1,9</td>
<td>14,8</td>
<td>27,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>200</td>
<td>6,2</td>
<td>11,7</td>
<td>0,6</td>
<td>1,8</td>
<td>2,5</td>
<td>19,6</td>
<td>29,7</td>
<td></td>
</tr>
<tr>
<td>Tomate Cherry</td>
<td>ago</td>
<td>6</td>
<td>3,3</td>
<td></td>
<td></td>
<td>2,1</td>
<td>1,6</td>
<td>3,8</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sep</td>
<td>37</td>
<td>5,9</td>
<td>7,2</td>
<td>0,6</td>
<td>2,4</td>
<td>1,6</td>
<td>17,9</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>52</td>
<td>6,6</td>
<td>21,1</td>
<td>0,6</td>
<td>1,4</td>
<td>2,6</td>
<td>19,2</td>
<td>34,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>32</td>
<td>6,4</td>
<td>7,9</td>
<td>0,6</td>
<td>1,2</td>
<td>2,8</td>
<td>22,6</td>
<td>31,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>44</td>
<td>6,3</td>
<td>8,0</td>
<td>0,6</td>
<td>1,6</td>
<td>3,5</td>
<td>27,9</td>
<td>28,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>24</td>
<td>5,6</td>
<td>7,8</td>
<td>0,5</td>
<td>2,6</td>
<td>2,0</td>
<td>6,4</td>
<td>22,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>11</td>
<td>6,4</td>
<td>8,4</td>
<td>0,6</td>
<td>2,7</td>
<td>1,9</td>
<td>14,8</td>
<td>27,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>200</td>
<td>6,2</td>
<td>11,7</td>
<td>0,6</td>
<td>1,8</td>
<td>2,5</td>
<td>19,6</td>
<td>29,7</td>
<td></td>
</tr>
<tr>
<td>Calabacín</td>
<td>ago</td>
<td>6</td>
<td>3,3</td>
<td></td>
<td></td>
<td>2,1</td>
<td>1,6</td>
<td>3,8</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sep</td>
<td>37</td>
<td>5,9</td>
<td>7,2</td>
<td>0,6</td>
<td>2,4</td>
<td>1,6</td>
<td>17,9</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>52</td>
<td>6,6</td>
<td>21,1</td>
<td>0,6</td>
<td>1,4</td>
<td>2,6</td>
<td>19,2</td>
<td>34,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>32</td>
<td>6,4</td>
<td>7,9</td>
<td>0,6</td>
<td>1,2</td>
<td>2,8</td>
<td>22,6</td>
<td>31,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>44</td>
<td>6,3</td>
<td>8,0</td>
<td>0,6</td>
<td>1,6</td>
<td>3,5</td>
<td>27,9</td>
<td>28,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>24</td>
<td>5,6</td>
<td>7,8</td>
<td>0,5</td>
<td>2,6</td>
<td>2,0</td>
<td>6,4</td>
<td>22,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>11</td>
<td>6,4</td>
<td>8,4</td>
<td>0,6</td>
<td>2,7</td>
<td>1,9</td>
<td>14,8</td>
<td>27,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>102</td>
<td>3,5</td>
<td>7,8</td>
<td>0,3</td>
<td>3,2</td>
<td>1,3</td>
<td>7,3</td>
<td>16,8</td>
<td></td>
</tr>
<tr>
<td>Pimiento</td>
<td>ago</td>
<td>6</td>
<td>3,3</td>
<td></td>
<td></td>
<td>2,1</td>
<td>1,6</td>
<td>3,8</td>
<td>8,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sep</td>
<td>37</td>
<td>5,9</td>
<td>7,2</td>
<td>0,6</td>
<td>2,4</td>
<td>1,6</td>
<td>17,9</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>52</td>
<td>6,6</td>
<td>21,1</td>
<td>0,6</td>
<td>1,4</td>
<td>2,6</td>
<td>19,2</td>
<td>34,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>32</td>
<td>6,4</td>
<td>7,9</td>
<td>0,6</td>
<td>1,2</td>
<td>2,8</td>
<td>22,6</td>
<td>31,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>44</td>
<td>6,3</td>
<td>8,0</td>
<td>0,6</td>
<td>1,6</td>
<td>3,5</td>
<td>27,9</td>
<td>28,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>24</td>
<td>5,6</td>
<td>7,8</td>
<td>0,5</td>
<td>2,6</td>
<td>2,0</td>
<td>6,4</td>
<td>22,8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>11</td>
<td>6,4</td>
<td>8,4</td>
<td>0,6</td>
<td>2,7</td>
<td>1,9</td>
<td>14,8</td>
<td>27,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>59</td>
<td>3,2</td>
<td>7,5</td>
<td>0,3</td>
<td>6,8</td>
<td>1,6</td>
<td>15,2</td>
<td>6,5</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 4. Valores de extracto del suelo en condiciones de campo de los cultivos ecológicos en invernadero a lo largo del ciclo de cultivo.

Se ha llevado a cabo el control sistemático de los cultivos habituales de la horticultura ecológica bajo plástico en Almería integrando análisis del extracto del suelo y los análisis de savia. El empleo de las sondas rhizon con
jeringas plásticas para el monitoreo del suelo en las condiciones de manejo en campo con un punto de control y los ciclos de cultivo manejados en invernadero, después de realizar 583 controles, pueden observarse en el cuadro 4.

Los valores presentan importantes variaciones al compararlos con los publicados por Casas y Casas (1999). El desarrollo radicular exigido al cultivo ecológico para hacer frente a las necesidades de agua y nutrientes permite mantener los valores de nutrientes bajos en el suelo sin que en el cultivo se presenten síntomas de escasez.

En este caso es una herramienta imprescindible el control del estado de humedad del suelo en su perfil. Se plantea como solución el muestreo del suelo 2 horas tras el riego (cuando este se encuentra próximo a las condiciones de saturación). Este muestreo necesita de la participación del productor ya que técnicamente inabarcable muestrear.

Los análisis de 287 muestras de pedúnculos de los cultivos anteriores se presentan en el cuadro 5.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Mes</th>
<th>n</th>
<th>CE (dS/m)</th>
<th>pH</th>
<th>°Brix</th>
<th>Nitrato (ppm)</th>
<th>Potasio (ppm)</th>
<th>Calcio (ppm)</th>
<th>Sodio (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomate Pera</td>
<td>sep</td>
<td>4</td>
<td>19,8</td>
<td>5,9</td>
<td>2,6</td>
<td>3.725</td>
<td>4.900</td>
<td>193</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>5</td>
<td>17,8</td>
<td>6,0</td>
<td>2,4</td>
<td>2.140</td>
<td>4.800</td>
<td>134</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>9</td>
<td>18,7</td>
<td>6,0</td>
<td>2,5</td>
<td>2.844</td>
<td>4.844</td>
<td>160</td>
<td>256</td>
</tr>
<tr>
<td>Tomate Racimo</td>
<td>sep</td>
<td>9</td>
<td>17,3</td>
<td>6,0</td>
<td>2,2</td>
<td>3.367</td>
<td>4.311</td>
<td>194</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>17</td>
<td>16,9</td>
<td>5,9</td>
<td>2,2</td>
<td>2.565</td>
<td>4.529</td>
<td>196</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>12</td>
<td>17,7</td>
<td>5,9</td>
<td>2,6</td>
<td>2.138</td>
<td>4.142</td>
<td>416</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>9</td>
<td>20,8</td>
<td>5,1</td>
<td>3,5</td>
<td>2.062</td>
<td>4.422</td>
<td>528</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>13</td>
<td>20,3</td>
<td>5,2</td>
<td>3,5</td>
<td>2.885</td>
<td>4.492</td>
<td>252</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>10</td>
<td>16,6</td>
<td>5,5</td>
<td>3,4</td>
<td>2.680</td>
<td>4.170</td>
<td>374</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>70</td>
<td>18,2</td>
<td>5,6</td>
<td>2,9</td>
<td>2.606</td>
<td>4.363</td>
<td>312</td>
<td>255</td>
</tr>
<tr>
<td>Berenjena</td>
<td>sep</td>
<td>4</td>
<td>15,5</td>
<td>5,8</td>
<td>2,6</td>
<td>3.300</td>
<td>4.100</td>
<td>122</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>2</td>
<td>16,7</td>
<td>6,0</td>
<td>2,7</td>
<td>1.100</td>
<td>4.500</td>
<td>170</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>6</td>
<td>15,9</td>
<td>5,9</td>
<td>2,6</td>
<td>2.567</td>
<td>4.233</td>
<td>138</td>
<td>140</td>
</tr>
<tr>
<td>Sandía</td>
<td>Media</td>
<td>3</td>
<td>21,0</td>
<td>5,9</td>
<td>3,7</td>
<td>5.033</td>
<td>4.567</td>
<td>-</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>2</td>
<td>18,8</td>
<td>6,5</td>
<td>2,7</td>
<td>4.000</td>
<td>4.800</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>1</td>
<td>17,4</td>
<td>7,3</td>
<td>2,2</td>
<td>3.400</td>
<td>4.000</td>
<td>110</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>4</td>
<td>15,7</td>
<td>6,3</td>
<td>2,4</td>
<td>2.475</td>
<td>4.050</td>
<td>343</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>10</td>
<td>18,1</td>
<td>6,3</td>
<td>2,8</td>
<td>3.640</td>
<td>4.350</td>
<td>148</td>
<td>64</td>
</tr>
<tr>
<td>Tomate Cherry</td>
<td>sep</td>
<td>10</td>
<td>20,0</td>
<td>6,0</td>
<td>2,8</td>
<td>3.470</td>
<td>4.680</td>
<td>250</td>
<td>424</td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>16</td>
<td>18,4</td>
<td>5,9</td>
<td>2,5</td>
<td>3.181</td>
<td>5.194</td>
<td>154</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>16</td>
<td>19,7</td>
<td>5,6</td>
<td>2,9</td>
<td>2.078</td>
<td>5.306</td>
<td>208</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>3</td>
<td>20,4</td>
<td>5,1</td>
<td>3,5</td>
<td>2.100</td>
<td>4.733</td>
<td>260</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>8</td>
<td>18,1</td>
<td>5,3</td>
<td>3,1</td>
<td>2.044</td>
<td>4.575</td>
<td>88</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>8</td>
<td>17,9</td>
<td>5,7</td>
<td>3,0</td>
<td>3.538</td>
<td>4.613</td>
<td>289</td>
<td>315</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>61</td>
<td>19,0</td>
<td>5,7</td>
<td>2,8</td>
<td>2.783</td>
<td>4.959</td>
<td>198</td>
<td>336</td>
</tr>
<tr>
<td>Calabacín</td>
<td>sep</td>
<td>2</td>
<td>18,0</td>
<td>6,1</td>
<td>2,3</td>
<td>2.600</td>
<td>3.800</td>
<td>2,100</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>oct</td>
<td>9</td>
<td>16,8</td>
<td>6,3</td>
<td>2,2</td>
<td>2.844</td>
<td>3.469</td>
<td>731</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>5</td>
<td>15,3</td>
<td>6,5</td>
<td>2,4</td>
<td>1.998</td>
<td>3.220</td>
<td>790</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>8</td>
<td>16,8</td>
<td>6,4</td>
<td>2,4</td>
<td>2.346</td>
<td>3.988</td>
<td>390</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>21</td>
<td>15,2</td>
<td>5,8</td>
<td>2,6</td>
<td>3.200</td>
<td>3.962</td>
<td>212</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>19</td>
<td>13,5</td>
<td>5,9</td>
<td>2,8</td>
<td>2.616</td>
<td>3.200</td>
<td>371</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>64</td>
<td>15,2</td>
<td>6,0</td>
<td>2,5</td>
<td>2.757</td>
<td>3.607</td>
<td>458</td>
<td>69</td>
</tr>
<tr>
<td>Pimiento</td>
<td>nov</td>
<td>10</td>
<td>20,3</td>
<td>6,1</td>
<td>3,5</td>
<td>3.820</td>
<td>4.810</td>
<td>-</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>17</td>
<td>18,3</td>
<td>5,9</td>
<td>2,7</td>
<td>3.664</td>
<td>4.606</td>
<td>-</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>ene</td>
<td>18</td>
<td>17,8</td>
<td>5,4</td>
<td>3,1</td>
<td>4.828</td>
<td>4.722</td>
<td>187</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>feb</td>
<td>22</td>
<td>18,3</td>
<td>5,9</td>
<td>4,1</td>
<td>5.931</td>
<td>4.909</td>
<td>19</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Media</td>
<td>67</td>
<td>18,6</td>
<td>5,8</td>
<td>3,4</td>
<td>4.744</td>
<td>4.767</td>
<td>-</td>
<td>79</td>
</tr>
</tbody>
</table>

Cuadro 5. Valores de savia de los cultivos ecológicos en invernadero a lo largo del ciclo de cultivo.
En todas las muestras evaluadas los niveles de nitrógeno se mantuvieron por debajo de los valores de referencia encontrados excepto en los cultivos de pimiento y sandía en fincas en las que se incorporan los restos de cosecha anterior y se aplica estiércol. Los valores de potasio se mantienen próximos a los valores óptimos.

Las primeras aproximaciones permiten concluir que valores de nitratos entre 1000 y 1500 ppm, coincidiendo con Peña-Fleitas (2015) e inferiores a Hochmuth et al. (2009), permiten el crecimiento de los cultivos en las condiciones de invernadero. Los niveles de potasio óptimo se sitúa entre 4000 y 5000 ppm aproximándose a los valores de Hochmuth et al. (2009). Los niveles de conductividad eléctrica en la savia son elevados y están relacionados con las condiciones salinas presentes en el suelo.

La dinámica de nutrientes permite detectar y solucionar importantes problemas productivos relacionados con bloqueos metabólicos en el cultivo (cuadro 6). Cabe destacar las grandes variaciones en los niveles de nitratos existentes en los pimientos y sandías extra tempranas que presentan altos niveles de nutrientes en hojas bajas y las reducciones de más del 50% en las hojas altas.

<table>
<thead>
<tr>
<th>Cultivo</th>
<th>Fecha</th>
<th>Posición</th>
<th>n</th>
<th>CE (dS/m)</th>
<th>pH</th>
<th>° Brix</th>
<th>Nitrato</th>
<th>Potasio</th>
<th>Calcio</th>
<th>Sodio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomate</td>
<td>oct</td>
<td>baja</td>
<td>1</td>
<td>17,96</td>
<td>5,7</td>
<td>2,8</td>
<td>1600</td>
<td>4600</td>
<td>180</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alta</td>
<td>1</td>
<td>17,79</td>
<td>5,7</td>
<td>2,4</td>
<td>1700</td>
<td>4500</td>
<td>190</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td>nov</td>
<td>baja</td>
<td>2</td>
<td>21</td>
<td>6,2</td>
<td>3,1</td>
<td>680</td>
<td>3600</td>
<td>1200</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>alta</td>
<td>1</td>
<td>17,83</td>
<td>5,75</td>
<td>2,8</td>
<td>900</td>
<td>3550</td>
<td>390</td>
<td>165</td>
<td></td>
</tr>
<tr>
<td>Sandía</td>
<td>dic</td>
<td>baja</td>
<td>1</td>
<td>21</td>
<td>6,4</td>
<td>2,4</td>
<td>5200</td>
<td>5100</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alta</td>
<td>1</td>
<td>16,68</td>
<td>6,5</td>
<td>2,9</td>
<td>2800</td>
<td>4500</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>Pimiento</td>
<td>nov</td>
<td>baja</td>
<td>1</td>
<td>21</td>
<td>6,1</td>
<td>2,3</td>
<td>5600</td>
<td>3000</td>
<td>-</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>alta</td>
<td>1</td>
<td>19,7</td>
<td>5,9</td>
<td>0,6</td>
<td>2000</td>
<td>2800</td>
<td>-</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dic</td>
<td>baja</td>
<td>4</td>
<td>20</td>
<td>6,4</td>
<td>2,05</td>
<td>3900</td>
<td>4675</td>
<td>172</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>alta</td>
<td>4</td>
<td>16,03</td>
<td>6,5</td>
<td>2,3</td>
<td>2650</td>
<td>4250</td>
<td>93</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 6. Valores de savia de los cultivos ecológicos en invernadero para el control de la dinámica de nutrientes en la planta.

Las variaciones en el pH, la conductividad eléctrica y los °Brix permiten acometer con mayor eficacia la solución adecuada con los nutrientes clave. A su vez el control podría incidir en la reducción de plagas y enfermedades (Gupta et al., 2017).

La utilización conjunta de las determinaciones de suelo y de planta permiten disponer de información precisa relativa a la presencia de nutrientes, su disponibilidad y el uso por los cultivos.

CONCLUSIONES

El empleo de las técnicas de análisis rápido permite llevar a cabo el control de la fertilidad y del estado nutricional de los cultivos de forma eficiente. Su empleo de forma conjunta al plan de mantenimiento de la fertilidad del suelo y el cálculo de las extracciones de los cultivos permitirá aumentar la producción y la calidad en producciones de alta exigencia y compromiso medioambiental.

BIBLIOGRAFÍA

- IFAPA, 2016. Instalación de sondas Rhizon y toma de muestras de solución de suelo en cultivo enarenado - YouTube.
REITERACIÓN DE LA BIOSOLARIZACIÓN CON ESTIÉRCOL FRESCO DE OVINO. EFECTOS SOBRE LAS CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DEL SUELO

Guirao P, Fernández P, Larregla S, Lacasa A

Oficina Comarcal Agraria Vega Alta (OCA). Consejería de Agua, Agricultura, Ganadería y Pesca. Ctra. de Murcia s/n. E30.530 Cieza (Murcia). 968760705. pedro.fernandez5@carm.es

RESUMEN: En la evaluación de alternativas al bromuro de metilo para la desinfección de los suelos de los invernaderos de pimiento del Campo de Cartagena los ensayos se plantearon de forma que se pudiera conocer la viabilidad técnica y económica de la alternativa, la eficacia y la estabilidad en el tiempo de la misma y la sostenibilidad en los habituales sistemas de producción de la comarca, especialmente los ecológicos. En el presente trabajo se presentan los resultados del primer año, dentro de una línea de ensayos continuados de biosolarización utilizando estiércol fresco de ovino y gallinaza (EFO) como enmienda biofumigante realizados en un invernadero ecológico del Campo de Cartagena sin antecedentes del cultivo de pimiento, con el suelo exento de patógenos para poder evaluar los efectos sobre las características físicas y químicas del suelo y donde los efectos sobre la cosecha derivarán de la enmienda y no del control de los patógenos o de la disipación de la fatiga del suelo. La EFO redujo la densidad aparente en el perfil 0 a 10 cm de profundidad y en ocasiones en el perfil 10-20 cm, aumentó la infiltración acumulada y la velocidad de infiltración del agua en los perfiles 0-10, 10-20 y 20-30 cm de profundidad y aumentó la capacidad de retención del agua en los tres perfiles analizados. Los contenidos en hierro, cinc y cobre son los microelementos que mayores modificaciones presentan, sobre todo tras la primera aplicación de la biosolarización. Se podrían considerar como adecuados indicadores del proceso de solarización con enmiendas orgánicas.

Palabras clave: densidad aparente, infiltración, microelementos

INTRODUCCIÓN

En la evaluación de alternativas al bromuro de metilo para la desinfección de los suelos de los invernaderos de pimiento del Campo de Cartagena los ensayos se plantearon de forma que se pudiera conocer la viabilidad técnica y económica de la alternativa, la eficacia y la estabilidad en el tiempo de la misma y la sostenibilidad en los habituales sistemas de producción de la comarca.

La biosolarización, evaluada inicialmente como una alternativa a la desinfección química y utilizable en cultivos calificados como ecológicos, fue considerada como una alternativa a las alternativas químicas por: su eficacia (Lacasa et al. 2002) para el control de los principales patógenos del suelo (Phytophthora capsici, P. parasitica y Meloidogyne incognita), por la estabilidad en el tiempo de la eficacia desinfectante (Guerrero et al. 2004a), por las prestaciones agronómicas, al proporcionar cosechas similares a las de los desinfectantes químicos de referencia (Guerrero et al., 2004b), y, por mitigar los efectos de la fatiga del suelo específica del pimiento, que se acumula como consecuencia del monocultivo reiterado del pimiento en más del 95 % de los invernaderos (Guerrero et al. 2014).

La acción desinfectante sobre los patógenos, la acción sobre la fatiga del suelo y los efectos sobre las características biológicas (Martínez et al. 2010), físicas y químicas de los suelos de las enmiendas utilizadas, suponía que se recuperaba o aumentaba la fertilidad de los mismos y las capacidades productivas de los invernaderos. Pero, además, al reiterar la aplicación de la biosolarización en el mismo suelo, los efectos se mostraban más perdurables en el tiempo, confiriendo estabilidad en el patosistema telúrico, que redundaba en mejorar notable de la salud del suelo y del sistema de producción de alimentos (Larregla et al. 2015).

Pero las alternativas, químicas o no químicas, deberían ser respetuosas con el medio ambiente y con el entorno de los cultivos, además de minimizar los riesgos para los usuarios. Por ello, se evaluaban los efectos desinfectantes...
a largo plazo para los fumigantes químicos (mezcla de 1,3-dicloropropano y cloropicrina, [Guerreiro et al. 2004c], y para los no químicos, en particular para la biosolarización (Guerreiro et al. 2005). También se evaluaron los efectos sobre la microbiota fúngica no patógena implicada en la fatiga del suelo (Martínez et al. 2005, 2010) y en los equilibrios bióticos de los suelos. Las posibles derivas contaminantes por metales pesados (Flores et al. 2008) y los posibles lixiviados (Rincón et al. 2005), e incluso los efectos sobre la descontaminación o degradación de plaguicidas acumulados en el suelo (Fenoll et al., 2010, 2014).

Los primeros resultados de los efectos de la biosolarización sobre la fertilidad de los suelos (Fernández et al. 2005) fueron continuados con estudios de más larga duración, habida cuenta de que para observar modificaciones en las características físicas y químicas de los suelos se requiere más tiempo que para la advertencia de los efectos sobre la microbiota patógena o no patógena.

En el presente capítulo se presentan los resultados de ensayos continuados de biosolarización utilizando estiércol fresco de ovino y gallinaza como enmienda biofumigante realizados en un invernadero sin antecedentes del cultivo de pimiento, con el suelo exento de patógenos para poder evaluar los efectos sobre las características físicas y químicas del suelo y donde los efectos sobre la cosecha derivaran de la enmienda y no del control de los patógenos o de la disipación de la fatiga del suelo.

MATERIAL Y MÉTODOS

La dosis aplicada fue de 10 kg/m², dentro de un programa de reducción progresiva de la enmienda orgánica hasta converger en 2,5 kg/m² de estiércol fresco de ovino en 5 años. La superficie de cada parcela elemental era de 75 m² cada una tomada al azar.

Las muestras de suelo inalteradas se escoraron en estufa a 105°C (sobre papel de filtro o recipiente resistente al fuego) hasta peso constante (24-48 horas con la muestra extendida), determinándose su peso seco (con aproximación de 0,1 g.) a la temperatura de referencia (USSLS, 1954). El volumen del cilindro fue de 100 cm³. Para ello, se tomaron 9 muestras por tratamiento, 3 por repetición, a 3 profundidades (0-10 cm, 10-20 cm, 20-30 cm).

El método empleado para el cálculo de la infiltración ha sido el de los anillos de Tames-Muntz. El aparato de medida consiste en dos anillos concéntricos de 142 mm de diámetro y otro de 350 mm.

El efecto del anillo exterior es anular el efecto de la infiltración lateral. En estos cilindros se mantiene una altura de agua constante de 5 cm durante todo el tiempo que dura la infiltración. El mecanismo que se emplea para mantener este nivel es un sistema de boyas similar al empleado en las instalaciones ganaderas para bebederos.

Para la medición de la curva de retención hídrica \(\theta(\Psi) \) en laboratorio se ha empleado el método del recipiente de tensión hídrica, combinado con la membrana a presión.

Las muestras se tomaron antes y después de la aplicación de las diferentes enmiendas orgánicas. Cada muestra estuvo compuesta por suelo tomado en 5 puntos distribuidos a lo largo de la parcela elemental. Se separó la parte superficial y se hizo un hoyo de 20 a 25 cm en cada punto, tomando una fracción vertical de tierra en cada punto. La tierra de los 5 puntos, mezclada y homogénea, se colocó en una bolsa de plástico que se cerró a nudo. Las muestras se conservaron en cámara frigorífica a 4-6 °C desde el momento de la recolección hasta el día del análisis.

El análisis físico-químico de suelo se realizó conforme a las técnicas descritas por el MAPA (1994).

Para el análisis de la densidad aparente se ha analizado estadísticamente mediante el ANOVA considerando inicialmente como factores cualitativos el perfil de suelo y la repetición. Se han tomado tres perfiles: 0-10, 10-20 y 20-30 cm. La comparación entre medios de los tratamientos se realizó utilizando el test LSD de Fisher al 95% (p<0,05).
RESULTADOS Y DISCUSIÓN

La medida de la densidad aparente tras el proceso de desinfección y previo al trasplante del cultivo de pimiento, presentó diferencias significativas (p<0,05). Estos resultados están en la línea de otros trabajos como los de Tester (1990), Ekwe (1992) y Liu et al. (2007), en los que tras la aplicación de enmiendas orgánicas se reduce la densidad aparente de los suelos tratados. En nuestras condiciones, en el único perfil de suelo donde las diferencias han sido significativas ha sido en el primero, de 0 a 10 cm de profundidad (Fig. 1a). La aplicación de 100 t/ha de estiércol fresco de ovino ha reducido la densidad aparente a 1,18 t/m³, en comparación con 1,30 t/m³ de la parcela control, descenso similar tras la aplicación de 250 m³/ha de estiércol de pollo, donde la densidad aparente se redujo de 1,16 a 1,04 t/m³ (Forge et al. 2016). La disminución en la da puede ser debido al aumento de agregación, mayor volumen radicular y poros tras el aporte de materiales orgánicos (Bappa et al. 2016). Bronick (2005) justifican el descenso por la menor densidad de los materiales orgánicos frente a las partículas minerales del suelo. Una combinación de ambas podría dar respuesta a los beneficios de la aplicación de estiércol fresco de ovino en la da, tal y como apuntan (Kay et al. 1997). Este descenso en el primer año de la experiencia ha supuesto ventajas en el enraizado del cultivo y en la dinámica del agua.

Tanto la infiltración acumulada (Fig. 1b) como la velocidad de infiltración (Fig. 2) mejoraron en los tratamientos biosolarizados. Mathers et al. (1977) demostraron el aumento de la infiltración tras la aplicación de estiércol vacuno, mientras que para (Assefa et al. 2004) la adición de enmiendas orgánicas no afectó significativamente a la infiltración acumulada de agua, aunque hubo una tendencia hacia una mayor infiltración en el tratamiento con estiércol de vacuno.

![Figura 1](a) ![Figura 1](b)

(a) Medida de la densidad aparente en invernadero biosolarizado (a) y Infiltración acumulada para un tiempo de medida de 360 min (b). T: testigo; B1: primera biosolarización. Valores medios con la misma letra no difieren significativamente entre sí según prueba LSD de Fisher (p< 0,05).

![Figura 2](a) ![Figura 2](b)

(a) Velocidad de infiltración y cálculo de la Ks/Kd para el tratamiento testigo (a) y primera biosolarización (b). Ks: conductividad hidráulica saturada, Kd: conductividad hidráulica del suelo seco.
La función de infiltración ajustada (Kostiakov 1932) a cada tratamiento fue, para el caso del testigo de:

\[y=0.9206x^{0.6067} \]

y para el tratamiento con la enmienda:

\[y=2.0376x^{0.5106} \]

Los valores de \(K_d \) (conductividad hidráulica del suelo seco) en el control fue de 29,33 cm/h y en el tratado fue de 55,61 cm/h. En cambio, la \(K_s \) (conductividad hidráulica saturada) fue de 3,37 y 3,58 cm/h, respectivamente. Estos resultados son similares a los obtenidos por Fernández et al. (2014) en diferentes suelos al aire libre e invernaderos de Campo de Cartagena (Murcia).

La aplicación de estiércol en el proceso de biosolarización ha supuesto el incremento significativo en la retención de agua (p<0,05) en los tres perfiles del suelo y para diferentes presiones de succión (Fig. 3 a 5), tal y como han descrito Khaleel et al. (1981) y Arriaga y Lowery (2003). Childs (1969) y Aggelides (1987) asignan a las diferentes presiones de succión tamaños de poros de diferente tamaño. Aggelides y Londra (2000) justifican el aumento de retención de agua en la presión de succión de -5 KPa al aumento de poros de gran tamaño. Estos mismos autores afirman que la adición de compost aumentó la retención de agua de todos los suelos ensayados. Este incremento fue directamente proporcional a la dosis aplicada, excepto para la de 75 m³/ha. N'Dayegamiye y Angers (1990), Tester (1990), Droogers y Bouma (1996) y Warren y Fonteno (1993), muestran como aumentos de los niveles de materia orgánica del suelo originan el incremento de la capacidad de retención de agua del mismo, especialmente a la saturación del suelo (pF=0) y capacidad de campo (pF=2,5). Se cree que esto es causado por la formación de agregados formados a partir de las sustancias húmicas. En la misma línea Bohn et al. (1985), Sparks (1995) y Stevenson (1994), demuestran la tendencia a formar agregados estables a partir de la aplicaciones de estiércoles con las arcillas presentes en el suelo.

![Figura 3](image1.png)

Figura 3. Contenido de humedad a diferentes presiones de succión (pF) para el perfil de suelo 0-10 cm. Valores medios (n=3), de un mismo pF, con la misma letra, o sin letra, no difieren significativamente entre sí según prueba LSD de Fisher (p<0,05). T: testigo. B1: biosolarización de primer año.

![Figura 4](image2.png)

Figura 4. Contenido de humedad a diferentes presiones de succión (pF) para el perfil de suelo 10-20 cm. Valores medios (n=3), de un mismo pF, con la misma letra, o sin letra, no difieren significativamente entre sí según prueba LSD de Fisher (p<0,05). T: testigo. B1: biosolarización de primer año.
Figura 5. Contenido de humedad a diferentes presiones de succión (pF) para el perfil de suelo 20-30 cm. Valores medios (n=3), de un mismo pF, con la misma letra, o sin letra, no difieren significativamente entre sí según prueba LSD de Fisher (p<0,05). T: testigo. B1: biosolarización de primer año.

En nuestro trabajo el aumento del agua retenida, tanto para pF=0 como para pF=4,2 indican mayor cantidad de agregados de diferentes tamaños en las tres profundidades analizadas. Esta mayor retención de agua junto con la mayor tasa de infiltración y la disminución de la densidad aparente requiere un manejo diferencial del riego (frecuencia y dotación), distancia del gotero a la planta, etc.

El suelo de este invernadero está compuesto por 29 % de arena, 29 % de limo y 42 % de arcilla, correspondiéndole una clase textural de arcillosa. Este porcentaje de arcilla va a tener repercusiones en la fertilidad global del suelo, además de las connotaciones ya apuntadas anteriormente, sobre las propiedades físicas.

Los parámetros químicos medidos que han sido sensibles a la aplicación de estiércol fresco de ovino y gallina bajo la técnica de biosolarización han sido: materia orgánica total, nitrógeno total, fósforo, hierro, cobre, cinc, conductividad eléctrica, potasio, sodio, cloruros y sulfatos (Cuadro 1). Grünzweig et al. (1999) y Chen et al. (2000) detectaron incrementos en la concentración de N-NO₃⁻, P, K⁺, Ca²⁺ y Mg²⁺ a partir de aplicaciones de 0,7 kg/m² de enmiendas orgánicas previo a la solarización. Majumder et al. (2011) encontraron incrementos significativos en la concentración de nitratos, potasio intercambiable, fósforo disponible, calcio, magnesio y conductividad eléctrica. El aumento fue más importante cuanto mayor fue la suplementación orgánica. Ozores-Hampton et al. (2005) detectaron incrementos significativos en los elementos: pH, P, K⁺, Ca²⁺, Mg²⁺, Zn, Mn, Fe y Cu en parcelas de pimiento y sandía biosolarizadas. Flores et al. (2007) con aplicaciones de 4 kg/m² de estiércol de caballo encontraron un ligero incremento de la mayoría de parámetros químicos a excepción del fósforo y los bicarbonatos que descendieron. Nuñez-Zofio et al. (2012) demostraron que tras la aplicación de estiércoles frescos y semicompostados aumentaron, en términos generales, los valores de todos los parámetros fisicoquímicos del suelo, excepto el pH. Liu et al. (2007) que analizaron las diferencias entre explotaciones manejadas de forma ecológica frente a las convencionales detectaron cambios significativos en los parámetros químicos siguientes: fósforo, calcio, magnesio, pH, capacidad de intercambio catiónico, manganeso, cinc y cobre.
Cuadro 1. Variaciones de los diferentes parámetros químicos en el primer año de ensayos de biosolarización con estiércol fresco de ovino y gallinaza (7:3).

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Medias</th>
<th>Tratamientos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antes trat.</td>
<td>T</td>
</tr>
<tr>
<td>MOT (%)</td>
<td>2,18a</td>
<td>2,47a</td>
</tr>
<tr>
<td></td>
<td>2,47b</td>
<td>3,62a</td>
</tr>
<tr>
<td>NT (%)</td>
<td>0,13a</td>
<td>0,15a</td>
</tr>
<tr>
<td></td>
<td>0,15b</td>
<td>0,23a</td>
</tr>
<tr>
<td>C/N</td>
<td>9,95a</td>
<td>9,66a</td>
</tr>
<tr>
<td></td>
<td>9,66a</td>
<td>9,03a</td>
</tr>
<tr>
<td>P Olsen (mg/kg)</td>
<td>72,31a</td>
<td>104,44a</td>
</tr>
<tr>
<td></td>
<td>82,44a</td>
<td>152,46a</td>
</tr>
<tr>
<td>Fe (mg/kg)</td>
<td>4,52a</td>
<td>5,91a</td>
</tr>
<tr>
<td></td>
<td>4,91b</td>
<td>40,75a</td>
</tr>
<tr>
<td>Mn (mg/kg)</td>
<td>5,75a</td>
<td>6,58a</td>
</tr>
<tr>
<td></td>
<td>6,58b</td>
<td>29,66a</td>
</tr>
<tr>
<td>Cu (mg/kg)</td>
<td>1,69a</td>
<td>2,18a</td>
</tr>
<tr>
<td></td>
<td>2,18b</td>
<td>5,19a</td>
</tr>
<tr>
<td>Zn (mg/kg)</td>
<td>2,18a</td>
<td>2,47a</td>
</tr>
<tr>
<td></td>
<td>2,47b</td>
<td>3,62a</td>
</tr>
<tr>
<td>B (mg/kg)</td>
<td>2,00a</td>
<td>2,13a</td>
</tr>
<tr>
<td></td>
<td>2,13a</td>
<td>2,06a</td>
</tr>
<tr>
<td>pH (1:5)</td>
<td>8,23a</td>
<td>8,14a</td>
</tr>
<tr>
<td></td>
<td>8,14a</td>
<td>8,35a</td>
</tr>
<tr>
<td>C.E (1:5) (dS/m)</td>
<td>0,55a</td>
<td>0,63a</td>
</tr>
<tr>
<td></td>
<td>0,63b</td>
<td>1,08a</td>
</tr>
<tr>
<td>K⁺ asimilable (meq/100g)</td>
<td>0,87a</td>
<td>0,80a</td>
</tr>
<tr>
<td></td>
<td>0,80b</td>
<td>2,85a</td>
</tr>
<tr>
<td>Na⁺ asimilable (meq/100g)</td>
<td>1,34a</td>
<td>1,38a</td>
</tr>
<tr>
<td></td>
<td>1,38b</td>
<td>2,07a</td>
</tr>
<tr>
<td>Cl⁻ (meq/100g)</td>
<td>0,58a</td>
<td>0,64a</td>
</tr>
<tr>
<td></td>
<td>0,64b</td>
<td>1,96a</td>
</tr>
<tr>
<td>SO₄²⁻ (%)</td>
<td>0,11a</td>
<td>0,15a</td>
</tr>
<tr>
<td></td>
<td>0,15b</td>
<td>0,22a</td>
</tr>
</tbody>
</table>

En un intento de sintetizar el efecto de la biosolarización en el conjunto de características químicas consideradas, se ha realizado un análisis de componentes principales (Fig. 6).

Las dos primeras componentes explican casi un 86 % de la variabilidad observada y un 94,33 % si se consideran las tres obtenidas (Fig. 6). La primera componente está más relacionada con los parámetros: C.E., Na+, K+, MOT, NT, Cl−, SO4−2, Fe, Mn, Cu y Zn. La segunda componente está correlacionada con pH, C/N, P y B. Si comparamos con los resultados obtenidos del análisis de factores principales realizado a este invernadero ecológico, en el primer año de ensayo, se obtiene como resultados más relevantes que la componente principal primera, explica un 67 % de la variabilidad observada, estando claramente correlacionada con la realización o no del tratamiento de biosolarización. Núñez-Zofío et al. (2011) obtuvieron, en el análisis de factores principales, una alta correlación entre el tratamiento con estiércol fresco y el resto, a través de la componente primera. Esta componente explicó el 39,3 % de la varianza y estaba correlacionada con C.E., CCC, Cl−, NO3− y K+, Na+, Ca2+ y Mg2+. Los tratamientos biosolarizados a partir de materiales frescos y semicompostados fueron significativamente separados de todos los demás tratamientos a lo largo de la segunda componente, que explicó el 34,9 % de la varianza y estuvo altamente correlacionada con MOT, C orgánico, N, Fe, Mn, B y, sobre todo, Cu.

CONCLUSIONES

La aplicación de 100 t/ha de estiércol fresco de ovino bajo la técnica de biosolarización ha disminuido la densidad aparente del suelo, mejorado la infiltración y la retención de agua. Los cambios en las propiedades físicas, tras la primera biodesinfección, son de gran importancia para el cultivo de pimiento cultivado en la comarca del Campo de Cartagena, debido a su alta sensibilidad a la asfixia radicular.

Los contenidos en hierro, cinc y cobre son los microelementos que mayores modificaciones presentan, sobre todo tras la primera aplicación de la biosolarización. Se podrían considerar como adecuados indicadores del proceso de solarización con enmiendas orgánicas. A nivel de macronutrientes, el potasio se presenta como buen indicador de los efectos del proceso de biosolarización. Este nivel, en los suelos biosolarizados, permitiría, según nuestros cálculos, el desarrollo de un cultivo de pimiento sin aportes adicionales.
REFERENCIAS

REESTRUCTURACIÓN DEL COMPLEJO DE CAMBIO TRAS LA BIOSOLARIZACIÓN. BALANCE DE CARBONO Y NUTRIENTES EN INVERNADEROS ECOLÓGICOS DEL CAMPO DE CARTAGENA

Fernández P, Guirao P, Larregla S, Lacasa A

Oficina Comarcal Agraria Vega Alta (OCA). Consejería de Agua, Agricultura, Ganadería y Pesca. Ctra. de Murcia s/n. E30.530 Cieza (Murcia). 968760705. pedro.fernandez5@carm.es

RESUMEN: La aplicación de diferentes enmiendas orgánicas en las estrategias de biosolarización (BS) en los invernaderos ecológicos del Campo de Cartagena supone la entrada, al agroecosistema, de cantidades importantes de materia orgánica y nutrientes. En el presente ensayo se ha pretendido identificar las posibles variaciones en la capacidad de cambio catiónica, porcentajes de saturación y relaciones de las bases de cambio tras la aplicación de diferentes enmiendas. Igualmente se ha elaborado un balance de carbono orgánico para definir las dosis mínimas para alcanzar condiciones de anaerobiosis, y otro de nutrientes entre las aportaciones de las enmiendas y las extracciones del cultivo. La BS ha modificado los porcentajes de saturación de bases y sus proporciones relativas. La aplicación de estiércol fresco de ovino a la dosis de mantenimiento, 25 t ha-1 y para los suelos de nuestro ensayo, supone el aporte de 1 mg C g-1 al suelo, valor crítico para alcanzar la condición de anaerobiosis en el proceso de biosolarización. Las relaciones iónicas entre los diferentes nutrientes contenidos en las enmiendas no son coincidentes con las mismas relaciones en las extracciones de los cultivos, pudiéndose generar acumulaciones de elementos, principalmente calcio, magnesio, fósforo y potasio. Estos resultados y su adecuada interpretación pueden tener implicaciones en la estabilidad de los suelos y viabilidad de las cosechas de pimiento.

Palabras clave: anaerobiosis, calcio, enmienda orgánica, fósforo, magnesio, potasio

INTRODUCCIÓN

En la bibliografía es frecuente encontrar propuestas de niveles de normalidad de las relaciones Mg2+/K+ y Ca2+/Mg2+. En el cuadro 1 se representan las interpretaciones a las distintas relaciones de las bases de cambio propuestas por Andrades y Martínez (2014).

Cuadro 1. Referencias de las principales relaciones entre bases dentro del complejo de cambio según Andrades y Martínez (2014).

<table>
<thead>
<tr>
<th>Ratios en el CCC</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg2+/K+ = 2-5</td>
<td>Correcto</td>
</tr>
<tr>
<td>Ca2+/Mg2+ = 5</td>
<td>Correcto</td>
</tr>
</tbody>
</table>

Los rangos de suficiencia relativa de las bases de cambio ampliamente aceptados son de 65-85 % para el Ca2+, 6 a 12 % para el Mg2+ y de 2 a 5 % para el K+ (Graham 1959, Vázquez 2007). Las relaciones Ca2+/ Mg2+ (3-15) [Ca2++Mg2+]/K+ (7-20) y Mg2+/K+ (13), como interpretación adicional de la disponibilidad relativa, son consideradas normales (Fassbender 1980, Mora y Demanet 1999, Anjos et al. 1999, Oliveira y Parra 2003, Zalewska 2008).

La saturación óptima de cationes de la CCC del suelo, indispensable para alcanzar altos rendimientos de cultivos de buena calidad, debería alcanzar entre el 65 y el 85 % para el Ca2+, el 10 al 15 % para el Mg2+ y el 5 % para el K+ (McLean y Carbonell 1972, Zalewska 2003). Un aumento de la saturación de potasio de la CCC del suelo por encima del 5% a menudo contribuye al incremento del rendimiento, pero al mismo tiempo provoca cambios indeseables en la composición mineral de las plantas, debido a una acumulación excesiva de potasio acompañada de una disminución de las concentraciones de magnesio y calcio. Esto sucede para el...
caso concreto de los cultivos forrajeros para forraje en verde. La mayoría de los autores comparten la opinión de que la proporción de Mg²⁺/K⁺ en el suelo no debe ser inferior a 2:1 con el fin de lograr altos rendimientos de plantas con la composición mineral deseada (McLean y Carbonell 1972, Zalewska 2003). Una disminución en el valor de la relación Mg²⁺/K⁺ por debajo de 2 generalmente conduce a una disminución en la calidad del forraje verde debido a la acumulación excesiva de potasio y una disminución en la concentración de magnesio (Zalewska 2005a, 2005b). Una disminución del rendimiento suele suceder a mayores desproporciones entre esos elementos en el suelo. Los resultados de la investigación han demostrado que la relación Ca²⁺/Mg²⁺ sólo tiene una influencia limitada en el rendimiento y la composición mineral de las plantas cultivadas en el suelo con una reacción óptima (McLean y Carbonell 1972, Fox y Piekiełek 1984, Zalewska 2003).

Las relaciones entre los cationes K⁺, Mg²⁺ y Ca²⁺, tanto en el suelo como en la planta, pueden proporcionar una base para estimar el grado de degradación del suelo causado por el desequilibrio catiónico de la CCC del suelo (Filipek 2001).

La fase de anaerobiosis, en los procesos de biosolarización y desinfección anaeróbica del suelo implica la inducción de condiciones anaeróbicas del suelo aumentando la respiración microbiana mediante la incorporación de enmiendas orgánicas fácilmente degradables y ricas en carbono a un suelo húmedo y evitando el reabastecimiento de oxígeno a través de la superficie del suelo mediante su cobertura con una lámina plástica durante un período de tiempo tan corto como 2 semanas o tan largo como 15 semanas (Rosskopf et al. 2015).

Numerosos estudios han demostrado que las enmiendas orgánicas pueden suministrar eficazmente nutrientes a los cultivos, manteniendo el rendimiento en el mismo nivel que los fertilizantes inorgánicos (Blatt 1991, Jeng et al. 2006, Mondini et al. 2008, Quilty y Cattle 2011).

La proporción de nutrientes en las enmiendas orgánicas y/o estiércoles son diferentes de las extraídas por los cultivos (Edmeades 2003). Como consecuencia, su aplicación a largo plazo, y a menudo en exceso sobre las necesidades de los cultivos, puede causar una acumulación importante de fósforo, nitrógeno, metales pesados y salinidad en el suelo.

Existen evidencias de que el mejor comportamiento agronómico del compost, sobre todo cuando se combina con fertilizantes minerales, se obtiene tanto con dosis altas como con frecuencias de aplicación altas, dando lugar a efectos residuales como fertilizante nitrogenado de liberación lenta (Diacono y Montemurro 2010).

Sin embargo, la aplicación de enmiendas orgánicas a dosis más bajas en combinación con los fertilizantes sintéticos puede proporcionar suficientes nutrientes para los cultivos, permitiendo una reducción en la cantidad de insumos inorgánicos requeridos junto a una provisión de posibles beneficios para la salud del suelo.

En el presente trabajo se ha pretendido identificar las posibles variaciones en la capacidad de cambio catiónica, porcentajes de saturación y relaciones de las bases de cambio tras las diferentes biosolarizaciones. Igualmente se va a elaborar un balance de carbono orgánico para definir las dosis mínimas para alcanzar condiciones de anaerobiosis, y otro de nutrientes entre las aportaciones de las enmiendas y las extracciones del cultivo. Estos resultados y su adecuada interpretación pueden tener implicaciones en la estabilidad de los suelos y viabilidad de las cosechas de pimiento, especialmente en sistemas ecológicos.

MATERIAL Y MÉTODOS

A partir de 348 analíticas de suelos de invernaderos estudiados del Campo de Cartagena, donde se ha evaluado los efectos reiterados de la biosolarización se ha analizado la composición de las bases de cambio y sus proporciones. Se han calculado las relaciones Mg²⁺/K⁺ y Ca²⁺/Mg²⁺. A partir de estas relaciones se ha
calculado la relación \(\text{Ca}^{2+}/\text{K}^+ \), clave en el proceso de biosolarización. Como referencia o testigo de la composición iónica del complejo de cambio se han tomado las parcelas control en las que no se han aplicado enmiendas.

Las muestras se tomaron antes (final del ciclo anterior) y después de la aplicación de las diferentes enmiendas orgánicas. Cada muestra estuvo compuesta por suelo tomado en 5 puntos distribuidos a lo largo de la parcela elemental. Se separó la parte superficial y se hizo un hoyo de 20 a 25 cm en cada punto, tomando una fracción vertical de tierra en cada punto. La muestra de los 5 puntos, mezclada y homogénea, se colocó en una bolsa de plástico que se cerró a nudo. Las muestras se conservaron en cámara frigorífica a 4-6 °C desde el momento de la recolección hasta el día del análisis.

El análisis físico-químico de suelo se realizó conforme a las técnicas descritas por el MAPA (1994). Se han representado los datos medios y el error estándar de la media.

RESULTADOS Y DISCUSIÓN

1. **Reestructuración del complejo de cambio**

Analizando las bases de cambio de los tres invernaderos estudiados a lo largo de los diferentes años se pueden intuir tendencias en algunas relaciones que tienen mucha importancia tanto en la estabilidad estructural del suelo como en la nutrición de los cultivos. De los 348 datos de suelos, la media y el error estándar de la media de los porcentajes de cada uno se refleja en el cuadro 2 y la media en la Fig. 1.

<table>
<thead>
<tr>
<th>Elemento</th>
<th>% del CCC</th>
<th>% de normalidad(^1)</th>
<th>% de normalidad(^2)</th>
<th>% de normalidad(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Ca}^{2+})</td>
<td>52,8 (0,3)</td>
<td>60-80</td>
<td>65-85</td>
<td>65-85</td>
</tr>
<tr>
<td>(\text{Mg}^{2+})</td>
<td>25,3 (0,1)</td>
<td>10-20</td>
<td>6-12</td>
<td>10-15</td>
</tr>
<tr>
<td>(\text{K}^+)</td>
<td>10,9 (0,3)</td>
<td>2-6</td>
<td>2-5</td>
<td>5</td>
</tr>
<tr>
<td>(\text{Na}^+)</td>
<td>10,9 (0,3)</td>
<td>0-3</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Figura 1. Porcentajes de saturación de bases de cambio en los invernaderos estudiados para \(n=348 \). Error estándar de la media para cada elemento es: \(\text{Ca}^{2+}=0,3; \text{Mg}^{2+}=0,1; \text{K}^+=0,3 \) y \(\text{Na}^+=0,3 \).
Los porcentajes de cada uno de los elementos están fuera de los rangos de normalidad planteados por los diferentes autores (Cuadro 2). Estas referencias tienen únicamente carácter orientativo. A excepción del calcio, los demás elementos están claramente por encima de los valores propuestos. Si se suman los cationes monovalentes según la propuesta de los autores del cuadro 1, el porcentaje sobre el total del complejo de cambio, no llegaría a sumar ni el 10 %. En nuestras condiciones, suman casi el 22 %. Este valor puede tener repercusiones negativas tanto en el mantenimiento de la estabilidad estructural como en posibles efectos fitotóxicos para las plantas allí cultivadas (McCalla 1974, Epstein et al. 1976, Chang et al. 1990, Chang et al. 1991, Haynes y Naidu 1998, Tejada et al. 2006, Bonanomi et al. 2014). Si a este hecho, se le suma que el calcio está claramente por debajo del rango inferior propuesto, los problemas descritos se pueden incrementar.

Si asumimos que la relación Ca\(^{2+}\)/Mg\(^{2+}\) óptima es 5 y la relación Mg\(^{2+}\)/K\(^+\) está comprendida entre 2-5, podemos deducir que la relación Ca\(^{2+}\)/K\(^+\) debe estar comprendida entre 10 y 25.

De las principales relaciones entre iones dentro del complejo de cambio y afectados por las diferentes biosolarizaciones, está la relación Mg\(^{2+}\)/K\(^+\). En la Fig. 2 se representan los datos de esta relación. El 50 % de los puntos analizados está fuera de los rangos de normalidad propuestos por Andrades y Martínez (2014). Los puntos por encima del intervalo superior supondrían una posible deficiencia de potasio y los que están por debajo del intervalo inferior, una posible deficiencia de magnesio y/o exceso de potasio, aspecto éste diagnosticado en frutos de pimiento de numerosos invernaderos del Campo de Cartagena. En ningún caso se alcanza una relación Mg\(^{2+}\)/K\(^+\) próxima a 13, propuesta por Fassbender (1980), Mora y Demanet (1999), Anjos et al. (1999), Oliveira y Parra (2003), Zalewska (2008).

![Figura 2. Relación de Mg\(^{2+}\)/K\(^+\) en los suelos del ensayo. n=348. Las líneas rojas representan intervalos de normalidad según Andrades y Martínez (2014).](image)

Los valores de la relación Ca\(^{2+}\)/K\(^+\) (Fig. 3) se encuentran mayoritariamente fuera del rango de normalidad a partir de referencias de Andrades y Martínez (2014), concretamente el 86 %, indicando una posible deficiencia de calcio y/o exceso de potasio, aspecto similar al caso del magnesio.
Figura 3. Relación entre Ca\(^{2+}\)/K\(^+\) en los suelos del ensayo. n=348. Las líneas rojas representan intervalos de normalidad según relaciones calculadas a partir de Andrades y Martínez (2014).

Los datos obtenidos de las parcelas sin enmiendas orgánicas (Fig. 4a), junto con los datos anteriores, indicarían que el aumento relativo del ión K\(^+\) se debe principalmente a la disminución del ión Na\(^+\), no afectando, en este caso, a la saturación de Ca\(^{2+}\) y de Mg\(^{2+}\).

Figura 4. Porcentajes de saturación de bases de cambio en el invernadero E. (a) para los tratamientos sin enmiendas orgánicas (n=36). Error estándar de la media para cada elemento es: Ca\(^{2+}\)=0,6; Mg\(^{2+}\)=0,4; K\(^+\)=0,3 y Na\(^+\)=0,5. (b) para los tratamientos con enmiendas orgánicas (n=72). Error estándar de la media para cada elemento es: Ca\(^{2+}\)=0,4; Mg\(^{2+}\)=0,2; K\(^+\)=0,3 y Na\(^+\)=0,5.
BALANCE DE C ORGÁNICO

El carbono orgánico, junto con la temperatura del suelo es un factor que afecta a la eficacia de la desinfección anaeróbica del suelo en el control de las enfermedades (Shennan et al. 2013, Stapleton et al. 2010). Butler et al. (2014b) sugirieron que se necesita una dosis de fuente de carbono mayor de 4 mg/g cuando las temperaturas del suelo durante el tratamiento de desinfección anaeróbica son bajas (15-25 °C) y Shennan et al. (2013) indicaron que la temperatura del suelo debe estar por encima de 17 °C durante al menos una semana para controlar V. dahliae en cultivos al aire libre de fresa en California.

Butler et al. (2014b) evaluaron el efecto de varios cultivos de cobertura de estación fría como fuente de carbono para la desinfección anaeróbica del suelo en un estudio en condiciones controladas en cámara de cultivo utilizando las temperaturas del suelo típicas de la primavera de Tennessee (USA). Los tratamientos de desinfección anaeróbica del suelo, en los que las dosis de fuente de carbono fueron bajas (menos de 1 mg C/g de suelo), no disminuyeron consistentemente la viabilidad del inóculo S. sclerotiorum o la incidencia de podredumbre de raíz por Fusarium en judía. Bajo temperaturas moderadas, de 15-20 °C, un aumento de carbono, hasta cuatro veces la cantidad estándar, controló al patógeno fúngico Sclerotium rolfsii mejor que el método tradicional (Shrestha et al. 2013). Este fenómeno podría atribuirse a los microbios que requieren una fuente de carbono más abundante y fácilmente disponible cuando las temperaturas son más frías.

El criterio de aportar una dosis de 4 mg C/g suelo cuando la temperatura del suelo es baja (15-25 °C), en la práctica aplicable al caso de biodesinfecciones tardías (octubre) en cultivos de pimiento de invernadero del campo de Cartagena, se traduciría en aportar como mínimo una dosis de 9,4 kg/m² de estiércol fresco de ovino, suponiendo una profundidad de suelo a desinfectar de 30 cm, una densidad aparente del suelo de 1,31 t/m³ y un estiércol fresco de ovino con un 47,26 % de humedad y con 318 g de carbono por kg de materia seca. En el caso de aplicar la dosis mínima de carbono (1 mg C/g suelo), para periodos donde la temperaturas del suelos es más elevada, condiciones de desinfecciones de agosto en el Campo de Cartagena, se precisaría, para el mismo suelo y material orgánico, una cantidad de 2,3 kg/m² de estiércol fresco de ovino.

La desinfección anaeróbica del suelo utilizando 2 kg/m² de salvado de arroz como fuente de carbono se ha evaluado en cultivos de fresa en California y redujo un 85-100% el número de microesclerocios de V. dahliae en suelos naturalmente infestados con temperaturas del suelo superiores a 17 °C, permitiendo producciones comparables a las obtenidas mediante fumigación del suelo con 1,3-dicloropropano más cloropicrina (Shennan et al. 2013, 2014). Sin embargo, Muramoto et al. (2014) sugirieron reducir la cantidad de salvado de arroz y mezclarla con melaza (1 kg/m² de cada material) con el fin de evitar una elevada adición de nitrógeno al suelo (~ 400 kg/ha N total) asociada al uso de una alta dosis de salvado de arroz.

Los materiales sólidos, como el salvado de cereales, se incorporan fácilmente, pero a menudo es difícil conseguir una desinfección suficiente en el perfil del suelo porque su efecto se limita a la profundidad de incorporación de la fuente de carbono, aproximadamente 20-30 cm dependiendo del método de incorporación y de formación del bancal (Shennan et al. 2014). Este inconveniente desaparece cuando se usan enmiendas líquidas tales como melaza o etanol que se aplican con el agua de riego y penetran más profundamente en el suelo (Momma 2008). Además, estos materiales tienen como ventaja sobre el salvado de cereales su bajo contenido de N (0,5 %) (Muramoto et al. 2014). La melaza se ha utilizado con éxito como fuente de carbono para desinfección anaeróbica en Japón (Shinmura 2004) y Florida (Rosskopf et al. 2010, 2014, Butler et al. 2012, 2014a).

BALANCE DE NUTRIENTES

El N disponible liberado en el primer año tras la aplicación de compost, se ha estimado en un 30-35 % del contenido total de N (Tittarelli et al. 2007). Según Zhang et al. (2006), la liberación de N del compost ocurrirá sobre todo en los primeros dos años después de la aplicación.
La aplicación de enmiendas orgánicas combinadas con la técnica de biosolarización consigue aumentar la disponibilidad de nutrientes del suelo, así como una mejora en la condición biológica, química y física del suelo (Mauromicale et al. 2011).

Fernández (2017) y Fernández et al. (2004, 2005) demuestran la mayor velocidad de mineralización de la materia orgánica en procesos de biosolarización en invernaderos del Campo de Cartagena. En este caso, se asume que el 100 % de las U.F. aportadas en las enmiendas están a disposición del cultivo en un periodo de dos años, dentro de un programa de biosolarizaciones reiteradas. Cada nutriente aportado (Nu), especialmente nitrógeno, estará disponible según la siguiente secuencia temporal:

\[A_{n} = 50 \% \text{Nu}_{n}, \quad A_{n+1} = 50 \% \text{Nu}_{n} + 50 \% \text{Nu}_{n+1} \]

por lo tanto para cada año distinto del primero de la serie, y si no se modifica ni dosis ni enmienda, la planta dispondrá del 100 % de los nutrientes contenidos en el material orgánico.

Para una producción media de pimiento de 10 kg/m², las extracciones serían conforme al cuadro 3.

Cuadro 3. Extracciones del cultivo de pimiento para una producción estimada de 10 kg/m² (Rincón 2003).

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeficiente extracción (kg/t)</td>
<td>3,75</td>
<td>1,25</td>
<td>5,7</td>
<td>3,08</td>
<td>1,66</td>
</tr>
<tr>
<td>Extracciones totales (kg/ha)</td>
<td>375</td>
<td>125</td>
<td>570</td>
<td>308</td>
<td>166</td>
</tr>
</tbody>
</table>

Siendo el estiércol de ovino la enmienda base de cualquier programa de biosolarización en la comarca del Campo de Cartagena y suponiendo unos contenidos de nitrógeno y otros nutrientes iguales a los descritos en el cuadro 4, las aportaciones correspondientes para dos dosis de aplicación, según el mismo cuadro, serían: una estandarizada de 25 t/ha y otra de 18,85 t/ha que sería la cantidad de enmienda que contenga 170 kg N/ha y año, la máxima permitida según el Programa de Actuación de zonas vulnerables a la contaminación por nitritos de la Región de Murcia publicado en la Orden de 16 de junio de 2016 (BORM n° 140, 2016), que también coincide con la limitación para los sistemas ecológicos (Reglamento (CE) n° 834/2007).

Cuadro 4. Aportaciones de nutrientes en el estiércol fresco de ovino para una dosis de mantenimiento de 25 t/ha y para una dosis máxima establecida en zona vulnerable a nitratos y en agricultura ecológica.

<table>
<thead>
<tr>
<th>Nutriente</th>
<th>N</th>
<th>P₂O₅</th>
<th>K₂O</th>
<th>CaO</th>
<th>MgO</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg/t*</td>
<td>17,1</td>
<td>9,0</td>
<td>4,3</td>
<td>98,1</td>
<td>19,5</td>
</tr>
<tr>
<td>kg/ha** (s.m.f.)</td>
<td>225</td>
<td>119</td>
<td>564</td>
<td>1293</td>
<td>257</td>
</tr>
<tr>
<td>kg/ha*** (s.m.f.)</td>
<td>170</td>
<td>90</td>
<td>426</td>
<td>977</td>
<td>194</td>
</tr>
</tbody>
</table>

* Contenidos de nutrientes para un estiércol fresco de ovino (s.m.s). ** 25 t/ha (sobre materia fresca). *** 18,85 t/ha (sobre materia fresca).

La aplicación de una dosis de 25 y de 18,85 t/ha (s.m.f.) de este material orgánico, en biosolarizaciones reiteradas de estiércol fresco de ovino (Cuadro 4), no satisfacen las extracciones del cultivo de pimiento para una producción media estimada de 10 kg/m² (Cuadro 3).

La aplicación de la dosis de 18,85 t/ha (s.m.f.) en sistemas agrarios ecológicos y para obtener una producción objetivo de 10 kg/m², generaría un déficit estructural de nutrientes que, al principio, sería satisfecho por las reservas orgánicas del suelo pero a largo plazo acabaría empobreciendo el agrosistema, no cumpliendo el
artículo 5a del Reglamento (CE) nº 834/2007, que exige el mantenimiento y aumento de la vida y la fertilidad natural del suelo, la estabilidad y la biodiversidad del suelo, la prevención y el combate de la compactación y la erosión de suelo, y la nutrición de los vegetales con nutrientes que procedan principalmente del ecosistema edáfico.

De cara a equilibrar las entradas de nutrientes a los invernaderos procedentes de los materiales orgánicos y salidas a través de las extracciones del cultivo de pimiento, es preciso conocer los equilibrios de ambos términos del balance. Para el caso del estiércol fresco de ovino el equilibrio, referido al valor de N sería: 1-0,5-2,5-5,7-1,1. Para las extracciones del pimiento sería: 1-0,3-1,5-0,8-0,4 (N-P2O5-K2O-CaO-MgO).

Estos equilibrios podrían suponer, teniendo en cuenta únicamente estos elementos del balance, una acumulación de fósforo, potasio, calcio y magnesio. La posible acumulación de los dos últimos elementos no sería un problema al tratarse de cationes divalentes con importantísima relevancia en el mantenimiento de la estructura del suelo.

El manejo de este diferencial se podría solventar con la realización de las siguientes actuaciones:

i) Combinar las entradas de nutrientes procedentes de las enmiendas en la biosolarización con la fertilización mineral, incrementado la producción. Con el mayor aporte de N y las extracciones fósforo y potasio aumentarían. La fertirrigación deberá tender a balances de nutrientes cero, para no elevar el stock del suelo, según la siguiente expresión:

\[\sum \text{entradas} = \sum \text{salidas}, \]

siendo las entradas las aportaciones a través del estiércol más los fertilizantes minerales, y las salidas las extracciones del pimiento. Esta estrategia no sería compatible con los sistemas ecológicos.

ii) Rotaciones de cultivos con equilibrios diferentes a los del pimiento. La introducción de especies como el melón, habituales en nuestra comarca, con estructuras de comercialización ya establecidas, podría ser adecuada para reducir la posible acumulación de potasio, ya que la absorción de potasio es mayoritaria (Rincón et al. 1997), actuación compatible con los principios de agricultura ecológica.

La mayoría de especies hortícolas poseen una relación N/P elevada frente a las enmiendas orgánicas (Edmeades 2003). La relación N/P₂O₅ y N/K₂O del estiércol tipo de este trabajo son 1,9 y 0,4, respectivamente. A partir de las extracciones de las diferentes especies hortícolas de Ramos y Pomares (2010), se han obtenido las relaciones N/P₂O₅ y N/K₂O, mostradas en el cuadro 5.

Cuadro 5. Relaciones N/P₂O₅ y N/K₂O de los principales cultivos hortícolas obtenidas de las extracciones de Ramos y Pomares (2010).

<table>
<thead>
<tr>
<th>Especie</th>
<th>N/P₂O₅</th>
<th>N/K₂O</th>
<th>Especie</th>
<th>N/P₂O₅</th>
<th>N/K₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcachofa</td>
<td>3,1</td>
<td>0,5</td>
<td>Guisantes</td>
<td>2,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Apio</td>
<td>2,0</td>
<td>0,5</td>
<td>Judías verdes</td>
<td>2,8</td>
<td>0,7</td>
</tr>
<tr>
<td>Berenjena</td>
<td>2,3</td>
<td>0,6</td>
<td>Lechuga</td>
<td>2,8</td>
<td>0,5</td>
</tr>
<tr>
<td>Brócoli</td>
<td>2,6</td>
<td>0,5</td>
<td>Melón</td>
<td>2,3</td>
<td>0,5</td>
</tr>
<tr>
<td>Calabacín</td>
<td>2,3</td>
<td>0,7</td>
<td>Pepino</td>
<td>2,3</td>
<td>0,9</td>
</tr>
<tr>
<td>Cebolla</td>
<td>2,3</td>
<td>0,7</td>
<td>Pimiento</td>
<td>2,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Col</td>
<td>2,9</td>
<td>0,7</td>
<td>Puerro</td>
<td>2,2</td>
<td>0,8</td>
</tr>
<tr>
<td>Col china</td>
<td>2,5</td>
<td>0,8</td>
<td>Rábano</td>
<td>1,9</td>
<td>0,6</td>
</tr>
<tr>
<td>Coliflor</td>
<td>3,3</td>
<td>0,8</td>
<td>Sandía</td>
<td>2,2</td>
<td>0,8</td>
</tr>
<tr>
<td>Espinaca</td>
<td>3,0</td>
<td>0,6</td>
<td>Tomate</td>
<td>2,3</td>
<td>0,5</td>
</tr>
</tbody>
</table>
A partir de estas relaciones y en función de las estructuras comerciales existentes en la comarca del Campo de Cartagena, la introducción de especies como el apio, ya tradicional en la zona, podría reducir los excedentes de fósforo en el suelo y limitar su acumulación.

CONCLUSIONES

La realización de la biosolarización a base de diferentes enmiendas modifica los porcentajes de saturación de bases y sus proporciones relativas de la siguiente forma:

a) Para niveles de CCC bajas y/o porcentajes de sodio (inferiores al 5 % de la CCC), el potasio sustituiría en gran medida al Ca²⁺, disminuyendo este último su elevada proporción inicial y,

b) Cuando el suelo está muy saturado de bases y el sodio, catión monovalente, está en proporciones elevadas (superiores al 15 %) el potasio sustituye en primer lugar al Na⁺. Esto supondría que para cada suelo, en función de su contenido y tipo de arcilla, nivel de materia orgánica, CCC y porcentaje de saturación de bases, los iones monovalentes, Na⁺ y K⁺, compiten por las mismas posiciones de intercambio iónico.

La aplicación de estiércol fresco de ovino a la dosis de mantenimiento, 2,5 kg/m², y para los suelos de nuestro ensayo, supone el aporte de 1 mg C/g suelo, valor crítico para alcanzar la condición de anaerobiosis en el proceso de biosolarización.

La aplicación de estiércol fresco de ovino a la dosis de mantenimiento, 2,5 kg/m², en biosolarizaciones reiteradas, no satisface las extracciones del cultivo de pimiento para una producción estimada de 10 kg/m².

Las relaciones iónicas de los diferentes nutrientes contenidos en las enmiendas no son coincidentes con las mismas relaciones en las extracciones de los cultivos, pudiéndose generar acumulaciones de elementos, principalmente calcio, magnesio, fósforo y potasio.

REFERENCIAS

• Orden de 16 de junio de 2016 de la Consejería de Agua, Agricultura y medio ambiente, por la que se modifican las Órdenes de 19 de noviembre de 2008, 3 de marzo de 2009 y 27 de junio de 2011, de la Consejería de Agricultura y
Agua, por las que se establecen los programas de actuación sobre las zonas vulnerables a la contaminación por nitratos de origen agrario en la Región de Murcia. BORM n° 140 de 18 junio de 2016.

- Reglamento (CE) nº 834/2007 del Consejo de 28 de junio de 2007 sobre producción y etiquetado de los productos ecológicos y por el que se deroga el Reglamento (CEE) nº 2092/91.
AGRICULTURA FAMILIAR: RUIDO DEL AGUA

Neira Seijo X

EPSE-USC. Campus Universitario s/n. 27002 Lugo. Correo e: xan.neira@usc.es

RESUMEN: Ya antes, pero especialmente desde el año 2014 en que las Naciones Unidas proclamaron el “Año Internacional de la Agricultura Familiar”, irrumpió con fuerza el ya, a estas alturas eslogan, “la agricultura familiar: alimentar al mundo” promovido, entre otros, por la FAO.

Los datos ponen de manifiesto la oportunidad de esa afirmación. Mas existe un factor, íntimamente asociado, el agua, no tan presente.

El ruido del agua, quiere significar su trascendencia, que se desea poner de manifiesto a lo largo de este trabajo.

Todo lo relacionado con el acceso al agua y su gobierno en el campo de la agricultura familiar constituye un vasto dominio de disciplinas, saberes, relaciones y culturas que es importante considerar y manejar. En este momento en el mundo se está viviendo conflicto por el uso, usurpación, contaminación, todo ello en el marco del cambio climático.

El objetivo es un abordaje con criterios agroecológicos, aplicado al Corredor Seco en Guatemala, debe resultar un adecuado instrumento en el buen gobierno hídrico.

Palabras clave: gobierno del agua, irrigación, conflictos uso agua, enfoque agroecológico

INTRODUCCIÓN

Como estudiante de agronomía, en el epílogo del siglo XX, no tengo constancia de ninguna referencia a la agricultura familiar (AF), en cambio sí a la agricultura tradicional. Por cierto, esta última era la que, en doctrina del momento, se debía modernizar, rebajar los elevados índices de población agraria y abrazar las nuevas propuestas que la agricultura industrial estaba proponiendo, en el marco de las pautas emergentes de una Revolución Verde dominante.

La agricultura tradicional tiene una racionalidad ecológica muy diferente, no es de explotación, sino de coproducción, se produce, pero además cuida el agua, la biodiversidad, las semillas, los bosques y los suelos.

Pasadas unas décadas sí encuentro esas referencias a la AF, así la Asamblea de las Naciones Unidas declaró el año 2014 como “Año Internacional de la Agricultura Familiar”. Además desde FAO se ha acuñado el ya casi eslogan: “Agricultura familiar. Alimentar al mundo” y, efectivamente, la AF representa porcentualmente el mayor peso en la producción para el autoconsumo y para los mercados locales y es responsable del suministro de alrededor del 80% de los alimentos del mundo. La propia FAO la reconoció como una actividad indispensable para la seguridad alimentaria de los países, la generación de empleo y la preservación de las culturas y el medio ambiente.

Aunque este hecho no evidencia un verdadero impulso a la AF. En territorio Unión Europea no dejan de manifestarse agricultores, también alguna institución, por una redistribución más justa de fondos correspondientes a la Política Agraria Común (PAC). Bien sabido es que la inmensa mayoría de los beneficiarios, sobre el 80%, solo reciben el 20% de los fondos.

Esas cifras indican que la PAC sigue favoreciendo a los grandes productores y no se manifiesta tan efectiva para la AF. Del mismo modo la firma de acuerdos bilaterales, como el CETA, es contrario a lo que representa la AF. Inundar los mercados con productos que pueden llegar de antípodas, y que sería factible cultivarlos localmente, solo demuestra una incorporación deficiente de los costes energéticos, sociales y ambientales involucrados en su producción y transporte. Dos modelos enfrentados, la agricultura industrial centrada en el agronegocio, la agricultura familiar más vinculada a la soberanía alimentaria.
Las prácticas agrícolas responden a un gradiente con dos extremos, uno la agricultura familiar, el otro la agroindustria. La agricultura familiar utiliza principalmente el trabajo de los miembros de las unidades familiares y posee, a su vez, un límite: desde la agricultura para autoconsumo hasta la producción para venta.

Con la emergencia de los movimientos de agricultura ecológica y la aparición del enfoque agroecológico, la identificación de estos con las prácticas de la AF es más notoria. Los sistemas alimentarios tradicionales, generalmente, son más sostenibles que los convencionales, por lo que, sin renunciar a algunos aspectos positivos de la modernización, se deberían rescatar y poner en valor sus cualidades y características.

Cuando se hace referencia a “Agricultura familiar. Alimentar al mundo”, y evidenciar el reto de suministrar alimentos para más de 9 billones de personas en 2050, nunca se debe dejar de tener presente que sin una fuente segura de agua no se logrará. La posibilidad de tener más de un ciclo de cosecha anual, la intensificación, son muy dependientes de la disposición de agua. La intensidad promedio, a nivel mundial, es en secano de 0,70 cultivos/año y en regadio se duplica en ciertas áreas con tradición de riego –como Egipto, que riega prácticamente todas sus tierras-.

La superficie regada en el mundo supera en 2012 se cifra en 324 millones de hectáreas, prácticamente doblando la existente solo 40 años atrás. China e India prácticamente agrupan la mitad de las áreas irrigadas a nivel mundial. En países como Egipto el área irrigada ocupa prácticamente toda la superficie cultivada del país. La técnica del riego por superficie sigue siendo la mayoritaria, un 86% del total de áreas irrigadas mundialmente lo son mediante riego por gravedad.

En otras zonas el agua no es un factor limitante, pero su disposición permite elevar los rendimientos. Abrir nuevos horizontes implica no centrarse exclusivamente en mejorar los aspectos productivos propios de la agricultura industrial, sino apostar por una agricultura que cuide la calidad de sus productos y conserve el paisaje.

Las extracciones de agua a nivel mundial (Figura 1), están en constante y rápido incremento, desde inicio a fin del siglo XX se multiplicaron 8 veces, en consonancia a como lo hace la población mundial. La extracción agrícola, que era hegemónica hasta ese momento, compite ahora con el agua para usos ciudadanos e industriales, incluso el agua almacenada en reservorios artificiales y evaporada antes de su utilización comienza a representar un significativo porcentaje.

Figura 1. Población y extracción de agua mundiales en el tiempo. Fuente: AQUASTAT. FAO
El agua agrícola era, en 2010, unos 2700 km3, mas la utilizada realmente por los cultivos es apenas el 45%. De la restante, un 25% se pierde en parcela –percolación y/o escorrentía- por una baja eficiencia, el otro 30% son fugas en los sistemas de distribución a las fincas irrigadas y en los propios sistemas de distribución de la finca.

Según la FAO, existen en el mundo unos 570 millones unidades agropecuarias, unos 500 millones son de agricultura familiar. Sobre estas últimas recae la garantía alimentaria del planeta.

El acceso al agua en las unidades agropecuarias familiares presenta dimensiones propias y diferenciadas de lo que puede representar la irrigación en la agricultura industrial. El manejo del agua implica siempre abordajes diferentes que suelen contemplar obras de infraestructura que puedan ofrecer soluciones en escenarios diversos. Resolver el acceso al agua comporta en ocasiones un multiobjeto: consumo domiciliario, uso ganadero e irrigación. Además es posible tener que acometer obras infraestructurales para derivar aguas superficiales o captaciones de aguas subterráneas, que comportan obras de almacenamiento, conducción, almacenamiento y distribución. No es asociable agricultura familiar y pobreza, aunque en un porcentaje significativo si lo es, son precisas políticas públicas que hagan visible su importancia y que posibiliten el acceso a bienes públicos.

Como hipótesis de este trabajo se establece que el uso del agua ligado a la AF presenta unas determinadas especificidades, que van más allá del mero suministro hídrico destinado a la irrigación, sino que, normalmente, incorpora nuevas dimensiones.

Como objetivo se trata de mostrar estas especificidades en un estudio de caso referido consistente en diseño e implementación de sistemas de cosecha de agua de lluvia para el riego de huertos familiares en área del corredor seco de Guatemala.

MATERIAL Y MÉTODOS

El Corredor Seco en Guatemala es un área, de bosque tropical seco, en donde las inclemencias climatológicas naturales, como ENSO (El Niño), se manifiestan especialmente. La zona se ha convertido asimismo en un área vulnerable a los efectos del cambio climático (Figura 2).
Los fenómenos climatológicos extremos en Centroamérica van siendo habituales, y desde mediados del siglo XX ha aumentado su frecuencia. De este modo Guatemala, con Honduras, El Salvador y Nicaragua presenta regiones notoriamente afectadas.

Las lluvias irregulares son características y convierten esta zona en una de las más susceptibles de variabilidad natural (ENSO) y cambio climático. En años El Niño, las precipitaciones disminuyen un 30-40%, con períodos largos de canícula sin apenas lluvias. Por el contrario, en años de ENSO frío (La Niña), las lluvias más intensas pueden resultar devastadoras (Cuadro 1).

<table>
<thead>
<tr>
<th>Año</th>
<th>Acción</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>El Niño ocasionó gran déficit hídrico julio-septiembre. Cosechas afectadas del 50-100%. Se comienza a apelar al “Corredor Seco Centroamericano”</td>
</tr>
<tr>
<td>2011</td>
<td>Ciclón tropical. 11 días lluvia. Ríos desbordados, evacuaciones de personas, 80 muertes</td>
</tr>
<tr>
<td>2015</td>
<td>Secuencia acumulativa. Muchas familias situación alimentaria crítica. Considerada por sequía en 30 años</td>
</tr>
</tbody>
</table>

Las consecuencias más evidentes son la vulnerabilidad socio-económica y la degradación ambiental.

En el Corredor Seco más del 50% de la población habita zonas rurales. Muchos viven por debajo del umbral de la pobreza y un 20% se encuentra en situación de pobreza extrema. La zona del corredor seco se concentran 1,900,000 pequeños agricultores que cultivan preferentemente granos básicos. La pobreza y la carencia en infraestructuras y servicios es manifiesta, por tanto una de las características diferenciadoras es la imposibilidad de afrontar los riesgos. Las consecuencias resultan muy perjudiciales para los cultivos, como el maíz, que forma parte de la agricultura de subsistencia en la zona.

RESULTADOS Y DISCUSIÓN

En los Objetivos de Desarrollo Sostenible (ODS), 2015, y la 21ª Conferencia de las Partes (COP21), Paris, se subrayaba explícitamente la necesidad de fomentar sistemas productivos sostenibles y resilientes ante la creciente variabilidad y cambio del clima.

Para las instituciones internacionales en el abordaje del problema se deben atender tres dimensiones: la humana, la ambiental y la socioeconómica. Las iniciativas a largo plazo deben considerar estrategias a favor del desarrollo, la seguridad alimentaria y los medios de subsistencia.

La AF presenta rasgos comunes, notoriamente en zonas menos desarrolladas, como falta de infraestructura, de canales de comercialización, de organización. Se trata de generar mejores condiciones estructurales que se logran a partir de una agricultura diversificada, con infraestructuras, con posibilidad de mercados.

Referido al estudio de la cosecha del agua del Corredor Seco de Guatemala con el fin de diseñar sistemas de captación y almacenamiento de agua de lluvia para poder utilizarlos en épocas de escasez, aparece un escenario multifuncional, en este escenario hemos comprobado, en función de las prioridades marcadas por los promotores, la idoneidad de abordar temas como:
I. Ingeniería civil - social. Diseño de sistemas de captación y almacenamiento de agua. Obras hidráulicas.
II. Escenarios de cambio climático. Modelos probabilísticos de precipitación. Dimensionamiento de los sistemas de captación y almacenamiento
III. Edafología. Suelos. Clasificación de suelos y conservación de los mismos
IV. Agronomía y producción agraria. Diseño agronómico del riego
V. Ingeniería del riego. Diseño hidráulico
VI. Seguridad/soberanía alimentaria. Pretensión de determinar el área necesaria para asegurar el acceso al alimento necesario para una unidad familiar
VII. Agricultura sostenible
VIII. Economía. Comercialización.

Una de las mayores contribuciones radica en el acceso al agua, que puede aportar logros que tienen en común su marcada transversalidad, y puede significar, fundamentalmente en zonas áridas, el poder aumentar las zonas cultivables, con vertientes económicas –puede mejorar la renta de los agricultores–, sociales –vertebra y asienta población–, y ambientales –modifica el paisaje–.

A su vez puede provocar un notorio dinamismo social, donde las incertidumbres y las precauciones frente a los fenómenos naturales son menores y ello, en sentido positivo, puede generar transformaciones favorables que pueden significar aumentar la posibilidad de relevo generacional y, en general, la apuesta por la actividad agrícola.

CONCLUSIONES

1. La agricultura incorpora la incertidumbre en el sentido que responde a la dinámica natural.
2. La posibilidad de irrigación aminora una de estas incertidumbres, y nos ofrece ciertas oportunidades, como aumentar la productividad de ciertas tierras, o incluso posibilitar el cultivo de otras que no tendrían opciones sin el mismo, promoviendo su desarrollo económico y social.
3. Fortalecer la agricultura familiar va más allá de dotar de estructuras empresariales a los agricultores, los AF poseen asimismo una dimensión sociocultural, y un particular vínculo con la naturaleza.
4. El ámbito de la AF se detenta gran parte de lo que permanece de la agrodiversidad, preservando especies de gran valor nutricional, desconocidas o subvaloradas. El reto: política y acciones diferenciales para este tipo de producción.
5. Cuando se logra bombear y conducir el agua desde una toma, arroyo, río o vertiente hasta un puesto en medio de la estepa; cuando se puede almacenar agua para los animales y regar huertas y chacras; cuando las mujeres no necesitan acarrear el agua en baldes para el consumo familiar, se ha logrado mejorar la capacidad productiva y la calidad de vida de la población rural. Esto va más allá del desafío técnico superado: significa arraigo, vivir de la tierra y un futuro productivo.
6. En esta tesitura el agua no solo se puede considerar como recurso, sino como derecho y bien común
7. En tanto consumidores tenemos control, todavía, de optar entre modelos agrícolas y que tipo de producciones decidimos fomentar. Nuestro bocado de alimento posee su trazabilidad, orienta sobre salud, modo de vida y a que tipo de producciones y productores vamos a favorecer. El geógrafo Jean Brunhes indica “Manger, c’est incorporer un territoire”, y “prendre son eau”, me atrevería a añadir.

REFERENCIAS BIBLIOGRÁFICAS

CARTELES/PÓSTERS RELACIONADOS

USO DE ACOCHADOS DE LARGA DURACIÓN EN CULTIVO DE CANTUESO (LAVANDULA STOECHAS L. SUBSP. LUISIERI (ROZEIRA) ROZEIRA): EFICACIA DE CONTROL DE LA FLORA ARVENSE Y DEGRADACIÓN DESPUÉS DE UN AÑO

Mari AI, Cirujeda A2, Pardo G2, Navarro J3

1 Departamento de Sanidad Vegetal, Laboratorio de Malherbología. Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930; Zaragoza, ES 50059: aaimari@aragon.es
2 Departamento de Sanidad Vegetal, Laboratorio de Malherbología. Centro de Investigación y Tecnología Agroalimentaria de Aragón-Instituto Agroalimentario de Aragón-Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930; Zaragoza, ES 50059
3 Departamento de Recursos Forestales. Domesticación y valorización de plantas aromáticas, medicinales y otros recursos vegetales. Centro de Investigación y Tecnología Agroalimentaria de Aragón-Instituto Agroalimentario de Aragón-Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930; Zaragoza, ES 50059

RESUMEN: El tomillo borriquero o cantueso (Lavandula stoechas L. subsp. luisieri (Rozeira) es un pequeño arbusto aromático endémico de la península Ibérica común en las regiones semiáridas del sur de Portugal y suroeste de España. Esta especie tiene en sus tejidos importantes cantidades de productos volátiles con propiedades antifúngicas, herbicidas y nematicidas, cuyo uso puede ser de gran interés en la agricultura. En 2008 se instaló una plantación de lavándula en una parcela situada en Aguarón (Aragón, Zaragoza) con dos poblaciones una de Toledo (España) y otra de Portugal con el fin cuantificar su producción en aceites esenciales. Después de varios años se produjo la muerte de numerosas plantas y en febrero de 2016 se decidió iniciar un ensayo con acolchados como alternativas de control de la flora arvense al laboreo, al que se achaca dicha mortalidad. Este ensayo constó de 6 tratamientos con tres repeticiones cada uno distribuidos en bloques al azar: 4 tipos de acolchados siendo dos de ellos biodegradables (paja de trigo y tejido Bontrech® biodegradable) y dos materiales no biodegradables (malla de polietileno y tejido Bontrech® sintético), además de una escarda manual y un testigo sin desherbar. Cada parcela experimental midió 4.8 m2. Periódicamente se tomaron datos de cobertura y de riqueza de la flora arvense, así como de degradación de cada material. En mayo de 2017 la eficacia de control fue cercana al 85% en paja y control mecánico y cercana al 94% en el resto de tratamientos. La cobertura de arvenses en el testigo resultó muy elevada (cercana al 100%) con 50 especies diferentes pertenecientes a 18 familias. La degradación fue baja en los dos materiales biodegradables y nula en los otros dos materiales.

Palabras clave: acolchados biodegradables, acolchados permanentes, cultivo de aromáticas, paja, tejido sintético.

INTRODUCCIÓN

El cultivo de plantas aromáticas puede ser una alternativa al cereal sobre todo en zonas agrícolas más o menos marginales con suelos de poca fertilidad natural o de clima semiárido. Además, en los últimos años se está produciendo demanda de estos productos por parte del mercado, tanto nacional como internacional, lo que hace más atractivo su cultivo. Aparte de su contenido en aceites esenciales útiles para perfumería, el interés en los últimos años se centra en las propiedades antifúngicas y antibacterianas de estas plantas, entre otras (Pombal et al., 2016). En España, en 2017, se cultivaron unas 14.500 ha de plantas aromáticas (lavándula, lavandín), triplicando la superficie que había en 2010 (MAPA, 2017) demostrando el interés creciente en estos cultivos. Existen trabajos sobre la puesta en cultivo del cantueso (Delgado et al., 2007), ya que es un cultivo poco extendido todavía.
Uno de los factores limitantes en el cultivo de estas especies aromáticas es el control de la flora arvense, puesto que si ésta prolifera en exceso compite con el cultivo y el rendimiento disminuye. Además, también puede afectar a la calidad de la cosecha si está mezclada con especies arvenses distintas a la cultivada.

En este contexto, el control mecánico de hierbas suele ser el más frecuente en este tipo de cultivos, pues ni siquiera en agricultura convencional existen apenas herbicidas autorizados para su uso. No obstante, este tipo de escarda tiene algunos inconvenientes como su coste, o que no se pueda llevar a cabo por estar el suelo demasiado seco o húmedo, o que los aperos que la realizan causen daños al cultivo en la zona aérea o también en las raíces.

En este sentido los acolchados pueden ser una alternativa a la escarda mecánica a tener en cuenta para mantener los cultivos de plantas aromáticas sin competencia por flora arvense, evitando que éstas sufran daños mecánicos y reduciendo pérdidas de agua del suelo por evaporación. Estos acolchados deberán tener una gran durabilidad y degradación lenta, puesto que las aromáticas permanecen varios años en producción. En el presente trabajo se muestran resultados sobre diversos materiales de corta y larga duración, usados como acolchado en un cultivo de lavándula, en relación al control de la flora arvense y de la degradación de los materiales, un año después de su colocación en campo.

MATERIALES Y MÉTODOS

La parcela del ensayo está localizada en una parcela agrícola en Aguarón, en la Comarca del campo de Cariñena, Zaragoza (España) (lat. 41° 19’ 13.33’’; long. 1° 19’ 53.9’’). El cultivo se instaló en 2008 con una separación entre filas de 1,2 m y 0,4 m entre plantas, lo que proporciona una densidad de cultivo de 2,08 plantas m². Desde entonces, el control de malas hierbas se realizó mecánicamente, utilizando un cultivador entre las líneas de cultivo, pero la alta mortalidad de la lavándula hizo considerar que seguramente este método dañaba el sistema radicular, ocasionando la muerte de las plantas de cultivo. Por esta razón se planteó el uso de diversos acolchados como método de control de hierbas, los cuales se colocaron manualmente en el año 2016.

El diseño experimental consistió inicialmente en dos bloques con tres repeticiones de cada tratamiento distribuidas aleatoriamente. Los bloques se delimitaron de acuerdo al espacio que ocupaba cada una de las variedades de lavándula plantadas en el año 2008 (tres filas de plantas cada una). Uno se hizo coincidir con la población procedente de Toledo y el otro con la de Portugal. Los tratamientos en ambos bloques fueron 6 y se instalaron manualmente en febrero de 2016: 1) cubierta de paja de cebada a 15 cm espesor, 2 kg m². 2) malla de polietileno (1 mm de espesor, 130 g m²). 3) tejido Bontrech® biodegradable de yute (5 mm de espesor, 550 g m²). 4) tejido Bontrech® sintético que resulta de aglomerar fibras textiles (5 mm de espesor, 730 g m²), 5) escarda mecánica de referencia (dos escardas al año) y 6) testigo sin desherbar.

La flora se evaluó en mayo de 2017 contabilizando el máximo número de especies existentes en cada tratamiento y el porcentaje de cobertura de todas las hierbas en marcos de 0,16 m².

La degradación se estimó en mayo de 2017 asignando un valor de acuerdo al estado de cada material según una escala que tiene en cuenta la propia degradación, roturas, asimilación por parte del suelo etc. y que se describe a continuación (Cuadro 1).

Como el desarrollo de las dos variedades de lavándula tuvo un comportamiento muy similar en cuanto a crecimiento, desarrollo y mortalidad, a la hora de analizar estadísticamente los datos de eficacia de control de la flora arvense y de degradación de los materiales no se tuvo en cuenta este efecto variedad (bloque) y los datos se analizaron como si se tratase de un ensayo completamente aleatorizado y con 6 repeticiones. En el presente trabajo se muestran únicamente los resultados de la última fecha en que han tomado datos, en mayo de 2017.
RESULTADOS Y DISCUSIÓN

Riqueza específica de la flora arvense

Durante la recogida de datos se ha observado en el testigo un total de 50 especies pertenecientes a 18 familias diferentes. La familia fabáceas es la que presenta un mayor número de especies, con un total de 16, seguido por la familia de las poáceas con un total de 7 especies, en su mayoría del género Bromus.

Los géneros Medicago y Vicia fueron los más representado con tres especies de cada. Se encontraron especies menos común como Viola kitaibeliana y Asterolinon linum-stellatum, ambas con un porte muy reducido.

Cobertura de malas hierbas

La cobertura media de malas hierbas en el testigo sin desherbar fue del 45% (Fig. 1), llegando en alguna repetición al 90% de la superficie cubierta, tapizando casi completamente la superficie del suelo, a pesar de que la flora arvense presente en el ensayo fue, en general, de muy poca altura y envergadura.

Los resultados de control de la flora arvense han sido muy satisfactorios en todas las alternativas a la escarda manual, que era el tratamiento de referencia. Como se aprecia en la Fig. 1, la malla de polietileno fue la que menos presencia de hierbas permitió, seguida de cerca por las dos láminas de Bontrech®, la escarda manual y la paja. Por tanto, las cifras del control de la flora arvense, basándonos en la cobertura de hierbas del testigo, sería para la malla de polietileno un 94,4%, para Bontrech® marrón 94%, para Bontrech® gris 93,5%, el de la escarda manual del 86,3 % la eficacia de la paja de cebada del 85,2%.

Por lo tanto, el acolchado con paja, que fue la opción que permitió mayor cobertura de flora arvense arrojó un resultado muy parecido al que se puede conseguir con la escarda manual. En ensayos de cultivos anuales, como tomate, la paja ya resultó útil para controlar las arvenses, con excepción de la juncia (Cyperus rotundus) incluso con la mitad de la cantidad de material usado aquí, aunque para un período de duración mucho más corto, de tres meses (Anzalone et al., 2010).

Además, hay que tener en cuenta que, en el presente ensayo, los resultados de la paja se han visto perjudicados por la presencia de jabalíes que la han horadado, abriendo huecos que es por donde han salido la flora arvense. Aunque la paja puede tener algunos inconvenientes, como la difícil colocación por los grandes volúmenes utilizados, el posible desplazamiento por el viento, la posibilidad de incendiarse o la introducción de semillas indeseables en el material, en el presente ensayo ha resistido bien tras un año desde su colocación, aunque ha sido necesario realizar pequeños ajustes después de la actividad de la fauna silvestre. En relación a la colocación,
una ligera lluvia después de la colocación es ideal para que la paja se asiente en el suelo y no sea desplazada con el viento. El rocío puede conseguir un efecto parecido. El riesgo mayor de desplazamiento se produce si el viento aparece inmediatamente después de su instalación.

El resto de materiales ensayados han conseguido un excelente control de la flora arvense, mejor que la escarda manual, permitiendo la emergencia de solo en torno a un 2% de flora arvense. Por tanto, a pesar de los inconvenientes que comporta su uso, como las dificultades a la hora de colocarse, o su elevado precio, desde el punto de vista técnico son materiales perfectamente válidos para contener a la flora arvense durante al menos un año. De ellos, el fieltro Bontrech® marrón además es biodegradable, con lo cual no habrá de recogerse al finalizar el ensayo; no así el fieltro Bontrech® gris y la malla antihierba de polietileno que deberán retirarse al finalizar el ciclo productivo.

Figura 1. Cobertura de la flora arvense en los diferentes tratamientos 12 meses después de la instalación de los acolchados (mayo de 2017).

Hay que remarcar que varias especies gramíneas nacieron encima de los materiales de acolchado atravesando la lámina de acolchado con las raíces y que en la paja hubo rício (germinaciones de las semillas de cebada).

Degradación

El material que mayores signos de degradación mostró fue el fieltro Bontrech® marrón (fabricado con restos de yute) si bien tras 12 meses de instalación sólo mostró signos de degradación inicial (8,4±0,24 en la escala de degradación). Posiblemente la elevada presencia de piedras en el suelo del ensayo dificulta el estrecho contacto de los materiales con el suelo; las temperaturas relativamente frescas de la zona probablemente tampoco favorecen la actividad microbiana del suelo responsable de la degradación de los materiales. A pesar de la actividad de la fauna que revolvió la paja, también ésta permanecía bastante intacta en las parcelas. El fieltro Bontrech® gris no degradable obtuvo la puntuación de 8,7±0,21 debido a la presencia de algunos agujeros, probablemente causados por el roce del fieltro con las piedras del suelo en días ventosos. La malla de polietileno permanecía intacta en cinco repeticiones, con un único daño leve en una de las repeticiones debido a la presencia de piedras.
Desde el punto de vista de la degradación cualquiera de los cuatro métodos de acolchado ensayados puede ser recomendable para este cultivo en las condiciones locales al menos tras 12 meses. No obstante, es necesario continuar tomando datos para poder dar recomendaciones a más largo plazo.

CONCLUSIONES

La malla de polietileno, el acolchado con el fieltro Bontrech® marrón, el fieltro Bontrech® gris e incluso con la paja de cebada aplicada a 2 kg m⁻² continúan prácticamente intactos un año después de su colocación por lo que son adecuados, al menos durante este tiempo, para controlar la flora arvense.

BIBLIOGRAFÍA

INFLUENCIA DE LOS DIFERENTES MANEJOS ECOLÓGICOS Y LAS ROTACIONES EN EL CONTROL DE LA VEGETACIÓN ADVENTICIA Y EN LA RESPUESTA DEL CULTIVO

González-Barragán MI, Guerrero I, Rodrigo JF, Rodrigo R

Escuela Universitaria de Ingeniería Agrícola INEA. Camino Viejo de Simancas, km 4,5. E-47008, Valladolid; Tel: 983 23 55 06; isabel.gonzalez@inea.edu.es

El ensayo se localizó en La Finca Ecológica INEA (Escuela Universitaria de Ingeniería Agrícola) de Valladolid. Dicha finca lleva ocho años en Agricultura ecológica.

El diseño experimental es un split-plot. Formado por tres repeticiones, siendo el factor principal el tipo de manejo (5 más testigo) y el subfactor la rotación de cultivos (4 rotaciones).

El ensayo (en secano) está compuesto por sesenta y dos parcelas elementales de 8,4 m (ancho) por 15m (largo) sobre las que se rotarán diferentes cultivos y se aplicarán los diferentes manejos.

El objetivo es valorar la influencia de los diferentes manejos ecológicos y las distintas rotaciones en el control/aparición de vegetación adventicia y en la respuesta del cultivo.

Tras este primer año de ensayo, se han analizado datos referentes a la cosecha y a la vegetación arvense, obteniéndose los siguientes resultados:

- En cuanto a rendimiento del cultivo no se ha observado influencia del tratamiento sobre las parcelas testigo. Es lógico que sea así puesto que es el primer año del ensayo.

- La vegetación arvense, por el contrario, sí mostró diferencias respecto al manejo y, por supuesto, al cultivo.

Palabras clave: garbanzo, imágenes satelitales, índices espectrales, malas hierbas, teledetección, trigo
CAMBIA LA BIODIVERSIDAD EN EL SUELO CON LOS DISEÑOS PREDIALES?
EVALUACIÓN COMPARATIVA DE LA FAUNA EDÁFICA EN HUERTAS MAPUCHE BAJO DISEÑO AGROECOLÓGICO Y CONVENCIONAL DEL SECTOR BOYECO, REGIÓN DE LA ARAUCANÍA, CHILE

Peredo y Parada S, Barrera Salas C, Vega Carvajal M

Laboratorio de Agroecología y Biodiversidad (LAB), Grupo de Agroecología y Medio Ambiente (GAMA), Universidad de Santiago de Chile (USACH). santiago.peredo@usach.cl

RESUMEN: En el marco de una investigación en la que se evaluó los niveles de sustentabilidad en sistemas agrícolas mapuche para medir el impacto del Programa Global de Conservación de la Biodiversidad Campesina se evaluó la biodiversidad de la fauna del suelo con el objetivo de determinar si el diseño de predios basado en principios agroecológicos genera cambios en las comunidades faunísticas edáficas. Las unidades de muestreo correspondieron a un sistema convencional (SC) y un sistema agroecológico (SA), ambos pertenecientes a la comunidad Juan Queupán, en el sector Boyeco, Región de la Araucanía (Chile). Se extrajeron muestras, de acuerdo a protocolo, entre 0-10 cm del suelo cultivado las que se montaron en un sistema modificado de Berlesse-Tullgren durante 7 días y recogidas en alcohol al 75%. Los organismos fueron identificados y cuantificados bajo microscopio binocular estereoscópico. Con los datos obtenidos se determinó Índice de Diversidad de Shannon-Wienner (H′) y Homogeneidad (J) y se establecieron las similitudes taxocenóticas y biocenóticas según Jaccard (Sj) y Winner (Sw), respectivamente. Los resultados señalan valores más altos en diversidad y riqueza de taxa en SA respecto de SC y mayor abundancia, para SA, en cada uno de los grupos identificados. La equidad (homogeneidad), en tanto, reporta un valor más alto en el SC. Los valores de Sj indican que las comunidades SA y SC presentan una similitud taxocenótica media y el valor de Sw señala que no existen grandes diferencias biocenóticas entre comunidades. Se concluye que el diseño predial genera cambios en la biodiversidad edáfica.

Palabras clave: biodiversidad funcional, indicadores biológicos, transición agroecológica
ESTUDIO COMPARATIVO DE LA ABUNDANCIA Y NÚMERO DE RIZOBIOS EN SUELOS DE CULTIVO ECOLÓGICO Y CONVENCIONAL

Del-Canto A¹, Lacuesta M¹, Mena-Petite A¹, Miranda-Apodaca J², Muñoz-Rueda A², Pérez-López U², Sanz-Sáez A¹, Sillero-Martínez A¹, Yoldi A²

¹Dpto Biología Vegetal y Ecología. Facultad de Farmacia. UPV/EHU. Pº de la Universidad 7, E-01006, Vitoria-Gasteiz, Álava, Tel: 945 01 38 17; arantza.delcanto@ehu.eus
²Dpto Biología Vegetal y Ecología. F. de Ciencia y Tecnología. UPV/EHU. Bº Sarriena s/n, Leioa, Bizkaia

Proyectos 32-2016-00043 y 37-2017-00047 del Gobierno Vasco. Dpto. de desarrollo económico e infraestructuras. Dirección de Calidad e Industrias Alimentarias

RESUMEN: Las leguminosas establecen simbiosis con ciertas bacterias, los rizobios, que les permiten fijar el nitrógeno atmosférico mediante la Fijación Simbiótica de Nitrógeno (FSN). Este proceso reduce la necesidad de aporte de fertilizante nitrogenado, reduciendo costes e impacto ambiental. Sin embargo, en los últimos años, la capacidad de nodulación de las alubias está disminuyendo en las zonas de cultivo alavesas, posiblemente debido al uso de biocidas y fertilizantes asociadas a la agricultura convencional. La agricultura ecológica, que excluye el uso de productos químicos de síntesis, favorece la mayor fertilidad de los suelos y mayor abundancia y riqueza microbiana, por lo que sería esperable que las alubias desarrollen más nódulos y establezcan relaciones simbióticas más eficientes en estos suelos. Por otra parte, la FSN es sensible a la sequía, principal efecto del cambio climático, ya que afecta a la supervivencia de los rizobios en su forma de vida libre, disminuyendo la nodulación. En este trabajo se evaluó la capacidad de nodulación de distintas variedades de alubia en los dos sistemas de cultivo: ecológico y convencional y en condiciones de regadío y secano, para determinar la influencia de estos factores. Se observó que el número de nódulos desarrollados por planta es muy superior en los suelos ecológicos, tanto en condiciones de regadío como de sequía en comparación con los suelos convencionales, aunque no se observan grandes diferencias según el régimen hídrico. Estos datos confirman que la agricultura ecológica favorece la diversidad del suelo y puede favorecer el cultivo de leguminosas como la alubia.

Palabras clave: Número de nódulos, Phaseolus vulgaris, regadío, sequía
ENSAYO DE ELABORACIÓN Y APLICACIÓN DE COMPOST BIODINÁMICO CON ADICIÓN DE ARCILLA Y BASALTO

Grupo Intercomunitario Ibérico Con Respeto (Amigos de la Biodinámica)
*concepcion.fabeiro@uclm.es

La utilización de compost biodinámico ha demostrado su eficiencia en términos de biodiversidad, fertilidad del suelo, rendimiento y calidad de la producción, así como en el gasto energético (Mäder et al. 2002). En este ensayo se quiso comprobar si podía ser aún mejorable con la adición de otros elementos inorgánicos en pequeña proporción como la arcilla y el basalto (Almeida et al. 2007; Florin 2006).

Se estableció un ensayo en la finca Las Encebras (Pozocañada, Albacete) para evaluar los beneficios de la adición de basalto y arcilla en diferentes dosis (2, 4, y 10%) durante la elaboración de compost biodinámico, con estiércol de vaca y los preparados 502 a 506. Se establecieron 6 montones que correspondían a los 6 tratamientos ensayados, incluido un testigo. Los análisis realizados a los compost mostraron que la adición de arcilla en mayores dosis, así como la combinación con basalto, genera un compost más maduro, con mayor capacidad de intercambio catiónico y mayor contenido en fósforo y potasio.

Una vez elaborado el compost se aplicó de forma diferencial en una parcela doble que había tenido dos precedentes, judía y girasol, y sobre la que se estableció un cultivo de trigo variedad Khorasan (Triticum turgidum L. ssp Turanicum (Jakubz.)). En el campo de ensayo se marcaron 36 parcela elementales, que corresponden a 2 precedentes * 6 tratamientos * 3 repeticiones de cada uno de ellos. El efecto se evaluó en la cosecha del trigo, valorando rendimiento y componentes del rendimiento. Algunas conclusiones son: El compost con basalto produce mayor biomasa y mayor rendimiento (tanto por número de granos como por peso de los granos). El compost con basalto y arcilla, que contenía mayor cantidad de fósforo y potasio, produce mayor proporción de grano frente al total. (Pocas espigas, poca paja y normal en grano). El compost con arcilla al 4% presenta el peor rendimiento en grano.

Palabras clave: arcilla, basalto, compost biodinámico, trigo
PURINES DE ORTIGA Y COLA DE CABALLO COMO FERTILIZANTES FOLIARES EN PATATA: ¿SON REALMENTE EFECTIVOS?

Universitat Politècnica de València. Camino de Vera s/n E 46022 Valencia. Teléfono: 0034652137688 Email: robelmar@upvnet.upv.es

RESUMEN: Los productores de agricultura ecológica poseen hoy en día multitud de productos naturales para el manejo de sus cultivos, pero en muchos casos no existe la información suficiente acerca de su eficacia. Hace años que los purines de ortiga (Urtica dioica L.) y cola de caballo (Equisetum sp.) se vienen usando como fertilizantes foliares en agricultura ecológica. El objetivo de este trabajo es el estudio del posible efecto de estos purines sobre un cultivo ecológico de patata (Solanum tuberosum L.). El estudio se llevó a cabo en una parcela situada en Godella (Valencia). Se realizó un diseño de bloques para comparar los efectos de ambos purines frente a un abonado foliar convencional. Se analizaron rendimiento en cosecha, tamaño de la planta y otros parámetros de crecimiento. Como resultado destaca que dichos purines no mostraron efectos positivos sobre ninguno de los parámetros evaluados, mientas que los análisis químicos de sus suspensiones mostraron niveles muy bajos de nitrógeno, fósforo y potasio, por lo que no se recomienda su uso exclusivo como fertilizante.

Palabras clave: agricultura ecológica, Equisetum, Solanum tuberosum, Urtica

INTRODUCCIÓN

La agricultura ecológica certificada se halla en pleno auge, habiendo aumentado en los últimos años tanto el número de productores como las áreas cultivadas, alcanzando casi los 51 millones de hectáreas a finales de 2015 (Lernoud y Willer, 2017). Este auge ha venido aparejado con la llegada al mercado de un gran número de productos naturales, encaminados al manejo y mejora de sus cultivos (Benfatto et al., 2015). Sin embargo, algunos autores inciden en que actualmente hay poca información al respecto de los verdaderos efectos que estos productos tienen sobre el rendimiento u otros parámetros de importancia del cultivo (Gagic et al., 2017). Hace unos años se ha constatado el uso del purín de ortiga (Urtica dioica L.) como fertilizante en agricultura ecológica de cultivos hortícolas (Benítez Cruz, 2009). En ocasiones, este producto viene aparejado con el purín de cola de caballo (Echinochloa spp.), que en algunos trabajos ha sido reportado como un fungicida foliar eficaz frente a algunos patógenos, como el mildiu (Phytophthora infestans) en tomate (Solanum lycopersicum L.) (Gutiérrez Coarite, 2003). Hoy en día hay disponibles varios estudios que comentan algunas de las propiedades que poseen cierto número de compuestos químicos procedentes de la ortiga, como su capacidad antioxidante o sus efectos terapéuticos o inmunitarios (Buenz et al., 2017; Branisa et al., 2017), pero la cosa cambia cuando se trata de conseguir información sobre el uso agronómico de la ortiga y sus derivados. En 1996, Bozsík analizó el efecto de los extractos de ortiga frente a varias especies áfidos, concluyendo que el extracto fermentado de ortiga podía reducir significativamente la población de algunas especies. Otro trabajo analizó la composición de abonos verdes en sólido de diferentes especies, señalando la elevada concentración de boro del abono de ortiga como su principal cualidad (Sorensen y Thorup-Kristensen, 2011).

Debido a la falta de información acerca del posible efecto del uso del purín de ortiga y cola de caballo como abono foliar sobre hortícolas, el principal objetivo de este trabajo fue paliar en parte esa carencia. A tal efecto se probó la mezcla de ambos purines, por separado y juntos, frente a un abono foliar convencional en grupo de parcelas distribuidas en bloques al azar. Posteriormente se midieron tanto el rendimiento final del cultivo, como otros parámetros relacionados con el tamaño y porte de la planta, el contenido en clorofila y la posterior incidencia de plagas y enfermedades. Los resultados de estos tratamientos han sido actualmente publicados en inglés por Garmendia et al. (2018).
MATERIALES Y MÉTODOS

El experimento se llevó a cabo entre febrero y junio de 2016 en la localidad de Godella (Valencia), en un terreno de tipo aluvial, suelo franco arcillo-limoso y clima de tipo mediterráneo (temperatura media anual de 17°C y precipitaciones de 468 mm anuales). Se efectuaron seis tipos de tratamientos, tres con diferentes dosis de purín de Urtica (A: dosis completa, B: media dosis, C: dosis doble), uno con una mezcla de purines de Urtica y Equisetum (D), otro con un abono foliar convencional (E), y uno únicamente con agua a modo de control (F). Se utilizaron disoluciones a base de purines comerciales de Urtica y Equisetum, teniendo en cuenta las dosis de uso recomendadas por el fabricante (10% de producto diluido en agua tanto para ambos tipos de purines). Se efectuó un diseño de bloques al azar, con seis bloques conteniendo cada uno los seis tratamientos en parcelas de 15m² para cada tratamiento. Se abonó de fondo con estiércol de caballo antes de la siembra. La variedad de patata utilizada para el ensayo fue “Agría”, sembrándose 80 kg en total entre todas las parcelas. El ciclo de cultivo abarcó 107 días, realizándose cinco riegos en total.

Los tratamientos se aplicaron con una mochila pulverizadora de 15 litros de capacidad a una presión constante de 2,5 bar. Se efectuaron tres aplicaciones: la primera cuando las plantas mostraron las primeras hojas verdaderas, la segunda con las plantas en flor, y la tercera con las plantas plenamente desarrolladas, ya casi al final de su ciclo. Finalmente se midió el rendimiento del cultivo, cosechando la fila central de cada parcela para eliminar el efecto borde. Asimismo, se midieron otros parámetros relacionados con el crecimiento y tamaño de la planta: altura, número de hojas, longitud de las hojas, número de flores y biomasa, realizando tres mediciones para cada parámetro a lo largo del ciclo de cultivo, excepto la biomasa, que se midió sólo al final. Cada parámetro se midió en cinco individuos de cada una de las parcelas. Por último, se analizaron los niveles de clorofila en hojas y en tres momentos diferentes se evaluó la presencia de plagas y enfermedades. Se realizó un análisis químico de los purines empleados, para conocer su pH, conductividad eléctrica y porcentajes de los principales macronutrientes. Se calcularon los parámetros habituales (media, error estándar) para cada tratamiento, realizando posteriormente un análisis ANOVA. Todos los análisis estadísticos se realizaron usando el lenguaje R (R Core Team, 2017) a través del programa informático RStudio.

RESULTADOS

En el Cuadro 1 se muestran los resultados del análisis de los purines de Urtica y Equisetum empleados. Estos purines presentaron pH ligeramente básicos (7,6 a 7,9) y conductividad eléctrica media (1,2-1,3 mS/m²), destacando los valores bajos de macronutrientes (N:P:K).

Cuadro 1: Análisis químico de los purines de Urtica y Equisetum.

<table>
<thead>
<tr>
<th>Purín</th>
<th>pH</th>
<th>CE</th>
<th>MO</th>
<th>Cen</th>
<th>K</th>
<th>P</th>
<th>N</th>
<th>Pro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urtica</td>
<td>7,92</td>
<td>1,362</td>
<td>0,001</td>
<td>0,07</td>
<td>0,015</td>
<td>0,0019</td>
<td>0,005</td>
<td>0,027</td>
</tr>
<tr>
<td>Equisetum</td>
<td>7,66</td>
<td>1,233</td>
<td>0,007</td>
<td>0,095</td>
<td>0,013</td>
<td>0,0024</td>
<td>0,002</td>
<td>0,015</td>
</tr>
</tbody>
</table>

CE: conductividad eléctrica en mS/m², MO: % de materia orgánica, Cen: % de cenizas, K: % de potasio en forma de K₂O, P: % de fósforo en forma de P₂O₅, N: % de nitrógeno total, Pro: % de proteínas.

En el Cuadro 2 se muestran los resultados de rendimiento en kilogramo de patata por cada metro de caballón. No se observaron diferencias significativas entre los tratamientos, que oscilaron entre los 2,35 kg/m del tratamiento control (F) y los 2,16 kg/m obtenidos en el tratamiento de purín de ortiga a la dosis recomendada por el fabricante (A). Ninguna de las dosis de purín de ortiga empleadas (incluida la combinación con cola de caballo) mostró incrementos significativos del peso de tubérculos recolectados, en comparación con el tratamiento control. Tampoco el abono foliar convencional tuvo ningún efecto.
Cuadro 2: Rendimiento medio de las parcelas en kg de patata recolectados por cada metro lineal de caballón.

<table>
<thead>
<tr>
<th>Código</th>
<th>Tratamiento</th>
<th>N</th>
<th>Media</th>
<th>EE</th>
<th>HSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 DR purín de Urtica</td>
<td>18</td>
<td>2,16</td>
<td>0,1525</td>
<td>a</td>
</tr>
<tr>
<td>B</td>
<td>1/2DR purín de Urtica</td>
<td>18</td>
<td>2,33</td>
<td>0,1482</td>
<td>a</td>
</tr>
<tr>
<td>C</td>
<td>2 DR purín de Urtica</td>
<td>18</td>
<td>2,27</td>
<td>0,1292</td>
<td>a</td>
</tr>
<tr>
<td>D</td>
<td>Urtica + Equisetum</td>
<td>18</td>
<td>2,29</td>
<td>0,1377</td>
<td>a</td>
</tr>
<tr>
<td>E</td>
<td>Abono foliar convencional</td>
<td>18</td>
<td>2,50</td>
<td>0,1583</td>
<td>a</td>
</tr>
<tr>
<td>F</td>
<td>Control</td>
<td>18</td>
<td>2,35</td>
<td>0,2163</td>
<td>a</td>
</tr>
</tbody>
</table>

DR: dosis recomendada, N: número de repeticiones, EE: error estándar, HSD: test de Tukey de significación estadística. Los valores ANOVA fueron: Df=102, F=0,5079, p=0,7697, HSD =0.6554.

En el Cuadro 3 se muestran los resultados para los otros parámetros de crecimiento en todos los tratamientos. Los resultados demostraron que las plantas tratadas con ambos purines o el purín de ortiga por separado a cualquier dosis no mostraron mayor desarrollo que los controles. Únicamente se hallaron diferencias significativas para la altura en su tercera evaluación, lo que indicó que las plantas tratadas con doble dosis de purín de ortiga al final del ciclo fueron un poco más grandes (67,27 cm) que las plantas control (60,13 cm). Tampoco se encontraron diferencias significativas entre tratamientos para la biomasa aérea.

Cuadro 3: Parámetros de crecimiento para los diferentes tratamientos.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>N</td>
<td>Media</td>
<td>EE</td>
</tr>
<tr>
<td>Altura 1</td>
<td>30</td>
<td>18,30</td>
<td>0,91</td>
</tr>
<tr>
<td>Altura 2</td>
<td>30</td>
<td>51,63</td>
<td>1,24</td>
</tr>
<tr>
<td>Altura 3</td>
<td>30</td>
<td>60,93</td>
<td>1,94</td>
</tr>
<tr>
<td>Hojas N1</td>
<td>30</td>
<td>10,77</td>
<td>0,53</td>
</tr>
<tr>
<td>Hojas N2</td>
<td>30</td>
<td>13,67</td>
<td>0,33</td>
</tr>
<tr>
<td>Hojas N3</td>
<td>30</td>
<td>14,60</td>
<td>0,39</td>
</tr>
<tr>
<td>Hojas L1</td>
<td>30</td>
<td>19,90</td>
<td>0,85</td>
</tr>
<tr>
<td>Hojas L2</td>
<td>30</td>
<td>28,23</td>
<td>0,42</td>
</tr>
<tr>
<td>Hojas L3</td>
<td>30</td>
<td>31,50</td>
<td>0,54</td>
</tr>
<tr>
<td>Flores N2</td>
<td>30</td>
<td>13,17</td>
<td>1,47</td>
</tr>
<tr>
<td>Biomasa</td>
<td>18</td>
<td>1,56</td>
<td>0,04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>N</td>
<td>Media</td>
<td>EE</td>
</tr>
<tr>
<td>Altura 1</td>
<td>30</td>
<td>18,00</td>
<td>0,68</td>
</tr>
<tr>
<td>Altura 2</td>
<td>30</td>
<td>57,50</td>
<td>0,87</td>
</tr>
<tr>
<td>Altura 3</td>
<td>30</td>
<td>65,57</td>
<td>1,45</td>
</tr>
<tr>
<td>Hojas N1</td>
<td>30</td>
<td>13,17</td>
<td>0,52</td>
</tr>
<tr>
<td>Hojas N2</td>
<td>30</td>
<td>15,30</td>
<td>0,48</td>
</tr>
<tr>
<td>Hojas N3</td>
<td>30</td>
<td>16,83</td>
<td>0,73</td>
</tr>
<tr>
<td>Hojas L1</td>
<td>30</td>
<td>18,90</td>
<td>0,89</td>
</tr>
<tr>
<td>Hojas L2</td>
<td>30</td>
<td>27,87</td>
<td>0,75</td>
</tr>
<tr>
<td>Hojas L3</td>
<td>30</td>
<td>32,93</td>
<td>0,71</td>
</tr>
<tr>
<td>Flores N2</td>
<td>30</td>
<td>18,70</td>
<td>0,96</td>
</tr>
<tr>
<td>Biomasa</td>
<td>18</td>
<td>1,62</td>
<td>0,13</td>
</tr>
</tbody>
</table>

Altura 1, 2 y 3: altura de la planta en cm en las tres mediciones realizadas, Hojas N1, N2 y N3: número de hojas observadas en las tres mediciones realizadas, Hojas L1, L2 y L3, longitud de las hojas en cm en las tres mediciones observadas, Flores N2: número de flores en el momento de medición 2, Biomasa: biomasa aérea en kg, N: número
de repeticiones, EE: error estándar, HSD: test de Tukey de significación estadística. Los valores ANOVA fueron: para Altura 1 p=0,12, HSD=3,38, para Altura 2 p=0,00, HSD=6,54, para Altura 3 p=0,00, HSD=8,24, para Hojas N1 p=0,00, HSD=2,28, para Hojas N2 p=0,00, HSD=1,64, para Hojas N3 p=0,03, HSD=2,64, para Hojas L1 p=0,00, HSD=3,45, para Hojas L2 p=0,30, HSD=2,94, para Hojas L3 p=0,06, HSD=2,59, para Flores N2 p=0,00, HSD=4,69, y para Biomasa p=0,74, HSD=0,59.

En el Cuadro 4 se muestran los valores obtenidos de clorofila A, clorofila B y clorofila total. No se hallaron diferencias significativas entre tratamientos para ninguno de los tipos de clorofila evaluados. Únicamente destacaron las plantas tratadas con la dosis doble de purín de ortiga (C), que fueron las que mayor cantidad de clorofila total contuvieron (0,82 mg/g), aunque sin diferencias significativas con los otros tratamientos.

Cuadro 4: Valores de clorofila A, B y total obtenidos en cada tratamiento.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clorofila A</td>
<td>N</td>
<td>Media</td>
<td>EE</td>
</tr>
<tr>
<td>A</td>
<td>108</td>
<td>0,52</td>
<td>0,04</td>
</tr>
<tr>
<td>B</td>
<td>108</td>
<td>0,14</td>
<td>0,02</td>
</tr>
<tr>
<td>Total 1</td>
<td>108</td>
<td>0,19</td>
<td>0,02</td>
</tr>
<tr>
<td>Total 2</td>
<td>108</td>
<td>0,67</td>
<td>0,06</td>
</tr>
<tr>
<td>Clorofila B</td>
<td>N</td>
<td>Media</td>
<td>EE</td>
</tr>
<tr>
<td>A</td>
<td>108</td>
<td>0,63</td>
<td>0,03</td>
</tr>
<tr>
<td>B</td>
<td>108</td>
<td>0,16</td>
<td>0,01</td>
</tr>
<tr>
<td>Total 1</td>
<td>108</td>
<td>0,21</td>
<td>0,02</td>
</tr>
<tr>
<td>Total 2</td>
<td>108</td>
<td>0,80</td>
<td>0,04</td>
</tr>
</tbody>
</table>

N: número de repeticiones, EE: error estándar, HSD: test de Tukey de significación estadística. Los valores ANOVA fueron: para la clorofila A p=0,35, HSD=0,18, para la clorofila B p=0,46, HSD=0,08, para la clorofila total 1 p=0,48, HSD=0,09, y para la clorofila total 2 p=0,32, HSD=0,26.

Por último, respecto a la evaluación de la presencia de plagas y enfermedades, se observó escarabajo de la patata (Leptinotarsa decemlineata) en algunas plantas. También se detectaron algunos síntomas de Phytophthora infestans para todos los tratamientos excepto el tratamiento de abono foliar en la tercera evaluación. En todos los casos, las cantidades observadas de individuos o plantas sintomáticas fueron muy bajos, constatándose así que ningún tratamiento incrementaba significativamente la aparición de plagas.

DISCUSIÓN

Los resultados obtenidos constataron que los tratamientos de fertilización foliar a base purín de ortiga y purín de clorofila, o las distintas dosis de purín de ortiga en solitario no tuvieron efecto sobre el rendimiento, el contenido en clorofila o la presencia de plagas y enfermedades, en los cultivos de patata ecológica.

Al uso del purín de ortiga como fertilizante foliar se le han atribuido varios efectos positivos, pero lo cierto es que todavía existen pocas evidencias científicas al respecto. Uno de estos efectos es la supuesta estimulación del crecimiento de las plantas, que se traduciría en un aumento del rendimiento del cultivo, motivado por un incremento en el nivel de nitrógeno. Sorensen y Thorup-Kristensen (2011), obtuvieron valores de entre 2,2 y 3,3% de nitrógeno en un purín de ortiga sólido y recién elaborado, afirmando que los purines en forma líquida, como los que han sido usados en este ensayo, tendrían mucha menos cantidad que los anteriores. Durante la ontogenia de la planta, la concentración de muchos nutrientes disminuye, debido a un efecto de dilución (Sorensen, 2000). En consecuencia, es posible que el contenido en N total del purín de ortiga pueda variar dependiendo de muchos factores. En cualquier caso, sería deseable que estos productos comerciales portaran un mejor etiquetado y fueran...
objeto de análisis químicos más frecuentes. Sorensen y Thorup-Kristensen (2011) apuntaron también que los efectos de los abonos verdes en formato sólido se debían más bien a la disponibilidad de nitrógeno y a la relación C/N que a la cantidad total de N aplicada. Estos mismos autores observaron que la mejora del rendimiento en coliflor, puerro o apio tras la aplicación de abonos verdes en suelo tenía que ver con una baja proporción C/N. No obstante, dichos autores también observaron que la mejora del rendimiento en patata supuestamente proporcionada por los purines de *Urtica* y *Equisetum* se podría deber a los micronutrientes administrados. En cualquier caso, los resultados obtenidos en este trabajo desmienten la existencia de cualquier mejora en ningún parámetro del cultivo. Es posible encontrar diversas citas sobre el empleo de algas marinas, como la especie *Kappaphycus alvarezii* (Doty) Doty ex Silva, a las cuales se considera como uno de los fertilizantes foliares naturales más eficaces en varios cultivos (Akila y Jeyadoss, 2010; Asma et al., 2013). Pramanick et al. (2017) también corroboraron esa afirmación, en este caso en un estudio realizado en patata. Estos autores realizaron un tratamiento foliar a base de extracto del alga marina *K. alvarezii*, combinado con diferentes dosis de fertilizantes de suelo, registrando mejoras en la altura de la planta, el contenido en clorofila y el rendimiento de cosecha. Según dicho trabajo, el extracto de esta alga es rico en varios macronutrientes, como potasio y fósforo, en otros nutrientes secundarios como calcio y magnesio, e incluso en oligoelementos como zinc, cobre, hierro y manganeso. Por otro lado, el trabajo de Zodape et al., 2010 constató que el extracto de *K. alvarezii* ayudaba en la translocación de compuestos elaborados por actividad fotosintética a los tubérculos. Estos resultados resaltan la relación que puede existir entre la fertilización foliar y la de suelo, además de la importancia de otros nutrientes al margen del nitrógeno.

Otro efecto atribuido al purín de ortiga es su capacidad para estimular la actividad microbiana en el suelo. Una vez más, hay que decir que existen muy poca evidencias científicas al respecto. No se han hallado tampoco datos sobre la actividad microbiana del purín de ortiga. En ocasiones este producto se emplea también en aplicaciones de suelo; quizás en estos casos, el supuesto aumento en la actividad microbiana mejoraría la fertilización de las plantas, lo cual aún no se ha probado.

Respecto al contenido en clorofila, ni en el tratamiento conjunto de purín de *Urtica* y *Equisetum*, ni en las diferentes dosis de purín de ortiga por separado, se observó ningún aumento significativo de ninguno de sus tipos. Únicamente podría sugerir una mínima mejora en el cultivo el mayor contenido en clorofila y la altura ligeramente superior de la planta que se obtuvo con la dosis doble del purín de ortiga, recordando que estamos tratando exactamente con el doble de la cantidad recomendada por el fabricante. En cualquier caso, ninguna de las pequeñas mejoras en estos parámetros conllevó un incremento del rendimiento final del cultivo, que en definitiva, es uno de los objetivos de todo productor. Por último, no se halló efecto alguno en torno a la presencia o ausencia de plagas y enfermedades en el cultivo.

CONCLUSIONES

Bajo las condiciones experimentales de campo probadas ni el purín de ortiga ni el purín de cola de caballo mostraron efectos significativos sobre el rendimiento, el contenido de clorofila o la presencia de plagas y enfermedades en cultivos ecológicos de patata. Únicamente se observó un ligero aumento en el crecimiento de la planta, si bien este no tuvo consecuencias finales en el rendimiento. Nutricionalmente, los niveles de nitrógeno, fósforo y potasio resultaron ser muy bajos para los purines de *Urtica* y *Equisetum*. Este trabajo debe considerarse como una primera evaluación de los efectos que estos purines pueden producir en la planta, pero lo cierto es que se necesitan más estudios para corroborar la utilidad o no de estos productos en modo de fertilizante foliar es útil para determinados cultivos hortícolas. Algunas posibles vías de actuación para un futuro serían la evaluación de la composición química del purín dependiendo de su origen y modo de fabricación; es asimismo que debe existir cierta variabilidad entre las condiciones ofrecidas por las casas comerciales y los desarrollados por los propios agricultores. Una hipótesis de partida podría ser la disminución del contenido de algún compuesto a lo largo del proceso de fabricación disminuye, lo cual redundaría en la falta de efectos positivos del tratamiento. Por último, podría evaluarse el efecto del purín de ortiga sobre otros cultivos hortícolas, o en condiciones de laboratorio hidropónicas donde el único aporte de nutrientes sea a través de tratamientos foliares.
REFERENCIAS

• Gutiérrez Coarite, R. (2003). Control of tomato late blight (Phytophthora infestans) with biocides on tomatoes (Lycopersicum sculentum) in the community of Carmen Pampa, belonging to Coroico municipality (Not Yungas, La Paz).
ADAPTABILIDAD DE LA MORINGA OLEÍFERA EN CULTIVO ECOLÓGICO A LAS CARACTERÍSTICAS DE LOS SUELOS Y CONDICIONES CLIMÁTICAS DE LA PROVINCIA DE VALENCIA

Soriano Soto MD¹, García Marés F¹, García-España L², Moreno J¹

¹Escola Tècnica Superior d’Agrònoma y del Medi Natural [Universitat Politècnica de València], Camino de Vera s/n. E-46022 Valencia; asoriano@prv.upv.es
²Facultat de Farmàcia [Universitat de València], Vicente Andrés Estellés s/n, E-46100 Burjassot (Valencia); laugars2@alumni.uv.es

RESUMEN: El desarrollo de la Moringa oleifera se localiza de forma natural en climas tropicales alrededor del mundo, pero la utilidad de la especie hace que cada vez más se intente desarrollar en unas condiciones climáticas diferentes. Nuestro objetivo en este trabajo es el estudio de su adaptabilidad bajo diferentes tipos climáticos en la provincia de Valencia y tipos de suelo. Para ello se plantaron un total de 1300 árboles, en distintas zonas de la provincia con diferentes regímenes de temperatura (TR) y diferente amplitud térmica noche/día. Se tomaron muestras de suelo para su caracterización en el momento de la plantación y se midieron las plantas tras su periodo de desarrollo, con medidas intermedias a diferentes tiempos. Los parámetros monitorizados cada 30 días fueron la altura del árbol, el diámetro del tallo y la copa de cada árbol individual dentro de los diferentes regímenes de temperatura. Se estudiaron las características del suelo y el régimen de temperaturas y humedad más favorable para el crecimiento general del árbol.

Se valora como tanto el aumento de la temperatura y otros parámetros climáticos, como el cambio en las propiedades físicas y químicas del suelo afectan a la tasa de crecimiento de las plantas, identificando aquellas zonas estudiadas de la provincia de Valencia las condiciones más adecuadas para su desarrollo.

Palabras clave: desarrollo vegetal, régimen de humedad, régimen de temperatura
LA REGENERACIÓN DE SUELOS HORTÍCOLAS DEGRADADOS CON COMPOST RICO EN CARBONO: UN SUMIDERO CONTRA EL CAMBIO CLIMÁTICO

Achotegui-Castells A¹, Puig Roca J², Trillas M³, Romanyà J⁴

¹Fundació Emys, Carretera de Santa Coloma km 21,1 E-17421 Riudarenes, Girona ander@fundacioemys.org; Tel: 972 16 49 57
²L’Espigall, Can Jaume Garriga, E-08415 Bigues i Riells, Barcelona jordi@espigall.cat, Tel: 670267274
³Departament de Biologia Vegetal, Unitat de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal 645, E-08028 Barcelona; mtrillas@ub.edu / Tel:(+34) 934021464
⁴Facultat de Farmacia, Universitat de Barcelona, Avda. Joan XXIII s/n, E-08028 Barcelona jromanya@ub.edu; Tel: 934024494

RESUMEN: Los suelos agrícolas en el mediterráneo tienen un contenido de materia orgánica muy bajo, alrededor del 1-2%. Este déficit tiene implicaciones importantes a muchos niveles: productivos, de secuestro de CO₂, de retención de agua y de incidencia de enfermedades edáficas. El Dr. Jordi Puig ha elaborado el compost “Espigall”, un compost rico en carbono, compuesto de una mezcla de estiércol de oveja, triturado vegetal, cenizas y harina de roca, capaz de llevar una explotación agrícola a contenidos de materia orgánica en suelo de hasta el 9%. A principios de 2017, la Fundación Emys (Girona) creó el Huerto de Can Moragues, un huerto demostrativo con 4 parcelas en el que se aplica una rotación de cultivos. El huerto es demostrativo de agricultura ecológica y variedades tradicionales y se inició en un suelo agrícola con un 1,7% de materia orgánica y déficits manifiestos de nutrientes, que se está regenerando con el compost “Espigall”. En un proyecto liderado por la Universidad de Barcelona, hemos monitorizado en el huerto de Can Moragues dicha regeneración, muestreando cada 6 meses, en cada una de las 4 parcelas del huerto los siguientes parámetros: los elementos del suelo y la presencia de materia orgánica, la biodiversidad edáfica (MicroResp), la biodiversidad de flora arvense, la productividad y la incidencia de enfermedades edáficas. Los resultados muestran un rápido aumento de la materia orgánica en suelo, casi doblando así la cantidad de CO₂ secuestrado en un año y medio. También ha aumentado claramente la presencia de nitrógeno y fosforo y ha habido un incremento de la actividad de microorganismos edáficos, que podemos relacionar con la reducción de la incidencia de enfermedades edáficas que se ha detectado.

Palabras clave: agricultura ecológica, fertilización, materia orgánica, monitorización, secuestro de carbono, triturado vegetal
4. BIODIVERSIDAD Y SEMILLAS

POTENCIAL FENÓLICO Y CAPACIDAD ANTIOXIDANTE EN DIFERENTES VARIEDADES DE ALUBIA: CULTIVO ECOLÓGICO VS CONVENCIONAL

Del-Canto A1, Lacuesta M1, Mena-Petite A2, Miranda-Apodaca J2, Muñoz-Rueda A2, Pérez-López U2, Tierno R1

1Dpto. Biología Vegetal y Ecología. Facultad de Farmacia. UPV/EHU. Pº de la Universidad 7, E01006, Vitoria-Gasteiz, Álava, 945 01 38 17, arantza.delcanto@ehu.eus
2Dpto. Biología Vegetal y Ecología. F. de Ciencia y Tecnología. UPV/EHU. Bº Sarriena s/n, Leioa, Bizkaia

Resumen: Los compuestos fenólicos, son un grupo de compuestos ampliamente distribuidos en vegetales. Sus funciones son muy diversas, siendo responsables, entre otros, de la coloración de flores, frutos o semillas. Actualmente han tomado una gran relevancia, como compuestos bioactivos, ya que su consumo se asocia a una reducción en la incidencia de determinadas enfermedades crónicas. Se ha observado cómo el contenido de compuestos fenólicos varía en función de factores como el clima, suelo o manejo agrícola, existiendo, como sugieren diversos estudios, una mayor tendencia a la acumulación de los mismos, bajo regímenes de cultivo ecológico. Debido a la riqueza en compuestos fenólicos de muchas de las variedades de alubia, planteamos un estudio para determinar su contenido en diferentes semillas locales, realizando una comparativa entre los dos sistemas de producción: ecológico y convencional. El contenido de compuestos fenólicos solubles totales (FST) varía en función de la variedad de alubia, siendo ‘Amarilla de Kuartango’ la de mayor contenido. En lo que respecta al contenido de antocianinas monoméricas totales (AMT), destacan las variedades oscuras como la ‘Negra de Basaburua’ (86,4-97,0 mg CGE 100 g-1 PS). Esta variedad también presentó una mayor capacidad antioxidante hidrofílica (CAH), superior a la variedad ‘Amarilla de Kuartango’, posiblemente asociada al mayor contenido en antocianinas. El tipo de cultivo, convencional-ecológico, no parece tener influencia en el contenido de compuestos fenólicos solubles totales, ni de antocianinas, sino que las diferencias se deben al tipo de pigmento de cada variedad.

Palabras clave: antocianinas, capacidad antioxidante, compuestos bioactivos, Phaseolus vulgaris.

Keywords: Anthocyanins, Antioxidant capacity, bioactive compounds, Phaseolus vulgaris.

INTRODUCCIÓN

Los compuestos fenólicos son los metabolitos secundarios más abundantes de las plantas (Ignat, Volf, & Popa, 2011). Están presentes en la mayoría de frutos y vegetales y desarrollan funciones muy diversas. Así, por ejemplo, son los responsables de la coloración de flores, frutos y semillas y desempeñan un importante papel en la respuesta a estreses, tanto bióticos como abióticos (Ganesan & Xu, 2017).

Comprenden una amplia familia de moléculas, que estructuralmente están formadas por uno o varios anillos fenólicos (un anillo aromático unido al menos a un grupo hidroxilo). Algunos compuestos fenólicos son moléculas simples, de bajo peso molecular, los ácidos fenólicos, mientras que otros son polímeros, los llamados polifenoles (Kim, Quon & Kim, 2014; Manach et al., 2004).

Los compuestos fenólicos se dividen generalmente en varias clases o grupos, de acuerdo con los anillos de fenol que contienen y las diferencias estructurales en la unión entre estos anillos: flavonoides (flavonas, flavonoles,
flavanonas, isoflavonas, antocianinas, calconas, dihidrocalconas ycatequinas), ácidos fenólicos (hidroxibenzoico hidroxifenilacético, hidroxifenil pentanoico e hidroxil cinilacidio), taninos (hidrolizables y condensados), estilbenos y lignanos (Ganesan & Xu, 2017; Stavrou et al., 2018).

Estos no son compuestos nutritivos, sino que, debido a sus propiedades antioxidantes y a su habilidad de modular la actividad de diversas proteínas, tienen beneficios en la salud humana (Ferreira, Martins & Barros, 2017), por lo que son considerados compuestos bioactivos. De hecho, son el grupo más importante de antioxidantes naturales, los más abundantes y potentes que presentan las plantas (Niciforovic et al., 2010).

Previenen o inhiben la formación de especies reactivas de oxígeno (ROS) y otros radicales libres, inhibiendo así procesos de oxidación y reparando los daños que las ROS han podido producir en los tejidos (Valko et al., 2007).

La gravedad de muchas enfermedades crónicas, está asociada o influenciada por la abundancia de estas especies reactivas de oxígeno (ROS) y otros radicales libres en el cuerpo, de forma que la ingesta de alimentos ricos en antioxidantes, pueden ayudar a reducir el impacto de estas enfermedades (Krishnaih et al., 2007). Esto es, las plantas sintetizan una serie de compuestos antioxidantes, como son los compuestos fenólicos, que las protegen del estrés oxidativo, pero que también confieren efectos protectores en los humanos, cuando consumen las plantas como alimento.

De esta forma, se ha observado cómo el consumo de compuestos fenólicos ayudan a prevenir de enfermedades como el cáncer, enfermedades cardiovasculares y diabetes (Ganesan & Xu, 2017; Gullón et al., 2018; Luzardo-Ocampo et al., 2018; Rocchetti et al., 2019; Stavrou et al., 2018); alzheimer, parkinson y otros trastornos neurodegenerativos (Hasbal, Yilmaz-Ozden & Can, 2015; Luzardo-Ocampo et al., 2018; Morris et al., 2002); úlceras gástricas crónicas (Stavrou et al., 2018); colitis (Monk et al., 2018); presentan un efecto antimicrobiano, anti-alergénico, anti-inflamatorio y de vaso-relajación (Gullón et al., 2018; Monagas et al., 2006; Stavrou et al., 2018); ayudan a controlar el colesterol (Gullón et al., 2018; Rocchetti et al., 2018), así como a controlar el sobrepeso y la obesidad (Luzardo-Ocampo et al., 2018).

Sus efectos beneficiosos dependen tanto de su concentración, como de su biodisponibilidad (Ganesan & Xu, 2017), siendo las frutas como las uvas, citricos, cerezas, manzanas, melocotones, kiwis, además del té, café, cacao, aceite de oliva y cereales, las principales fuentes de compuestos fenólicos (Manach et al., 2004; Stavrou et al., 2018), esto es, con altas concentraciones de compuestos fenólicos biodisponibles.

Además, existen diversos factores que afectan al contenido y/o perfil de fenoles, como las variedades, género, tipo de suelo, clima, radiación solar, altitud, la edad o etapa de desarrollo de la planta, estado de maduración del fruto y procesado o preparación del producto (Agazzi et al., 2018; Dutra et al., 2018; García-Díaz et al., 2018; Granato et al., 2016; Monagas et al., 2005; Stavrou et al., 2018). Y aunque existen distintos estudios en los que se observa una mayor acumulación de compuestos fenólicos en productos cultivados bajo un manejo ecológico, en comparación con cultivos convencionales (Dutra et al., 2018), no existe un consenso claro.

La alubia (Phaseolus vulgaris L.) es una planta anual de la familia de las fabáceas. Se comenzaron a cultivar hace unos 8.000 años en Perú y México, y actualmente se cultivan a nivel mundial, en zonas de clima templado y semitropical. Su cultivo es económicamente importante, y sus semillas son consumidas por todo el mundo, aunque toman especial relevancia en los países en vías de desarrollo, donde constituyen la base de la alimentación, debido a su bajo coste y elevada calidad nutricional (FAO, 2014).

Esta alta calidad nutricional, se debe principalmente a su contenido en proteínas y en menor medida, a su contenido en carbohidratos, ácidos grasos insaturados, vitaminas, minerales y fibra (Ganesan & Xu, 2017). El contenido en proteínas varía según las distintas variedades (valores entorno al 15 y 35 %) y los aminoácidos más predominantes son la lisina, tirosina y fenilalanina. Los carbohidratos suponen en torno a un 50 % del peso de la semilla, siendo el almidón la fracción predominante (Ganesan & Xu, 2017). También son una excelente fuente de micronutrientes como minerales y vitaminas, siendo las leguminosas con los contenidos más altos (Shimelis & Rakshit, 2.005) y superiores a los mostrados por los cereales (Champ, 2.002).
Pero, además, al igual que otras leguminosas, presentan un alto contenido, de compuestos bioactivos (Luzardo-Ocampo et al., 2018; Monk et al., 2018), como los compuestos fenólicos, con numerosas propiedades saludables, que hacen que un consumo regular de estas legumbres sea beneficioso para la salud.

Los compuestos fenólicos que se encuentran comúnmente en las alubias incluyen antocianinas (como delfinidina, petunidina y malvidina), flavonoles (como el Kaempferrol), iso flavononas, flavononas, proantocianidinas y taninos, así como una amplia gama de ácidos fenólicos (como ac. Vanílico, ac. P Cumárico, ac. Gálico, ac. Clorogénico, ac. Sirínico) (Chávez-Mendoza & Sánchez, 2.017; Genovese & Laiolo, 2.001; Ombra et al., 2.018). Pero mientras los ácidos fenólicos y compuestos no flavonoides se encuentran principalmente en los cotiledones (Ranilla et al., 2.007), las antocianinas, protocianidinas y taninos, aparecen mayormente en la cubierta o testa, variando en función del color de la misma (López et al., 2.013).

Debido a estos compuestos, las alubias presentan numerosas propiedades nutraceuticas: efecto antioxidante, anti-microbiano, hepatoprotector, cardioprotector, antiinflamatorio, anti-colesterol, anti-hiper glucémico, antiane ctergénico, anti-obesidad, entre otros (Basso et al., 2.018; Ganesan & Xu, 2.017; García-Díaz et al., 2.018; Ombra et al., 2.018).

HIPÓTESIS Y OBJETIVOS

Puesto que el contenido fenólico de las alubias varía en función de diversos factores, como el genotipo, y considerando las diferencias en la coloración de las distintas variedades de estudio, esperamos observar diferencias significativas en el contenido fenólico y en la capacidad antioxidante de las mismas. Por otro lado, es de esperar que las semillas obtenidas a partir de un cultivo ecológico, donde las plantas se ven sometidas a mayores niveles de estrés, presenten una mayor acumulación de compuesto fenólicos, y por ello, mayor capacidad antioxidante.

Debido a la riqueza en compuestos fenólicos que presentan las alubias, planteamos un estudio para determinar el contenido fenólico y la capacidad antioxidante, en seis variedades locales de alubia del País Vasco, realizando una comparativa entre los dos sistemas de producción: ecológico y convencional.

MATERIALES Y MÉTODOS

Material vegetal

Las semillas utilizadas en el experimento corresponden a seis variedades locales de alubia (mata baja) del País Vasco: Arrocina de Álava, Amarilla de Kuartango, Morada de Gandarias, Negra de Basaburúa, Pinta Alavesa y Verde de Orbiso. De las cuales dos (Arrocina de Álava y Pinta Alavesa) presentan el certificado de calidad Eusko Label y son ampliamente cultivadas en la zona, principalmente en la provincia alavesa, mientras que el resto, de cultivo muy reducido, quedan relegadas a localidades de pequeño tamaño.

El experimento mediante el cual se obtuvieron las semillas de estudio, corresponde a un ensayo relacionado con la tolerancia a la sequía de doce variedades de alubia (locales y comerciales), que se realizó en los campos experimentales de Neiker-Tecnalia (Arkaute), tanto en condiciones de riego, como de sequía. Se realizó un diseño de bloques completos al azar con cuatro replicaciones. Cada bloque estaba formado por doce parcelas experimentales (una por variedad de estudio), formadas cada una de ellas por dos filas de diez metros de longitud, separadas por 50 cm entre si y con una distancia entre plantas de 20 cm (Fig. 1). La siembra se realizó el 31 de mayo del 2.017 y la cosecha el 21 de septiembre. Una vez cosechadas, se congelaron durante 2-3 días y se conservaron en una cámara frigorífica.
Figura 1: Diseño experimental del ensayo a partir del cual se obtuvo el material vegetal analizado. Este mismo esquema repitió tanto en cultivo ecológico como convencional.

Extracción y cuantificación de fenoles

Extracción de fenoles

La extracción de fenoles se realizó según Tierno R. (2016), a partir de semilla madura y molido: 1 g para la cuantificación de compuestos fenoles solubles totales (FST); 0,25 g para la cuantificación de antocianinas monoméricas totales (AMT) y 2,5 g para la cuantificación de la capacidad antioxidante hidrofílica (CAH). Empleando como medio de extracción 10 ml de metanol: agua desionizada (MeOH: diH2O) (70:30, v/v). La fracción sólida, fue suspendida mediante agitación con vortex durante 1 minuto aproximadamente. La mezcla se centriufugó a 7730 g durante 10 minutos a 4 °C, recolectando el sobrenadante donde se encuentran los compuestos fenólicos. Esta operación se repitió tres veces con la fracción sólida o pellet, enrasando el volumen del extracto resultante a 30 ml.

Cuantificación de compuestos fenólicos solubles totales (FST)

El contenido de FST se determinó de acuerdo con el método por puesto por Medina (2011ab) y modificado por Lester et al. (2012). Para ello se prepararon una disolución stock de ácido gálico (1 mg/ml) y diluciones de trabajo estándar de ácido gálico de 0, 10, 25, 50, 100 y 500 µg/ml en MeOH: diH2O (70:30, v/v). Se hizo reaccionar 1 ml de extracto (o de disolución estándar) con 0,1 ml de sal Fast Blue BB al 0,1 % y se midió la absorbancia 420 nm de longitud de onda. Los resultados se expresaron como g equivalentes de ácido gálico por kg de peso fresco (mg GAE 100 g-1 PF).
Cuantificación de antocianinas monoméricas totales (FST)

Las antocianinas monoméricas totales se cuantificaron según el método diferencial de pH (Giusti y Wrolstad, 2001). Tras realizar la extracción se determinó el factor de dilución adecuado, se prepararon dos diluciones de cada una de las muestras: una solución de cloruro de potasio (0,025 M, pH = 1,0) y una segunda con acetato de sodio (0,4 M, pH = 4,5). La concentración de AMT se calculó midiendo la densidad óptica a las longitudes de onda de 520 y 700 nm mediante un espectrofotómetro y aplicando la siguiente fórmula: AMT = (A·FD·PM·V·MS)/ε·P·L·10, donde A (Absorbancia) = (A520nm - A700nm)pH=1,0 - (A520nm - A700nm)pH=4,5, FD es el factor de dilución, PM es el peso molecular (449,2 g mol para la molécula de cianidin 3-O-glucosido), V es el volumen total de extracción (ml), MS materia seca en g MS kg-1PF, ε es el coeficiente de extinción molar (26.900 cm-1 M-1 en disolución acuosa), P el peso de la muestra en (g) y l, el camino óptico (cm). La concentración se expresó en g equivalentes de cianidin 3-O-glucósido por Kg de peso fresco (mg CGE 100 g-1PF).

Cuantificación de la capacidad antioxidante hidrofílica (CAH)

La capacidad antioxidante in vitro se analizó mediante el ensayo de ABTS (Acido 2,2’-azino-bis-(3-etilbenzotiazolino)-6-sulfonico) (Wolfenden y Willson, 1982), que mide la capacidad relativa de los antioxidantes de neutralizar los radicales ABTS generados en disolución acuosa, en comparación con un control estándar de Trolox (análogo a la vitamina E). Para ello se preparó una disolución de radical ABTS mezclando 8 mmol l-1 de persulfato potásico (K2S2O8) en 25 ml de diH2O y diluida con MeOH: diH2O (70:30, v/v) hasta conseguir una absorbancia de entre 0,8 y 0,9 a 734 nm y unas diluciones estándar (0, 100, 200, 300, 400 y 500 µmol l-1) de Trolox MeOH/H2O (70:30 v/v), como diluciones estándar. Después se añadió 20 µL de extracto disolución estándar a 980 µL de disolución ABTS y se midió la absorbancia a 734 nm. La capacidad antioxidante se expresa en mol equivalentes de Trolox por kg de peso fresco (µmol TE 100 g-1 PF)

Análisis estadístico

Los análisis estadísticos se han realizado mediante el paquete informático R (R Core Team, 2013), realizando análisis tipo ANOVA para determinar si existen diferencias significativas o no entre tratamientos.

RESULTADOS

En la Figura 2 se representa el contenido total de compuestos fenólicos solubles (FST) por tipo de cultivo y variedad. En este caso, el tipo de cultivo (convencional y ecológico), no parece tener influencia en el contenido de fenoles solubles, esto es, las distintas variedades muestran un comportamiento muy similar y las diferencias se deben a las características de cada variedad, siendo la Amarilla de Kuartango la de mayor contenido en fenoles (1,772,6-1,743,4 mg GAE 100 g-1 PS convencional-ecológico), y la que menos, la variedad Arrocina (59,2-138,56 g-1 PS convencional-ecológico), No existiendo diferencias significativas entre el resto de variedades estudiadas.

Al analizar el contenido de antocianinas monoméricas totales (AMT), figura 3, se observa que, cómo era de esperar, las variedades más intensamente coloreadas son las que presentan un mayor contenido de antocianinas, destacando la Negra de Basaburua, de coloración negra (97-87,4 mg CGE 100 g-1 PF convencional-ecológico). Y al igual que sucede con el contenido total de fenoles solubles, no existen diferencias en función del tipo de cultivo.

Relacionada con la presencia de estos compuestos, se evaluó también la capacidad antioxidante de las distintas variedades (Figura 4).

La Amarilla de Kuartango, a pesar de presentar un mayor contenido total de fenoles, no fue la de mayor capacidad antioxidante (1,691,3-1,762,32 µmol TE 100 g PF convencional-ecológico). La variedad con mayor actividad antioxidante fue la Negra de Basaburua (2,495,1-2,602,5 µmol TE 100 g PF convencional-ecológico), posiblemente asociada al mayor contenido en antocianinas. Y tampoco se observaron en este caso, diferencias en cuanto al tipo de manejo agrícola.
Figura 2: Contenido en compuestos fenólicos solubles totales, FST (mg equivalentes de ácido gálico/100 g de Peso Fresco de alubia), de seis cultivares locales de alubia bajo un sistema de producción convencional (naranja) y ecológico (azul).

Figura 3: Contenido en Antocianinas monoméricas totales AMT, (mg equivalentes de cianidina 3-O-glucósido/100 g de Peso Fresco de alubia), de tres cultivares locales de alubia bajo un sistema de producción convencional (naranja) o ecológico (azul).
Ilustración 4: Capacidad antioxidante hidrofílica, CAH (μmol equivalentes de trolox/100 g de de Peso Seco de alubia), de seis cultivares locales de alubia bajo un sistema de producción convencional (naranja) o ecológico (azul).

DISCUSIÓN

Los resultados obtenidos demuestran, que tanto el contenido fenólico (FST y AMT), como la capacidad antioxidante hidrofílica (CAH), varían en función de factores genéticos, como la variedad de alubia.

Según la bibliografía consultada, el contenido y perfil fenólico varía en función de las distintas variedades de cultivo (Agazzi et al., 2018; Dutra et al., 2018; García-Díaz et al., 2018; Granato et al., 2016; Monagas et al., 2005; Ombra et al., 2018; Stavrou et al., 2018) y las concentraciones de compuestos fenólicos, como la actividad antioxidante, es mayor en las capas pigmentadas de las semillas que en los cotiledones (García-Díaz et al., 2018). De esta forma, en el caso de la alubia, el patrón de color de la testa o cubierta de la semilla, diferente en las distintas variedades, juega un papel importante (Ganesan & Xu, 2019). Mientras que los ácidos fenólicos y compuestos fenólicos no flavonoides (ácido hidroxibenzoico y ácido hidroxicinámico), aparecen principalmente en los cotiledones de la semilla (Ranilla et al., 2007), el color de la testa se basa en la presencia de polifenoles como las proantocianidinas, antocianinas, taninos condensados y glucósidos de flavonoles, donde aparecen en mayor cantidad (Xu et al., 2008).

Las antocianinas son responsables de la coloración rosa, roja, violeta y negra de las testas de las semillas, siendo las alubias más oscuras o negras aquellas que normalmente tienen el mayor contenido de antocianinas (Basso et al., 2018; García-Díaz et al., 2018; Juárez-López & Aparicio-Fernández, 2012; Monk et al., 2018), tal y como muestran también nuestros resultados. Mientras que las manchas amarillas o claras, se basan generalmente en la presencia de taninos condensados (Juárez-López & Aparicio-Fernández, 2012), pudiendo ser éstos los compuestos fenólicos presenten en la variedad Amarilla de kuartango.

En general, los altos contenidos fenólicos y de flavonoides en los extractos son un buen indicador de sus propiedades antioxidantes, ya que existe una correlación positiva entre el contenido fitoquímico y la actividad antioxidante (Gullón et al., 2018). Y en muchos estudios se observa una correlación positiva entre el contenido fenólico total y la actividad antioxidante (Gonçalves et al., 2013; Rocchetti et al., 2018; Stavrou et al., 2018), que no se cumple en nuestro caso, ya que la variedad de mayor contenido fenólico, la Amarilla de Kuartango, no es aquella que muestra la mayor capacidad antioxidante. Según los datos obtenidos, la variedad de mayor capacidad antioxidante es la Negra de Basabura, posiblemente asociada al mayor contenido en antocianinas.
Por otro lado, respecto al efecto que ejerce el tipo de manejo agrícola en la concentración y perfil fenólico, no existe un consenso claro en la comunidad científica. Algunos estudios muestran una mayor acumulación de compuestos fenólicos en productos cultivados bajo un manejo ecológico (Dutra et al., 2018; Smith-Spamgler et al., 2012; Spanu et al., 2017), existiendo dos posibles hipótesis que explican tal situación. Por un lado, podría deberse a que las plantas de los cultivos ecológicos, como consecuencia de la exclusión de pesticidas, están sometidas a más ataques por patógenos e insectos y a mayor competencia con la maleza que las de cultivo convencional, de forma que un mayor nivel de estrés lleva a una mayor concentración de compuestos fenólicos (Olsson et al., 2006). O bien, a que el aporte de fertilizante químicos disminuya la síntesis de compuestos fenólicos por las plantas (Spanu et al., 2017). En otros casos, se ha observado una mayor acumulación de estos compuestos en los cultivos convencionales (Margraf et al., 2016). Y en otros casos, no se observan diferencias significativas entre cultivos de manejo ecológico y convencional (Granato et al., 2015; Dutra et al., 2018), como muestran nuestros resultados. Esta ausencia de consenso, probablemente de deba a la dificultad de experimentar en el campo, donde intervienen cantidad de factores no controlables, que pueden afectar al contenido y perfil fenólico de las plantas.

Por último, cabe destacar que las alubias generalmente se consumen cocinadas, y que el tratamiento térmico o cocción puede afectar tanto a la concentración como al perfil fenólico de las diversas variedades. De hecho, se ha observado cómo las alubias crudas presentan una mayor concentración de fenoles que las cocinadas (Ombra et al., 2018), mostrando una reducción de hasta el 68 % del contenido fenólico tras la cocción (Basso et al., 2018). Sin embargo, los germinados de alubias muestran un mayor contenido fenólico que las alubias en crudo (Basso et al., 2018).

CONCLUSIONES

El factor genético, variedad de alubia, presenta un claro efecto tanto en el contenido de fenoles (FST y AMT) como en la capacidad antioxidante (CAH), de forma que las distintas variedades de alubia presentan distintas propiedades nutraceuticas.

Las diferencias observadas entre las distintas variedades se deben principalmente a los pigmentos de la testa o cubierta de las semillas.

Las variedades más oscuras o pigmentadas, como la Negra de Basabura, son aquellas con mayor capacidad antioxidante y por ello, que más beneficios para la salud humana ofrecen si se consumen regularmente.

La mayor capacidad antioxidante, en este caso, parece estar asociada al mayor contenido de antocianinas.

El tipo de manejo agrícola no parece tener un efecto sobre el contenido de fenoles solubles totales, el contenido de antocianinas monoméricas totales, ni sobre la capacidad antioxidante hidrofílica. Sería interesante analizar si afecta o no a la composición o perfil fenólico.

Considerando que la cocción de las alubias puede afectar al contenido fenólico, reduciéndolo y que se ha observado que el contenido fenólico puede aumentar a los 2-3 días de la germinación, sería interesante realizar un estudio sobre el potencial fenólico de las distintas variedades tras la cocción germinación de las mismas.

BIBLIOGRAFÍA

- Brian S. Wolfenden and Robin. L. Willson (1.982). Radical·cations as reference chromogens in kinetic studies of oneelectron

- Chávez-Mendoza, C.; Sánchez, E. Bioactive compounds from Mexican varieties of the common bean (Phaseolus vulgaris): Implications for health. Molecules 2.017, 22, 1.360.

• Xu, B.J.; Chang, S.K. Total phenolic content and antioxidant properties of Eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J. Food Sci. 2008, 73, 19–27. [CrossRef].
ESTUDIO DE CASO DE LA PRODUCCIÓN Y VALORIZACIÓN DE DOS VARIEDADES LOCALES DE ZANAHORIA MORADA EN ANDALUCÍA

Carrascosa-García M1, Yanes Figueroa M1, Padel S2, Oehen B3

1Red Andaluza de Semillas “Cultivando Biodiversidad”. Caracola del CIR, Parque San Jerónimo s/n, E-41015 Sevilla; Correo-e: info@redandaluzadesemillas.org
2Organic Research Centre. Elm Farm, Hamstead Marshall, Newbury RG20 0HR, Reino Unido. Correo-e: susanne.p@organicresearchcentre.com
3Research Institute of Organic Agriculture (FiBL). Ackerstrasse 113, Postfach 219 CH-5070 Frick, Suiza. Correo-e: bernadette.oehen@fibl.org

RESUMEN: Este estudio forma parte de una investigación más amplia que tiene como objetivo el análisis socioeconómico del mercado potencial de los alimentos locales y diversos y de las nuevas variedades en la Unión Europea, en el marco del proyecto H2020 DIVERSIFOOD (Nº 633571). En este caso se ha analizado el contexto productivo y comercial de dos tipos de zanahoria morada, proponiendo estrategias para la mejora de su valorización. Por una parte, la zanahoria morá de La Janda, recuperada a principio de los años 2000 por la cooperativa de producción ecológica La Verde de Villamartín (Cádiz) y, por otra, la zanahoria morá de Cuevas Bajas, con una morfología diferente a la primera y localizada en la vega del río Genil. El análisis se ha abordado a partir de una metodología de informantes clave a través de la realización de entrevistas semiestructuradas y su posterior análisis en torno a cinco bloques: percepción y movilización de recursos genéticos, definición de atributos de calidad específicos del producto, marketing y comunicación del producto, mejora de la red e integración en otras estrategias y evaluación de la eficacia y la sostenibilidad y necesidad de apoyo público. La investigación arroja una serie de recomendaciones como la necesidad de poner en marcha actividades formativas en autoproducción de semillas, desarrollar maquinaria agrícola adaptada a este cultivo, analizar los costes de producción de pequeñas y medianas explotaciones y diseñar una estrategia de comunicación que no esté basada únicamente en las características nutraceúticas de la zanahoria morada sino que incorpore otros elementos relacionados con el territorio y la comunidad.

Palabras clave: biodiversidad cultivada, comunidad, Daucus Carota L., sistema agroalimentario local
RECUPERACIÓN PARTICIPATIVA DE LAS SEMILLAS TRADICIONALES DEL PUEBLO MAPUCHE DEL SUR DE CHILE, COMO BASE FUNDAMENTAL DE SU SOBERANÍA ALIMENTARIA

Órdenes E, Sepúlveda T
Alianza Nacional Biodiversidad Alimentaria, Chile, biodimentaria@gmail.com

RESUMEN: Recuperar las variedades tradicionales de las comunidades mapuche y campesinas del sur de Chile de forma participativa e integrada, asegurando su revalorización productiva, alimentaria y cultural. La pérdida de biodiversidad local debido principalmente a la sustitución por las variedades modernas, sumado a profundos cambios en los sistemas productivos tradicionales, han encarecido la actividad agrícola provocando pobreza, migración, contaminación y pérdida de oportunidades, sin embargo mucho de esta, se puede encontrar en sectores aislados, en ferias locales y en intercambios de semilla, lo que sumado a un esfuerzo mayor por encontrar el conocimiento tradicional asociado a estas, permitiría recuperar una riqueza invaluable para la alimentación, la agricultura y aun la propia espiritualidad de un pueblo de tradiciones ancestrales. Para esto, se han realizado diversos conversatorios (trawun), intercambios de semilla (trafkintus), y talleres participativos y prácticos, que han permitido comprender el real valor de la semilla tradicional y reflexionar sobre las causas de su pérdida, también se han recolectado semillas de forma colectiva, que luego han sido caracterizadas y multiplicadas en semilleros vivos realizados en conjunto con las comunidades, las que comienzan a trabajar en un futuro semillero comunitario. Como resultado de dos años de trabajo, se han recuperado más de 200 variedades tradicionales en riesgo, que hoy vuelven a los campos, a las mesas y al conocimiento colectivo, como un acto urgente de soberanía alimentaria, protección de la biodiversidad y sustentabilidad, basados en sistemas de producción tradicionales llenos de técnica y sabiduría que formarán parte de una futura publicación nacional.

Palabras clave: biodiversidad, indígena, recursos fitogenéticos, variedades tradicionales

INTRODUCCIÓN

La historia de la biodiversidad agrícola es la historia de la propia humanidad, su relación, es un acto de estricta e inalienable interdependencia, el que a pesar de mostrar cada vez más fragilidad, se mantiene hasta el día de hoy. Según Toledo y Barrera–Bassols (2008) “la diversificación de los seres humanos se fundamentó en la diversificación biológica agrícola y paisajística”, si se pierde una se pierde la otra, en lo que se conoce como axioma biocultural (Toledo et al., 2002).

La biodiversidad es la base de nuestro sustento alimentario, nuestra nutrición y salud (Massieu & Chapela, 2002; Gepts, 2006; Johns, 2011; Negi & Maikhuri, 2013). En ella recae la capacidad de adaptación a entornos perturbadores como el cambio climático, plagas y enfermedades que amenazan la producción agrícola (Negi & Maikhuri, 2013) y ella ha sido y seguirá siendo la base genética para la obtención de nuevas variedades, ya sea tanto a nivel de campesinos como a nivel industrial (Rerkasem & Pinedo-Vásquez, 2011; Egea et al., 2015). Su importancia puede llegar a abarcar aspectos, culturales, patrimoniales y espirituales para diversos pueblos indígenas cuya cosmovisión está íntimamente ligada a la naturaleza (Toledo & Barrera–Bassols, 2008). Es el caso del pueblo Mapuche en Chile, cuya relación de dependencia con la naturaleza le lleva a referirse a la tierra como ñuke mapu (madre tierra en su idioma el mapudungun), al igual que al norte del país el pueblo aymara le llama pacha mama (madre tierra en idioma aymara).

Pero la historia, a pesar de lo fundamental de la biodiversidad agrícola para la existencia humana, dio un giro inesperado y peligroso, ya que en las primeras décadas del siglo pasado comenzaba a evidenciarse la pérdida de biodiversidad. Este proceso, hoy conocido como erosión genética, desde los años ‘50 comenzó a avanzar de manera alarmante, afectando a una gran cantidad de cultivos vitales para la alimentación, siendo reportada por diversos especialistas de todo el mundo (Maikhuri et al., 2001; Bellon, 2014; Biggs, 2004; Brush, 1986;
Del Castillo, 2004; Massieu & Chapela, 2002; Nehal et al., 2009). Existen cifras que establecen que la pérdida de variedades agrícolas ha sido del orden del 75% (Donelan, 1986; FAO, 1995). Esquinas (2009), presenta diversos ejemplos de pérdidas que llegan a un 90%, los cultivos tradicionales en algunos sectores de los Himalaya disminuyeron entre un 72 – 95% tan sólo en un plazo de 20 años (Maikhuri et al., 2001), en el caso de Albania entre los años 1941 – 1993 se perdió un 72,4% de variedades tradicionales y, en el caso del sur de Italia, entre 1950 y los años ’80, se perdió un 72,8% de ellas (Hammer et al., 1996).

La causa fundamental de este proceso de pérdida ha sido la sustitución de las variedades tradicionales por las variedades modernas (Brush, 2000; Cubillos & León, 1995; Egea et al., 2015; Esquinas, 2009; Maselli, 2013; Shiva, 2003; Stromberg et al., 2010). Estas variedades llamadas híbridas o mejoradas fueron la base fundamental de la revolución verde iniciada en los años ’50, que gracias a la subvención de sus costosos productos, logró implementarse en diversos países subdesarrollados, hasta el día de hoy, con la meta de alimentar al mundo. Sin embargo sus efectos colaterales hoy son ya conocidos, contaminación, pobreza, aumento de los costos productivos, erosión de suelos, enfermedades asociadas a sus productos y desigualdad, entre otros (Ceccon, 2008; Egea et al., 2015; Griffon, 1997). Evidentemente no solucionó el problema del hambre, dejando una lección aún no aprendida, ya que hoy se excusa en el hambre la urgencia de conseguir variedades con mayores rendimientos, y de que ésta no tiene relación con el aumento de la producción, sino que con la pobreza, lo que termina en una injusta distribución (FAO 1995; Esquinas, 2009; Ceccon, 2008). Es así que el año 2012 la FAO en su informe “Pérdidas y desperdicio de alimentos en el mundo”, establece que un tercio de la producción de alimentos destinados al consumo humano se pierde, mientras que el año 2017 el número de personas subalimentadas en el mundo aumentaba a 821 millones (FAO et al., 2018).

La solución inmediata para afrontar la pérdida de recursos fitogenéticos vino dada por la conservación ex situ, en bancos de germoplasma, que desde los años ’70 comenzaron a proliferar en todo el mundo, para llegar a ser en el año 2010 más de 1.750 a nivel mundial con más de 7,4 millones de muestras, existiendo mucha inquietud respecto al estado de las muestras y la prioridad en sus tipos de variedades, ya que muchas variedades silvestres no se encuentran bien representadas (FAO, 2010). Los problemas respecto a este sistema de conservación son diversos, el principal es que deja fuera a los principales protagonistas de la mejora vegetal histórica, indígenas y campesinas que han sido los responsables de donar más de la mitad del material genético que se conserva en los bancos, a quienes sin duda les debemos dicha herencia (Velásquez – Milla et al., 2011; Hammer & Tekiu, 2008). Sumado a que las semillas dejan sus procesos evolutivos vitales, en un contexto en el que estos se hacen más urgentes, en pleno cambio climático (Brush, 2000; Egea et al., 2015).

Es urgente por lo tanto regresar en el tiempo y volver a esa agricultura que durante siglos fue cómplice y mantenidora de la biodiversidad, en esa relación de dependencia que nunca debió romperse, sustentable, parte fundamental del medio ambiente, base de una alimentación diversa, nutritiva y saludable. Para esto como acto básico y principal se requiere encontrar la semilla tradicional que hoy está en serios procesos de pérdida y luego conservarlas en el campo, recuperando en lo posible el conocimiento asociado a esta, asegurando su permanencia mediante el uso, preparaciones, usos medicinales, propiedades nutritivnas, sumado a sus incomparables características organolépticas, como un recurso vital para la existencia humana y que además es limitado y preciado (Esquinas, 2009).

La conservación en campo es la mejor forma de conservación, sin embargo requiere necesariamente de su complemento de conservación ex situ. Ambas son complementarias y ninguna por sí sola conseguirá mantener eficientemente los recursos fitogenéticos (Brush, 2000; Hammer et al., 1996), y es en esta parte sin duda alguna, en que el aporte de experimentados indígenas y campesinos, que han mantenido su riqueza vegetal durante siglos en un acto de respetable herencia, juega un rol determinante en la seguridad alimentaria mundial.

Es el principal objetivo de este trabajo el recuperar las variedades tradicionales (VT) con y para las comunidades mapuches y campesinas que las han custodiado y mantenido por siglos, para ello se deben realizar las siguientes acciones: 1) Recoleccion: Catastro de variedades, 2) Reconocer: Asegurando el trabajo solo con VT, 3) Multiplicar: Semilleros vivos y compartirlas, 4) Revalorizar: Comprobación empírica de los beneficios de las VT y 5) Conservar: Sembrando (in situ), semilleros comunitarios (ex situ), y por el uso y conocimiento tradicional asociado.
MATERIAL/MÉTODOS

El trabajo comienza a fines del año 2015 con diversas visitas a comunidades mapuche y campesinas de las regiones del Biobío, La Araucanía y Los Ríos al sur de Chile. En dichas visitas se participó en más de 40 trafkintus (intercambios de semillas y saberes) con diversas comunidades y agrupaciones para comenzar a conocer el estado de las VT del territorio y la recolección de material genético, el cual en todas las ocasiones se intercambió por otras VT, para asegurar un beneficio a ambas partes, como un acto mínimo de equidad. Se realizaron preguntas a destacadas curadoras de semillas y también a agricultores que no mantenían semillas tradicionales para comprender en profundidad los factores responsables de la pérdida de recursos fitogenéticos. Se visitaron constantemente las ferias locales, como un medio fundamental para conocer las variedades más producidas y comercializadas en la zona. Se visitaron comercializadores de semillas con años de experiencia en la venta de estas como alimento. Se conversó y entrevistó a 50 personas con experiencia en la producción de VT realizando en el transcurso de los 3 años, más de 100 visitas a diferentes agricultores del territorio para observar el estado de los recursos fitogenéticos en campo y complementar el rescate de las semillas con su conocimiento asociado, comprendiendo la dependencia que existe entre ellos.

Finalmente con todo el material recolectado de las tres regiones se establecieron diversos semilleros de campo. Las primeras colectas se multiplicaron y caracterizaron en dos semilleros establecidos en la Región de Atacama, al norte de Chile el año 2016, aprovechando la experiencia y compromiso de las comunidades diaguitas, sumado a un clima ideal para este fin. El año 2017 se establecen los primeros tres semilleros en la Región de La Araucanía, uno base, donde se multiplicaron todas las variedades y dos complementarios para asegurar variedades nuevas con el apoyo de la Corporación Nacional de Desarrollo Indígena de Chile. Este año 2018 hay un semillero base y uno complementario, donde se reproducirán las VT.

Los propósitos fundamentales de los semilleros son tres; 1) Multiplicar las variedades para asegurar su población, 2) Caracterizar las variedades en campo con descriptores morfológicos para establecer cuáles son tradicionales, comerciales o exóticas y 3) Demostrar en campo las ventajas productivas de las VT, para su revalorización.

Se determinó además el estado de las VT, el cual se dividió en 4 grupos principales, basados en la experiencia de 8 años de recuperación de las mismas, considerando como indicadores su distribución, en los tres sectores productivos, cordillera, valle central y sector costero, su presencia en trafkintus y ferias locales, además del número de personas que las tienen. Evidentemente existirán excepciones, sin embargo la gran mayoría de los casos se pueden evaluar con estos indicadores (Cuadro 1).

<table>
<thead>
<tr>
<th>Indicadores considerados</th>
<th>Abundantes</th>
<th>Suficientes</th>
<th>Escasas</th>
<th>En riesgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Se comercializa en ferias locales</td>
<td>Sí (periódicamente)</td>
<td>Sí (intermitentemente)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Se intercambia en trafkintus</td>
<td>Sí (en la mayoría)</td>
<td>Sí (en algunos)</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Se encuentra en distintos sectores</td>
<td>2 a 3 sectores</td>
<td>2 a 3 sectores</td>
<td>1 o 2 sectores</td>
<td>1 sector</td>
</tr>
<tr>
<td>Personas que la tienen</td>
<td>≥ 10</td>
<td>6 a 9</td>
<td>2 a 5</td>
<td>1 a 3</td>
</tr>
</tbody>
</table>

Cuadro 1. Estado de conservación de las variedades tradicionales catastradas.

Durante toda la investigación se realizaron talleres teórico – prácticos para transferir todos los conocimientos a las comunidades y mantenerlas informadas respecto a los avances de esta, actividades que durante este año han continuado, también se comenzó la entrega de variedades recuperadas a las comunidades participantes para que inicien sus propios semilleros comunitarios. Durante los talleres se realizan diversos ejercicios sociales, para de una manera bastante lúdica y empática, intentar comprender algunos de los procesos de reemplazo de las VT, información que muy difícilmente dan los agricultores de manera simplemente hablada.

Para complementar la información, se realiza un estudio bibliográfico y sociológico respecto a la agricultura tradicional del pueblo Mapuche, para contextualizar, contrastar e integrar toda la información levantada. Todas...
las actividades se realizaron como equipo, en el cual agricultores y profesionales aportaron, enseñaron y aprendieron por igual, comprendiéndonos a todos como beneficiarios y protectores de la biodiversidad agrícola.

RESULTADOS

Luego de 3 años de recolección y reconocimiento de variedades tradicionales basados en descriptores morfológicos, la información de experimentadas curadoras de semilla y el reconocimiento de las principales variedades comerciales del territorio que siempre son pocas, el total de VT encontradas es de 237, cuyo detalle por especie se presenta en el Cuadro 2.

<table>
<thead>
<tr>
<th>N. Común</th>
<th>N. Científico</th>
<th>Variedades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poroto</td>
<td>Phaseolus vulgaris L.-Phaseolus coccineus L.</td>
<td>115</td>
</tr>
<tr>
<td>Maíz</td>
<td>Zea mays L.</td>
<td>31</td>
</tr>
<tr>
<td>Ají</td>
<td>Capsicum annum var. longum (A. DC.) Sendtn.</td>
<td>12</td>
</tr>
<tr>
<td>Quínoas</td>
<td>Chenopodium quinoa Wild.</td>
<td>12</td>
</tr>
<tr>
<td>Papas</td>
<td>Solanum tuberosum L.</td>
<td>11</td>
</tr>
<tr>
<td>Zapallos</td>
<td>Cucumita maxima Duch.-Cucumita pepo L.</td>
<td>8</td>
</tr>
<tr>
<td>Arvejas</td>
<td>Písum sativum L. ss. sativum var. Sativum</td>
<td>7</td>
</tr>
<tr>
<td>Habas</td>
<td>Vicia faba L.</td>
<td>6</td>
</tr>
<tr>
<td>Tomates</td>
<td>Lycopersicon esculentum Mill.</td>
<td>5</td>
</tr>
<tr>
<td>Lechugas</td>
<td>Lactuca sativa L.</td>
<td>5</td>
</tr>
<tr>
<td>Chalotas</td>
<td>Allium cepa var. aggregatum G.</td>
<td>5</td>
</tr>
<tr>
<td>Frutillas</td>
<td>Fragaria chiloensis L.</td>
<td>4</td>
</tr>
<tr>
<td>Linaza</td>
<td>Linum usitatissium L.</td>
<td>2</td>
</tr>
<tr>
<td>Lenteja</td>
<td>Lens culinaris Medik.</td>
<td>2</td>
</tr>
<tr>
<td>Chicharo</td>
<td>Lathyrus sativus L.</td>
<td>2</td>
</tr>
<tr>
<td>Garbanzo</td>
<td>Cicer Arietinum L.</td>
<td>2</td>
</tr>
<tr>
<td>Otras</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>TOTAL COLECTADO</td>
<td></td>
<td>237</td>
</tr>
</tbody>
</table>

Cuadro 2. Total de variedades tradicionales catastradas del pueblo mapuche en el sur de Chile.

Sólo entre las cinco principales especies: poroto, maíz, ají, quínoa y papa, representan más de un 76% del total de muestras colectadas, siendo el poroto la especie más abundante con un 48% del total de muestras. En este grupo se incluye el poroto común (Phaseolus vulgaris L.), el poroto pallar sureño (Phaseolus coccineus L.), una accesión de pallar nortino (Phaseolus lunatus L) y viñas (Vigna unguiculata (L) Walp ssp. Sesquipedalis (L)), conocidas en la Región como porotos metros.

Respecto al maíz, corresponde a la segunda especie en importancia en relación al número de muestras, representando un 13% del total, le siguen en importancia el ají con la quínoa, con un 5% cada uno y la papa con un 4,6%. Es importante señalar que la seguridad de estar frente a variedades tradicionales vino sólo luego de la caracterización en campo, fueron más de 15 variedades las que fueron entregadas como tradicionales a pesar de ser comerciales o de reciente introducción, como en el caso de los porotos Brío, Magnum, Sofía, Futuro, Borlottu y Rubí, entre otros. Para el caso de tomates, la presencia de variedades heirloom como el tomate Perita, Cal ace y otros casos como el haba Luz de otoño, la lechuga Maravilla de las 4 estaciones y la única variedad de quínoa comercial hasta el momento, la quínoa Regalona Baer, todas estas variedades se entregaron como tradicionales, esto hace que el trabajo de campo sea fundamental a la hora de reconocer, seleccionar y multiplicar la semilla.

Respecto al estado de las variedades tradicionales encontradas, estas se dividieron en 4 grupos principales usando los indicadores presentados anteriormente. Es importante establecer que estos indicadores son dinámicos, como lo es la propia semilla, por ejemplo se ha dado el caso que una variedad se encontró en un sólo sector, no apareció en ningún trafkintü, sin embargo de un año a otro el único agricultor que tenía dicha variedad
comprueba que en la feria le ofrecen un precio tres veces superior por su poroto, ya que nadie más lo vende, entonces lo multiplica y lo lleva a la feria para su venta, nosotros vamos y compramos 3 kilos y los compartimos con otros productores que a su vez lo comparten con otros. Como consecuencia de lo anterior, al año siguiente esta variedad de poroto ya se vende en la feria y es producido por 10 agricultores de tres sectores distintos, pasando en tan solo dos años de un estado de riesgo a uno abundante sin la necesidad de ninguna subvención. Este caso es real y esperamos que se repita constantemente, la única manera de recuperar las semillas tradicionales es devolviéndolas a las manos de los productores que han sido sus cómplices históricos, con ese pequeño hecho, toda la humanidad ha ganado.

Es importante destacar que más de un 75% del total de muestras se encuentra en un estado preocupante, ya sea en una condición de riesgo (27%) o escasa (48,9%), tal como se aprecia en la Figura 1. En ambos casos hablamos de variedades que no se encuentran ni en mercados formales ni informales, no son comercializadas y no están presentes en los tráficos o intercambios de semillas que se realizan en el territorio durante casi todo el año.

Dentro de las variedades escasas, en muchos casos solo se consiguió una a tres semillas, de ellas más del 90% logró ser rescatada, incorporando tecnologías básicas a los semilleros como el uso de almacigos, para evitar pérdida por pájaros o gusanos del suelo, usando diversos sustratos estériles. Así se hizo con la mayoría de las variedades producidas en los semilleros, inclusive porotos y maíces que comúnmente se hacen por siembra directa. Sin embargo la importancia de asegurar el material justificó la inversión en estos insumos, como en sistemas de riego tecnificados y mallas antimalezas de larga duración, que en su conjunto permitieron mejorar notablemente las condiciones productivas locales, considerando que la disponibilidad de agua durante la temporada estival es cada vez más escasa en la Región.

Por medio de diversas consultas, reuniones grupales y visitas a campo se establece que son decenas de variedades las que han desaparecido de lo cotidiano, del conocimiento cultural, de la cocina y usos, muchas de ellas incluso llegando a perder su propio nombre común, lo cual solo sucede cuando los procesos erosivos han llegado a límites peligrosos y difíciles de revertir. Aun así, siempre parece existir la persona que ha conseguido mantener la herencia, ya sea de la semilla tangible o de algún conocimiento asociado a ella, lo cual en un trabajo dinámico y colectivo permite ir armando el sensible rompecabezas de la semilla y su conocimiento tradicional.

Fue por medio de consultas también, que se pudo establecer como causa principal de la erosión genética local a la sustitución, la misma que ha sido reportada históricamente desde hace décadas a nivel mundial. Esto se pudo corroborar con los ejercicios hechos con diversas comunidades, que son parte de la discusión, en los cuales además queda claramente evidenciado un cambio profundo en sus prioridades a la hora de decidir por un tipo de semilla particular, siendo indicadores comerciales los más importantes a la hora de escoger una variedad, la más vendible, más homogénea y más rendidora.
Los semilleros se establecieron en sectores diferentes en cuanto a su régimen climático y sus características de suelo, buscando representar de la manera más amplia la diversidad productiva del territorio, sus limitantes y ventajas particulares. Se multiplicaron el año 2017 un aproximado de 150 variedades y en el transcurso de este año se están multiplicando las 87 variedades restantes, sumando un nuevo ciclo para las variedades del semillero anterior, por lo que este año el semillero multiplicará el total de 237 variedades, concluyendo con la caracterización morfológica y productiva inicial del total de variedades recolectadas.

La visita personalizada a diversas fincas de agricultores ha permitido constatar in situ el estado de los recursos fitogenéticos tradicionales, incluyendo frutales criollos, nativos y especies medicinales, que en su conjunto conforman la huerta mapuche en su integralidad, basada en el policultivo, la rotación de cultivos, la fertilización en base a guanos y algas, sin presentar ningún orden particular en la mayoría de los casos, convirtiéndose, como dicen algunos entendidos, en una verdadera extensión del bosque nativo, del cual recolectan una gran variedad de frutos como el maqui, la murtilla, la chaura, el michay, el lleuque y el arrayán entre varios otros, sumado a la recolección de diversos hongos como los changles, digueñes, pinatras y morchelas. Es esta riqueza la que mantiene al sistema agrícola mapuche como una dualidad entre la recolección y la producción en huerta, la cual se ha mantenido durante siglos.

DISCUSIÓN

Para contextualizar los resultados obtenidos se hace fundamental dar una vuelta al pasado para contrarrestarlos con otra realidad y comprender los fenómenos sociales y productivos. Para esto citaremos a Pedro de Valdivia, 1561, el primer conquistador español, cuyo relato al llegar a la región del Biobío (parte del estudio) sin duda corresponde al primero de todos en el territorio: “Es todo un pueblo en una sementera, próspera de ganado como la del Perú; abundosa de todos los mantenimientos que siembran los indios para su sustentación, así como maíz, papas, quinua, madi, agi, y frisoles; la gente es crecida, doméstica y amigable y blanca, vestidos todos a su modo todos de lana aunque los vestidos son algo groseros; son grandísimos labradores” (Concepción, 25 de septiembre de 1561).

Ya existían entonces en el territorio maíces, muchas de dichas variedades seguramente corresponden a algunas de las colectadas en la actualidad, fue uno de los cultivos americanos que más cautivó a indígenas y españoles y, aunque tuvo un grado de desplazamiento en la comida tradicional local, ya que la harina y el muday (bebida fermentada del pueblo mapuche) que se hacían con maiz posteriormente se harían con el trigo y cebada respectivamente, ambos traídos del primer mundo; no se convirtió en un cultivo subutilizado ni en una variedad extinta como sí sucedió con dos granos nativos como Bromus mango (Gay, 1865), y Elymus sp., y la oleaginosa aquí mencionada como madi (Madia sativa Mol.). El mango se extinguió (Manzur, 2004), al ser reemplazado por granos más grandes y uniformes y los otros jamás volvieron a cultivarse con fines alimentarios (León, 1992). Es el caso de este cereal nativo, que alguna vez fue fundamental para la alimentación del pueblo mapuche, muy interesante de analizar en el contexto de la conservación ex situ, ya que en el banco de germoplasma de la estación Experimental Agropecuaria Alto valle, del INTA en Argentina, existe una colección de 40 acciones de esta especie (Knudsen, 2000) y a pesar de que sería de un valor histórico y étnico indiscutido entregar muestras a las comunidades mapuche, esto seguramente no ocurrirá, ya que corresponde a las llamadas especies silvestres o también podría considerarse como un cultivo promisorio (Egea et al., 2015), que incluye tipos ancestrales como los tipo
araucanos (para vaina granada y grano seco), coscorrones (principalmente para vaina granada), burros (para grano seco) y cristales (fundamentalmente para vaina verde). A pesar de corresponder a una variedad autógama, siempre existe un pequeño porcentaje de alogamia que permite que cada año aparezcan nuevas variedades, las cuales suelen ser de fácil y rápida estabilización.

Respecto a la quinua mencionar que fue uno de los cultivos tradicionales, que se reemplazó por el trigo y la avena. Hace décadas era un alimento importante en las huertas y en la dieta mapuche, con fama de ser energética y medicinal, sin embargo su cultivo prácticamente desapareció hace algunas décadas, por las fuertes presiones que existieron para abandonar su cultivo considerado como marginal y asociado a la pobreza, las historias de humillaciones son bastante recurrentes y no es un caso aislado, ya que varios alimentos tradicionales se asocian a la idea de pobreza o retraso (Johns, 2011). Paradójicamente su cultivo comienza a resucitar nuevamente hace algunos años con el prestigio internacional que ganó este cultivo como súper alimento.

Los procesos de pérdida sin duda son el resultado de diversos procesos sociales, culturales y comerciales muchas veces complejos de comprender e integrar, sin embargo los ejercicios sociales jugaron un rol fundamental en esta investigación, en ese intento de comprender que sucedió en los campos. Uno de los ejercicios realizados con diversas comunidades nos entrega al menos algunas directrices importantes de analizar para esta ocasión el elegido fue el maíz, ver en Figura 2:

Se escoge a un agricultor que presente liderazgo y empatía, siendo capaz de tomar una decisión apoyada por la mayoría de los miembros de su comunidad, se le entrega el maíz N°1, se recrea un contexto en el que este maíz le fue heredado por su madre y es su deber cuidarlo. Ya con el maíz N°1 en sus manos se acerca el profesional y le propone cambiarlo por el maíz N° 2, que a pesar de ser de un poco más pequeño es de un sólo color, amarillo y sus hileras son más rectas. Las opiniones aunque divididas, deciden con un 60% mantener su maíz, un 40% prefería cambiarlo por las características antes mencionadas, uniformidad y color, pero no era suficiente como para transar el maíz heredado. Luego se le ofrece cambiarlo por el maíz N°3, que a pesar de ser el doble de tamaño y de hileras uniformes, presenta un color que ya no se consume ni se comercializa, sin embargo la totalidad decide cambiarlo, aludiendo a que su maíz inicial es demasiado pequeño. Continúa el agricultor entonces con el maíz N°3 y se le ofrece el maíz N°4, sin pensarlo la absoluta totalidad decide aceptarlo, fundamentalmente porque es más grande y además presenta un color comercial. Entonces se agrega el factor curiosidad al ejercicio, ofreciendo esta vez una variedad que no cumple con ningún otro requisito más que ser novedosa, el maíz N°5 es un pequeño maíz azul casi extinto, que se usaba con fines ceremoniales y se le decía kalfū wa (maíz azul en mapudungun, el idioma local). Sin embargo se produce un verdadero enfrentamiento entre hombres y mujeres, donde finalmente ellas ganan, históricamente es la mujer mapuche la que se hacía cargo de la huerta y la medicina entre otras cosas más. Se prosigue entonces, una vez que tienen el maíz N°5 en sus manos, se les ofrece esta vez un gran
maíz rojo, el N°6 que sin dudarlo, todos de manera unánime deciden aceptar, aunque su color rojo les complica, lo que hacen notar abierta y efusivamente. Es increíble pensar que hace algunas décadas atrás los maíces de colores abundaban en la huerta y en la mesa mapuche, la erosión genética parece ser responsabilidad de todos.

Las miradas están fijas, presenten que el tema no puede terminar en un maíz rojo, entonces se les ofrece el maíz N°7, que a pesar de tener menor número de hileras, cumple con el color que todos asocian a venta y ganancia, todos parecen satisfechos, hasta que nuevamente se les propone un cambio pero esta vez más profundo. Se le propone entonces al agricultor intercambiar todas sus variedades por el maíz N° 7, en el estratégico sistema del cambio 1X, por cada maíz tradicional que tenga se le pasará uno del N°7. Sin pasar por reflexiones, los agricultores aceptan la propuesta, ya nadie recuerda aquella variedad heredada que hace unos cuantos minutos estaba en sus manos, nadie piensa en guardar al menos algunas muestras de su variedad, el ansia por ese supuesto maíz ideal no merece cálculos. Para terminar, cuando el agricultor piensa que el ejercicio acaba, aparece el invencible maíz N° 8, que como se puede observar en la imagen, es una obra maestra a los ojos de la agricultura convencional. Las miradas parecen atónitas, embriujadas ante tal maravilla. La pregunta entonces cambia el ambiente, ¿qué les parece esta variedad?, maravillosa responden, se la regalaremos a quien responda quién la inventó, argumentamos. Las respuestas son las siguientes, en orden de frecuencia: 1) los científicos, 2) las empresas, 3) la universidad, 4) los laboratorios.

Bueno, respondemos, lamentamos decirles que nadie contestó correctamente, así que el maíz vuelve con nosotros y así nuestro maíz se paseó de taller en taller, por todo el territorio nacional el resultado es el mismo. Les contamos entonces que corresponde a una variedad tradicional llamada 8 hileras, que hace décadas se distribuía desde la zona central al sur del país, y que a pesar de llamarse así puede presentar desde 8 a 12 corridas de dientes (Paratori & Sbárbaro, 1990).

El ejercicio anterior permite obtener valiosa información respecto al comportamiento de los agricultores frente al paradigma de conservar o sustituir sus variedades tradicionales, y el ejemplo repetido en decenas de comunidades nos deja la clara conclusión de que si no existen profundos procesos de reflexión respecto a la importancia de los recursos fitogenéticos locales, y una mirada crítica frente a la uniformización de los criterios, procesos en los cuales centros de investigación públicos y profesionales del área tienen gran responsabilidad, no habrá una efectiva y duradera recuperación y conservación de dichos recursos. Actualmente no se genera investigación pública respecto a variedades tradicionales porque no presentan los incentivos que sí presentan la mejora e investigación comercial, que no busca la conservación sino la comercialización. Definitivamente como dicen Toledo & Barrera-Bassols (2008) “La diversidad exalta la variedad, la heterogeneidad y la multiplicidad y es lo opuesto a la uniformidad…La diversificación es sinónimo de evolución”. Es esta uniformidad precisamente la que ha afectado profundamente la diversidad genética (Massieu & Chapela, 2002).

La industria no sólo ha cautivado los mercados de semillas, donde la oferta se reduce exclusivamente a híbridos dulces, amarillos y uniformes, sino que también por medio de marketing cautivan los mercados, generando un círculo cerrado de producción – comercialización, donde la biodiversidad con todos sus colores, asociados a sus diversos aportes nutricionales, parecen no importar. Los rendimientos siguen siendo el principal parámetro a conseguir y el prejuzgo con respecto a las semillas tradicionales es tal, que parece casi increíble que alguna pudiese llegar a competir con los híbridos, sin embargo el maíz ocho hileras dejó una lección. Pero este no es un caso aislado, existen muchas variedades tradicionales que pueden presentar mayores rendimientos que los híbridos, en el caso del tomate, el poroto, el melón, el ají y varias otras muchas variedades igualan o superan a los híbridos vigentes (Ordenes & Sepúlveda, 2017). Para constatar estos casos y comenzar a hacerlos cotidianos se hace urgente la conservación en campo, los programas nacionales de cada país debiesen invertir en ellas, beneficiando a gran número de pequeños agricultores que mantienen dicha biodiversidad, en un acto de bondad pocas veces dimensionado y retribuido (Bellon et al., 1997; Brush, 1986).

Las huellas de la revolución verde definitivamente aún se sienten fuertes en los campos latinoamericanos, con una agricultura aún dependiente en su mayoría de insumos petroquímicos dañinos para la salud humana además de contaminantes, con alta demanda hídrica y energética, sin embargo su huella más perjudicial sin duda alguna ha sido el reemplazo progresivo de las variedades tradicionales por monocultivos industriales y...
variedades híbridas. Esto se puede deducir contraponiendo lo que hoy rescatamos con los listados de los bancos de germoplasma nacionales (Knudsen, 2000) y bases de bancos de genes internacionales con muestras nacionales, presentándose, al menos a nivel de campo, en un estado erosivo indudable, sin embargo gracias a la labor incalculable de ancianas mapuche principalmente se han podido recuperar muchas de ellas en un trabajo que recién comienza.

CONCLUSIONES/RECOMENDACIONES

La pérdida de variedades tradicionales es evidente en las regiones de estudio, sin embargo con un trabajo metódico, constante, creativo y participativo muchas de ellas pueden recuperarse para las comunidades mapuche y campesinas del territorio. Antes de que esto ocurra, se deben realizar importantes procesos de reflexión en el que comprendamos que los rendimientos y la venta no lo son todo, que es importante saber cuánto aporta una variedad a nuestra nutrición, a nuestra salud, a la conservación de nuestros recursos fitogenéticos, el medio ambiente que nos cobija y a nuestra soberanía y seguridad alimentaria.

La pérdida de biodiversidad ha traído consigo la pérdida de técnicas y conocimientos asociados, los que deben irse recuperando en conjunto con las semillas en una dualidad única e interdependiente. En este conocimiento juega vital importancia el uso y consumo de las VT, no debemos olvidar que el recorrido de una semilla para llegar a su real recuperación debe pasar por las mesas por la memoria y volver a la tradición como una riqueza íntegra y valorada.

Las principales donantes de material vegetal tradicional han sido sin duda mujeres de edad mayor, son ellas quienes no temen dar ni compartir, son ellas las que transmiten su conocimiento a las nuevas generaciones. Son ellas las llamadas curadoras de semillas, que cumplen con diversas características que les diferencia de las demás, no son coleccionistas de semillas, sino más bien son las repartidoras de ellas, encuentran en el compartir una estrategia indispensable para asegurar la disponibilidad de semillas, su frase suele ser “le doy estas semillas para que se arme, luego si a mí me faltaran usted me convida.” Finalmente son quienes mejor saben darle uso a la biodiversidad, saben recetas tradicionales que preparan de forma cotidiana.

Luego de los respectivos procesos de reflexión se hace prioritario el establecimiento de semilleros de campo para que los agricultores constaten en terreno las grandes ventajas de producir semillas tradicionales, lo cual fue comprobado por todos los agricultores que participaron de los semilleros en campo el año 2017.

Las 237 variedades recuperadas pasarán a formar parte de una publicación oficial y serán la base para el futuro semillero comunitario en beneficio de todas las comunidades que hoy comienzan a recuperar el verdadero valor de su propia semilla, que además de ser herencia y cultura, puede ser una real alternativa productiva de gran calidad alimentaria, nutricional y comercial, con una capacidad de adaptación insuperable.

La estrecha y profunda relación que han mantenido por siglo las comunidades mapuche con sus recursos naturales ha permitido que gran cantidad de semillas y sus conocimientos asociados hayan permanecido en el tiempo, muchas de ellas al punto de la desaparición, pero que se han podido recuperar con actividades colectivas y participativas en las que la espiritualidad y la significancia integral han jugado un rol fundamental, cuya profundidad se reflejan en sus propias palabras, “La semilla es vida. Genera salud y tiene un significado cultural, espiritual, social y religioso. Sin su diversidad no somos nada” (Ana Tragolaf Ancalef, 2017, Huertera mapuche).

REFERENCIAS

• Brush S. 2000. Genes in the field on-farm conservation of crop diversity. 279 p.

• Valdivia P. 1561. Cartas al emperador Carlos V. En Colección de historiadores de Chile. Santiago de Chile, 1545 – 1552.
ESTABLECIMIENTO DEL PRIMER SEMILLERO Y VIVEIRO COMUNITARIO PARA LAS COMUNIDADES INDÍGENAS Y CAMPESINAS DE CHILE

Órdenes E, Sepúlveda T
Alianza Nacional Biodiversidad Alimentaria, Chile, biodimentaria@gmail.com

RESUMEN: El Valle del Huasco, ubicado al norte de Chile, era un vergel de biodiversidad hace décadas atrás, la historia en voz de sus ancianos resulta una imagen que hoy cuesta imaginar. Habitado desde tiempos precolombinos por el pueblo diaguita, alfarero y agricultor, que aprovechando su gran diversidad de suelos y climas, crearon las condiciones propicias para asegurar una rica biodiversidad local. El panorama, sin embargo, cambió drásticamente desde los años ’90, el avance avasallador de la revolución verde, comienza a invadirlo con monocultivos, agroquímicos y variedades modernas, sustituyendo rápidamente su biodiversidad agrícola, la que en 20 años comenzó a desaparecer progresivamente, junto a las prácticas y técnicas de su agricultura tradicional. Negándose a perder toda su riqueza, el propio pueblo diaguita, en conjunto con su equipo profesional, comienza la primera recuperación nacional de las especies agrícolas tradicionales de Chile, trabajo que prosiguió con la recolección de distintas semillas tradicionales del país, sumando al pueblo mapuche y aymara en esta urgente actividad, concluyendo el año 2016 con el primer banco comunitario de semillas del país que hoy cuenta con más de 900 variedades vegetales distintas, tres semilleros in situ y diversos viveros familiares donde se recuperan y multiplican anualmente más de 150 variedades de hortalizas y frutales. Su avance principal ha sido abrir sus puertas a todos los pueblos indígenas y comunidades campesinas del país invitándoles a recuperar sus propias semillas tradicionales e incentivándoles a establecer sus propios semilleros comunitarios, compartiéndose mutuamente sus semillas como lo hicieron en épocas precolombinas.

Palabras clave: aymara, biodiversidad, diaguita, mapuche, semillas tradicionales

INTRODUCCIÓN

En todo el mundo es aceptado y reconocido a la fecha, la erosión genética y la acelerada pérdida de recursos fitogenéticos locales y patrimoniales de comunidades indígenas y campesinas. Desde el año 1996 en que la FAO en su Primer informe sobre el estado de los recursos fitogenéticos en el mundo, reconoció que se había perdido un 75% de la biodiversidad agrícola del planeta, comenzó una acelerada carrera en diversos lugares por su recuperación antes que la pérdida fuera irreversible.

Como solución a esta problemática, en la que se veía amenazada la propia seguridad alimentaria mundial, se establecen centros de conservación ex situ llamados Bancos de Germoplasma, los que a comienzos de los años ’70 eran menos de 10, con medio millón de muestras aprox., y para el año 2010 ya sumaban más de 1.750 con más de 7,4 millones de muestras (FAO, 2011), cambiando drásticamente el mapa mundial de recursos fitogenéticos, su disponibilidad y dueños. Se llenaron mediante misiones o expediciones de recolección a agricultores indígenas y campesinos pertenecientes a la agricultura tradicional o de subsistencia y que mantenían sus semillas y variedades locales por tradición, espiritualidad, compromiso, herencia, por vivir en lugares aislados o por el alto costo de las llamadas semillas mejoradas. Chile también fue blanco de muchas de estas recolecciones que se llevaron gran parte de material genético, del cual hoy mucho se encuentra extinto a nivel de campo. Como ejemplo se puede mencionar una de las colectas realizadas por Estados Unidos en 1962 de 527 variedades de poroto que luego donó al CIAT en 1974, así como las 9 accesiones de poroto que colectó en 1992 desde el mercado público de Temuco, haciendo evidente la facilidad que poseen para trasladar este material y lo vulnerable que se puede hacer esta propiedad colectiva a través de los intercambios entre programas de fitomejoramiento.

Los Bancos de Germoplasma nacionales se rigen por las mismas normas internacionales de uso para investigación. Según IPGRI (2000) formados principalmente por instituciones o universidades, los 4 principales bancos que se encuentran en Chile pertenecen al INIA con un banco base y 3 activos, que hoy en día comparten material sólo a fitomejoradores y no son de libre acceso para los cientos de agricultores que los han llenado con el...
material genético que les compartieron. El acceso al material genético se obtiene firmando un ATM (Acuerdo de Transferencia de Material) que es un comodato, es decir, una transferencia de materiales, sin transferencia de la titularidad, sin garantías y sin derecho a compartirlo con terceros, ni el material recibido, ni su progenie (Bennett et al., 2010). Es fácil entender entonces las múltiples iniciativas colectivas que se han formado a nivel mundial, en países como Bangladesh, Bolivia, Brasil, Guatemala, India, Malasia, México, entre otros, que con mayor o menor éxito, han buscado establecer bancos de semillas comunitarios para evitar la erosión genética local, conservando la biodiversidad y recuperando las semillas tradicionales porque las consideran más resistentes a condiciones climáticas, plagas, enfermedades, u otras razones sociales y culturales (Brush & Meng, 1998; Maikhuri et al., 2001; Vernooy et al., 2016).

En la antigüedad la riqueza y variedad de hortalizas y cultivos de Chile quedó retratada por muchos cronistas y naturalistas como Alonso de Ovalle, el ingeniero Frezier, Claudio Gay, etc. quienes lo visitaron y documentaron la agricultura nacional a su paso desde el año 1600 hasta finales de 1800. Destacan de esos años los valles de Huasco, Copiapó, la zona central y las provincias de Arauco y Chiloé, donde se retrata una enorme riqueza de maíces, porotos, zapallos, quinua, etc., adaptados a las más limitantes condiciones productivas. Riqueza que se comienza a perder progresivamente desde mediados del siglo XX producto de los monocultivos y el reemplazo por la semilla mejorada subvencionada por el estado, en el marco de la revolución verde (Brush, 2000; Ceccon, 2008).

La erosión genética no sólo hace referencia a la pérdida de semillas tradicionales, sino que incluye también a todas las especies vegetales importantes para la alimentación como son los frutales (Soriano et al., 2008).

Desde el año 1600 hasta principios del 1900 la fruticultura en Chile estaba principalmente confinada a los huertos caseros para autoconsumo, era común encontrar casas de la capital u otras grandes ciudades con sus propias quintas o jardines llenos de biodiversidad. Riqueza y abundancia que los cronistas también relataron a su paso y que quedó evidentemente expuesta, en dos exposiciones frutícolas que se realizaron en el país en 1922 y que generaron el interés del gobierno para desarrollar la fruticultura a un nivel comercial e industrial, principalmente con fines de exportación. Este interés provocó en la década del ‘20 que las plantaciones frutales, principalmente a través de programas de fomento del gobierno, aumentaran en un 50% comenzando una rápida disminución de la fruticultura de autoconsumo que se vio muy sobrepasada a nivel de superficie en pocos años y pasó a no tener ninguna importancia ni desde el punto de vista económico ni social (Correa, 1938; García & Barrera, 1986).

El valle del Huasco ubicado al norte de Chile, poseedor de una enorme variedad de suelos y climas, hace décadas atrás no estaba exento de toda esta riqueza genética. Los recuerdos de los ancianos retratan un valle exuberante en frutos secos, cítricos, carozos, pomáceas, diversas hortalizas y cultivos como porotos, tomate, maíz, melón, zapallos, entre otros, muy adaptados a sequías, sales, suelos pedregosos y bastante pobres de materia orgánica. Hasta mediados del siglo XX el valle abastecía incluso a la capital, siendo muy conocido por la diversidad y calidad de sus productos, panorama que hoy en día cuesta imaginar (Ördenes, 2015). A partir de la década del ‘90 esta riqueza vegetal sigue la tendencia internacional, desapareciendo progresivamente producto de la introducción de variedades modernas y su sistema de monocultivos. El pueblo diaguita, habitantes desde tiempos precolombinos de dicho lugar, frente a este rápido reemplazo y pérdida de variedades tradicionales y a la urgente necesidad de conservar este material por su valor patrimonial, sus enormes ventajas productivas y nutricionales, es así que en conjunto a su equipo profesional, comienzan desde el año 2013 los procesos de revalorización y recuperación de la biodiversidad local y el conocimiento tradicional asociado que aún mantienen muchos pequeños agricultores indígenas y campesinos en la Provincia, que en su mayoría correspondían a experimentados y sabios ancianos.

Fruto de este empoderamiento y trabajo el año 2016 se establece el Semillero de las comunidades indígenas y campesinas de Chile, primer banco comunitario de semillas del país, administrado por el pueblo diaguita, de libre acceso y creado en base a esfuerzo, autogestión y confianza para beneficio de todas las comunidades indígenas y campesinas del país. Desde sus inicios este semillero ha abierto sus puertas a la comunidad y han venido sumando nuevas accesiones y usuarios del pueblo mapuche, el pueblo aymara y diversas comunidades campesinas, en una alianza nacional que se consolida como “Biodiversidad Alimentaria”, con personas conscientes de esta...
importante recuperación y que en conjunto han logrado que hoy posea más de 900 variedades tradicionales, además del establecimiento de tres semilleros in situ y diversos viveros familiares donde se recuperan y multiplican anualmente más de 150 variedades de hortalizas y frutales. A la fecha sigue recibiendo, compartiendo y entregando semillas a diferentes comunidades indígenas y campesinas del país, a la vez que las invita e incentiva, a recuperar sus propias semillas tradicionales y establecer sus propios semilleros comunitarios, para compartirlas mutuamente, tal como lo hicieron en épocas precolombinas.

MATERIAL/MÉTODOS

Catastro y recuperación de semillas y frutales

El primer paso fue reconocer y catástrar la enorme biodiversidad presente en la Provincia de Huasco, tanto hortícola como frutal, y que hasta la fecha se estaba perdiendo. Se recorrió toda la Provincia de norte a sur y de Cordillera (este) a mar (oeste), entrevistando agricultores diaguitas y campesinos para saber qué semillas utilizaban antiguamente y si aún las conservaban, además de los frutales que poseían y su data. Con esta información y las semillas obtenidas se establecieron 3 semilleros in situ con el fin de sembrarlas, describirlas e identificarlas. Todas las variedades sembradas fueron descritas morfológicamente y fotografiadas, al igual que las variedades frutales. Posteriormente se realizaron entrevistas a agricultores experimentados, principalmente ancianos, y se hizo una revisión bibliográfica para determinar la antigüedad de las diferentes variedades encontradas.

El rescate fue lento al principio puesto que de muchas variedades sólo se recibieron pocas semillas, en algunos casos dos, cinco o incluso un grano, que el agricultor había guardado como recuerdo, compromiso o porque aún sembraba unas pocas en su huerta para no perderlas. Cuando hubo buena cantidad de semillas de cada variedad, se comenzó la recuperación y multiplicación, mediante semilleros in situ, donde se reproducieron más de 150 variedades, lográndose finalmente poblaciones de semillas suficientes, con las que posteriormente se abasteció el “Semillero de las comunidades indígenas y campesinas de Chile” con el objeto de tener un lugar adecuado donde conservarlas y al que pudiera acudir todo el que las necesitara.

El valle del Huasco se caracteriza también por su gran variedad de frutales teniendo especies de clima subtropical, mediterráneo y desértico, adaptadas al gran abanico de posibilidades productivas que este presenta. Por esto se estableció un vivero para su recuperación, la que inició con la recolección de frutos, sacados de sus semillas, siembra de cada variedad y su posterior cuidado y mantención hasta tener 2 años de edad, momento en que pueden repartirse a diferentes comunidades para su establecimiento definitivo en campo. La enorme variedad de paltos, damascos, duraznos, peras, entre otros, presentes en el valle, se debía principalmente a la práctica de los agricultores de propagar los frutales por semillas en vez de comprar árboles injertados. Esto favorecía la longevidad de los árboles, su vigor y su adaptación a las condiciones locales, muchos de ellos con edades superiores a los 100 años, en perfectas condiciones productivas y sanitarias, a diferencia de los árboles injertados, que a pesar de su precocidad, presentan una reducida vida útil. Aprendiendo entonces de la experiencia, se decidió seguir este tradicional método.

 Cuando la recuperación se extendió a los pueblos mapuche y aymara, y otras comunidades campesinas en diversos lugares del país, se continuó con la misma metodología realizando bioprospecciones en base a trueque es decir, por cada muestra de semilla que el agricultor entregaba se le pasaba otra variedad tradicional con el fin de fomentar su cultivo, revalorización y recuperación. El método de trabajo siempre implicó la devolución de material vegetal y conocimiento a todas las comunidades indígenas y campesinas que fueron parte de esta importante recuperación sin las cuales no hubiera sido posible. El flujo de información siempre ha sido bidireccional.

Semillero y revalorización de variedades tradicionales

Para establecer el Semillero el año 2016, se habilitó un container, prestado en comodato que sirvió como lugar de acopio para las semillas, sin embargo no cumplía con las necesidades para mantenerlas en buenas condiciones ya que era sólo latón y tenía una oscilación constante de temperatura. Es así como el año 2018, a pesar de no
contar con recursos, mediante esfuerzo, trabajo colectivo, autogestión, materiales reciclados y pequeñas colectas, se inaugura el semillero fijo, compuesto de paneles termoaislantes de 10 cm de espesor que mantiene las semillas al resguardo de la luz solar y temperatura media estable (Figura 1).

Figura 1. Semillero de las Comunidades indígenas y campesinas de Chile al 2018.

Se continuó con los semilleros in situ, esta vez con fines demostrativos, donde además de multiplicar las semillas para abastecer el semillero, se buscaba mostrar las ventajas y productividad de las diferentes variedades rescatadas, que posteriormente fueron caracterizadas en cuanto a su comportamiento agronómico. A algunas de las hortalizas y frutales más emblemáticos de la Provincia se les realizó un análisis bromatológico para determinar sus características nutricionales con el objeto de agregarles valor y fomentar su cultivo y consumo. Todo se transmitió a través de diversos talleres, visitas a los semilleros in situ, días de campo, etc., donde además de compartir semillas, plantines, frutales y productos, se compartió el conocimiento recabado, que va desde las técnicas productivas tradicionales hasta el uso y forma de preparar que cada una de estas semillas llevaba asociado. Todas estas actividades, incluyendo los semilleros in situ, se continúan realizando todos los años, desde entonces hasta la fecha.

RESULTADOS

A la fecha se poseen más de 800 variedades catastradas y más de 380 descritas. En el caso de la Provincia de Huasco parte de la información de las variedades catastradas se publicó en un libro, que no salió a la venta, sino que se le entregó a cada persona participe de esta iniciativa, con el fin de hacerla pública y constatar el uso y existencia de estas variedades para generar un marco de protección frente a posibles derechos de obtentor, que muchas veces solo buscan descubrir; además de compartir, transmitir y devolver el conocimiento a las comunidades indígenas, que son las principales responsables del resguardo de esta biodiversidad.

Actualmente se mantienen 3 semilleros in situ a nivel país, con sistemas productivos tradicionales o agroecológicos, que todos los años abastecen el semillero con nuevas variedades o con la regeneración del material para mantenerlo vigente. Se mantiene el vivero frutal de la Provincia de Huasco, que rescata y comparte las diferentes variedades frutales de cítricos, paltos, guayabo, lúcumo, entre otros.

Los análisis bromatológicos comprobaron la alta calidad nutricional de las diferentes variedades emblemáticas analizadas, destacando, según el caso, por su alto contenido en proteínas, fibra, minerales y algunas vitaminas. Esto generó un mayor interés y revalorización por parte de las comunidades para el consumo familiar y la comercialización de los frutos o productos derivados de ellos, agregando este valor como una estrategia de marketing.

En la zona norte y sur del país se han realizado recopilaciones históricas y productivas de las variedades locales y la agricultura. Parte de la información recopilada en la zona norte fue traspasada a 8 boletines técnicos,
entregados a más de 100 personas de la Provincia de Huasco y compartidos con diferentes comunidades indígenas del país. Desde el 2013 a la fecha se han realizado más de 40 días de campo y talleres para compartir y transmitir tanto el conocimiento y experiencias, como semillas, plantines, frutales y productos.

El crecimiento del semillero ha sido progresivo y de un considerable y constante aumento. Así, se pasó de unas contadas variedades el año 2013 a más de 900 variedades tradicionales de las comunidades diaguitas, mapuche, aymara y campesinas con las que cuenta a la fecha (Figura 2 y 3). Aproximadamente un 34,2% pertenece a la Zona norte, un 7,6% a la Zona central, un 32,5% a la Zona sur y 25,7% a otros lugares del país.

Figura 2. Interior del Semillero de las Comunidades indígenas y campesinas de Chile con sus más de 900 variedades tradicionales.

Aunque en el abastecimiento del semillero es prioridad la semilla tradicional, también se recolectan otras por su importancia en términos evolutivos, como semillas de polinización abierta y variedades heirloom por lo que el semillero se compone actualmente de 74% de semillas tradicionales (endémicas, nativas y criollas), 18% de polinización abierta (otras comerciales) y 8% heirloom. Como se consideran heirloom o “semillas de herencia” las variedades que datan de más de 60 años de antigüedad (Kaiser & Ernst, 2013; Watson, 1996) o que son producidas desde antes de la Segunda Guerra Mundial (Moore - Gough & Gough, 2010) y que se mantienen hasta hoy de generación en generación, también muchas de las semillas tradicionales y nativas pertenecientes al semillero son consideradas en esta categoría, ya que hay antiguos datos de su uso en el país, algunas desde hace más de 100 años inclusive.

Figura 3. Número de variedades en el semillero a lo largo del tiempo.
Las familias botánicas más representadas en el semillero, en orden decreciente son Fabaceae, Poaceae, Solanaceae y Cucurbitaceae, tal como se aprecia en la Figura 4, en el ítem otras se encuentran especies de las familias, Chenopodiaceae, Amaranthaceae, Alliaceae, Apiaceae, etc. La familia más representada dentro del semillero son las leguminosas, siendo el poroto muy superior en número al resto de las especies pertenecientes a esta familia con un 87,4%, seguido de arveja con 5,7%, haba con 3,5% y otras especies (Figura 5). Según diversas investigaciones científicas hoy en día Chile es considerado centro de origen de una raza de poroto cuyos ecotipos poseen ciertas características que no se encuentran presentes en otras razas (Bascur & Tay, 2005; Chacón, 2009; Hernández et al., 2013; Vizgarra et al., 2012). Es por eso quizás que la diversidad de porotos tradicionales a nivel nacional es tremenda, con variedad en formas, tamaños, diseños y colores. Predominan en la zona norte con el pueblo diaguita y aymara los porotos para seco (Phaseolus vulgaris) y pallar luna (P. lunatus) y en la zona sur, con el pueblo mapuche, los porotos para verde (P. vulgaris), es decir de vaina comestible y pallares (P. cocineus). En el caso de las poaceas es el maíz el mayor representado (86,4%), también con una enorme variedad de colores, tamaños y formas de uso, incluyendo las ceremoniales para los mapuche, seguido del trigo (10%) y otros cereales (Figura 6). En las solanáceas (Figura 7) tienen especial importancia el ají (43,1%) provenientes principalmente del sur del país, y el tomate (36,3%), seguido de la papa (9,8%) de la cual nuestro país también es centro de origen con variadas formas, colores y aptitudes de uso. Finalmente las cucúrbitas se encuentran en una proporción más equilibrada y representadas por sandía, melón y distintas variedades de zapallos de guarda, italiano y mate, entre otras (Figura 8).

Figura 4. Principales familias botánicas que componen el semillero a la fecha.

Figura 5. Especies de leguminosas presentes en el semillero.
Figura 6. Especies de poaceas presentes en el semillero.

Figura 7. Especies de solanáceas presentes en el semillero.

Figura 8. Especies de cucurbitas presentes en el semillero.
El semillero funciona en base a la confianza y un protocolo establecido en conjunto al pueblo diaguita de entrega 1x2, conocido tradicionalmente como “maquila”, la cual consiste en que por cada semilla entregada, el agricultor debe devolver dos. Esto fundamentalmente para asegurar que las semillas fueron sembradas y porque permite que el número de semillas en el semillero aumente para compartir la con más agricultores, lo que siempre será más seguro si se quiere mantenerlas en óptima calidad.

El protocolo explica al agricultor en términos prácticos, cuantas plantas o frutos tiene que dejar de su plantación para asegurar la devolución al semillero. El hecho de decir que la entrega era 1x2 o que tenía que devolver el doble al semillero, en un principio generó bastante temor por lo grande que pareciera que fuera la devolución y el compromiso que ello significaba. Sin embargo para disiparlo, este ejercicio se llevó a la práctica, se explicó en diversos días de campo, talleres y entregas de semillas y se hizo un cuadro explicativo (Cuadro 1) que facilitó la comprensión y eliminó dicho temor.

<table>
<thead>
<tr>
<th>Especie</th>
<th>Pidió al semillero</th>
<th>Produce en campo</th>
<th>Devuelve al semillero (equivalencia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomate</td>
<td>200 semillas</td>
<td>5.760 frutos mínimo</td>
<td>2 tomates</td>
</tr>
<tr>
<td>Maíz</td>
<td>100 semillas</td>
<td>200 mazorcas</td>
<td>1/2 – 3/4 de mazorca</td>
</tr>
<tr>
<td>Poroto</td>
<td>100 semillas</td>
<td>90 plantas</td>
<td>2 plantas</td>
</tr>
<tr>
<td>Sandía</td>
<td>100 semillas</td>
<td>150 frutos</td>
<td>1/4 de fruto</td>
</tr>
<tr>
<td>Quinoa</td>
<td>150 semillas</td>
<td>140 plantas</td>
<td>1 planta</td>
</tr>
<tr>
<td>Haba</td>
<td>70 semillas</td>
<td>60 plantas</td>
<td>2 plantas</td>
</tr>
</tbody>
</table>

Cuadro 1. Cantidad de plantas o frutos que el agricultor debe dejar en su producción para asegurar la devolución de semillas al semillero.

El semillero hoy en día es de libre acceso y la semilla es gratuita. Para pedir semilla sólo se debe ir, cumplir con el protocolo y se tendrá derecho a sacar 3 variedades tradicionales que quedan registradas en un acta de entrega, con copia a la persona, la cual debe devolverlas pasado la temporada productiva, registrándolo en un acta de devolución, lo que le da derecho a pedir nuevamente semillas, pero esta vez 6 variedades. No se le entrega semilla de una variedad que ya haya pedido porque es su deber, finalizada su producción, guardar semillas también para sí, así las nuevas variedades que solicite al semillero serán diferentes de las tres primeras que llevó. Si la persona demuestra compromiso y cumple con lo solicitado en el protocolo, tendrá derecho a llevar el doble de variedades cada vez.

Actualmente se mantienen activos más de 80 protectores de semillas a nivel país y se cuenta con la colaboración de los principales curadores de semillas nacionales. Se ha participado en más de 500 tráfiqui o intercambios de semilla y se han realizado más de 2.000 entregas de semillas y frutales tradicionales a comunidades indígenas y campesinas del país, manteniendo y resguardando las diferentes variedades tradicionales que circulan por el semillero, como un lugar de paso hacia sus nuevos destinos.

DISCUSIÓN

La mayoría de las semillas tradicionales hoy en día en nuestro país, se encuentra en manos de agricultores indígenas y campesinos pertenecientes a la agricultura tradicional, conocida también como agricultura de subsistencia o agricultura familiar campesina, ellos son quienes mantienen esta biodiversidad. Se caracterizan generalmente por vivir en lugares aislados (oasis desérticos, pampas, interior de la cordillera, etc.) lejos de las comodidades de la urbanización y por tener poco acceso a programas de gobierno, de fomento, de investigación, subsidios, etc. a través de los cuales se accede principalmente a la semilla híbrida de alto costo y el paquete tecnológico asociado. Estos agricultores son los que más mantienen biodiversidad y los que, en algunos casos, aún poseen en campo o guardada, la mayoría de las variedades encontradas en las prospecciones realizadas en los ‘70.
Es por eso que el trabajo de recuperación de las semillas tradicionales partió fundamentalmente basado en esta agricultura de mantenimiento, con la prioridad de que el agricultor produzca para comer, y para mantenerse, para tener variedad de alimentos y que sean ricos nutricionalmente, para él y su familia. También se buscó que las variedades locales mantuvieran su relación con lo histórico y lo tradicional, y que su importancia no se limitara a lo meramente económico. Precisamente es esto último lo que suele convencer a los agricultores de sustituir su semilla, a la cual luego no puede acceder por los altos costos que ello significa, quedando como únicas opciones la subvención o el endeudamiento y produciéndose un círculo vicioso de dependencia, perdiendo la soberanía alimentaria que hasta entonces tenía la familia. La mayoría de agricultores que mantiene su semilla no lo hace por falta de acceso a la semilla comercial, lo hace porque considera que es más segura una semilla heredada, que produce descendencia viable y que está adaptada a sus condiciones particulares de producción, además de sus mejores características organolépticas.

Las historias de la productividad, adaptación y resistencias de las diferentes variedades locales abundan a nivel nacional. Maíces y melones que toleran suelos salino-sódicos, tomates y cítricos que toleran sequías, patos, cítricos, frutillas que toleran intensas heladas, incluso la nieve. Mucha de la teoría agrícola enseñada y mundialmente aceptada a veces dista mucho de la realidad productiva de cientos de pequeños agricultores que han adaptado diversas variedades vegetales a sus condiciones productivas.

Con la pérdida de muchas de las variedades locales, diversas instituciones se dedicaron a recolectar ese material vegetal para conservarlo en Bancos de Germoplasma (conservaciones ex situ) y realizar programas de mejoramiento fitogenético. El alto costo de los materiales de construcción de estos Bancos, de su mantención, de su alta demanda energética para mantener semillas en frío, con temperaturas alrededor de los -18°C, plantas o semillas in vitro, u otros métodos, lo hacen inalcanzable para la pequeña agricultura. Sin embargo los semilleros comunitarios se presentan como una excelente alternativa para la conservación de este material, es por esto que el Semillero de las Comunidades indígenas y campesinas de Chile, no posee sistema de enfriamiento. Aun cuando se encuentra ubicado en una zona con clima de altas temperaturas, los paneles termoaislantes logran conservar una temperatura media estable, sin la necesidad de una demanda energética más que una luz interior que sólo se enciende ocasionalmente. El fin de este sistema fue demostrar que es absolutamente replicable para cualquier comunidad indígena y/o campesina que lo quiera implementar a nivel país, independiente de sus condiciones climáticas.

La conservación in situ o la conservación en campo, debe ser complementaria a la conservación ex situ (Brush, 2000; FAO, 2011; Hammer et al., 1996). El clima cambia, las malezas y plagas generan resistencia, las enfermedades mutan y en ese proceso dinámico de estos seres vivos, cortar con dicho proceso en la semilla impide su evolución y adaptación frente al clima climático y estas nuevas condiciones productivas que distan mucho, en varios casos, de las condiciones productivas en las que fueron recolectadas. Ese salto en el tiempo, donde las semillas permanecen almacenadas, sin renovar su material genético, las deja en un estado absoluto de riesgo para enfrentar estas nuevas condiciones adversas. Una conservación in situ además exige que los Bancos de Germoplasma no sean estáticos y tengan muestras dinámicas, para asegurar viabilidad y movilización de variedades que se han recuperado y pretenden conservar.

Las semillas tradicionales tienen historias, y conocimientos tradicionales asociados al perder lo uno perdemos lo otro, es por lo tanto necesario rescatar, proteger y retribuir el conocimiento tradicional indígena y los saberes ancestrales campesinos. Ambos forman parte tanto de la cultura como la espiritualidad de los pueblos indígenas que influyen directamente en la forma de relacionarse y percibir su entorno, lo que se refleja en el cuidado y uso razonable que le dedican a éste y sus recursos (Rivas et al., 2013).

Este conocimiento espiritual, cultural, patrimonial y productivo, también se refleja en el uso de diversas técnicas tradicionales en cuanto a riego, tipos y formas de uso del guano, tracción animal (buey, burro, caballo, dependiendo del lugar), asociación de cultivos, policultivos, uso de hierbas medicinales en la huerta y para dolencias, siembra o plantaciones de acuerdo a las fases de la luna, determinadas horas del día para trabajos específicos en la huerta, formas de conservación de semillas y frutos a través del tiempo para mantenerlos viables y/o al resguardo de enfermedades o plagas. Frente a la falta de recursos con los que cuenta un Banco de Germoplasma.
convencional para mantener sus semillas, el conocimiento tradicional a través del tiempo ha demostrado tener técnicas bastante avanzadas en cuanto a esta conservación se refiere. Diversos son los ejemplos como el uso de hojas de canelo o eucalipto para evitar el bruco en las leguminosas, el uso de zapallos mate (Lagenaria siceraria) para conservación de larga data de semillas (Figura 9), el uso de vasijas de barro enterradas, como los jarros pato del pueblo diaguita, con el mismo fin, así como también en cueros de ubres de vaca o en el estómago de guanacos, camélidos con los que convivían los diaguitas. Existen testimonios de semillas sembradas 40 años después con buena germinación.

![Figura 9. Zapallo mate con semillas de poroto en su interior para su conservación en el Semillero.](image)

El conocimiento tradicional no sólo ayuda en la conservación de las semillas, también existen datos de la conservación de frutos enterrados directamente o en contenedores en arena, en agujeros hechos en la bodega de alguna casa o en algún lugar resguardado de la luz del sol. Aji, manzanas, naranjas, maíz se mantenían con estas técnicas, al igual que algunos melones de cáscara gruesa que facilitaba su mayor duración y que hoy se perdieron de los campos chilenos. El conocimiento tradicional también llega a los mismos árboles frutales, de los que sólo hace algunas décadas atrás se pensaba en su siembra y no su plantación como ahora comúnmente asociamos técnicas como despuntar y pelar los cuescos de paltas, sacar las almendras de duraznos y damascos o pelar las semillas de cítricos para facilitar su germinación o emergencia eran comunes entre los antiguos agricultores. Hoy al pensar en frutales nos saltamos este importante paso y sólo pensamos en la planta de un árbol que ya viene listo e injertado, proceso que también afecta a hortalizas, las que cada vez más se compran como plantines para trasplantar. Esto es bastante contraproducente para la mantención de la biodiversidad alimentaria ya que, las plantas ofrecidas por el mercado, solo incluyen variedades comerciales actuales que cuentan con propiedad intelectual vigente, las cuales se reemplazan por las tradicionales trayendo como consecuencia la pérdida de este importante conocimiento tradicional y de soberanía alimentaria (Órdenes & Sepúlveda, 2017).

Finalmente la integralidad del trabajo con las comunidades indígenas y campesinas en todos sus procesos, provoca un mayor sentido de pertenencia y compromiso, así como también un equipo de personas completamente consolidado y afiatado, dispuestos a seguir en la recuperación y mantención de las variedades tradicionales como el sustento básico de la vida humana, que nos fue heredado y se debe heredar de la misma manera a las próximas generaciones.
CONCLUSIONES/RECOMENDACIONES

La estructura, construcción y funcionamiento del semillero son absolutamente replicables y fáciles de mantener y administrar para cualquier comunidad indígena y/o campesina del país, por ello se recomienda que cada comunidad establezca su propio semillero para la conservación y mantención de sus variedades tradicionales, todo como un complemento a la conservación en campo, donde las variedades deben mantener sus procesos evolutivos. Sólo este complemento de acciones puede generar soberanía y seguridad alimentaria y facilita una red a nivel nacional donde haya un constante intercambio de semillas, saberes y cooperación.

Debido al cambio climático y a la escasez de agua que se ha presentado en los últimos años a nivel nacional se hace necesario y urgente tecnificar el riego, para aumentar el aprovechamiento de este recurso. Es necesario comenzar el cambio a nivel de políticas públicas puesto que, aunque los agricultores encuentran que este es un paso necesario, las subvenciones estatales vienen asociadas generalmente al uso de semilla híbrida de alto costo y marginan al pequeño agricultor que no posee cierto número de hectáreas y sólo tiene huertas de autoconsumo, que constituyen gran parte de la agricultura nacional.

El uso de semillas tradicionales generalmente se encuentra asociado a saberes y técnicas productivas tradicionales. La recuperación, protección y transmisión de este conocimiento asociado de los pueblos indígenas y campesinos, también es urgente y prioritario, ya que junto a las características propias de las variedades locales hacen al sistema sostenible y sustentable, disminuyendo los costos productivos, la contaminación medioambiental y fomentando la conversión desde un sistema de agricultura industrial, basado en monocultivos y la dependencia agroquímicos, hacia un sistema productivo ecológico que fomenta la independencia productiva.

La agroecología además de preocuparse de un sistema de producción limpio, de un comercio de proximidad y justo, de la soberanía y seguridad alimentaria, entre otros, debe darle más relevancia a las semillas tradicionales. Ellas debieran ser la base de la producción ecológica puesto que son la clave para el cambio climático, fomentan la biodiversidad, hacen sostenible el sistema productivo, recuperan el patrimonio y la cultura, los saberes y conocimientos tradicionales, disminuyen el hambre, la mal nutrición y pobreza (ODS 2), generan salud y bienestar, y en conjunto forman un sistema integral que va acorde a la agenda 2030 y al cumplimiento de 14 de los 17 Objetivos de Desarrollo Sostenible de la ONU.

REFERENCIAS

LABORES CULTURALES ANCESTRALES Y MANEJO DE LA SEMILLAS DE PAPAS NATIVAS EN COMUNIDADES DE OCONGATE – CUSCO, PERÚ

Saravia Navarro D1,2, Saldaña Zavala J2, Ciríaco Castañeda P2

1Departamento Académico de Fitotecnia, Facultad de Agronomía -UNALM
2Oficina de Extensión Universitaria y Proyección Social de la UNALM
Contacto: dsaravia@lamolina.edu.pe

RESUMEN: La producción de papas nativas en comunidades de Ocongate-Cusco, se basa en metodologías ancestrales, sembrando en campos que descansaron intervalos de 5-7 años, tiempo en que recuperan parte de su fertilidad natural y van rotando entre las campañas. La formación de los camellones altos tipo “waru warus” es predominante por las altas precipitaciones. La siembra es realizada sobre el camellón, permitiendo drenar el exceso de agua adecuadamente e incluso siendo posible usar tierras donde aflora agua por escorrentía. La enmienda orgánica del estiércol en la siembra es puesta sobre las semillas para mitigar las bajas temperaturas de los campos ubicados a una altitud de 3200 a 4300 m.s.n.m. Desde la preparación de suelo, aporque y cosecha la herramienta usada es la “chaquitacilla” que involucra una labor grupal de tres y comunal entre 20 a 50 personas. Para obtener las semillas de las papas nativas se implementó la metodología de “rowing” selección positiva y negativa de variedades nativas para fines de obtener una semilla de calidad, que no disminuya sus rendimientos y buena sanidad para sus futuros campos de producción. Los resultados al final del proyecto, demostraron la diferencia de usar semillas de buena selección con mayores rendimientos a la cosecha y la sinergia resultante entre las labores ancestrales y las buenas prácticas agrícolas para obtener semillas de calidad. Estas actividades de extensión se realizaron como parte de un proyecto colaborativo de la OEUPS-UNALM y Proviñas Nacional en la comunidades aledañas a la construcción de la carretera Interoceánica-Sur que une Perú-Brasil.

Palabras clave: Comunidad, ECA’s, papa nativa, semilla, waru warus
PROGRAMA DE FITOMEJORAMIENTO PARTICIPATIVO EN TOMATE EN VALENCIA Y CÁDIZ: PROYECTO LIVESEED

Gil-Marqués MA1; Figueroa M2; Hurtado R2; Ballester R2; Figueroa-Núñez M3; Aguilar F3; Durán-Salgueiro O4; Macías-González F4; Raigón MD5; Rodríguez-Burruezo A5

1 Chufas Bou (Jose María Bou SL), Ctra. De Barcelona 48, CP 46530, Puzol, Valencia. 2 La UNIÓ de Llauradors y Ramaders, Ronda Nord 4, CP 46540, El Puig de Santa María, Valencia. 3 La Verde SCA, Vista Hermosa 37, CP 11650, Villamartín, Cádiz. 4 Viviendo en el Campo (www.viviendoenelcampo.com), Paraje Hijuela Catalina Pérez, Aptdo. correos 108, Bejer de la Frontera, Cádiz. 5 Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Edificio 8E, Acceso J. Universitat Politècnica de València (UPV). Camino de Vera s/n CP 46022. Valencia. adrodbur@doctor.upv.es

RESUMEN: El tomate (Solanum lycopersicum) es el principal cultivo hortícola de nuestro país tanto a nivel local como de exportación. Por extensión, también es la principal hortaliza en producción ecológica. Sin embargo, la mayor parte de la producción está basada en variedades modernas F1, en detrimento de las variedades locales tradicionales y la riqueza etnobotánica y diversidad de sabores que contienen. En este contexto, el Proyecto EU H2020 LIVESEED, dirigido a producir semilla propiamente ecológica para estos sistemas productivos, apuesta fundamentalmente por apoyar pequeñas iniciativas a nivel europeo para la recuperación y puesta en valor de variedades tradicionales a través de un proceso de fitomejoramiento participativo, implicando al mayor número posible de agentes (científicos, agricultores, técnicos, consumidores, distribuidores, etc.). Una de las principales actividades está enfocada al tomate, en países como España o Italia. En este primer año se han desarrollado dos actividades en regiones agroclimáticas diferentes: Valencia (Marxal Moros, Sagunto) y Cádiz (Villamartín, Sierra de Grazalema). Se han evaluado y caracterizado más de 100 variedades en ambas localizaciones, aplicando una perspectiva participativa: rendimiento, morfología y vigor de planta, azúcares y ácidos, incidencia de enfermedades y fisiopatías y aptitud poscosecha (investigadores, técnicos cooperativas y agricultores), calidad visual y organoléptica (catas con grupos de consumidores en puntos de distribución y mercados agroecológicos). Tras este primer año, se ha seleccionado una veintena de variedades que serán reevaluadas en años posteriores junto a nuevos materiales. Asimismo, también se discuten las preferencias varietales por parte de los consumidores y la red de trabajo participativa.

Palabras clave: agricultores, calidad organoléptica, catas, consumidores, jornadas participativas, Solanum lycopersicum, valor agronómico

INTRODUCCIÓN

El interés por las frutas y hortalizas procedentes de agricultura ecológica está incrementándose en los últimos años por parte de los consumidores. Estos consumidores cada vez más están sensibilizados en adquirir y consumir productos procedentes de una agricultura sostenible y respetuosa con el medio ambiente, así como de mayor calidad nutricional y organoléptica (Best, 2010; Boulay, 2010). En consecuencia, este bloque del sector agrario español ha incrementado su producción considerablemente y, progresivamente, muchos productores convencionales están reconviirtiendo parte de su producción a ecológico. En su mayor parte, esta producción va dirigida a la exportación, aunque en los últimos años el consumidor español también ha aumentado su sensibilización y demanda por frutas y hortalizas ecológicas (Rodríguez-Burruezo et al., 2016).

Paradójicamente, la mayor parte de variedades empleadas hoy día en producción ecológica de hortalizas son híbridos F1, que abarcan una estrecha diversidad genética, en detrimento de la riqueza que suponen las variedades locales y ancestrales previas a la revolución verde y modelos de producción intensiva de altos insumos (Fita et al., 2015; Rodríguez-Burruezo et al., 2016). Por este motivo, es de esperar que las variedades locales ofrezcan mejor respuesta y adaptación a condiciones de producción ecológica, como modelo de agricultura sostenible y de bajos insumos. Asimismo, la diversidad que contienen permitiría identificar materiales con una alta calidad.
nutricional y organoléptica, en la línea de recuperar el “taste-of-the-past” que muchos consumidores buscan hoy día en los productos hortofrutícolas (Brugarolas, 2009). En este sentido, las condiciones de bajos insumos del cultivo ecológico, pueden producir condiciones de estrés ante las que la planta responde acumulando compuestos antioxidantes en sus tejidos y frutos, como se ha descrito en tomate, berenjena o pimiento (Raigón et al., 2010; Hallmann y Rembiałkowska, 2012; Oliveira et al., 2013). Además, promocionar el uso de variedades tradicionales es una forma de conservar la agrodiversidad, contribuyendo a mitigar la erosión genética (Rodríguez-Burruelzo et al., 2016). Finalmente, diversificar varietalmente la producción hortofrutícola, especialmente en términos de variedades locales, contribuye a ampliar el espectro de productores, dándole mayor oportunidad al mercado de proximidad y por extensión a los pequeños y medianos agricultores locales.

Desde 2017, el proyecto EU H2020 LIVESEED tiene como objetivo promover estrategias de fitomejoramiento y desarrollo de semillas y material de multiplicación adaptados específicamente a condiciones de cultivo ecológico. En particular, bajo un entorno colaborativo que fortalezca la participación conjunta y vínculos entre científicos, agricultores y otros agentes sociales de la cadena alimentaria. Como partner del proyecto, el equipo de la UPV coordina las líneas de trabajo dirigidas a potenciar iniciativas de pequeños y medianos agricultores en Europa para desarrollar y mejorar sus propios materiales en cultivos representativos como el tomate, las brásicas, el manzano, el trigo y el altramuz. En este marco, el tomate, como principal hortaliza en términos de producción, superficie destinada, y valor económico es un cultivo como modelo a estudiar y desarrollar dentro de estas tendencias, y a partir del cual extender las experiencias a otras hortalizas.

En el presente trabajo se presentan de forma preliminar los primeros resultados de las actividades de fitomejoramiento participativo de tomate en España, en el ámbito del proyecto LIVESEED.

MATERIALES Y MÉTODOS

Se evaluaron 130 accesiones de tomate (S. lycopersicum), correspondientes a numerosos tipos varietales, e.g. Muchamiel, Masclet, Moruno, Cocktail, Beefsteak, de Colgar, etc., originarias de las regiones implicadas, Valencia y Andalucía, y complementadas con otras procedentes de Comunidades adyacentes, i.e. Aragón, Murcia, Cataluña, Castilla la Mancha, e Italia. Los materiales proceden del Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Cooperativa La Verde, redes italianas de intercambio de semillas y el CREA. Estos materiales se cultivaron en el verano de 2018 bajo condiciones de producción ecológica en: i) Valencia, con la colaboración de La Unió de Llauradors y Ramaders (LA UNIÓ, Marxal dels Moros, área de Sagunto-Puzol, norte de Valencia) y ii) Andalucía-Cádiz, con la colaboración de las cooperativas La Verde (Villamartín) y Viviendo en el Campo (Béjar de la Frontera). Se evaluaron 90 accesiones en Valencia y 100 accesiones en Cádiz, con 60 de ellas comunes a ambos ensayos. Las plantas se cultivaron bajo condiciones de aire libre en ciclo de primavera-verano, para lo que se transplantaron en estado de 4 hojas verdaderas en abril, extendiéndose el cultivo hasta septiembre de 2018. En cada localidad, se cultivaron un total de 20 plantas por accesión, repartidas en cinco bloques (n = 5) de cuatro plantas distribuidas de forma aleatoria en cada experiencia.

Los materiales se evaluaron siguiendo un protocolo de valoración colaborativa (Ceccarelli et al., 2009), implicando la aportación de investigadores, agricultores, técnicos de cooperativas y consumidores. Los frutos se cosechaban y evaluaban en su estado de madurez comercial. Según los atributos a evaluar se alternaban de forma colaborativa conjuntamente investigadores y agricultores, investigadores y técnicos. Entre otras, las principales características incluidas en este proceso participativo fueron:
- Rendimiento (kg/planta). Investigadores y técnicos
- Peso fruto (g/fruto). Investigadores y técnicos
- Tamaño fruto (longitud y diámetro, mm). Investigadores y técnicos
- Color. Investigadores y técnicos
- Incidencia plagas, enfermedades y fisiopatías en campo (e.g. rajado, tuta, mildiu, TSWV, ToMV, TYLCV; índices de 0 (ausencia) a 5 (máxima), a partir de promedio 2 se considera accesión afectada). Investigadores, técnicos y agricultores.
- Valoración agronómica general (cobertura foliar, precocidad, secuencia de cuajado, satisfacción general; índices de 0 (ausencia) a 5 (máxima)). Investigadores, técnicos y agricultores.
- Aptitud poscosecha (e.g. conservación poscosecha, firmeza, duración periodo comercial). Investigadores, técnicos, distribuidores.
- Calidad organoléptica I (azúcares/sólidos solubles, ácidos orgánicos). Investigadores y técnicos.
- Calidad organoléptica II (materiales preseleccionados): evaluación preferencias sensoriales por consumidores en jornadas sociales (degustaciones y catas con fichas de caracterización sensorial sencillas). Investigadores, Técnicos, Agricultores, Distribuidores y Consumidores.
- Calidad organoléptica III (materiales finalmente seleccionados año 2018): análisis perfil de volátiles mediante cromatografía de gases (en realización).

![Imagen de catas de materiales preseleccionados en Valencia (superior) y Cádiz (inferior).](image)

Figura 1. Catas de materiales preseleccionados en Valencia (superior), con la colaboración de Punt de Sabor, La UNIÓ (fotografía CultivarSalud) (26 agosto 2018) y Cádiz (inferior), con la colaboración de La Verde Coop y Viviendo en el Campo. Mercado de los Toruños, Puerto de Santamaría (2 septiembre 2018).

RESULTADOS Y DISCUSIÓN

Con el objetivo de simplificar las selecciones y la toma de decisiones, las variedades se agruparon en tres bloques principales atendiendo al peso de frutos: i) fruto grande (>50 g), ii) fruto mediano (25-50 g) y iii) fruto pequeño (Tabla 1). En general, para la mayoría de atributos se encontró una amplia diversidad varietal, incluso dentro de bloques.

Por lo que respecta al rendimiento se registraron promedios relativamente altos para producción al aire libre, tanto en Valencia como en Cádiz, lo que permitió identificar variedades con rendimientos muy destacados. Así los tipos de frutos grandes y frutos medianos ofrecieron unos rendimientos medios de 3-4 kg/m² (Tabla 1), con materiales que alcanzaron o superaron 7 kg/m² y se preseleccionaron varias accesiones en las dos zonas por superar...
4 kg/m²: 30 en Valencia y 38 en Cádiz. En el caso del grupo de variedades de fruto pequeño, los rendimientos fueron sensiblemente inferiores a los grupos anteriores, pero satisfactorios y con promedios generales cercanos a 3 kg/m², lo que permitió preseleccionar aproximadamente una decena de accesiones con rendimientos superiores a este valor (Tabla 1). El peso de fruto, incluso dentro de cada grupo establecido por este atributo, fue también muy variable, ofreciendo un rango de pesos amplio entre las diversas accesiones. Asimismo, las morfologías también fueron muy variables como se puede observar para las dimensiones alto/diámetro (Tabla 1). Estos parámetros, junto a la vida poscosecha (datos no mostrados), fueron de gran importancia en la toma de decisiones participativa, especialmente pensando en la comercialización de los materiales (e.g. embalaje y transporte, diseño y confección de cajas con tipos variados).

Tabla 1. Resumen de resultados (promedio total de la colección e intervalos, i.e. promedios mínimo y máximo [m-M] de las accesiones extremas, respectivamente) de los principales caracteres agronómicos tras las evaluaciones en campo en Valencia y Cádiz.

<table>
<thead>
<tr>
<th>ATRIBUTOS</th>
<th>VALENCIA</th>
<th>CADIZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promedio (m-M)</td>
<td>Accesiones</td>
<td>Promedio (m-M)</td>
</tr>
<tr>
<td>GRANDE (>50 g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rendimiento (kg/m²)</td>
<td>3.15 (1.52-7.34)</td>
<td>18 (>4 kg/m2)</td>
</tr>
<tr>
<td>Peso fruto (g)</td>
<td>79 (54-470)</td>
<td>14 (>100 g)</td>
</tr>
<tr>
<td>L/D fruto (mm)</td>
<td>52/84</td>
<td>49/78</td>
</tr>
<tr>
<td>Incidencia TSWV</td>
<td>Baja</td>
<td>>10% acces.</td>
</tr>
<tr>
<td>Incidencia ToMV</td>
<td>Nula</td>
<td>0% acces.</td>
</tr>
<tr>
<td>Incidencia Tuta</td>
<td>Baja</td>
<td>>10% acces.</td>
</tr>
<tr>
<td>CSS (%)</td>
<td>5.8 (4.6-7.3)</td>
<td>12 (>6%)</td>
</tr>
<tr>
<td>Acidez (%)</td>
<td>0.78 (0.50-1.15)</td>
<td>7 (>1%)</td>
</tr>
<tr>
<td>Seleccionadas</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

MEDIANO (25-50 g) | | |

Promedio (m-M)	Accesiones	Promedio (m-M)	Accesiones	
Rendimiento (kg/m²)	3.54 (1.10-7.65)	12 (>4 kg/m2)	3.78 (2.21-8.05)	16 (>4 kg/m2)
Peso fruto (g)	35 (29-48)	5 (>40 g)	34 (26-47)	9 (>40 g)
L/D fruto (mm)	38/56	37/58	(32/50-43/61)	(33/49-47/60)
Incidencia TSWV	Baja	>10% acces.	Nula	0% acces.
Incidencia ToMV	Nula	0% acces.	Nula	0% acces.
Incidencia Tuta	Baja	>10% acces.	Baja	>10% acces.
CSS (%)	6.1 (4.9-7.4)	10 (>6.5%)	6.0 (4.7-7.2)	9 (>6.5%)
Acidez (%)	0.82 (0.55-1.31)	6 (>1%)	0.80 (0.58-1.35)	8 (>1%)
Seleccionadas	8			

PEQUEÑO (>25 g) | | |

Promedio (m-M)	Accesiones	Promedio (m-M)	Accesiones	
Rendimiento (kg/m²)	2.67 (1.15-3.56)	12 (>2 kg/m2)	2.87 (1.82-4.21)	13 (>2 kg/m2)
Peso fruto (g)	18 (3-25)	8 (>10 g)	16 (4-24)	10 (>10 g)
L/D fruto (mm)	35/39		(21/32-42/51)	34/40
Incidencia TSWV	Nula	0% acces.	Nula	0% acces.
Incidencia ToMV	Nula	0% acces.	Nula	0% acces.
Incidencia Tuta	Nula	>10% acces.	Muy Baja	>5% acces.
CSS (%)	6.8 (5.9-8.1)	10 (>7%)	6.9 (5.8-7.8)	12 (>7%)
Acidez (%)	0.91 (0.70-1.35)	7 (>1%)	0.89 (0.72-1.45)	8 (>1%)
Seleccionadas	5			

377
En términos generales, la incidencia de plagas y enfermedades fue relativamente bajas. No se registraron casos de virus de mosaic (ToMV) en ningún grupo varietal ni zona de ensayos, y la incidencia del bronceado (TSWV) fue siempre inferior al 10% y además a final del cultivo (datos no mostrados), al igual que la incidencia de picaduras por tuta (Tabla 1), especialmente baja en los frutos pequeños. Esta baja incidencia podría estar relacionada con la ausencia de cultivos similares en las proximidades, más que con potenciales resistencias. En cualquier caso, refuerzan la idea de que evitar una excesiva concentración de producción de un cultivo, complementado con un manejo basado en aporte mínimo de tratamientos, favorece los equilibrios naturales y una menor incidencia de plagas y enfermedades, incluso en cultivos al aire libre. En el caso de mildiu, la incidencia fue baja en los grupos de fruto grande y mediano, pero se incrementó en variaciones de fruto pequeño (10-20% incidencia). No obstante, esta patología se registró a final de cultivo y su impacto económico fue muy bajo.

Por lo que respecta a los atributos de calidad organoléptica, CSS y acidez, también se registró una amplia diversidad dentro de grupos varietales. Y los valores de ambos atributos se incrementaban a menor tamaño de fruto. Así los bloques de frutos grandes presentaron promedios de 5.6-6.1% en CSS y 0.70-0.80% en acidez, mientras que los promedios generales del grupo de frutos pequeños fueron considerablemente superiores: 7% CSS y 0.90% acidez (Tabla 1). La diversidad detectada permitió identificar numerosas accesiones dentro de cada grupo, con niveles altos de ambos factores organolépticos, los cuales también fueron claves para la selección final de materiales.

Finalmente, la evaluación organoléptica y catas, junto a los datos recabados de parámetros anteriormente descritos sirvieron para establecer las selecciones definitivas: 24 en Valencia (11 grandes+8 medianos+5 pequeños) y 25 en Cádiz (12+7+6) (Tabla 1), las cuales serán reevaluadas en próximos ensayos, junto a nuevos materiales. Para las evaluaciones organolépticas, según las disponibilidades de logística, se trabajó con una preselección de materiales: 40 en Valencia y en torno a un centenar en Cádiz, cubriendo la mayoría de tipos varietales y atendiendo a los parámetros de rendimiento y calidad estimados previamente. Participaron más de 200 consumidores y se recabaron unas 100 fichas de cata y > 500 muestras valoradas (datos no mostrados, en proceso de tratamiento de datos).

AGRADECIMIENTOS

El presente trabajo ha sido financiado por el proyecto EU H2020 LIVESEED (Grant number 727230): Improve performance of organic agriculture by boosting organic seed and plant breeding efforts across Europe. Los autores agradecen el cultivo de materiales y el apoyo técnico, logístico y social a LA UNIÓ, La Verde Coop. y Viviendo en el Campo.

BIBLIOGRAFÍA

CARACTERIZACIÓN MORFOLÓGICA, AGRONÓMICA Y DE CALIDAD DE UNA COLECCIÓN DE 10 VARIEDADES TRADICIONALES VALENCIANAS DE BERENJENA EN CONDICIONES DE BAJOS INSUMOS

Rosa-Martínez E, Figás MR, García-Martínez MD, Raigón MD, Prohens J, Soler S*

Institut de Conservació i Millora de l’Agrodiversitat Valenciana, Universitat Politècnica de València, Camí de Vera, 14. E46022 València, Spain.

*Autor de contacto, e-mail: salsoal@btc.upv.es

RESUMEN: La berenjena, Solanum melongena L., es un cultivar de gran importancia económica en España. Existen numerosas variedades tradicionales de este hortaliza en distintas regiones. Algunas de ellas gozan de un reconocido prestigio. Es el caso de la variedad ‘Listada de Gandia’, procedente de la localidad valenciana del mismo nombre. En el presente trabajo se ha realizado una caracterización morfoagronómica y de calidad de una colección de 10 entradas de berenjena procedentes de distintas localidades de València. Para ello, se han utilizado 25 descriptores morfológicos y agronómicos (14 de planta y 12 de fruto). Así mismo, se ha evaluado la producción por planta y 9 caracteres de calidad. La colección presentó una gran variabilidad para la forma del fruto (entre alargada y achatada), la sección transversal del mismo (entre circular y muy irregular) y el grado de curvatura, además del grado de espinosidad del cáliz, el color del fruto (desde blancas a moradas y listadas) y el rendimiento. En cuanto a composición destacó la entrada SM-SANFULGENCIO-1 por su alto contenido tanto en antocianos como en clorofillas en piel (109,7µg/cm² y 6,6mg/L, respectivamente). Las mejores entradas en cuanto a calidad de la carne fueron SM-MALOLES-1 y SM-MANDIA-1, con cantidades muy por encima de la media en contenido en sólidos solubles, vitamina C, ácidos cítrico y málico, y glucosa, fructosa y sacarosa. Los resultados obtenidos son prometedores para la selección de variedades de berenjena de calidad y con una buena adaptación a condiciones de cultivo de bajos insumos.

Palabras clave: calidad nutricional, recursos fitogenéticos, Solanum melongena

INTRODUCCIÓN

La berenjena (Solanum melongena L.) es un cultivo de gran importancia mundial. Se cultiva fundamentalmente en zonas tropicales, subtropicales y en el área Mediterránea. La producción de esta hortaliza en España se ha incrementado de 168 millones de toneladas en 2006 a 242 en 2016 (MAPAMA, 2018). Andalucía aportaba el grueso de esta producción, seguida por la Comunidad Valenciana, con 11.551 toneladas en el año 2016 (MAPAMA, 2018).

En España se producen fundamentalmente variedades comerciales de fruto negro o violeta liso. Los pocos tipos varietales cultivados han desplazado a la enorme diversidad de variedades tradicionales existentes en este país. Sin embargo, algunas de ellas gozan de un reconocido prestigio. Es el caso de la ‘Berenjena de Almagro’, que posee el sello de Denominación de Origen Protegida (DOP), y de la variedad ‘Listada de Gandia’ procedente de la localidad valenciana del mismo nombre.

Hoy en día, existe un interés creciente por parte del consumidor hacia productos de mejor sabor y con un efecto beneficioso para la salud. A su vez, la preocupación por el medio ambiente es mayor, por lo que se busca un progresivo cambio hacia el uso de prácticas agrícolas más sostenibles. Las variedades tradicionales están adaptadas a condiciones agroclimáticas específicas y a un cultivo más cercano al ecológico (González et al., 2018; Berni et al., 2018). Las hortalizas producidas bajo este tipo de cultivo presentan, generalmente, una mayor acumulación de nutrientes y metabolitos secundarios beneficiosos para la salud (Raigón et al., 2010). A este respecto, la berenjena es una fuente de minerales, vitaminas y polifenoles muy interesante. Estos últimos, junto a los antocianos presentes en la piel, contribuyen a la elevada capacidad antioxidante de este fruto (Moncada et al., 2012).
Con el fin de recuperar y conservar el germoplasma tradicional de berenjena valenciana, en el presente trabajo se ha realizado una caracterización morfoagronómica y de calidad de una colección de 10 entradas de berenjena procedentes de distintas localidades valencianas en condiciones de bajos insumos.

MATERIAL Y MÉTODOS

Un total de 10 variedades tradicionales de berenjena procedentes de distintas localidades de la Comunidad Valenciana junto con el control ‘Listada de Gandía’, fueron cultivadas en una parcela al aire libre situada en la localidad de Burriana (Castellón), durante el ciclo primavera-verano de 2017 (cuadro 1). Se trasplantaron 10 plantas por entrada. El ciclo se desarrolló bajo condiciones de cultivo ecológico. Se realizaron riegos en función de las necesidades de las plantas y un único abonado de fondo consistente en una enmienda orgánica de gallináceas.

Cuadro 1.- Códigos de las diez variedades tradicionales de berenjena usadas en el presente estudio y su zona de procedencia.

<table>
<thead>
<tr>
<th>Código entrada</th>
<th>Procedencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-GANDIA-1</td>
<td>Gandía, Valencia</td>
</tr>
<tr>
<td>SM-XERACO-1</td>
<td>Jaraco, Valencia</td>
</tr>
<tr>
<td>SM-ORIOLA-1</td>
<td>Orihuela, Alicante</td>
</tr>
<tr>
<td>SM-ORIOLA-2</td>
<td>Orihuela, Alicante</td>
</tr>
<tr>
<td>SM-DOLORES-1</td>
<td>Dolores, Alicante</td>
</tr>
<tr>
<td>SMBENIJOFAR-1</td>
<td>Benijófar, Alicante</td>
</tr>
<tr>
<td>SM-SANFULGENCIO-1</td>
<td>San Fulgencio, Alicante</td>
</tr>
<tr>
<td>SM-NOVELDA-1</td>
<td>Novelda, Alicante</td>
</tr>
<tr>
<td>SMBENEIXAMA-1</td>
<td>Beneijama, Alicante</td>
</tr>
<tr>
<td>SM-MONCADA-1</td>
<td>Moncada, Valencia</td>
</tr>
</tbody>
</table>

En cuanto a la caracterización morfoagronómica, se evaluaron 25 caracteres en base a los descriptores establecidos por el IPGRI (International Plant Genetic Resources Institute). Estos incluyeron 14 caracteres de planta y 12 de fruto. Así mismo, se evaluó la producción media de cada entrada. Por otro lado, la caracterización de calidad nutricional se realizó en base a 9 caracteres: contenido en antocianos y clorofilas en piel del fruto, sólidos solubles (CSS), vitamina C, ácidos orgánicos y azúcares. Los frutos para el análisis se recolectaron en el estadío de madurez comercial.

Para la cuantificación de antocianos y clorofilas en piel se recolectaron tres frutos por planta. Las medidas se realizaron en fresco y con tres repeticiones por entrada. En el primer caso, se llevó a cabo una extracción sólido-líquido utilizando una solución metanol:ácido-clorhídrico:agüa (50:1:49) y posterior lectura en espectofotómetro a 530 nm (Silva et al., 2017). En el segundo caso, se evaluó espectrofotométricamente, a 645 y 663 nm, el contenido en clorofilas a, b y totales, tras su extracción con una mezcla de acetona y agua (80:20 v/v) siguiendo el método descrito por Wellburn (1994).

Para el resto de medidas analíticas se recolectaron tres frutos por planta, se pesaron, se extrajo la fracción acuosa de los mismos mediante una licuadora doméstica, se mezclaron los extractos de una misma variedad y se tomaron tres medidas en cada análisis. El CSS se determinó mediante refractómetro portátil HI96801 (HANNA instruments). El contenido en vitamina C se valoró como la suma del ácido ascórbico (AA) y dehidroascórbico (DHA) presentes en el fruto. El análisis se realizó mediante HPLC (1220 Infinity, Agilent Technologies) siguiendo el protocolo de Cano y Bermejo (2011) con pequeñas modificaciones. Con el mismo instrumento se cuantificaron los ácidos málico y cítrico y los azúcares glucosa, fructosa y sacarosa. Para ello se siguió la metodología descrita por Fernández-Ruiz et al., 2004.
El tratamiento estadístico de los datos consistió en un análisis ANOVA para averiguar si existían diferencias significativas entre las variedades aplicando el test de Student-Newman-Keuls. También se realizó un análisis de componentes principales (ACP) para observar el grado de dispersión de las entradas para los caracteres morfoagronómicos estudiados.

RESULTADOS

En la figura 1 se muestra una clasificación de las entradas según su fenotipo. La caracterización morfoagronómica mostró que tres de las diez entradas segregaron en dos tipos bien diferenciados. Estas fueron SM-ORIOLA-2, SM-BENIJOFAR-1 y SM-NOVELDA-1. En el análisis estadístico de los resultados, al igual que en la realización de las medidas analíticas de los caracteres de calidad, se tuvo en cuenta el fenotipo predominante de éstas.

Figura 1.- Representación del fruto característico de cada variedad tradicional estudiada, junto con el control 'Listada de Gandia'.

El ANOVA mostró diferencias significativas entre entradas para todos los caracteres estudiados excepto tres; el lobulado de la hoja, el peso medio del fruto y la longitud del cáliz. Además, todas las entradas presentaron plantas
con hábito de crecimiento erecto y muy bajo nivel de pilosidad de la hoja. Estos cinco caracteres, por tanto, no se incluyeron en el ACP. Las dos primeras componentes (C1 y C2) del mismo explicaron el 51,3% de la variabilidad existente. Para ambas componentes los caracteres de mayor peso fueron los relativos a la forma, curvatura, tamaño y color del fruto. Además, otros caracteres relevantes fueron la forma del ápice y el ancho de la hoja, que contribuyeron de forma negativa a la primera componente. Por otro lado, la longitud de hoja y la espinosidad del cáliz contribuyeron positivamente a la segunda componente (figura 2).

Figura 2.- ACP que muestra cómo se distribuyen las variedades según la caracterización morfoagronómica realizada. En un cuadro verde se muestran los caracteres que más contribuyeron a la C1, y en un cuadro naranja, aquellos que más pesaron sobre la C2. Al lado de las siglas que marcan cada componente, entre paréntesis, se indica el porcentaje de la variabilidad explicada por la misma.

Como se observa en la figura 2, a un lado del eje vertical que marca la C2 se agruparían las entradas con frutos de un único color de la piel en estado de madurez comercial. Así, aparece un conjunto formado por SM-NOVELDA-1, SM-SANFULGENCIO-1, SM-BENIJOFAr-1 y SM-GANDIA-1. Entre ellas, SM-BENIJOFAr-1 es la que presenta frutos de un color más oscuro, casi negro. SM-SANFULGENCIO-1 es aquella que presenta frutos más pequeños y redondeados. SM-GANDIA-1 destaca por producir frutos con más cantidad de espinas en el cáliz, de mayor longitud y menos anchos que el resto. Lo mismo ocurre con sus hojas. SM-BENIJOFAr-1 destaca por producir frutos alargados más curvados que el resto de entradas. Al otro lado del eje de la C2 se agrupan las entradas con frutos de más de un color en su piel. SM-BENEIXAMA-1 y SM-MONCADA-1 son las entradas más similares al control. SM-ORIOLA-1 destaca por ser la variedad que produce frutos más grandes y achatados, con un color de piel predominantemente verde, y de ápice deprimido.

El ACP también permite intuir ciertas correlaciones entre caracteres. Así, se observa una relación positiva entre la longitud y el ancho de los frutos y de las hojas. De la misma manera, cuanto más alargado es el fruto más tendencia tiene a curvarse.

En el cuadro 2 se muestra la media por entrada de los nueve caracteres de calidad nutricional analizados. El ANOVA mostró que existen diferencias significativas entre entradas para todos los metabolitos estudiados. Las entradas SM-MONCADA-1 y SM-BENIJOFAr-1 destacaron por su alto contenido en antocianos (131.3µg/cm² y 117.3µg/cm², respectivamente). Este compuesto es el que da el color de piel morado de la berenjena. Las
clorofilas totales, por su lado, proporcionan un color de piel de base verdoso y su degradación está asociada con la madurez fisiológica del fruto. En este caso, destacaron las entradas SM-SANFULGENCIO-1 y SM-NOVELDA-1, con 158.7µg/g y 152.9µg/g de piel fresca, respectivamente.

Cuadro 2:

<table>
<thead>
<tr>
<th>ENTRADA</th>
<th>Ant¹ (µg/cm²)</th>
<th>Clorofila (µg/g piel)</th>
<th>CSS² (°Brix)</th>
<th>VitC³ (mg/100g-MF)</th>
<th>Ác. cítrico (mg/100g-MF)</th>
<th>Ác. málico (mg/100g-MF)</th>
<th>Glu⁴ (g/100g MF)</th>
<th>Fru⁵ (g/100g MF)</th>
<th>Sac⁶ (g/100g MF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-GANDIA-1</td>
<td>64,1abc</td>
<td>15,6a</td>
<td>6,0a</td>
<td>145,9c</td>
<td>391,0cd</td>
<td>1,97b</td>
<td>1,83cd</td>
<td>0,73d</td>
<td></td>
</tr>
<tr>
<td>SM-XERACO-1</td>
<td>78,3bcd</td>
<td>20,2a</td>
<td>6,5a</td>
<td>4,5c</td>
<td>97,0</td>
<td>401,6cd</td>
<td>1,70b</td>
<td>1,19ab</td>
<td>0,36bc</td>
</tr>
<tr>
<td>SM-MONTPELLÉS-1</td>
<td>32,5de</td>
<td>67,0b</td>
<td>5,2bc</td>
<td>3,4bc</td>
<td>43,6a</td>
<td>283,6h</td>
<td>1,83b</td>
<td>1,25abc</td>
<td>0,18ab</td>
</tr>
<tr>
<td>SM-ORIOLA-1</td>
<td>215,3abc</td>
<td>65,3b</td>
<td>4,6b</td>
<td>3,1a</td>
<td>35,9a</td>
<td>277,9h</td>
<td>1,72b</td>
<td>1,32abc</td>
<td>0,07a</td>
</tr>
<tr>
<td>SM-DOLORES-1</td>
<td>9,7a</td>
<td>1,8a</td>
<td>8,1f</td>
<td>5,8a</td>
<td>144,9d</td>
<td>716,01</td>
<td>2,05b</td>
<td>2,01d</td>
<td>1,67e</td>
</tr>
<tr>
<td>SM-BENIJOFAR-1</td>
<td>117,3cd</td>
<td>95,1b</td>
<td>5,5cd</td>
<td>3,2a</td>
<td>102,0c</td>
<td>447,2d</td>
<td>2,09b</td>
<td>1,38abc</td>
<td>0,18ab</td>
</tr>
<tr>
<td>SM-SANFULGENCIO-1</td>
<td>109,7abd</td>
<td>158,7b</td>
<td>5,0d</td>
<td>3,8c</td>
<td>64,4a</td>
<td>288,9b</td>
<td>1,15a</td>
<td>0,96a</td>
<td>0,09a</td>
</tr>
<tr>
<td>SM-NOVELDA-1</td>
<td>98,6cd</td>
<td>152,9e</td>
<td>5,9d</td>
<td>5,3d</td>
<td>107,0e</td>
<td>336,6b</td>
<td>1,74b</td>
<td>1,71bcd</td>
<td>0,41bc</td>
</tr>
<tr>
<td>SM-BENEIXAMA-1</td>
<td>79,2bcd</td>
<td>4,4a</td>
<td>6,7c</td>
<td>3,8b</td>
<td>87,4c</td>
<td>416,1cd</td>
<td>2,06b</td>
<td>1,04a</td>
<td>0,44bc</td>
</tr>
<tr>
<td>SM-MONCADA-1</td>
<td>131,3de</td>
<td>12,0a</td>
<td>5,5cd</td>
<td>3,1a</td>
<td>95,1c</td>
<td>519,8e</td>
<td>1,80b</td>
<td>1,17ab</td>
<td>0,40bc</td>
</tr>
<tr>
<td>LLISTADA DE GANDIA</td>
<td>65,3abc</td>
<td>13,6a</td>
<td>6,4e</td>
<td>3,9d</td>
<td>61,6e</td>
<td>123,2a</td>
<td>1,94b</td>
<td>1,29abc</td>
<td>0,53c</td>
</tr>
</tbody>
</table>

Cuadro 2.: Datos medios por entrada de la caracterización de calidad nutricional de las 10 variedades estudiadas. Las letras que acompañan cada dato indican los grupos homogéneos según el test Student-Newman-Keuls. **Se encontraron diferencias significativas entre entradas para el carácter para un nivel de confianza del 99%.

¹Ant: cantidad de antocianos presentes en 1 cm² de piel. ²CSS: contenido en sólidos solubles. ³VitC: cantidad de vitamina C en 1 L de extracto. ⁴,⁵,⁶Glu, Fru y Sac: cantidad de glucosa, fructosa y sacarosa, respectivamente, en 1 L de extracto. ⁷MF: materia fresca.

Por otro lado, las mejores entradas en cuanto a calidad de la carne fueron SM-DOLORES-1 (DO) y SM-GANDIA-1 (GA). Estas presentaron cantidades muy por encima de la media en su contenido en sólidos solubles (DO: 8,1°Brix), vitamina C (GA: 6.0mg/100g MF; DO: 5,8mg/100g MF), ácidos cítrico (DO: 144,9mg/100g MF; GA: 145,9mg/100g MF) y málico (DO: 716,01mg/100g MF), y fructosa (DO: 2,06b/100g MF; GA: 1,80b/100g MF) y sacarosa (DO: 1,72b/100g MF; GA: 1,32abc/100g MF). Para el contenido en glucosa no hubo diferencias significativas entre las distintas entradas excepto con SM-SANFULGENCIO-1, que presentó el valor más bajo con 0,96a/100g MF.

DISCUSIÓN

Existen diversos estudios que asocian el cultivo ecológico con una mayor acumulación de nutrientes y compuestos bioactivos comparado con la agricultura convencional (Benbrook, C., 2009; Raigón et al., 2010; Ribes-Moya et al., 2018). En el presente estudio, las variedades tradicionales mostraron, en general, mayor contenido en vitamina C, ácidos orgánicos y azúcares que los publicados en el último informe del USDA (report 11209, United States Department of Agriculture). El control ‘Llistada de Gandia’ utilizado en este trabajo mostró características agronómicas y un perfil nutricional cercano a la media del resto de variedades, o por debajo de ella; por lo que a partir de la colección de entradas caracterizadas es posible la selección de mejores variedades por características de calidad adaptadas al cultivo bajo técnicas ecológicas.

Las diferencias en la presencia de antocianos y clorofilas en la piel se deben principalmente al genotipo, si bien la forma de cultivo afectará a la cantidad de estos compuestos acumulada. Una mayor acumulación de antocianos...
en la piel es interesante desde el punto de vista de la mejora, debido a su función antioxidante y beneficiosa para la salud. Las variedades tradicionales SM-MONCADA-1 y SM-BENIJOFAr-1 son prometedoras en este aspecto. Las entradas SM-DOLOrES-1 y SM-gANDIA-1 mostraron el mejor perfil nutricional de la carne por lo que serían buenas candidatas para su adaptación al cultivo en ecológico. La continuación de este proyecto abarca el análisis de polifenoles totales y ácido clorogénico, principales antioxidantes en berenjena con demostrada actividad antitumoral y anticoledosterolémica (Rodríguez de Sotillo y Hadley, 2002).

Por otra parte, el problema que se achaca al cultivo ecológico es la disminución del rendimiento. En este ensayo se han obtenido valores bajos de rendimiento, entre 0,5 y 1,2 kg por planta, según la entrada. Aun así, la berenjena es una hortaliza que presenta ventajas bajo este tipo de cultivo. Esto es debido a su rusticidad y a que presenta alta tolerancia o resistencia a la mayoría de enfermedades que afectan a otros cultivos de su misma especie, como el tomate. Por ello, la berenjena no necesitará de tratamientos con agroquímicos que no están permitidos en la agricultura ecológica.

En definitiva, los resultados obtenidos hacen interesante el uso y conservación de las variedades tradicionales de berenjena caracterizadas y abren la puerta a la selección de entradas de berenjena de calidad y con una buena adaptación a condiciones de cultivo de bajos insumos.

REFERENCIAS

CARTELES/PÓSTERES RELACIONADOS

ESTUDIO DE DIFERENTES CLONES COMO PATRONES EN LA MICROINJERTACIÓN CON YEMAS DEL CLON UF-650 COMERCIAL DE THEOBROMA CACAO LIN

Miranda Barbier O, Menéndez Grenot M, Rodríguez Terrero M

Instituto de Investigaciones Agroforestales (INAF), UCTB Baracoa, Los Hoyos, Sabanilla (Cuba)
eeaftbaracoa@forestales.co.cu, miranda@cug.co.cu

El trabajo experimental se desarrolló en vivero de la Estación Experimental Agro-Forestal Baracoa, ubicada en el municipio de Baracoa, provincia de Guantánamo, con el objetivo de determinar cuáles de los clones utilizados con patrones en el estudio son más eficientes en la microinjertación del cacao. El experimento se desarrolló durante el período marzo a diciembre del 2014 representado por los clones (UF-613, Pound-7, SCA-6, IMC-67, EET-399, UF 29 y Matina) como patrones, en un diseño de bloques al azar y 3 réplicas. Se utilizaron 20 plantas en estado de fosforito de los patrones descritos en los tratamientos a los que se injertaron el clon seleccionado UF-650. Se evaluaron 6 microinjertos al azar después del destape por cada tratamiento para medir el porcentaje de prendimiento (al momento del destape), de logros (a los tres meses del destape), el diámetro y el largo del brote (a los 30, 60 y 90 días del destape). Los clones EET 399, UF 613 e IMC 67 utilizados como patrón se caracterizaron por poseer los mayores valores de prendimiento, logro y crecimiento del injerto. El clon Matina se caracterizó por disminución de su crecimiento vegetativo lo que no permite su utilización como patrón en los microinjertos de cacao.

Palabras clave: clon, microinjertación, prendimiento, yemas
SELECCIÓN Y CONSERVACIÓN DE ESPECIES CULTIVADAS ATENDIENDO A LA PLASTICIDAD FENÓTÍPICA DE CARACTERES MORFOLÓGICOS Y FUNCIONALES RELACIONADOS CON EL USO DEL AGUA COMO ESTRATEGIA DE ADAPTACIÓN AL CAMBIO CLIMÁTICO: EL CASO PARTICULAR DE FRAGARIA X ANANASSA

Landete-Tormo MB, Sesmero R, Quesada MA

Depto. Biología Vegetal, Universidad de Málaga, Campus Teatinos s/n, E-29071, Málaga
Correo electrónico: martab@uma.es

RESUMEN: Para garantizar la producción de alimentos y la soberanía alimentaria de los pueblos se requiere transitar hacia manejos de gestión agroecológicos, como cultivar variedades localmente adaptadas al territorio, que no siempre provee los insumos adecuados. La disponibilidad de agua es y será más limitada en los escenarios de cambio climático previstos para la parte baja del Valle del Guadalquivir. Las respuestas plásticas y eficientes hidricamente que las plantas cultivadas expresan son valiosas para adaptarse al cambio climático. Nuestro trabajo pretende identificar qué rasgos morfológicos y funcionales vinculados con el uso del agua presentan mayor plasticidad fenotípica en la fresa y comparar las relaciones hídricas de diferentes genotipos en limitación hídrica. Se han evaluado un parental del híbrido cultivado, variedades antiguas relocalizadas y dos comerciales cultivadas en el sistema agroindustrial de Huelva. Los objetivos han sido comprobar si existe una pérdida de plasticidad y de eficiencia en el uso del agua relacionada con la mejora genética profesional realizada en condiciones no limitantes. Rasgos fisiológicos, como la conductancia estomática (gs) y el potencial hídrico foliar (Ψf) al mediodía fueron los caracteres funcionales que mayor plasticidad fenotípica presentaron en contraposición a los rasgos morfológicos en todas las variedades. Sin embargo, con conductancias estomáticas similares, cercanas a 200 mmol m² s⁻¹, las variedades comerciales registraban valores de potencial hídrico menores, en torno a -1,5 MPa, indicando una menor regulación hídrica que el parental y la variedad antigua. Esta última, aunque produjo menos, su producción fue más estable a lo largo del tiempo.

Palabras clave: agua, fresa, conductancia estomática, potencial hídrico
INFLUENCIA DEL TIPO DE MANEJO, ECOLÓGICO O CONVENCIONAL, EN LA ENTOMOFAUNA AUXILIAR ASOCIADA AL CULTIVO DEL CAQUI (DIOSPYROS KAKI THUNB.)

González-Cavero S1, Sánchez-Domingo A1, Domínguez-Gento A2, Vercher R1

1Instituto Agroforestal del Mediterráneo (IAM), Universitat Politècnica de València (UPV). Camino de Vera s/n E46.022 Valencia, 963879264 rvercher@eaf.upv.es
2Servei de Producció Ecològica, innovació i tecnologia, DG DRiPAC, GVA. Estación Experimental Agraria de Carcaixent. Pd. del Barranquet s/n, E46740 Carcaixent (Valencia), dominguez_all@gva.es.

RESUMEN: El caqui (Diospyros kaki Thunb.) es un cultivo que en los últimos años ha adquirido una gran notoriedad en los mercados europeos gracias al éxito comercial de la variedad “Rojo Brillante”, originaria de la comarca de la Ribera Alta (Valencia, España). En esta comarca se cultiva el 96% de la producción total de la Comunidad Valenciana y el 83% de la producción española.

Para conocer la influencia del tipo de manejo (convencional o ecológico) en la entomofauna auxiliar del cultivo, durante dos campañas se llevaron a cabo seguimientos quincenales con trampas amarillas pegajosas en ocho parcelas cultivadas con manejo ecológico (cuatro parcelas) y convencional (cuatro parcelas) localizadas en la zona de La Ribera, al sudeste de la provincia de Valencia, todas ellas con condiciones ambientales similares.

Los muestreos se realizaron desde finales de abril hasta finales de octubre y los resultados indican que en general, la entomofauna auxiliar asociada al cultivo es más abundante y diversa en el cultivo con manejo ecológico. Los enemigos naturales más importantes fueron los himenópteros parasitoides, destacando las familias Aphelinidae, Encyrtidae y Mymaridae (Chalcidoidea). Los depredadores fueron mucho menos abundantes, siendo más comunes los Coniopterygidae (Neuroptera).

Palabras clave: control biológico, depredadores, frutales, parasitoides, plagas

INTRODUCCIÓN

El caqui (Diospyros kaki Thunb.) es un cultivo en expansión en España y otros países de la zona mediterránea (Úbeda et al. 2012). Según datos de la FAO (FAOSTAT 2017), la producción mundial de caqui casi se ha triplicado desde el año 1997 hasta el 2014, hasta alcanzar las 5.430.365 T. España ha experimentado en los últimos 10 años la mayor y más rápida expansión de este cultivo entre los países de la cuenca mediterránea (311.400 T de los 362.144 T producidos en Europa en 2016) (FAOSTAT 2017), alcanzándose en la Comunidad Valenciana, donde se cultiva el 90% de los caquis, un área de cultivo de 15.977 ha en 2017, cinco veces más que la superficie de hace diez años, que era de 3.298 ha (MAGRIMA 2017).

En la actualidad, la producción del caqui ‘Rojo Brillante’ en la Ribera del Júcar representa el 96% de la producción total en la Comunidad Valenciana y el 83% de la producción española (Bellini et al. 2008).

Existen numerosos estudios en los que se compara el efecto de los sistemas de cultivo ecológico y convencional en la entomofauna auxiliar beneficiosa (Suckling et al. 1999, Rundlöf et al. 2001, Bengtsson et al. 2005, Simon et al. 2007, Vercher et al. 2010), pero pocos de ellos se refieren al cultivo del caqui. Estudios previos indican que, aunque los resultados varían en función de los grupos estudiados, en general, la abundancia de artrópodos auxiliares es generalmente superior en el sistema ecológico frente al convencional (Winquist et al. 2012, Vercher et al. 2010). Esta mayor presencia de entomofauna auxiliar ayuda a mejorar la regulación natural de las poblaciones de plagas.
MATERIAL Y MÉTODOS

Este estudio se ha llevado a cabo durante las campañas de caqui (*Diospyros kaki*) de 2017 y 2018 en dos parcelas de caquis de manejo ecológico localizadas en Carcaixent y Alcudia en 2017 y otras dos parcelas en Carlet en 2018 y en una parcela de manejo convencional en Sollana en 2017 y la misma durante 2018 (Fig. 1). Denominamos manejo convencional, al manejo integrado, ya que desde 2014 toda la agricultura de la UE debe hacerse bajo este tipo de manejo.

Todas las parcelas pertenecen a la zona de La Ribera, al sudeste de la provincia de Valencia y tienen condiciones ambientales similares.

![Fig. 1: Detalle de dos de las parcelas de caquis muestreadas, una de manejo convencional (Sollana, Valencia; imagen izquierda) y otra de manejo ecológico (Carcaixent; Valencia; imagen derecha).](image)

Las parcelas de manejo ecológico se siguieron del 22 de mayo al 18 de octubre de 2017 y del 12 de junio al 8 de octubre de 2018. De manera similar, las parcelas de caqui convencional se siguieron del 28 de abril al 25 de octubre de 2017 y del 4 de mayo al 14 de septiembre de 2018.

La periodicidad de los muestreos en todas ellas fue semanal y quincenal, en función de las condiciones ambientales.

La metodología de muestreo consistió en la colocación de una trampa amarilla pegajosa de 10 x 25 cm de superficie (Fig. 2) en cada una de las parcelas. De manera que se recogieron 59 trampas amarillas en las parcelas de manejo ecológico, 35 trampas en 2017 y 24 trampas en 2018 y un total de 37 trampas amarillas en las parcelas de manejo convencional 21 trampas en 2017 y 16 en 2018.

El seguimiento de mosca blanca se realizó a través del muestreo visual de hojas en campo, tomándose entre 10-15 hojas al azar en cada parcela y muestreo y una vez en el laboratorio se contaron el número total de individuos encontrados en cada hoja. En total se hicieron 39 muestreos en 2017 (17 muestreos de convencional y 22 ecológicos) y 45 muestreos en 2018 (19 muestreos de convencional y 26 ecológicos). Esto supone un total de 577 hojas de caqui en manejo convencional y 605 en manejo ecológico.

Para la contabilización e identificación de los diferentes insectos se utilizó una lupa binocular. Los artrópodos conocidos fueron clasificados hasta el nivel de especie. Otras especies, pertenecientes a taxones bien caracterizados o con biologías similares, llegaron a ser identificadas hasta género o familia. Las capturas de insectos en trampas se expresaron como número de insectos/trampa y 7 días.
Se han realizado análisis de varianza (ANOVA) factoriales para comparar los distintos grupos de enemigos naturales, así como para conocer la abundancia y diversidad de artrópodos según el tipo de manejo. Se ha utilizado para la separación de las medias el Test de Mínima Diferencia Significativa (MDS y cuando ha sido necesario para homogenizar los datos, se ha realizado una previa transformación logarítmica en base diez de los datos expresados como individuos/trampa y 7 días.

RESULTADOS Y DISCUSIÓN

Se han identificado un total de 29.912 artrópodos en los dos años de muestreo, 23.083 artrópodos en las parcelas ecológicas (10.951 artrópodos en 2017 y 12.132 en 2018) y 6.829 artrópodos en la parcela convencional (2.612 artrópodos en 2017 y 4.217 en 2018). Esto supone, 202 artrópodos por trampa y semana en promedio en manejo ecológico frente a 154 en convencional. Se han encontrado artrópodos pertenecientes a 10 órdenes distintos en manejo ecológico y a 11 órdenes en manejo convencional, distribuidos entre las clases Arachnida e Insecta, perteneciendo la gran mayoría a esta última (Cuadro 1 y Fig. 3). En el grupo indicado como Otros se encuentran los órdenes Coleoptera, Araneae, Lepidoptera, Ephemeroptera y Collembola.

El orden más abundante en manejo ecológico ha sido el Hemiptera con alrededor de un 75% de las capturas. Esto se debe a la gran presencia de moscas blancas (Aleyrodidae) durante los últimos años en el cultivo del caqui, ya que casi la totalidad de los hemípteros pertenecen a esta familia. El segundo orden en importancia ha sido el Hymenoptera, representado fundamentalmente por enemigos naturales parasitoides (Cuadro 1 y Fig. 3).

En manejo convencional el orden Hemiptera ha alcanzado un 41,5% de las capturas, siendo el segundo orden en importancia por detrás del Diptera, con un 46%. La gran mayoría de los dipteros han sido mosquitos quironómidos (Cuadro 1 y Fig. 3).
Si estudiamos las capturas en función de su nicho alimenticio, se observa que en manejo ecológico el 78% de las capturas son fitófagos, frente al 45% en manejo convencional (F= 14,10; g.l.= 1,96; P= 0,0003). Los enemigos naturales suponen un 16% y un 8% en manejo ecológico y convencional, respectivamente, siendo tres veces más numerosos en manejo ecológico que en convencional (F= 27,00; g.l.= 1,96; P= 0,0000). Esta baja presencia de enemigos naturales en el cultivo del caqui en manejo convencional ya había sido demostrada por Vercher et al. (2017) en estudios llevados a cabo en la misma zona entre 2014 y 2016.

En ambos casos los parasitoides son los enemigos naturales más importantes, con un 11% en ecológico y 7% en convencional (F= 14,92; g.l.= 1,96; P= 0,0002). Los depredadores, seis veces más abundantes en ecológico que en convencional, suponen un 5% en ecológico y apenas un 1% en convencional (F= 26,67; g.l.= 1,96; P= 0,0000). Destacan los individuos con otro tipo de nicho alimenticio, como los saprófagos, que mientras en manejo ecológico ocupan un 6% de las capturas, en manejo convencional alcanzan el 47%, siete veces más numerosos en este último que en manejo convencional (F= 10,16; g.l.= 1,96; P= 0,0019) (Fig. 4).

Fig. 3: Distribución de los artrópodos capturados en función de su nicho alimenticio en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y dos de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018.
Fig. 4: Abundancia total de los artrópodos capturados en función de su nicho alimentico en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y dos de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018. Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).

Los parasitoides estuvieron representados en su totalidad por himenópteros y la superfamilia Chalcidoidea fue la más numerosa en ambos manejos, aunque significativamente más abundante en manejo ecológico que convencional (F= 11,06; g.l. = 1,96; P= 0,0013). Las superfamilias Platygastroidea e Ichneumonoidea también mostraron una presencia relevante, aunque sin diferencias significativas en cuanto a manejo (F= 1,46; g.l. = 1,96; P= 0,2294 y F= 1,15; g.l. = 1,96; P= 0,2860, respectivamente). Por último, la superfamilia Ceraphronoidea, aunque no muy abundante en cuanto capturas, fue significativamente mayor en manejo ecológico que en manejo convencional F= 20,89; g.l. = 1,96; P= 0,0000) (Fig. 5).

Fig. 5: Abundancia relativa de las superfamilias de himenópteros parasitoides capturados en los muestreos realizados en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y dos de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018. Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).
Al estudiar en mayor profundidad las capturas del grupo más importante de himenópteros, dentro de la superfamilia Chalcidoidea se encontraron individuos pertenecientes a seis familias diferentes, destacando Aphelinidae, Encyrtidae y Mymaridae. Más del 90% de los afelínidos encontrados fueron parasitoides de moscas blancas, muy numerosas en el cultivo. Los encírtidos más importantes fueron los Metaphycus sp., parasitoides de cócidos (Hemiptera). Sin embargo, los parasitoides de pseudocóccidos, plaga común en el caqui, fueron poco numerosos. Los mimáridos fueron abundantes, pero la especie más importante (Alaptus sp.) es parasitóide de psocópteros, que no son insectos plaga. En estas dos últimas familias se encontró una presencia significativamente mayor en manejo ecológico que en manejo convencional (F= 10,22; g.l.= 1,96; P= 0,0019 y F= 19,75; g.l.= 1,96; P= 0,0000, respectivamente). Aunque la abundancia de las familias Pteromalidae y Trichogrammatidae fue menor, su presencia también fue significativamente más importante en ecológico que en convencional (F= 5,40; g.l.= 1,96; P= 0,0222 y F= 4,81; g.l.= 1,96; P= 0,0306, respectivamente) (Fig. 6).

Dentro de las cuatro familias más importantes de parasitoides encontradas destaca que, independientemente de la abundancia relativa de cada una de ellas en cada tipo de manejo, el número de especies encontradas es diferente (riqueza). De manera que, la diversidad de especies dentro de cada una de las familias es mayor en todos los casos en manejo ecológico que en convencional (Cuadro 2).

En cuanto a los grupos de depredadores encontrados en el cultivo del caqui, una vez más aparecen diferencias en función del manejo realizado. De manera que, tanto los neurópteros (F= 9,55; g.l.= 1,96; P= 0,0026), como los dipteros (F= 26,53; g.l.= 1,96; P= 0,0000) y coleópteros (F= 11,73; g.l.= 1,96; P= 0,0009) fueron significativamente más numerosos en manejo ecológico que en manejo convencional (Fig. 7).

Fig. 6: Abundancia relativa de las familias de himenópteros parasitoides de la superfamilia Chalcidoidea capturados en los muestreos realizados en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y una de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018. Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).

Dentro de los neurópteros, el grupo mayoritario en ambos manejos, la especie más abundante fue Semidalis aleyrodiformis Stephens (Coniopterygidae), depredador generalista que se estaría alimentando probablemente de moscas blancas.
Al estudiar en mayor profundidad las capturas del grupo más importante de himenópteros, dentro de la super-familia Chalcidoidea se encontraron individuos pertenecientes a seis familias diferentes, destacando Aphelinidae, Encyrtidae y Mymaridae. Más del 90% de los afelínidos encontrados fueron parasitoides de moscas blancas, muy numerosas en el cultivo. Los encírtidos más importantes fueron los Metaphycus sp., parasitoides de cóccidos (Hemiptera). Sin embargo, los parasitoides de pseudocóccidos, plaga común en el caqui, fueron poco numerosos. Los mimáridos fueron abundantes, pero la especie más importante (Alaptus sp.) es parasitoide de psocópteros, que no son insectos plagas. En estas dos últimas familias se encontró una presencia significativamente mayor en manejo ecológico que en manejo convencional (F= 10,22; g= 1,96; P= 0,0019 y F= 19,75; g= 1,96; P= 0,0000, respectivamente).

Dentro de las cuatro familias más importantes de parasitoides encontradas destaca que, independientemente de la abundancia relativa de cada una de ellas en cada tipo de manejo, el número de especies encontradas es diferente (riqueza). De manera que, la diversidad de especies dentro de cada una de las familias es mayor en todos los casos en manejo ecológico que en convencional (Cuadro 2).

En cuanto a los grupos de depredadores encontrados en el cultivo del caqui, una vez más aparecen diferencias en función del manejo realizado. De manera que, tanto los neurópteros (F= 9,55; g= 1,96; P= 0,0026), como los dípteros (F= 26,53; g= 1,96; P= 0,0000) y coleópteros (F= 11,73; g= 1,96; P= 0,0009) fueron significativamente más numerosos en manejo ecológico que en manejo convencional (Fig. 7).

Fig. 6: Abundancia relativa de las familias de himenópteros parasitoides de la superfamilia Chalcidoidea capturados en los muestreos realizados en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y una de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018. Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).

Fig. 7: Abundancia de órdenes depredadores encontrados en los muestreos realizados en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y dos de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018. Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).

Cuadro 2: Número de especies encontradas (riqueza (s)) en las familias de Chalcidoidea capturadas en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y dos de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018.

<table>
<thead>
<tr>
<th></th>
<th>Convencional</th>
<th>Ecológico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aphelinidae</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Encyrtidae</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Mymaridae</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Eulophidae</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Fig. 8: Promedio de moscas blancas (Hemiptera: Aleyrodidae) encontradas como adultos en trampas amarillas (por muestreo y semana) (izqda.) y en hojas (total de individuos por muestreo y hoja) (drcha.) en los muestreos realizados en cuatro parcelas de caquis de manejo ecológico (59 trampas amarillas) y dos de manejo convencional (37 trampas amarillas), localizadas en la zona de La Ribera, sudeste de la provincia de Valencia, durante la campaña 2017 y 2018. Barras de error estándar con la misma letra no presentan diferencias significativas (p ≤ 0,05).
El promedio de individuos de mosca blanca encontrados por hoja ha sido similar en los dos tipos de manejo (2,9 individuos en convencional frente a 2,3 individuos en ecológico, F= 0,01; g.l. = 1,1180; P= 0,9279) (Fig. 8). Por lo que, a pesar de encontrar significativamente un mayor número de adultos de moscas blancas en el cultivo del caqui ecológico (F= 17,15; g.l. = 1,96; P= 0,0001), la plaga predominante, los niveles de mosca blanca en hoja son similares en ambos tipos de manejo (Fig. 8). Los enemigos naturales en ecológico, donde fueron más abundantes, podrían estar contribuyendo a la gestión de la plaga.

CONCLUSIONES

Las parcelas de manejo ecológico presentaron el doble de artrópodos que las de convencional, así como una mayor diversidad de especies. Si analizamos el nicho ecológico, se observa que en manejo ecológico hay un mayor número de insectos plaga y más enemigos naturales, que son tres veces más abundantes en manejo ecológico que en convencional. En ambos casos los parasitoides son los enemigos naturales más importantes y los depredadores aparecen seis veces más en ecológico que en convencional. Destacan, tanto en ecológico como en convencional, la especie neuróptera S. aleyrodiformis, probablemente alimentándose de moscas blancas, pues en estudios anteriores a la aparición de la plaga, no estaban presentes.

Los parasitoides estuvieron representados en su totalidad por himenópteros y la superfamilia Chalcidoidea fue la más numerosa en ambos manejos, aunque significativamente más abundante en manejo ecológico que convencional.

Más del 90% de los afelínidos encontrados son parasitoides de moscas blancas. Los encírtidos más importantes son los Metaphycus sp. (parasitoides de cóccidos) y los parasitoides de pseudocóccidos, plaga común en el caqui, son poco numerosos. Los mimáridos son abundantes, pero las especies encontradas no son parasitoides de plagas importantes.

A pesar de encontrar un mayor número de adultos de mosca blanca en manejo ecológico, cuando se evalúa el daño en las hojas los niveles de la plaga, son similares en ambos tipos de manejo. Es decir, aunque aparecen más adultos de plaga, cuando analizamos el daño en hojas vemos que los niveles son similares en ambos manejos. Ello puede ser debido a que los enemigos naturales en ecológico, donde fueron más abundantes, podrían estar contribuyendo a la gestión de la plaga.

Este estudio forma parte del “Conveni per a la investigació i experimentació d’estratègies agroecològiques per al maneig de la biodiversitat i implementació de la transferència i demostració d’aquet tipus de models en l’agricultura ecològica valenciana” entre la Generalitat Valenciana a través de la Consellería de Agricultura, Medio Ambiente, Cambio Climático y Desarrollo Rural y la Universitat Politècnica de València.

REFERENCIAS

ES POSIBLE ALCANZAR EL EQUILIBRIO POBLACIONAL DE LA ENTOMOFAUNA EN AGROECOSISTEMAS? EFECTIVIDAD DEL CORREDOR BIOLÓGICO EN UN SISTEMA AGRÍCOLA MANEJADO BAJO PRINCIPIOS AGROECOLÓGICOS

Barrera Salas C, Romo Quilodrán J, Peredo y Parada S

Laboratorio de Agroecología y Biodiversidad (LAB), Grupo de Agroecología y Medio Ambiente (GAMA), Universidad de Santiago de Chile (USACH), claudia.barrera.s@usach.cl

RESUMEN: Uno de los principios agroecológicos es la promoción de la fauna benéfica y el uso de medidas preventivas para minimizar las pérdidas por insectos plagas. Para ello, junto con un adecuado diseño predial, se utilizan técnicas como los corredores biológicos que sirvan de hospedero de enemigos naturales y, con ello, mantener bajo el umbral económico las plagas que afectan a los cultivos. El objetivo de esta comunicación es determinar la efectividad de un corredor biológico establecido con 8 especies botánicas diferentes en un sistema agrícola con 7 años de manejo agroecológico (rotación trienal, asociación hortalizas de hoja/fruto/raíz/bulbo, incorporación anual de compost y humus en otoño y primavera). Se instalaron trampas pegajosas de feromonas en las que, junto con la utilización de redes, paraguas y aspiradores entomológicos, se recolectaron individuos con una frecuencia semanal durante 7 meses en la época de primavera/verano. Con los datos obtenidos y mediante análisis estadístico descriptivo se determinó presencia, abundancia y riqueza. Los resultados señalan la presencia de 14 órdenes, 63 familias y 133 especies distintas predominando Hemíptera (28,98 %) y Díptera (25,20%). A nivel de especie destaca Rhyzobius lopanthae (30%), Scutellista caerulea (27%) y Metaephycus helvolus (25%) entre los enemigos naturales y Frankliniella occidentalis (47%) y Saissetia oleae (35%) consideradas plaga, lo que permite concluir que el corredor biológico establecido con C.officinalis, C.nobile B. officinalis, A.oillefolium, L.usitatissium, O.vulgare, S.officinale y A.absinthium es funcional a la planificación de cultivos diseñados para el sistema productivo permitiendo mantener controlados los niveles de plaga bajo el umbral económico.

Palabras claves: diseño predial, enemigos naturales, transición agroecológica
SELECCIÓN DE CULTIVARES DE MELÓN ADAPTADOS A AGRICULTURA ECOLÓGICA

Flores-León A 1, Sifres A 1, García-Martínez S 2, Valcárcel JV 1, Perpiñá G 1, Sáez C 1, Romero C 3, Monforte A 3, Pérez A 1, Cebolla J 1, Diez MJ 1, Gisbert C 1, Ruiz JJ 2, López C 1, Ferriol M 1, Picó B 1

1Universitat Politècnica de València (COMAV-UPV),
2Universidad Miguel Hernández (EPSO-UMH)
3IBMCP (CSIC-UPV)
Información de contacto: Centro de Conservación y Mejora de la Agrobiodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, E-46022 Valencia
alfloleo@doctor.upv.es

RESUMEN: El melón (Cucumis melo L.) es un cultivo tradicional de España, donde se cultivan melones no dulces, denominados “alficós”, y melones dulces. Las preferencias de agricultores y consumidores han favorecido la selección de variedades adaptadas a diversas condiciones agroclimáticas. Los cultivares de melón dulce típicos de España siguen cultivándose, aunque muchos para consumo propio o venta local. Debido a la demanda del consumidor por frutas tradicionales ecológicas, el gobierno valenciano (CEICE, Generalitat Valenciana) ha patrocinado un proyecto (PROMETEO 2017/078) para seleccionar variedades españolas de melón adaptadas al cultivo ecológico. Cincuenta variedades de melones, no dulces y dulces, procedentes del Banco de Germoplasma de la Universitat Politècnica de València, se ensayaron en dos campos, uno en la zona periurbana de Valencia, donde se fomenta el cultivo ecológico, y otro en una zona sin historia de cultivo de melón. Se dispusieron tres plantas por bloque, con tres bloques por campo. Se reconocieron las plagas y enfermedades que afectaron durante el ciclo de crecimiento. Se detectaron el virus del mosaico de la sandía (WMV) y el virus del mosaico del pepino (CMV), ambos transmitidos por áfidos. El oídio afectó de forma diferente a los cultivares. En un campo, se aislaron hongos patógenos de suelo, que afectaron especialmente a algunas variedades. Las variedades se injertaron, siendo los patrones de melón más tolerantes a patógenos fúngicos que los de Cucurbita. Estos ensayos identificaron factores bióticos que limitan el cultivo ecológico en la región, que facilitará el desarrollo de variedades de melón destinadas al cultivo ecológico.

Palabras Clave: alficós, cultivares tradicionales, melón, Valencia
IMPLEMENTACIÓN DE UN BANCO DE GERMOPLASMA DE PLANTAS MEDICINALES, AROMÁTICAS Y CONDIMENTARIAS EN EL CENTRO DEL VALLE DEL CAUCA, COLOMBIA

Martínez Martina MA, Vélez Zabala FJ, Adarve J, Terranova D, Rivera V

Unidad Central del Valle del Cauca - UCEVA
Carrera 27 A No 48-144 Kilómetro 1 salida Sur Tuluá – Colombia
fvelez@uceva.edu.co

RESUMEN: En la Unidad Central del valle del cauca se estableció un banco de germoplasma activo, el cual permite la conservación ex situ de las diferentes plantas medicinales que se cultivan en la región centro del Valle del Cauca. Este proyecto beneficia a los pobladores, estudiantes, docentes e investigadores de la zona Centro del Valle del Cauca, donde no existe un banco de germoplasma dedicado a la conservación de estas especies de plantas, las cuales tienen gran importancia económica, ecológica, cultural y sobre todo de soberanía alimentaria. Este banco de germoplasma permite proteger los recursos genéticos ante eventos de crisis medicinal, catástrofes naturales y del proceso de erosión genética. Para la creación del banco se realizó colectas de materiales vegetales en las diferentes zonas rurales del Municipio de Tuluá. La conservación del material se realizó ex situ en colecciones de campo, aplicando técnicas específicas dependiendo de la naturaleza del material a conservar es decir de acuerdo al tipo de semilla o tipo propagación.

Para cada una de las especies colectadas, se realizó una ficha técnica con descripción taxonómica, fecha de ingreso, ubicación geográfica, información etnobotánica y química, acción farmacológica, rango de toxicidad y mecanismo de acción. Con toda esta información, se creó una base de datos, en más accesos, la cual estará disponible para la comunidad académica y rural. La implementación de este banco ayudará a los programas de Ingeniería y Tecnología Agropecuaria de la Unidad Central del Valle del Cauca para dar cumplimiento a las exigencias tanto académicas como investigativas.

Palabras claves: conservación, propagación, recursos genéticos, soberanía alimentaria
5. ASESORÍA, DIVULGACIÓN, FORMACIÓN E INVESTIGACIÓN

AULAS DE AGROECOLOGÍA COMO HERRAMIENTA DE EXTENSIÓN AGRARIA ECOLÓGICA

Arcos JM, Garrido EM, Jurado MA, Jauregui J

Consejería de Agricultura, Pesca y Desarrollo Rural
Calle Tabladilla s/n; E-41013-Sevilla
E-Mail: asesoriaecologica.capder@juntadeandalucia.es; Tel +34 955032084

RESUMEN: La Estrategia de Difusión de la Producción Ecológica en Andalucía (EDIPE) es una herramienta puesta en marcha por la Administración Pública Andaluza cuyo objetivo es recoger, extender y divulgar la experiencia acumulada en los últimos años dentro del sector de la producción ecológica en Andalucía. La EDIPE se configura como instrumento de coordinación y planificación en materia de extensión y asesoramiento de la PE.

La coordinación de la EDIPE corresponde a la Asesoría para la PE en Andalucía, compuesta por una red de asesores que ofrecen asistencia técnica al sector ecológico andaluz. Ésta trabaja en coordinación con otros agentes en temas de asesoramiento y de difusión de la PE, convirtiéndose en el nexo de unión entre la propia administración y sector ecológico andaluz.

Las Aulas de Agroecología son una herramienta de extensión agraria que consiste en jornadas de divulgación centradas en una temática en particular, en la que personas claves muestran una herramienta, técnica o innovación puesta en marcha en sus propias explotaciones. Ésta es una de las acciones de la EDIPE que mejor acogida está teniendo para el sector ecológico andaluz, habiéndose convertido en uno de los pilares básicos en los que se sustenta la labor de difusión y divulgación de la Producción Ecológica por parte del servicio de asesoramiento de la PE.

La comunicación presenta la evaluación que desde la Asesoría de la CAPDER hemos realizado sobre la metodología, los resultados y valoraciones que han tenido las Aulas de Agroecología organizadas en los dos últimos años.

Palabras clave: asesoramiento, difusión, divulgación, desarrollo rural.

INTRODUCCIÓN

Antecedentes

El III Plan Andaluz de la Producción Ecológica Horizonte 2020 (III PAPE en adelante) puesto en marcha en 2016 (CAPDER 2016), tras la Evaluación del II Plan Andaluz de Agricultura Ecológica, concretó el conjunto de actividades y operaciones de las instituciones de gobierno con competencias en el sector agrario andaluz, dirigidas a fomentar y promover el desarrollo de la producción ecológica en Andalucía.

La Medida 8 del III PAPE está basada en la promoción, fomento y difusión de PE, recogiendo entre sus acciones la de dar apoyo al desarrollo de estrategias de demostración e información de la PE. Esta acción, está dando continuidad a la Estrategia de Difusión de la Producción Ecológica en Andalucía (EDIPE en adelante), puesta en marcha en 2010 durante el II PAAE. En este nuevo marco, la EDIPE pretende por un lado difundir y promocionar la PE entre los agentes del sector productor, y por otro la de compartir información práctica en el manejo de explotaciones ecológicas. Con esta acción se persigue:

- Difundir la producción ecológica a través de actuaciones realizadas por la propia administración o por grupos de operadores a través de: visitas a explotaciones, jornadas formativas, visitas de intercambio, seminarios específicos, colaboración con “personas clave” y “fincas colaboradoras”.

399
Optimizar la eficiencia de los mecanismos de divulgación para mejorar el conocimiento de las personas productoras y del personal técnico de las Instituciones.

Desarrollar Aulas de Agroecología en base a las demandas del propio sector, que permitan la mejora de la dinamización y difusión de resultados, alcanzándose así la sensibilización del sector y la mejora de la cualificación técnica de las personas que tienen como actividad profesional la del sector primario, las agroindustrias y el personal técnico que acompañan al sector productivo.

Dentro de la EDIPE, las Aulas de Agroecología están siendo una de las herramientas que mejores resultados y aceptación está teniendo dentro del sector ecológico.

Justificación

La elección de las Aulas de Agroecología como herramienta de divulgación de la PE dentro de la propia EDIPE, está justificada en gran parte por los resultados obtenidos a partir del diagnóstico realizado para la elaboración de esta estrategia, y en concreto, el estudio “Claves de Éxito de la PE en Andalucía” realizado en el año 2010 (Arcos, 2010). En ese trabajo se determinan aquellos canales que mayor validez tienen para difundir los sistemas ecológicos dentro del sector agrario andaluz a partir de entrevistas a agentes clave de la PE en todo el territorio Andaluz. En estas entrevistas se preguntaba por aquellos canales de difusión más válidos o útiles para hacer llegar a todas las personas del sector agrario andaluz las bases técnicas y administrativas de la PE. Los resultados era muy evidentes, ya que “las actividades presenciales” y el “voz a voz” entre los propios operadores, eran mencionados como los dos canales de difusión ideales para fomentar la PE. Por el contrario, internet, televisión, radio y prensa no fueron mencionados en ninguna de las entrevistas. Boletines y libros son mencionados en dos ocasiones. En el apartado otros, se mencionó el papel que pueden jugar los propios técnicos/as de entidades asociativas, de administraciones públicas o de empresas en la difusión más cercana y continua a los propios operadores, pero de una forma relevante.

No se debe perder de vista que las Aulas de Agroecología tienen como fin último la divulgación de conocimiento sobre la PE, y por tanto su aprendizaje. En este contexto de formación no reglada, se produce un diálogo entre iguales, donde el conocimiento práctico tradicional se suma al teórico/académico, persiguiendo una transformación de las personas que viven en el medio rural, adentrándose de esta forma en el terreno de lo que desde la perspectiva pedagógica se conoce como “aprendizaje dialógico”. Esta corriente de pensamiento, sostiene que el aprendizaje tiene como base las reflexiones, los debates y los argumentos, y también las experiencias de la vida cotidiana de las personas participantes (Freire, 1973).

Objetivos

Como principal objetivo de esta comunicación, se pretende revisar y evaluar las Aulas de Agroecología, para realizar propuestas de mejoras. El trabajo se centra, por tanto, en el análisis de la información cuantitativa y cualitativa recogida tras la celebración de 26 Aulas de Agroecología a lo largo del año 2017 y primer semestre de 2018.

Se trata de llevar a cabo una evaluación interna, una valoración crítica constructiva de los trabajos desarrollados hasta el momento a través de las Aulas de Agroecología, como herramienta idónea para, desde un marco institucional (gobierno autonómico andaluz), alcanzar objetivos de acuerdo a las necesidades planteadas por los distintos “Grupos de Interés”, en el seno del sistema de asesoramiento y su coordinación por parte de la Asesoría para la Producción Ecológica de Andalucía (ASEPEA).

MATERIAL Y MÉTODOS

Para la evaluación de las Aulas de Agroecología hemos utilizado dos métodos de producción de información cuantitativos y cualitativos, que en este caso han sido complementarios.
En primer lugar, se han analizado aquellas variables e indicadores cuantitativos que hemos ido recogien-
do a lo largo de este año y medio de trabajo.

En segundo lugar, aprovechando la encuesta semiestructurada y abierta, como herramienta metodoló-
gica, hemos recogido las valoraciones que tras la celebración de las Aulas de Agroecología han realizado los
asistentes. Esto nos ha permitido evaluar su funcionamiento de las aulas, lo cual facilitará la toma de decisiones de
 cara a reforzar y mejorar la realización de futuras Aulas de Agroecología.

RESULTADOS

Características de las Aulas de Agroecología.

Como ya hemos comentado en los antecedentes del apartado metodológico, las Aulas de Agroecología son
herramientas de divulgación multiobjetivo, coordinadas y dinamizadas desde el servicio público que presta la
ASEPEA de la CAPDER.

Estas Aulas de Agroecología, como herramienta de extensión agraria (Sánchez de Puerta, 1996), ofrecen al
sector ecológico andaluz un novedoso espacio de formación “no reglada”, eminentemente práctica, en la que el
papel del emisor de la información está representado normalmente por un operador ecológico y la transmisión se
realiza a otros operadores y/o personal técnico a través de un diálogo entre iguales, y donde el personal de la
administración juega un papel secundario de simple coordinación y acompañamiento, un tipo de extensión que
podría definirse como “institucional participativa” (Caporal, 1998). Se presenta un nuevo enfoque a la hora de
diseñar los programas de formación para agricultores, ya que los métodos unidireccionales desde el campo cien-
tífico-técnico hacia el agricultor precisan una orientación diferente. En este modelo de extensión es fundamental la
participación de los agricultores, intentando desarrollar el enfoque “de agricultor a agricultor”.

Este papel central del Aula de Agroecología, jugado por “una persona clave” que posee un conocimiento,
información o experiencia relevante, y que además opera profesionalmente dentro del sector ecológico, y que
“se juega” su economía en muchas ocasiones mediante la práctica de la producción ecológica, que es explicada
in-situ en la propia “finca colaboradora”, convierte a las aulas en un espacio de diálogo horizontal entre iguales,
que permite profundizar en las temáticas planteadas de una forma real y alejada de la “teorización” y poca pro-
fundidad en las que en ocasiones se puede caer durante las acciones de formación regladas.

Las Aulas de Agroecología quedan así definidas como una actividad formativa y/o divulgativa, de una
jornada de duración, coordinada por la propia Administración, en base a una temática y/o experiencia singular
del sector ecológico, transmitida por una “persona clave”, a la que asisten de forma voluntaria un conjunto perso-

1.-Planificada y especializada.

Toda la coordinación y planificación de las Aulas recae en el personal de asesoramiento de la ASEPEA, cuyos
perfiles técnicos están especializados en cuatro grandes áreas temáticas que agrupan a gran parte del sector
ecológico andaluz: ganadería, horticultura, leñosos intensivos y leñosos y herbáceos extensivos.

El personal de la administración junto con la persona clave seleccionada, diseñan el programa de la actividad,
proponiendo la duración, lugar de celebración y público objetivo de ésta.

2.-Participativa.

La elección de la temática del Aula, así como la puesta en marcha de ésta, está basada en las demandas realiza-
dadas por los propios asistentes a las Aulas, o teniendo en cuenta la disposición de colaboración de las personas
clave encargadas de transmitir la información.
3.- Territorial.

Se considera que las Aulas deben responder a las realidades de la gran diversidad de territorios y sectores productivos que componen el sector ecológico andaluz. Esto se consigue mediante una premisa siempre contemplada en las Aulas: “La acción divulgativa se desarrollará allá donde se encuentra el objeto de extensión”.

4.- Retroalimentada.

Toda la estrategia EDIPE y, en concreto, las Aulas de Agroecología, se retroalimentan de las propias acciones que se vienen realizando. De este modo, las temáticas, fincas colaboradoras y personas clave necesarias para la celebración de nuevas Aulas de Agroecología, se basan en las propuestas que hacen los propios asistentes, o bien las demandas o necesidades detectadas por la administración.

5.- Dinámica.

Las Aulas de Agroecología, están basadas justamente en unos programas predefinidos pero flexibles, desarrollados y adaptados a la realidad de cada jornada. El dinamismo se refleja en que suelen versa sobre temas de interés para el propio sector, que se celebran en el propio campo objeto de estudio, con un horario muy flexible, abiertas en cierta manera a una improvisación controlada. Este programa no cerrado, donde se invita al diálogo entre los asistentes, con muy diferentes procedencias, conocimientos y experiencias previas, permite el desarrollo de tertulias dialógicas entre personal experto, personal técnico de la administración o privado y operadores ecológicos, proceso a través del cual aprenden todas las personas asistentes.

6.- Medible.

Toda la EDIPE y las acciones puestas en marcha como las Aulas de Agroecología están basadas en una reflexión y evaluación para su mejora continua.

Todas estas características de las aulas, y los resultados de indicadores que venimos utilizando en relación a las Aulas de Agroecología los exponemos en los apartados siguientes, y nos van a permitir a través de este trabajo de análisis, una discusión posterior que de lugar a una serie de mejoras y propuestas que exponemos en el apartado 4.

Análisis Cuantitativo de la Aulas de Agroecología.

La tabla 1 resume los datos de las 26 Aulas de Agroecología celebradas entre el año 2017 y primer semestre de 2018 (Tabla 1). Se muestra el año de celebración, el título con el que se divulgó la jornada, el sector productivo abordado y el número de asistentes.

De las 26 Aulas celebradas, siete responden a una iniciativa para acercar la PE a personas jóvenes que han sido beneficiarias de la línea de ayuda de primera instalación de jóvenes agricultores/as (Submedida 6.1 PDR 2014-20) y que lo han hecho instalándose en una explotación ecológica. Es de resaltar que en la primera convocatoria (año 2015) de ayudas para la instalación de jóvenes en Andalucía, de las 1.492 beneficiarias, 317 de ellas lo haría en una explotación ecológica, lo que supone un 21,25% del total. En la segunda convocatoria, realizada en 2016, en Andalucía se aprobaron 1.023 expedientes de incorporación, de los cuales 194 lo hicieron en ecológico, lo que supone que más de un quinto del total de jóvenes beneficiarios de ayudas a la incorporación lo hacen en ecológico. Este alto porcentaje de jóvenes que se incorporan a la producción ecológica, llevó en 2016 a diseñar unas jornadas específicas para ellos. En 2018, tras la segunda convocatoria, se han vuelto a celebrar estas jornadas y en este caso han reunido a 113 de los jóvenes perceptores de esta ayuda en esta convocatoria, lo que supone que casi un 60% de los jóvenes incorporados en ecológico hayan asistido a esta jornada divulgativa. Los contenidos de estas jornadas se dividen en dos partes. En la primera de ellas se les ofrecían unas charlas introductorias sobre el concepto y principios de la PE, se les planteaban las principales cuestiones sobre la normativa y certificación, y quizás lo más importante, les presentábamos y ofrecíamos nuestro apoyo a través servicio
de asesoramiento específico a la PE. La segunda parte de las jornadas consistía en una visita a una explotación ecológica, cuya orientación técnica coincidiera con la de la mayoría de los jóvenes y, además, se priorizaba que fuesen proyectos de jóvenes agricultores ecológicos de la convocatoria de 2015, de forma que se conociera su experiencia y analizar los principales problemas al empezar la conversión y las posibles soluciones a éstos.

Además de estas Aulas específicas para jóvenes, varias de ellas se han celebrado en coordinación con otros Centros Públicos de Investigación, Formación e Investigación. En concreto, desde la Asesoría mantenemos una coordinación constante con el Instituto de Investigación y Formación Agraria y Pesquera (IFAPA), que es el Organismo Público de Investigación con las competencias en formación, adscrito a la Consejería en Agricultura. Además del IFAPA, hemos colaborado con el Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayorra” en el Aula de cultivos subtropicales emergentes.

El sector de la horticultura ecológica está siendo uno de los más dinámicos y que mayor tasa de crecimiento están teniendo en Andalucía en los últimos años. Las últimas estadísticas de las que disponemos, nos indican que Andalucía dispone de un total de 9.145 ha de hortícolas, de las cuales, 3.611 lo hacen bajo plástico. La tasa de crecimiento de la horticultura bajo abrigo es tal que se ha pasado de las 639 ha de invernaderos ecológicos en 2013 a las 3.611 ha de 2017. Si a este dinamismo, se le une la importancia del sector por el altísimo peso que éste tiene para la producción final agraria andaluza, está más que justificado que seis de las aulas celebradas hayan tenido como temática este sector. Para la celebración de éstas, se ha contado con investigadores de la Universidad de Almería y la Fundación Cajamar a través su Estación Experimental. Esta demanda que está teniendo este sector, se puede comprobar si observamos el número de asistentes a las Aulas de Biosolarización organizadas por el IFAPA de la Mojonera y la de Gestión de Restos Vegetales celebrada en la Finca Experimental del Centro de Innovación y Tecnología de la Fundación UAL-ANECOOP. En la primera de ellas fueron 207 las personas inscritas, y 142 a la segunda.

Los siguientes sectores en torno a los que más número de aulas se han celebrado son la ganadería (Ganso, Bovino, Apicultura y varios) y olivar con cuatro aulas cada uno. Son de interés también las realizadas en torno a lo que denominamos “nuevos cultivos”, habiendo presentado experiencias de producción de estevia, aloe, cultivo de berries, subtropicales o quinoa.

<table>
<thead>
<tr>
<th>Año</th>
<th>Título del Aula</th>
<th>Sector Productivo</th>
<th>N.° Asistentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>Introducción a la PE para jóvenes agricultores/as (Córdoba)</td>
<td>Almendro</td>
<td>12</td>
</tr>
<tr>
<td>2018</td>
<td>Manejo cubiertas viñedos ecológicos. Vertijana.</td>
<td>Vitivinicultura</td>
<td>35</td>
</tr>
<tr>
<td>2018</td>
<td>Stevia y Aloe vera</td>
<td>Nuevos cultivos</td>
<td>54</td>
</tr>
<tr>
<td>2018</td>
<td>Ganso Ecológico. La patera de Sousa 1812.</td>
<td>Ganadería</td>
<td>36</td>
</tr>
<tr>
<td>2018</td>
<td>Introducción a la PE para jóvenes agricultores/as (Granada)</td>
<td>Almendro</td>
<td>22</td>
</tr>
<tr>
<td>2018</td>
<td>Introducción a la PE para jóvenes agricultores/as (Huelva)</td>
<td>Olivar y Almendro</td>
<td>20</td>
</tr>
<tr>
<td>2018</td>
<td>Introducción a la PE para jóvenes agricultores/as (Jaén)</td>
<td>Olivar</td>
<td>13</td>
</tr>
<tr>
<td>2018</td>
<td>Introducción a la PE para jóvenes agricultores/as La Mojonera (Almería)</td>
<td>Hortícolas bajo plástico</td>
<td>11</td>
</tr>
<tr>
<td>2018</td>
<td>Introducción a la PE para jóvenes agricultores/as (Sevilla)</td>
<td>Olivar</td>
<td>12</td>
</tr>
<tr>
<td>2018</td>
<td>Olivares vivos: proyecto seoh/hifive. Fomento de la biodiversidad</td>
<td>Olivar</td>
<td>52</td>
</tr>
<tr>
<td>2018</td>
<td>Introducción a la PE para jóvenes agricultores/as Albox (Almería)</td>
<td>Almendro</td>
<td>23</td>
</tr>
<tr>
<td>2018</td>
<td>Agricultura biodinámica, permacultura y agricultura regenerativa</td>
<td>Frutales, huerto y ganadería</td>
<td>15</td>
</tr>
<tr>
<td>2017</td>
<td>Manejo de Cubiertas en Leñosos. Biodiversidad y Fauna Auxiliar</td>
<td>Ganadería y Olivar</td>
<td>84</td>
</tr>
<tr>
<td>2017</td>
<td>Micro Jornada IFAPA: Puesta al día en (BIO)Solarización</td>
<td>Hortícolas bajo plástico</td>
<td>207</td>
</tr>
<tr>
<td>2017</td>
<td>Horticultura Ecológica</td>
<td>Hortícolas bajo plástico</td>
<td>77</td>
</tr>
<tr>
<td>2017</td>
<td>Cultivo, transformación y comercialización de aloe vera</td>
<td>Nuevos cultivos</td>
<td>27</td>
</tr>
<tr>
<td>2017</td>
<td>Apicultura Ecológica</td>
<td>Ganadería</td>
<td>30</td>
</tr>
<tr>
<td>2017</td>
<td>Cultivo de Berries. Biodiversidad y Fauna Auxiliar</td>
<td>Frutos rojos</td>
<td>42</td>
</tr>
<tr>
<td>2017</td>
<td>Olivar: Manejo de Sueños y Compostage</td>
<td>Olivar</td>
<td>35</td>
</tr>
<tr>
<td>2017</td>
<td>Manejo y sanidad en bovino marismeno en el P.N. Doñana</td>
<td>Ganadería/ bovino</td>
<td>21</td>
</tr>
<tr>
<td>2017</td>
<td>Cultivos Emergentes: Quinoa</td>
<td>Cereales</td>
<td>21</td>
</tr>
<tr>
<td>2017</td>
<td>Vitivinicultura Ecológica en la Serranía de Ronda</td>
<td>Vitivinicultura</td>
<td>30</td>
</tr>
<tr>
<td>2017</td>
<td>Cultivos Emergentes: Stevia y Moringa Ecológicas</td>
<td>Nuevos cultivos</td>
<td>44</td>
</tr>
<tr>
<td>2017</td>
<td>Setos, compost, abono en verde y raíza biodegradable.</td>
<td>Hortícolas bajo plástico</td>
<td>142</td>
</tr>
<tr>
<td>2017</td>
<td>Plantaciones emergentes: lúcumo, pitaya, carambolo, longan</td>
<td>Frutales subtropicales</td>
<td>46</td>
</tr>
<tr>
<td>2017</td>
<td>Aprovechamiento de los restos de cultivos hortícolas</td>
<td>Hortícolas bajo plástico</td>
<td>23</td>
</tr>
</tbody>
</table>

Tabla 1.
En este año y medio de trabajo, han asistido 1.134 personas a las Aulas de Agroecología, de las cuales el 68,79% eran hombres y el 31,21% eran mujeres. Más del 60% de las personas que han asistido a las distintas Aulas de Agroecología, tienen como actividad profesional la del sector primario de la producción agraria, siendo en su mayoría el agrícola (53,8%) y un menor porcentaje el ganadero (8%). El segundo perfil mayoritario de asistentes es el de personal técnico con un 36%. Solo un 1,7% tenían un perfil distinto, siendo en su mayor parte personas comercializadoras.

Las 26 Aulas de Agroecología se han repartido en siete de las ocho provincias andaluzas, siendo Almería la provincia en la que más actividades se han organizado.

A lo largo de estas 26 Aulas se han realizado 34 ponencias técnicas, 27 de las cuales las han realizado personal externo a la Asesoría, y realizadas en un 62% de las ocasiones por hombres, y un 38% por mujeres.

Además de estas ponencias, que suelen realizarse de forma introductoria a las jornadas, se han visitado 30 explotaciones agrarias, 28 de las cuales han sido experiencias productivas reales, dirigidas por operadores ecológicos (Gráfico 1). Tan solo en dos ocasiones se han visitado fincas y proyectos experimentales dirigidos por centros de investigación. Incluso en estos casos, las aulas se han completado con una visita adicional a una experiencia real. Esto muestra el compromiso de divulgar y generar espacios de discusión entorno a experiencias prácticas reales, por sus ventajas como herramienta de divulgación.

Gráfico 1.

En estas 26 aulas, hemos contado con 32 personas claves que nos han mostrado las experiencias que querían difundirse a través de las Aulas. El perfil de estas personas, como se ha comentado, suele ser de una persona operadora ecológica que muestra su experiencia en su propia finca (Gráfico 2). De hecho, el 65,63% de las personas claves eran personas dedicadas a la producción primaria ecológica. El segundo perfil más frecuentes ha sido el personal técnico, ya que en nueve de las fincas ecológicas colaboradoras, la visita la realizó personal técnico de la propia explotación.

Gráfico 2.
Especificamente dentro de las Aulas de Introducción de la PE a jóvenes, es de resaltar que en todas ellas ha participado como persona clave al menos un joven perceptor de la misma ayuda en la convocatoria anterior.

Valoración de las Aulas de Agroecología por parte de las personas asistentes.

Las Aulas de Agroecología se han evaluado a través de unas encuestas semiestructuradas a los asistentes que permiten realizar una evaluación del desempeño del aula. Son voluntarias y anónimas y se envían en las 24 horas posteriores a la finalización de la actividad, una vez han tenido tiempo de reflexionar sobre ésta, a través de la herramienta Google Docs. Esta herramienta on-line, nos permite por un lado realizar esta evaluación sin restar tiempo al desarrollo de la jornada, y por otro al ser una herramienta ágil y cómoda para los asistentes, facilita que un gran número de asistentes puedan opinar y ofrecer mejoras y propuestas sobre las Aulas de Agroecología. A continuación, se detallan las valoraciones que se han obtenido tras analizar 195 encuestas de asistentes a 21 de las Aulas que hemos celebrado en 2017 y el primer semestre de 2018.

Resultados de las Valoraciones

La primera de las cuestiones que aparece en la encuesta es una Valoración General del desempeño del Aula. Un 94,3% de las 195 personas asistentes a las Aulas valoran la actividad como buena o muy buena (Gráfico 3).

La siguiente cuestión que se plantea a las personas asistentes es sobre los contenidos y sobre el nivel de información difundido a través de las Aulas. De nuevo en este caso, los resultados muestran una gran satisfacción, ya que un 91,3% de las respuestas indican que los contenidos y nivel de información que se ha difundido y trabajado a lo largo de la celebración de la jornada son interesantes o muy interesantes, considerándose que son muy interesantes de forma mayoritaria con un 51,8% de las respuestas (Gráfico 4).
Desde la coordinación de la ASEPEA consideramos que las expectativas que generan en los asistentes la celebración de las Aulas deben ser satisfechas, y es por ello por lo que a través de las encuestas, preguntamos a las personas que asisten si la jornada ha respondido a las expectativas creadas. La respuesta mayoritaria a esta cuestión es que las jornadas han sido adecuadas a las expectativas creadas, con un 58% de las opiniones. En segundo lugar encontramos que un 29,2% de los asistentes han visto superadas con creces las expectativas que se habían creado (Gráfico 5). En resumen el 87,2% de las personas asistentes han visto satisfechas sus expectativas sobre las jornadas.

Desde la perspectiva de la organización de nuevas actividades de divulgación, nos interesa como coordinadores de la actividad conocer la opinión que los asistentes tienen sobre la duración de las Aulas, ya que en todo momento tenemos que ser conscientes que esta es una actividad cuya asistencia es voluntaria, y que en numerosas ocasiones implica un desplazamiento fuera del domicilio habitual de residencia y trabajo, más importante si cabe teniendo en cuenta que la mayoría de las personas que asisten son operadores primarios del sector ecológico. La valoración mayoritaria a esta cuestión es que la duración de las aulas es idónea, ya que tres cuartas partes de los asistentes así nos lo muestran. En segundo lugar tenemos un 20,5% que nos indican que la jornada les ha resultado corta. Casi anecdóticas son las respuestas que indican que han sido unas jornadas largas o muy cortas (Gráfico 6).

Otras de las cuestiones que planteamos es que indiquen cómo de factible consideran la práctica de la PE tras la celebración de la jornada. Con esta pregunta perseguimos medir el impacto que la celebración de las Aulas tiene sobre las personas que asisten. La respuesta mayoritaria es la de aquellas personas que indican que la PE es más factible con un 35,7%. Le siguen aquellas que consideran la Producción Ecológica mucho más
factible después de asistir a las Aulas. Esto nos lleva a poder decir, que las aulas están teniendo un fuerte impacto para eliminar las barreras y prejuicios que impiden la difusión de la PE a un número mayor de personas. A esta cuestión un 30,4% de personas nos responden que la PE es igual de factible, y un residual porcentaje dice que la consideran menos factible. Esto nos permite pensar que la temática, persona clave elegida y finca visitada han sido adecuadas (Gráfico 7).

![Factibilidad de la P.E. tras las Aulas](image)

Gráfico 7

La última de las cuestiones y de gran valor en la encuesta, se centra en si estarían dispuestos a participar en otras aulas o jornadas similares. En este caso, y de forma contundente, el 94,71% de los 195 asistentes a las aulas que nos han mandado su valoración indica que sí (Gráfico 8), lo cual muestra de forma general un altísimo grado de satisfacción.

![¿Participaría en otras jornadas similares?](image)

Gráfico 8

Análisis de aportaciones de los asistentes a las aulas

En este apartado se analizan las aportaciones y las valoraciones de las Aulas de Agroecología por parte de las personas asistentes, a través de las preguntas abiertas de la encuesta semiestructurada.
A la pregunta de qué ha sido lo mejor de la jornada, un 28% considera que ha sido la visita a la finca ecológica e industrias asociadas, así como la comprobación in situ de las nuevas técnicas implantadas en los cultivos. Las prácticas de campo realizadas y las visitas a distintas bodegas de vino ecológico han sido valorada muy positivamente. En segundo lugar, un 15% opina que lo mejor del aula es la experiencia en sí misma, la idea de la jornada y su carácter eminentemente práctico. Consideran que las exposiciones concisas y la materia tratada amena. Una de cada diez personas opinan que lo mejor ha sido combinar teoría y práctica en la misma jornada. También se han valorado las ponencias y el alto conocimiento de la materia de las personas ponentes, las explicaciones y toda la información obtenida. La participación de agricultores y ganaderos experimentados y poder conocer de primera mano sus experiencias, alejado de los dogmas académicos. Otro aspecto valorado muy positivamente, es la interacción entre compañeros del sector, técnicos y ponentes, así como los contactos que se hacen y las experiencias que se comparten. En definitiva, la sociabilidad con el sector y el ambiente que se crea a partir de las personas asistentes.

La siguiente cuestión que se planteaba en el cuestionario era sobre lo peor de las jornadas, pregunta a la cual más de la mitad de los encuestados no han contestado. La opinión mayoritaria es que lo peor de las aulas ha sido que las ponencias eran demasiado teóricas. Y el hecho de que determinadas cuestiones no se habían aclarado con nitidez, faltando más información al respecto. En algunos casos, lo que no ha gustado ha sido la visita al campo, la distancia en los desplazamientos, el poco tiempo en campo y la meteorología han sido valorado negativamente en las encuestas. En menor proporción, otras de las opiniones sobre qué ha sido lo peor de las jornadas ha sido la presencia de políticos, la falta de documentación de la exposición, no haber escuchado a algunos integrantes expresar sus dificultades a la hora de vender su producción ecológica.

De las encuestas se obtiene información muy útil para organizar futuras Aulas de Agroecología, en base a las aportaciones realizadas, y poder así dar respuesta a las demandas del sector, ya que se les pregunta sobre qué temáticas consideran de mayor interés para la celebración de próximas jornadas. En relación a las temáticas, el 22% de los 195 asistentes a las aulas que nos han mandado su valoración indica que son las técnicas de cultivo en general en producción ecológica: tratamiento fitosanitarios y abono orgánico e inorgánico, balance de nutrientes, control de plagas y enfermedades y material vegetal de reproducción en ecológico. Los cultivos alternativos ecológicos o cultivos emergentes, como son la moringa, la estevia, los arándanos, el aloe vera, etc, son también demandados por casi el 10% de los agricultores asistentes. El manejo de la cubierta vegetal, es otra de las técnicas de cultivo que crean mayor expectación entre las personas que han enviado sus aportaciones (10%). En menor proporción, pero no por ello menos importante, aparece la comercialización, la ganadería ecológica, el olivar ecológico (la biodiversidad del olivar, manejos de cubiertas, podas, fertilización, formación de setos) y otros cultivos como viñedo, almendro, cítricos y frutales de hueso.

Casi la mitad de las 195 personas que han respondido a la encuesta de valoración, a la pregunta de qué opinión le merece las fincas colaboradoras visitadas, la han valorado de forma muy positiva: “que son muy buena”, “excelente”, “genial”, además de “muy interesantes e inmejorables”, “muy trabajada y pensada”.

La opinión más frecuente sobre las personas clave de las fincas colaboradoras visitadas o sobre los ponentes ha sido muy positiva y muy bien valorada. Muchos han indicado que son muy buenas, dinámicas, cercanas, buenas comunicadoras y con ganas de demostrar que se puede hacer una agricultura respetando el medio ambiente. En relación a las exposiciones han considerado que: “han estado muy bien expuestas”, “con rico contenido informativo”, “muy claras y con datos reales”, “muy prácticas”. En definitiva, los asistentes valoran la competencia y la disposición a colaborar, ayudar, y el agradecimiento a las personas claves por el gran interés por compartir su experiencia y conocimientos.

Por último, a las personas asistentes, se les pregunta si conocen personas claves o fincas ecológicas que puede ser de interés para el conjunto del sector ecológico andaluz y que puedan querer colaborar con la ASEPEA en la organización de Aulas de Agroecología. Con esta información se genera y completa la base de Personas Clave y Fincas colaboradoras en las que realizar futuras Aulas de Agroecología.
DISCUSIÓN

En base a los resultados expuestos se ha realizado un proceso de reflexión sobre la planificación y desarrollo de las Aulas de Agroecología.

- Las Aulas como medio de divulgación de la PE.

A tenor de los resultados obtenidos en las encuestas que han realizado los asistentes, podemos concluir que la celebración de las Aulas de Agroecología es una herramienta muy eficaz para la divulgación de la PE al sector agrario andaluz, ya que más del 90% de las personas asistentes consideran que los contenidos y el nivel de información son interesantes o muy interesantes. Además del potencial que tienen las Aulas para servir de herramienta de divulgación, éstas están logrando modificar la percepción que los asistentes tienen sobre las barreras que se presentan con la conversión a la PE, ya que un alto porcentaje (68%) de los asistentes así lo considera.

- El programa y contenidos de las Aulas de Agroecología.

La celebración de jornadas de divulgación a través del formato Aula, parece adecuarse a las expectativas de quien asiste, ya que se considera que la duración es ideal, y han mostrado la satisfacción y valor que tiene el que en las jornadas se combinen contenidos teóricos con contenidos prácticos, impartidos a pie de experiencias productivas reales por las propias personas clave.

- Encuestas de valoración.

Las encuestas de valoración que enviamos a los asistentes son una herramienta muy válida y útil para recopilar información cualitativa sobre el parecer y valoraciones de las personas asistentes. Estos cuestionarios, dada la utilidad que muestran, podrían mejorarse, ya que por ejemplo no permiten diferenciar respuestas de operadores ecológicos y no ecológicos, y que tendrá gran valor. Además, somos conscientes del sesgo en los resultados provocados por utilizar una herramienta como Google docs, que implica unos altos conocimientos de informática y redes, lo que deja fuera del análisis a parte de los asistentes.

- Personas Clave.

Tras el análisis de los resultados, se refuerza la idea de que la mejor divulgación de la P.E. es la que realizan los propios operadores ecológicos, contando sus experiencias reales. La selección de la Persona clave, la finca colaboradora, y ajustar mejor los objetivos de las Aulas a esta realidad es una cuestión que debe tenerse en cuenta de cara al futuro. Hasta ahora no se ha realizado un seguimiento ni valoración de la opinión de los propios ponentes en las Aulas, y sería interesante de cara al futuro conocer su valoración respecto al funcionamiento de las Aulas.

CONCLUSIONES

Es necesario revertir la percepción que se tiene de la administración pública como instrumento ejecutor de una política vertical y asistencialista a través de financiación. Es por medio del empleo de metodologías participativas, desde la propia administración, como se propicia una nueva forma de generar iniciativas conjuntas (entre administración y “territorio”) que responden a las problemáticas locales y desembocan en la construcción de propuestas que se sienten como propias.

La participación de la “gente del campo” se configura como elemento central en el modelo de extensión que se plantea. Se pone de manifiesto la necesidad de incorporar un enfoque transdisciplinar que conjugue la perspectiva de “especialistas” del ámbito científico-técnico, con la cosmovisión que desde “lo local” aporta el medio rural. De esta forma los procesos de construcción y difusión de conocimiento se encaminan hacia la búsqueda de soluciones que responden a problemas reales, y que suponen la aparición de nuevos retos. Para ello se plantea...
como primordial la identificación de “personas clave” del sector ecológico, en todos los ámbitos del mismo (investigación, formación, académico, técnico… y producción primaria), y para realizar de forma óptima esa labor hay que tener presente la implantación de los territorios, donde se conocen a esas personas y sus experiencias locales.

Incluir esta visión transdisciplinar (desde los diferentes ámbitos del conocimiento científico técnico junto con el conocimiento tradicional) en el enfoque de extensión implica poner en valor el “conocimiento” de la gente del campo, en numerosas ocasiones ya contrastado históricamente, y que debe ser incorporado como un componente necesario en la búsqueda y resolución de las diferentes problemáticas.

Desde un marco institucional, la Estrategia de Difusión de la Producción Ecológica en Andalucía (EDIPE), a través de las Aulas de Agroecología, aspira a ofrecer el espacio y los mecanismos oportunos para la participación de las múltiples partes interesadas. Las Aulas de Agroecología se convierten en la herramienta que posibilita desarrollar un modelo de extensión horizontal, donde la participación de los agricultores y agricultoras es vital para el éxito de la Estrategia. En definitiva, se plantea articular un servicio de asesoramiento que sirva de interlocutor entre el sector, su realidad, sus demandas y la administración pública, con trascendencia en la normativa y los programas a través de los cuales se ejecutan las políticas públicas.

BIBLIOGRAFÍA

ORGANIC-PLUS: UN PROYECTO FINANCIADO POR LA UE PARA INVESTIGAR ALTERNATIVAS A ELEMENTOS CONTENCIOSOS EN LA AGRICULTURA ECOLÓGICA

Burbí S, Schmutz U

Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Ryton Gardens, Wolston Lane, Ryton-on-Dunsmore, CV8 3LG, Reino Unido. Email: sara.burbi@coventry.ac.uk

RESUMEN: El proyecto Organic-PLUS dura 4 años y tiene el objetivo de proporcionar apoyo para decisiones científicamente informadas, transdisciplinarias y de alta calidad para ayudar a todos los actores del sector ecológico, incluidos los responsables políticos nacionales y regionales, a alcanzar el siguiente nivel de éxito ecológico de la UE. Al hacerlo, los sistemas de alimentos ecológicos pueden ser más fieles a los principios ecológicos, pero igualmente a la agenda de bioeconomía UE. Los objetivos de Organic-PLUS son: 1) identificar y valorizar los insumos contenciosos actualmente utilizados en agricultura; 2) proporcionar soluciones técnicas específicas para minimizar o eliminar su uso; 3) proporcionar evaluaciones ambientales, sociales y económicas de los escenarios de eliminación gradual; 4) diseminar conocimientos, ideas y resultados para maximizar el impacto. El consorcio incluye 11 universidades, 15 multiautores de 9 países UE y 3 asociados. Combina científicos y académicos con asesores, agricultores y actores interesados en un diseño de investigación participativa. Organic-PLUS tiene 3 paquetes de trabajo ‘tópicos’: PLANT (alternativas a cobre, aceites minerales), LIVESTOCK (alternativas a vitaminas sintéticas, antibióticos, nuevas camas) y SOIL (alternativas a turba, fertilizantes de origen animal, mantillo de plástico). El paquete IMPACT investiga las percepciones de los consumidores y disemina conocimientos; mientras que el paquete MODEL utiliza la metodología de evaluación de sostenibilidad para ofrecer escenarios de eliminación progresiva. Finalmente, el paquete LEAD gestiona 2 juntas asesoras (Comisión Científica Internacional; Industria Europea) asegurando el impacto en el sector y el desarrollo de políticas. También el proyecto asegura impacto a través de jurados ciudadanos y el compromiso con los responsables de la formulación de políticas.

Palabras clave: insumos contenciosos, investigación transdisciplinaria y participativa, jurados ciudadanos, políticas UE, sostenibilidad

INTRODUCCIÓN

El proyecto Organic-PLUS es financiado por la Comisión Europea y tiene como objetivo primario proporcionar un apoyo decisional de alta calidad, transdisciplinario y científicamente informado para ayudar a todos los actores del sector ecológico, incluidos los responsables políticos nacionales y regionales, a alcanzar el siguiente nivel del éxito ecológico de la UE. ‘Organic-PLUS’ significa minimizar y, finalmente, eliminar los insumos de la agricultura certificada. Al hacerlo, los sistemas de alimentos ecológicos pueden ser más fieles a los principios ecológicos. Parte de este propósito es compartido por la agenda de la bioeconomía de la UE, la cual se centra en los recursos biológicos renovables de la tierra y el mar. Además, esta investigación también es aplicable a los sistemas agrícolas que buscan adoptar soluciones agroecológicas. Este enfoque no solo puede conducir a una mayor capacidad de recuperación y garantía de calidad dentro de la producción ecológica, sino que también reduce el impacto ambiental y aporta información útil para mejorar las reglas y reglamentos que se aplican al sector mismo para que sean más justas y confiables, para dar también más seguridad y confianza a los consumidores actuales y nuevos de productos ecológicos.

OBJETIVOS DEL PROYECTO

El proyecto Organic-PLUS logrará su objetivo a través de los siguientes cuatro objetivos generales:

1) Identificar el uso y el costo-beneficio de los insumos contenciosos utilizados actualmente en la agricultura ecológica europea.
Esto se hará a través de entrevistas con las partes interesadas: agricultores convencionales y ecológicos, organismos de certificación, proveedores ecológicos, grupos de interés, ciudadanos-consumidores. Este análisis de vanguardia sirve para recolectar información sobre que efectivamente es considerado contencioso para las partes interesadas, no solamente para el sector académico y de investigación. Los sistemas interesados son: cultivos perennes, cultivos herbáceos, cultivos en invernadero, producción animal y sistemas mixtos con agrosilvicultura.

2) Proporcionar soluciones técnicas específicas para minimizar o eliminar los insumos contenciosos.

El proyecto entregará soluciones en función del nivel de preparación tecnológica (TRL) de cada alternativa. Estas incluirán alternativas al cobre y aceites minerales para la protección de las plantas, alternativas a las vitaminas sintéticas, pro-vitaminas y antibióticos en la cría de animales y el reemplazo de paja y abono no ecológicos, harina de sangre, cuernos y huesos, mantillo y mantillo de plástico en horticultura ecológica. Las soluciones pueden ser reemplazo directo, nuevos desarrollos (por ej. sistemas mejorados de soporte de decisiones) y nuevos enfoques de sistemas. Todos los ensayos realizados para probar alternativas se diseñarán conjuntamente con las partes interesadas y partners no académicos.

3) Proporcionar evaluaciones ambientales, sociales y económicas de las implicaciones de la eliminación gradual de los insumos.

El proyecto entregará evaluaciones a nivel ambiental, social y económico para comparar la sostenibilidad y el rendimiento agronómico de las alternativas a las prácticas actuales. Estos se utilizarán para proporcionar modelos de escenarios y rutas que impliquen consecuencias económicas, sociales y ambientales de la eliminación, incluidos los intercambios y los escenarios en los que todos ganan en la UE y los países vecinos. Para lograr esto, utilizaremos la Evaluación del Ciclo de Vida (LCA), la Evaluación Social del Ciclo en Vida (S-LCA), el Retorno de la Inversión Social (SROI) y la Response-Inducing Sustainability Evaluation (RISE).

4) Difundir e intercambiar conocimientos, ideas y resultados para maximizar el impacto.

El proyecto incluye las opiniones y sugerencias de los interesados desde el principio. Esta estrategia sirve para determinar cómo las partes interesadas ven los insumos contenciosos, qué alternativas de insumos los agricultores quieren que se prueben y qué escenarios quieren que los políticos modelen. El enfoque participativo abordará cuestiones críticas en el camino que lleva desde la invención hasta la implementación. La intermediación de la difusión y el conocimiento incluye reuniones informativas sobre políticas y diálogos, publicaciones académicas revisadas por pares y publicación divulgativa de los resultados en formato de textos, imágenes y video.

Finalmente, al reducir la dependencia de los insumos externos, también utilizados en los sistemas de producción convencionales, las soluciones desarrolladas y evaluadas por Organic-PLUS también brindarán beneficios fuera de los sistemas certificados ecológicos. El proyecto proporcionará aportes científicos críticos a la visión y estrategia de IFOAM a nivel internacional (Organic 3.0) y TP Organics en Europa.

MARCO CONCEPTUAL

El proyecto Organic-PLUS utiliza un enfoque de investigación transdisciplinario. Esto incluye a los científicos sociales y naturales, pero también a los agricultores, y otras partes interesadas que poseen conocimiento práctico, que se incluye en el diseño de la investigación. El consorcio incluye 11 universidades, 15 multi-actores de 9 países UE y 3 asociados. Los participantes académicos incluyen economistas, geógrafos humanos, agrónomos, patólogos de plantas, veterinarios, edafólogos, ingenieros agrícolas y modeladores. El trabajo se divide en tres grandes paquetes de trabajo “tópicos” (WP) llamados “PLANT”, “LIVESTOCK” y “SOIL”. El trabajo temático está respaldado por WP ‘IMPACT’ (investiga las concepciones de los consumidores de insumos controvertidos y difundiendo el conocimiento junto con las partes interesadas) y por WP ‘MODEL’ (utiliza la metodología de evaluación de la sostenibilidad para entregar escenarios de eliminación gradual).
El conocimiento de los usuarios y expertos se moviliza en cada WP: en IMPACT, para generar conjuntos de datos que permitan para clasificar los insumos contenciosos percibidos desde la perspectiva de un usuario; en los tres WPs ‘tópicos’ (PLANT, LIVESTOCK y SOIL) para probar y combinar estrategias de sustitución, combinación o rediseño del sistema para eliminar los insumos contenciosos, y en el MODEL WP, para generar conjuntos de datos socioeconómicos requeridos para la evaluación de sostenibilidad de múltiples criterios de los escenarios propuestos. Los miembros (externos al propio consorcio) también participan en las actividades de WP ‘LEAD’, en particular, en la composición de los dos consejos asesores: el ‘Consejo Científico Internacional’ con expertos académicos líderes en el mundo que brindan una perspectiva global y no europea, y el ‘Consejo Consultivo de la Industria Europea’ con expertos de grupos de consumidores, ONGs medioambientales, fabricantes de insumos ecológicos, organismos de certificación y asociaciones de agricultores.

A través del diseño de los paquetes de trabajo IMPACT y MODEL, se combinarán los problemas comunes, como la percepción de los consumidores de los insumos contenciosos, el modelado socioeconómico y los escenarios para el apoyo a las decisiones políticas. Por lo tanto, Organic-PLUS puede ofrecer una evaluación holística de muchas innovaciones con diferentes TRL y de escenarios de eliminación, la cual incluye y valora los aspectos ambientales, económicos y sociales.

La investigación sobre la agricultura ecológica no está distribuida equitativamente en Europa, a pesar del hecho de que muchos productos ecológicos provienen de los países mediterráneos. Por lo tanto, el proyecto intentará transferir, cuando sea apropiado, el conocimiento sobre una base paneuropea, pero también fomentar un mayor enfoque y cooperación Sur-Sur en la investigación ecológica entre los países mediterráneos de la UE y Turquía.

METODOLOGÍA

Organic-PLUS utiliza un enfoque de investigación transdisciplinar. Los WP de IMPACT y MODEL se ocupan principalmente de las evaluaciones sociales y económicas de los insumos contenciosos y los posibles escenarios de eliminación, identificados en los tres “WP temáticos”. Para completar estas actividades, se adoptarán una variedad de métodos de investigación (ensayos de laboratorio, ensayos de campo repetidos en estaciones de investigación y ensayos en fincas, en campos, graneros e invernaderos) para probar productos alternativos e insumos en condiciones reales de la granja. Organic-PLUS también contribuye a las lagunas de conocimiento conocidas, como la creación de inventarios de LCA para insumos ecológicos y el uso de modelos mixtos de datos económicos y sociales operacionales. Esto combinará métodos establecidos tales como LCA, Social-LCA y RISE para modelar rutas para la eliminación de insumos contenciosos. El Retorno Social de la Inversión se utiliza para dar cuenta del valor social de las partes interesadas. Además, se utilizarán modelos de código abierto para sistemas de apoyo a la toma de decisiones y modelos de innovación tecnológica. Los métodos de investigación participativa son el núcleo del proyecto Organic-PLUS, tanto en la recolección de datos como en las fases de evaluación de datos (con ‘feedback loops’ de las partes interesadas en las actividades). Las metodologías de intermediación del conocimiento se utilizan para difundir la experiencia práctica de la granja y para crear un espacio para el aprendizaje mutuo y el intercambio de conocimientos. Debido a que los ensayos se realizarán en granjas comerciales, así como en estaciones experimentales, el proyecto apunta a diseñar y validar escenarios de eliminación piloto que puedan demostrarse “en operación” a los interesados. La investigación participativa incluye a todas las partes interesadas, desde ciudadanos-consumidores hasta agricultores y la industria alimentaria.

El análisis de género es importante para nuestra investigación, en particular con respecto al análisis del consumidor, ya que se sabe que el género influye en la percepción de los compradores ecológicos y puede que también la percepción de insumos contenciosos. El análisis de género también es importante cuando se considera la mejor manera de hacer crecer nuevos mercados como los alimentos ecológicos veganos o los cosméticos veganos o para aumentar el consumo en el hogar de alimentos ecológicos en países centrados en la exportación. El género también se considera en la adopción de tecnología de los agricultores, por ej. en horticultura orgánica se encuentran mujeres gerentes mucho más frecuentemente que en el sector convencional.
ESTRATEGIA PARA EL IMPACTO

Organic-PLUS contiene un paquete de trabajo transversal específico (WP2 IMPACT) para maximizar el impacto del proyecto. Además de promover y difundir los resultados científicos del proyecto, WP2 también será responsable de garantizar que se mantenga un diálogo bidireccional entre la ciencia y la sociedad entre los científicos de plantas, animales y suelos que trabajan en el proyecto y una variedad de partes interesadas, incluida la parte política, la industria, agricultores ecológicos y convencionales, fabricantes tanto de insumos contenciosos como de alternativas propuestas; organismos de certificación orgánica y sistemas de aseguramiento; minoristas y organizaciones de consumidores; ONGs medio-ambientales y de bienestar animal. Esto se logrará a través de una serie de talleres de expertos y eventos de interacción y difusión, los cuales se centrarán en comprender las percepciones de las partes interesadas; documentar las mejores prácticas actuales; evaluar los resultados del proyecto; y discutir escenarios de implementación alternativos. Para comprender mejor las preocupaciones de los consumidores con respecto a los insumos contenciosos en la agricultura ecológica, también se realizará una encuesta en línea exhaustiva en 12 países de estudio. Finalmente, para desarrollar un diálogo bidireccional con miembros del público, se realizarán jurados de ciudadanos en 3 países de estudio. Esta investigación permitirá obtener una comprensión más profunda de las preocupaciones de los consumidores y brindará la oportunidad para que los miembros del público evalúen y realicen comentarios sobre los resultados del proyecto. Esto ayudará a generar confianza entre los consumidores ecológicos y a mejorar la estabilidad a largo plazo del mercado ecológico.

Además de promover el conocimiento científico natural, también apuntará a aumentar en gran medida la concientización de los agricultores y la adopción de alternativas a los insumos contenciosos. Este impacto se logrará a través de la intermediación de conocimientos centrada en los agricultores, incluidos talleres de expertos, demostraciones prácticas y capacitación. El conocimiento científico generado en el proyecto será de gran interés para los productores convencionales. Esto será particularmente cierto para ciertos insumos como la turba, que son igualmente contenciosos en la agricultura convencional. Todas las actividades de difusión del proyecto incorporarán tanto productores convencionales como ecológicos y partes interesadas.

El reemplazo de los insumos no renovables con insumos renovables debería reducir el impacto ambiental. Sin embargo, las consecuencias pueden ser involuntarias. Por lo tanto, el análisis del ciclo de vida (LCA) de las alternativas proporcionará una evaluación más completa y comparará la magnitud que puede lograr la sustitución de entradas con otras opciones para reducir el impacto ambiental. Algunos ejemplos: El uso de cadenas de productos agroforestales para camas de animales y reemplazos de turba apoya las cadenas de valor dentro de la agroforestería. Lo mismo es cierto para los suplementos alimenticios de origen vegetal y productos veterinarios. Los productos más libres de animales (vegans) como fuentes de nutrientes apoyan la transición a sistemas agrícolas basados en leguminosas.

Finalmente, reglas y reglamentos justos, confiables y aplicables estaban a la base de la historia de la agricultura ecológica desde el primer Reglamento UE en 1991. Todavía es importante desarrollar la “mezcla creativa” de estándares privados (desarrollando aún más en materia orgánica) y estándares legales oficiales (dando una línea de base y una red de seguridad claras). En el proyecto se adopta esta estrategia para incluir tanto estándares privados como responsables de políticas nacionales / de la UE, teniendo en cuenta que la agricultura ecológica se desarrolló “de abajo hacia arriba”, desde una exitosa innovación agrícola hasta estándares privados y luego nacionales y de la UE. Para garantizar reglas y reglamentos justos, confiables y aplicables, se realizarán consultas y talleres de expertos fomentando habrá la discusión sobre las mejores formas de implementar las propuestas del proyecto y, en última instancia, las mejores formas de asegurar el reemplazo o la reducción de los insumos contenciosos en agricultura ecológica. Además de estas consultas con las partes interesadas, también se organizarán dos talleres de políticas dedicados para discutir los escenarios de eliminación y las implicaciones para las normas ecológicas y las políticas de la UE con respecto a las normas, pero también futuras estrategias de investigación y previsión de apoyo científico para las politicas pertinentes de la UE. Los paneles de expertos adicionales con los consejos consultivos brindarán un sólido apoyo a las decisiones científicas. El proyecto se ocupará de la formulación de políticas de la UE con una conferencia en Estrasburgo, pero además también apoyará las políticas ecológicas nacionales (en los estados miembros del proyecto) y regionales, ya que el apoyo específico de la política regional dentro del marco de la UE es importante para lograr un impacto. Se incluirán autoridades descentralizadas...
o estados federales como, por ejemplo, Gales, Baviera, Cataluña, o Sur-Tirol, cada una de ellas con políticas y programas que respaldan la eliminación gradual de los insumos contenciosos y la introducción gradual de una verdadera bioeconomía. El proyecto terminará en el 2022 y sus resultados serán muy valiosos para continuar con el desarrollo y la optimización del sector agrícola ecológico a nivel nacional, europeo y mundial.
CONECT-E: DOCUMENTANDO, COMPARTEYENDO Y PROTEGIENDO EL CONOCIMIENTO AGROECOLÓGICO TRADICIONAL

Aceituno-Mata L1,2, Benyei P2, Calvet-Mir L3, Pardo-de-Santayana M4, López-García D5, Carrascosa-García M1, Perdomo-Molina A.1,0, Reyes-García V2,7

1Red de Semillas “Resembrando e Intercambiando”, Caracola del Cir, Parque de San Jerónimo s/n, Sevilla 41015; aceitunomata@yahoo.es Tel.: 679753588
2Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193; petra.benyei@uab.cat
3Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Av. Carl Friedrich Gauss, 5. Parc Mediterrani de la Tecnologia, Castelldefels, Barcelona 08860; lcalvetmir@gmail.com
4Departamento de Biología (Botánica), Universidad Autónoma de Madrid, C/Darwin, 2. Ciudad Universitaria de Cantoblanco, Madrid 28049; manuel.pardo@uam.es
5Fundación Entretantos, Calle Antonio Lorenzo Hurtado, 1, Valladolid 47014, Spain; daniel.lopez.ga@gmail.com
6Universidad de la Laguna, Calle Padre Herrera, s/n, San Cristóbal de La Laguna, Santa Cruz de Tenerife 38200, Spain
7Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010

RESUMEN: El conocimiento agroecológico tradicional (CAeT) incluye los conocimientos, prácticas o cosmovisiones relativos a la agrobiodiversidad y los agroecosistemas. Estos conocimientos están adaptados localmente y han sido desarrollados por las comunidades rurales de todo el mundo a través de su interacción con el entorno. Estos sistemas de conocimiento han contribuido al mantenimiento de sistemas alimentarios sostenibles desde el punto de vista ambiental y cultural y pueden tener un papel relevante en las transiciones agroecológicas. Sin embargo, los cambios en los sistemas agrícolas tradicionales y la apropiación indebida de las variedades tradicionales amenaza la pervivencia y reproducción del CAeT, lo que a su vez afecta a la contribución potencial de estos conocimientos a la transición agroecológica. En esta comunicación, presentamos y analizamos la plataforma CONECT-e (www.conecte.es), una iniciativa para documentar y compartir digitalmente el CAeT de forma participativa. Un año y medio después de su lanzamiento, los usuarios de CONECT-e han documentado 493 variedades tradicionales geográficamente distintas pertenecientes a 81 especies de cultivo. La información compartida en esta plataforma está bien estructurada, es clara y fiable, por lo que, además de documentar el conocimiento, la plataforma permite que éste pueda ser replicado. La información recogida puede consultarse libremente y está protegida con una licencia de copyleft, lo que hace de CONECT-e una herramienta para enfrentar problemas de apropiación indebida de variedades tradicionales y conocimiento asociado. CONECT-e, o iniciativas similares, podrían contribuir a las transiciones agroecológicas mediante el mantenimiento del CAeT en el marco de los comunes digitales, promoviendo que este conocimiento esté documentado, se comparta y sea accesible a toda la sociedad.

Palabras clave: conocimiento agroecológico tradicional, transición agroecológica, comunes digitales, ciencia ciudadana, participación, privatización, plataforma digital

INTRODUCCIÓN

El conocimiento agroecológico tradicional (CAeT) incluye los conocimientos, prácticas o cosmovisiones relativos a la agrobiodiversidad y los agroecosistemas que están adaptados localmente y que han sido desarrollados por comunidades rurales de todo el mundo a través de su interacción con el entorno natural (Berkes et al. 2000; Gómez-Baggethun and Reyes-García 2013; Reyes-García 2015). El conocimiento agroecológico tradicional incluye, por ejemplo, cómo seleccionar y manejar las variedades tradicionales, las prácticas de gestión del agua y el suelo o las creencias y expresiones culturales relacionadas con el ciclo agrícola. Se ha demostrado que estos sistemas de conocimiento contribuyen a la gestión sostenible de especies, paisajes y ecosistemas (Domínguez et al. 2010; Pardo de Santayana and Macía 2015; Porter-Bolland et al. 2012) así como a mejorar la salud y la alimentación (e.g., McDade et al. 2007; Calvet-Mir et al. 2011), facilitando la resiliencia de las comunidades rurales, especialmente en contextos de cambio socio-ambiental (von Glasenapp and Thornton 2011; Gómez-Baggethun...
et al. 2012). Por ello, los CAeT son muy relevantes para las transiciones agroecológicas y el mantenimiento de sistemas alimentarios sostenibles desde el punto de vista ambiental y cultural.

Los CAeT también se mantienen en Europa, aunque sea a pequeña escala, y suponen un refugio de diversidad biocultural de gran interés para la agroecología. Por ejemplo, los huertos familiares tradicionales contribuyen a la conservación in situ de los recursos fitogenéticos (Calvet-Mir et al. 2011; Vogl y Vogl-Lukasser 2003) y aportan además otros servicios, como el mantenimiento de la identidad cultural y las redes sociales (Calvet-Mir, Gómez-Baggeíhun y Reyes-García 2012).

Sin embargo, actualmente estos conocimientos están amenazados por la homogenización cultural que ha provocado la globalización y la pérdida paralela de diversidad biológica que conlleva. El reconocimiento de su importancia y su situación de riesgo ha incentivado la necesidad de su conservación en diversos tratados internacionales, como el Convenio sobre la Diversidad Biológica de 1992 (CBD), el Tratado Internacional de Recursos Fitogenéticos para la Agricultura y la Alimentación (TIRFAA) firmado en 2001 y el Protocolo de Nagoya firmado en 2010. Así, el CBD en su artículo 8 y el TIRFAA en su artículo 9.2 establecen que las entidades firmantes, entre las que se encuentra España, deben respetar, preservar y promover los conocimientos tradicionales que contribuyen a la conservación de la biodiversidad. A pesar del creciente interés en torno al conocimiento agroecológico tradicional entre la comunidad científica y en los foros internacionales de políticas públicas, en pocos países se están llevando a cabo acciones sistemáticas para su conservación y revalorización. España es una excepción, ya que desde 2011 se han desarrollado dos iniciativas complementarias para documentar, compartir y proteger los conocimientos tradicionales: el Inventario Español de Conocimientos Tradicionales relativos a la Biodiversidad, tanto silvestre (IECTB; Pardo de Santayana et al. 2014, 2018a,b,c) como cultivada (IECTBA; Tardío et al. 2018) y el proyecto de ciencia ciudadana CONECT-e (Compartiendo el CONocimiento ECológico Tradicional, www. conecte.es). Estos proyectos están siendo llevados a cabo por un amplio equipo de investigadores de diversas disciplinas (botánica, agronomía, antropología, etnoecología, lingüística, farmacología, zoología y geología), pertenecientes a 30 universidades y centros de investigación, así como a organizaciones no gubernamentales, como la Red de Semillas Resembrando e Intercambiando.

Hasta la fecha, el IECTB y IECTBA han compilado información documentada en 211 publicaciones que reconocen conocimientos tradicionales relativos a la biodiversidad. Esta información está siendo publicada bajo una licencia de Creative Commons en varios volúmenes impresos y disponibles en Internet. Paralelamente, este mismo equipo ha creado la iniciativa de ciencia ciudadana CONECT-e, dedicada a documentar, compartir, y proteger los conocimientos tradicionales.

MÉTODOS

CONECT-e es una plataforma digital participativa similar a Wikipedia. Fue lanzada en marzo de 2017 en España con el objetivo de compilarse y compartir conocimientos ecológicos tradicionales, agrupados en diferentes secciones: plantas (sección dedicada a especies vegetales tanto silvestres como cultivadas), variedades tradicionales, y agroecosistemas. El formato wiki de CONECT-e tiene como objetivo fomentar la colaboración libre de la sociedad, promoviendo que cualquiera pueda registrarse, consultar y compartir a través de la web los conocimientos y prácticas ecológicas tradicionales. Los usuarios pueden contribuir aportando sus propios conocimientos o actuando como etnobotánicos ciudadanos, entrevistando a personas con mucho CAeT para después introducir esta información en la plataforma digital. CONECT-e permite la colaboración de los usuarios como contribuyentes (i.e., compartiendo información), editores (i.e., revisando la fiabilidad de los datos introducidos por los contribuyentes), y promotores (i.e., reuniendo conocimientos de personas mayores, difundiendo el proyecto, participando en actividades educativas realizadas dentro del proyecto). La participación de ciudadanos de cualquier región geográfica que puedan incorporar información sobre cualquier tema supone un gran potencial de cara a cubrir carencias espaciales y temáticas en la documentación del CAeT (Calvet-Mir et al. 2018). Por otro lado, la plataforma permite la transmisión del CAeT más allá de los límites territoriales en los que este conocimiento suele compartirse y potencia la creación de una comunidad extendida y geográficamente dispersa en la que se comparten estos conocimientos (Reyes-García et al. 2018).
La estructura de la plataforma digital sobre el conocimiento de las variedades tradicionales ha sido creada conjuntamente por científicos de universidades españolas y centros de investigación (UAB, UB, UAM, UOC, ICTA, IBB, IMIDRA) y miembros de la red de semillas española “Red de Semillas: Resembrando e Intercambiando” (RdS). La RdS es una organización descentralizada, sin ánimo de lucro, creada en 1999 con el objetivo de fomentar la siembra y el intercambio de variedades tradicionales (http://www.redsemillas.info/). La RdS considera que las variedades tradicionales son un recurso común y reclama el derecho del agricultor a producir, intercambiar y vender sus propias semillas y plantel. La RdS ha tenido un papel fundamental tanto en el diseño de la plataforma como en la creación y documentación de fichas de variedades tradicionales.

El contenido de CONECT-e está protegido por una licencia internacional Creative Commons Attribution-ShareAlike 4.0 (CC BY-SA 4.0). Esta licencia requiere que cualquier producto que use contenido original o modificado esté protegido bajo la misma licencia, impidiendo así el establecimiento de derechos de autor o marcas comerciales sobre el mismo y protegiendo por tanto los derechos de los agricultores sobre el conocimiento que ellos mismos han desarrollado.

La información sobre biodiversidad agrícola introducida por los usuarios de CONECT-e se ha recopilado en una base de datos que contiene el nombre de la variedad tradicional, la especie, la comarca y la comunidad autónoma de donde procede el conocimiento sobre esa variedad tradicional en concreto, así como los conocimientos tradicionales agrupados en varias secciones: Nombres populares, Usos tradicionales, Manejo tradicional, Fotografías, Mapa, Referencias, Dónde conseguir semilla.

RESULTADOS

La evaluación de un año y medio de funcionamiento de la plataforma CONECT-e muestra que la página web ha tenido más de 150,000 visitas, más de 500 usuarios registrados y más de 20,000 entradas (considerando la entrada como creación de contenido de cualquier tipo). Durante el año y medio que lleva funcionando la plataforma CONECT-e, los usuarios registraron 493 variedades tradicionales por unidad geográfica (i.e., comarca) de 81 especies diferentes. En un análisis realizado en junio de 2018 (Calvet-Mir et al. 2018), se encontró que en las fichas de variedades, las especies más frecuentes fueron el tomate (Solanum lycopersicum) con 68 fichas de variedades tradicionales; la judía (Phaseolus vulgaris), con 45 variedades tradicionales, y el pimiento (Capsicum annuum) con 34 variedades tradicionales diferentes registradas. Los campos con más datos disponibles son “Imágenes” con 522 fotos cargadas y “Usos y gestión tradicionales” (sección Mapa) con 435 entradas. Los resultados derivados de agrupar la información de las tres secciones que proporcionan más datos sobre el CAet para cultivar adecuadamente una variedad tradicional específica (i.e., descripción, manejo tradicional y semillas) muestran que 54 variedades locales de 453 (12%) tienen información en cuatro o más campos de estas tres secciones. Las variedades tradicionales con más información sobre estas secciones son “mongeta del ganxet” (Phaseolus vulgaris) con información en 22 campos de los 22 posibles, “patata fina” (Solanum tuberosum) y “judía plancheta” (Phaseolus vulgaris) ambas con 17 campos completados. El análisis de contenido de estas tres secciones muestra que la información recopilada está bien estructurada, es clara, confiable y puede ser reproducible en un sistema agroecológico. Se identificó que tres de las variedades tradicionales registradas en CONECT-e habían sufrido algún tipo de proceso de apropiación. Estas son: “tomatógna de ramellet” (Solanum lycopersicum) (RdS 2012), “bubango” (Cucurbita pepo) (Panizo and Perdomo, 2017) y “mongeta del ganxet” (Phaseolus vulgaris) (RdS 2015). Estas tres variedades tradicionales siguen siendo muy populares en sus territorios y son muy demandadas por los consumidores. Sus nombres vernáculos están unidos a una gran riqueza cultural en torno a su uso y gestión y representan un signo de identidad cultural para las regiones en las que se cultivan. Al publicar en CONECT-e las fichas de estas variedades, documentadas con todos los nombres populares con los que se designan y los mapas de su distribución actual, se está documentando su existencia y protegiéndola como un bien común bajo la licencia de Creative Commons (Aceituno-Mata et al. 2017).
CONCLUSIONES

La plataforma supone un gran avance en la documentación de conocimientos tradicionales relativos a la diversidad agrícola, especialmente de variedades tradicionales. En un año y medio, la comunidad de CONECT-e, fundamentalmente con las aportaciones de la RdS, ha conseguido documentar la existencia de 493 variedades tradicionales, al menos con un nombre, una foto y una región de cultivo. Esto representa un gran logro y una valiosa documentación sobre la biodiversidad agrícola que se está cultivando actualmente, ya los registros oficiales avanzan mucho más lentamente en la descripción de este patrimonio. Por ejemplo, en la Oficina Española de Variedades Vegetales sólo se han registrado 98 variedades tradicionales en la última década, 70 en la categoría de variedades de conservación y 28 en la de variedades sin valor intrínseco (Reyes-García et al. 2018). El gran potencial de esta plataforma para documentar el CAeT sobre variedades tradicionales se debe a que es una plataforma diseñada junto con las personas y colectivos que conservan la biodiversidad in situ, por lo que está más adaptada a sus necesidades que los registros oficiales. La plataforma es una herramienta a disposición de agricultores, microempresas y asociaciones que producen y mantienen estas variedades. La información compartida en esta plataforma está bien estructurada, es clara y fiable, por lo que, además de documentar el conocimiento, la plataforma permite que este pueda ser replicado por personas que consiguen semillas de variedades tradicionales que nunca han cultivado. Por otro lado, todos los conocimientos tradicionales registrados en CONECT-e están protegidos con una licencia de copyleft, lo que hace de esta plataforma una herramienta para enfrentar problemas de apropiación indebida de nombres de variedades tradicionales y otros conocimientos asociados, como es el caso de las tres variedades registradas por la RdS.

CONECT-e, o iniciativas similares, podrían contribuir a las transiciones agroecológicas mediante el mantenimiento del CAeT en el marco de los comunes digitales, promoviendo que este conocimiento esté documentado, se comparta y sea accesible a toda la sociedad a la vez que protege los derechos de los agricultores, protegiendo sus conocimientos y los nombres de las variedades tradicionales frente a la apropiación indebida.

REFERENCIAS

FORMACIÓN AGROECOLÓGICA PARA LA INCLUSIÓN SOCIAL

De la Cruz Abarca C

Red Agroecológica de Granada.
Emails: cdecruza@yahoo.com
Teléfonos: +34 605301679

RESUMEN: La formación agroecológica no sólo implica el aprendizaje de técnicas de producción orgánica. Implica una formación crítica y participativa en cada etapa del proceso pedagógico. El proyecto Biotesgra se desarrolló en Motril-Granada. Se trabajó con personas en riesgo de exclusión social. Además, se dio la oportunidad a mujeres de formarse.

El proyecto partió con los siguientes objetivos: a) desarrollar una metodología que rompa con el individualismo existente en la zona, debido a que la viabilidad de los futuros emprendimientos dependía del trabajo colectivo, b) formar en el manejo ecológico de los cultivos a través de metodologías de formación-acción y c) motivar a las personas para que emprendan colectivamente. Paralelamente otro equipo del proyecto debía facilitar la comercialización de los productos.

Bajo el marco descrito arriba se trabajó en el aula y el campo paralelamente. Como proyecto piloto se inició con un grupo de 14 personas. La media de asistencia a la formación fue de 85,52%, con participantes que han asistido al 100% y 98% de las sesiones. Lo que demuestra el interés por formarse y el éxito de la propuesta metodológica en mantener la motivación. Esto es muy importante en un curso donde no se remunera al alumnado, por tanto, no tienen una obligación más allá de su motivación. Al finalizar el curso las y los participantes decidieron formar 2 cooperativas de trabajo asociado y 2 emprendimientos como autónomos. Asimismo, decidieron formar la Asociación EcoAlmil para la promoción de la agroecología, certificar su producción y desarrollar su SPG.

Palabras clave: agroecología, campesino a campesino, educación para adultos, educación popular

INTRODUCCIÓN

El Proyecto para el emprendimiento a través del autoempleo y la producción ecológica se desarrolló en la provincia de Granada en Motril. Fue un acuerdo entre la Fundación Sierra Nevada y Bioca S.L. con la finalidad de generar fuentes de autoempleo para colectivos desfavorecidos a través de la formación, producción y comercialización de productos ecológicos. En este artículo se presenta la etapa correspondiente a la formación que tenía los retos de romper con el individualismo existente y motivar a las personas formadas a que emprendan colectivamente, a parte de iniciarlos en la producción ecológica. El objetivo de las posteriores etapas era articular los emprendimientos colectivos en una empresa que comercializaría los productos en el mercado exterior principalmente y el mercado interno.

El Proyecto Integral tenía los siguientes objetivos:

A) Dotar de las competencias necesarias para acceder y mantener un puesto de trabajo a personas en riesgo de exclusión, favoreciendo la empleabilidad en sectores emergentes.

B) Formar y asesorar, ofreciendo las herramientas y conocimientos para potenciar el autoempleo, así como la integración en un canal de distribución y comercialización.

C) Desarrollar nuestra propia actividad productiva y comercializadora, revirtiendo en la generación de empleo directo en sectores como el de producción primaria, transportes, etc.

D) Obtención de recursos que se destinarán a fortalecer la inserción sociolaboral desarrollada por Fundación Sierra Nevada
Para conseguir los objetivos del proyecto integral se puso a disposición pondremos a disposición los siguientes medios:

- Equipo técnico - pedagógico y administrativo.
- Instalaciones, equipos y medios para la formación.
- Superficie certificada en ecológico destinada para la formación y la producción.
- Maquinaria y equipos para la producción y distribución

El proyecto contaba con las siguientes etapas:

Cuadro 1: Esquema del proceso:

El presente artículo tratará el proceso hasta la formación debido a que otro grupo de personas se encargó de las etapas finales.

Criterios de selección y valoración para la primera etapa - Perfiles preferentes del programa:

- Colectivos en riesgo de exclusión (personas paradas de larga duración, familias monoparentales con menores a su cargo, víctimas de violencia de género)
- Mujeres (El 50% de los candidatos serán mujeres)
- Jóvenes parados de larga duración.

Se valoró a través de documentación y entrevista personal:

- Experiencia en emprendimiento
- Búsqueda activa de empleo
- Disponibilidad laboral (horaria y geográfica)
- Capacidad de desplazamiento (carné y vehículo propio)
- Motivación hacia el puesto.

La metodología empleada fue la siguiente:

La metodología empleada toma elementos y combina varias metodologías de formación y acción. Está dentro de la Investigación Acción e incorpora elementos de la metodología de campesino a campesino (valoración del conocimiento de pares), de la educación para adultos (conocimientos concretos, cómos y porqués entrelazados y bien definidos) y la educación popular (construcción desde “abajo”, crítica y desde la experiencia). Las que se fueron tomando de acuerdo a la evolución y necesidades del grupo que se estaba formando, por tanto no hay una secuencia o esquema rígido.

Se caracterizó por: a) tener dos partes, teóricas y prácticas, bien definidas y articuladas, b) por ser altamente participativa y crítica con el modelo actual de producción agrario, c) por partir del conocimiento o desconocimiento de las personas que se están formando, para desde ahí ir construyendo una propuesta de manejo, que se vincula y contrasta con los conocimientos técnicos, y d) por promover el trabajo colectivo y la organización como base de la acción.
En ese sentido:

- Las sesiones teóricas tuvieron la siguiente estructura general:

 - Se inició preguntando por dudas o inquietudes surgidas respecto al tema anterior. Esto, además de reforzar los conocimientos, permite medir al formador/dinamizador el grado de comprensión del tema y la maduración o “digestión” del mismo. En función de esto, de considerarse necesario, se puede orientar la formación del día para complementar o reforzar el tema de la sesión anterior, dentro de lo que ya está esbozado para la jornada.

 - Luego se realizó un trabajo en grupos, en base a preguntas que plantea el formador. En general, se usan técnicas (lluvia de ideas, cara a cara, la pecera, etc.) para que todos tengan opción de dar su opinión. El grupo trabajó entre quince minutos a media hora, para luego hacer una exposición al resto de sus compañeros, donde hay intercambio de opiniones y observaciones. Con esto, se va socializando el conocimiento. En esta etapa el formador no contradice, ni corrige (salvo error grave) lo que plantean los alumnos. Pues de hacerlo, corta el proceso de apertura y participación y la expresión sin temores de sus conocimientos. En esta etapa, el formador toma nota de los aciertos y fallos, para tratarlos en la exposición técnica.

 - Después se hizo una exposición, generalmente usando una presentación Power Point sobre el tema de la sesión. En ella se presentó la propuesta técnica de manejo, se resaltaron los aciertos o puntos de encuentro con lo planteado en el trabajo de grupos y las falsas percepciones o fallos se evidencian en la presentación, y normalmente no es necesario señalarlos como tales, ya que la dinámica misma de la presentación hace que los alumnos los señalen o pregunten. Se recogieron los aportes producto de sus experiencias o conocimientos y se incorporaron a la formación, con lo cual se reforzó su participación y se contribuyó a elevar su autoestima.

 - Finalmente, se les entregó un material escrito que reforzó los temas aprendidos y que motivó dudas o interrogantes para tratar al inicio de la siguiente sesión.

- Las sesiones prácticas se estructuraron de la siguiente forma general.

 - Se realizaron en función de las labores o tareas correspondientes para los meses o épocas del año del huerto. Esto permite un conocimiento desde lo básico, como la preparación del terreno o el manejo de los bordes de la parcela hasta las técnicas específicas de cada cultivo.

 - Dependiendo de las labores, los alumnos se dividen en grupos, se les explica y demuestra la técnica, y luego se rotan las labores.

 - Los grupos se forman de tal manera que ellos vayan conociéndose y sepan cómo trabaja cada uno. Esto con fines del emprendimiento posterior, si es que decidieran abordar la producción de manera colectiva.

 - Se motiva a los alumnos a que observen a los vecinos y aprendan, contrasten o manifiesten dudas respecto al manejo que llevan.

 - En términos generales, siempre se busca la relación entre lo impartido teóricamente y lo práctico. De tal manera que se vea la integralidad de la formación.

- Actividades complementarias: Éstas están orientadas a aportar conocimientos complementarios (surgidos de la necesidad del grupo), a fortalecer el grupo, a que los participantes hagan suyo el proyecto, a compartir información, a evaluar conocimientos adquiridos y a conocer la realidad y el potencial de las parcelas de los alumnos.

 - Visitas a parcelas de los alumnos. Esto se realiza para ver en campo, qué de lo enseñado en clase se viene aplicando, y porqué se hace. Asimismo, permite conocer las unidades productivas de los alumnos o de sus familias (los que tienen tierra donde producir) y ver su potencial para el proyecto. También sirven estas experiencias para que los alumnos intercambien experiencias y fortalezcan su relación como grupo.

 - Visitas a otras experiencias de producción ecológica. Estas visitas una o dos a lo largo del proceso formativo están encaminadas a que los alumnos conozcan experiencias de producción ecológica y organización. Asimismo, se pretende con ellas que el grupo pueda visualizar su trabajo futuro y sirva como
herramienta de cohesión. En el periodo formativo se hicieron tres visitas: a) al Ecomercado de Granada, b) a la fiesta de la papa de Ecovalle en la Sierra de Nigüelas y c) al centro de investigación en hortalizas bajo invernadero de Cajamar.

- Jornadas formativas complementarias. Estas acciones formativas se realizan para complementar la capacitación con temas que han surgido o visto como necesidad en el proceso de formación. Dependiendo del tema las pueden realizar personal de Biotesgra o de la Fundación Sierra Nevada, o externos a las organizaciones mencionadas.
- Reuniones de confraternización. Estas son reuniones que tienen como objetivo el que el grupo se conozca en su ambiente diferente al de la formación y que estrechen vínculos más allá de la producción ecológica o la formación, esto se hace con la finalidad de que el grupo se consolide.
- Página de facebook. Se cuenta con un perfil no oficial de Biotesgra, en el que se cuelgan fotos, se comparten apreciaciones de las jornadas, se pone información técnica, entre otros. Esta red social se ha vuelto una herramienta importante para la comunicación interna y para compartir información relevante sobre temas de interés de los alumnos.

Evaluación de la Metodología empleada:

El proceso formativo fue evaluado en todo momento para realizar las correcciones necesarias y por ser una propuesta piloto y por su naturaleza diferente de las otras formaciones desarrolladas por la Fundación Sierra Nevada.

La evaluación fue individual y de carácter anónimo. Constó de una parte fuertemente cuantitativa (puntuaciones de 1 a 5, siendo 5 la mejor calificación) y otra en la que se emiten opiniones y recomendaciones. Las preguntas se diseñaron de tal forma que los criterios requeridos fueron abordados desde diferentes enfoques, algunos bastante sutiles, pero que nos permitieron tener una buena aproximación a lo que pensaban y sentían los alumnos.

Cuadro 2. Resultados de la evaluación.

<table>
<thead>
<tr>
<th>PREGUNTA</th>
<th>Nº de RESPUESTAS</th>
<th>VALORACIÓN MEDIA (1 A 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Califica de 1 a 5 las clases teóricas impartidas en la formación</td>
<td>13</td>
<td>4,50</td>
</tr>
<tr>
<td>2. Califica de 1 a 5 las prácticas en el campo</td>
<td>13</td>
<td>4,15</td>
</tr>
<tr>
<td>3. Valora la metodología de trabajo en grupos e intercambio de experiencias como forma de aprender</td>
<td>13</td>
<td>4,62</td>
</tr>
<tr>
<td>4. Valora la utilidad de los conocimientos adquiridos en las clases teóricas</td>
<td>13</td>
<td>4,31</td>
</tr>
<tr>
<td>5. Valora la utilidad de los conocimientos adquiridos en las clases prácticas.</td>
<td>13</td>
<td>4,46</td>
</tr>
<tr>
<td>6. Califica de 1 a 5 la formación teórico-práctica.</td>
<td>12</td>
<td>4,33</td>
</tr>
</tbody>
</table>

Se pidió a los alumnos que valoren lo que han aprendido desde que entraron al curso.

Cuadro 3. Valoración de lo aprendido.

<table>
<thead>
<tr>
<th>CRITERIO/VALORACIÓN</th>
<th>Nº DE PERSONAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nada</td>
<td>0</td>
</tr>
<tr>
<td>Poco</td>
<td>0</td>
</tr>
<tr>
<td>Regular</td>
<td>1</td>
</tr>
<tr>
<td>Más que regular</td>
<td>5</td>
</tr>
<tr>
<td>Mucho</td>
<td>7</td>
</tr>
</tbody>
</table>
Como parte del seguimiento del proceso formativo se tomaron exámenes escritos, se dejaron trabajos encargados (uno sobre los productos fitosanitarios permitidos en agricultura ecológica que se comercializan en la zona de Motril y otro sobre el seguimiento y evaluación de cultivos en campo) y se valoró la participación en las visitas de SPG (Sistema Participativo de Garantía) a las fincas o unidades productivas de compañeros. Se realizaron dos exámenes escritos por sorpresa. El objetivo de que se hicieran de esta forma es que se valore los conocimientos aprendidos sin la necesidad de haberse puesto a estudiar para el examen. Es importante señalar que por la metodología empleada, estos exámenes fueron sólo referenciales.

RESULTADOS

El objetivo principal del proyecto era conseguir a través de la formación una motivación para emprender y trabajar colectivamente. En ese sentido, los datos son contundentes. De las 14 personas que iniciaron la formación 13 la han terminado y de esas todas quieren emprender al final de esta etapa formativa. Se han propuesto 2 cooperativas de trabajo asociado y 2 emprendimientos como autónomos. Asimismo, decidieron formar la Asociación EcoAlmil para la promoción de la agroecología, certificar su producción y desarrollar su SPG.
“TRINTA FERRADOS”: UN PROCESO DE TRANSFORMACIÓN AGROECOLÓGICA

Neira Seijo X*, Neira Cervera M**

*EPSE de Lugo. USC. Campus Universitario. 27002 Lugo. Correo-e xan.neira@usc.es.
Tn. 982823257
** University of St. Gallen. Suiza

RESUMEN: Son numerosas las fincas agrícolas de titularidad pública que presentan un estado de uso precario donde, una dificul-
tad manifiesta en su gobierno, no es un factor menor. Revertir esta situación presenta cierta complejidad, tanto desde el punto de
vista administrativo como desde el productivo. Es el caso de la Finca de Prácticas de la EPSE-USC Lugo.

Como objetivo se postula definir un proceso de cambio global para esta finca que, incorporando criterios agroecológicos, conclu-
ya en la transformación a un predio que, sin abandonar su vocación docente, amplíe su espectro de utilidades e incorpore otros
agentes, tanto en la definición de sus estrategias como en su manejo de cara a posibilitar su funcionalidad.

La hipótesis de trabajo se basa en que la extensión del dominio de la finca con la presencia de más agentes sociales, con la
incorporación de otros saberes, otros intereses, otras metas, redundará en la consecución del objetivo marcado.

En el momento presente se está definiendo el plan piloto, que debe contemplar un proceso colectivo de formulación de objetivos
para, en fase posterior, cuantificar las disponibilidades de colaboración.

Uno de los resultados que se desea proyectar es la consecución de la integración de la ciencia agroecológica en la disciplina
académica y, más allá, una fuente de integración social y de adaptación de las realidades locales a nuevos escenarios econó-
micos, sociales y ambientales.

Palabras clave: adaptación, participación social, diversidad, procesos colaborativos

INTRODUCCIÓN

“Alimentar al mundo”, esta viene siendo una preocupación fundamental de toda una pléyade de personas, asocia-
ciones, centros de formación e investigación, instituciones y gobiernos relacionados con la agricultura
y la alimentación. Por citar un ejemplo, la Organización de las Naciones Unidas para la Alimentación y la
Agricultura (FAO, 2009), lo presenta como uno de los grandes retos para este siglo.

La implantación de un modelo de desarrollo rural ajeno a las condiciones naturales, ecológicas y culturales ha
dejado en su recorrido un rastro de miseria, degradación ambiental y un modo de alimentación desequilibrado.

La alimentación, para todas las sociedades, va más allá de la ingestión de nutrientes. En cada una de ellas se
presentan unos rasgos y un simbolismo alrededor de la alimentación, formado por un conglomerado de pensa-
mientos y costumbres que conforman una cultura.

Desde la invención de la agricultura, datada en diez milenios atrás en el Creciente Fértil, esta se ha ido
haciendo hegemónica en el suministro de alimentos y en la gestión del ecosistema a medida que agricultores,
ganaderos y silvicultores – no necesariamente constituyendo tres gremios diferentes –, lo ha ido transformando
en agroecosistema.

Los predios agrarios han venido constituyendo espacios donde una parte de la sociedad se refleja, donde
se manifiesta ideas, que conforman su cosmovisión, su estilo de vida.

En la finca de prácticas docentes universitarias, en este caso la de la Escola Politécnica Superior de Enxeñaría
de Lugo, de 1,2 ha no son aplicables estos preceptos. Con un gobierno en el que interviene la Dirección de
la Escuela a través de una Subdirección y una Comisión de Finca de Prácticas, en la que la Junta de Escuela delega los asuntos relacionados con el gobierno de la misma donde, básicamente, se atienden y organizan las peticiones de prácticas docentes de los potenciales usuarios. Nuestra percepción es que se trata de un espacio sin identidad.

La hipótesis de trabajo es esa constatación, que se nos manifiesta cada vez que impulsamos o asistimos a una actividad agroecológica en el ámbito local, y nos encontramos con una variada tipología de personas, en lo referente a su profesión y formación, qué buscan un reencuentro con la naturaleza porque perciben que constituye una necesidad biológica de las personas. Existe, como no, diversidad de percepciones y modos de actuar, más parece que el cultivo en el huerto satisface muchas de esas demandas.

Un primer objetivo de este trabajo pretende hacer una propuesta de manejo integral de la finca de prácticas y además se pretende realizarlo desde el prisma del pensamiento agroecológico.

Un segundo objetivo es que constituya una herramienta para promover una alimentación y un estilo de vida saludable además de tener un potencial es aspectos sociales, educativos, terapéuticos y todo ello ante los retos que va presentando la nueva sociedad.

En este punto conviene explicitar la razón por la que el título del proyecto sea “Trinta ferrados”, sencillo, es una expresión de diversidad.

El ferrado, en origen, es un recipiente de madera que era la medida de grano con el que el campesino tributaba a sus señores. De este modo, se comenzó a denominar ferrado a la superficie del terreno capaz de producir esa cantidad de grano. El ferrado es pues lo mismo una unidad de superficie que de volumen, y como la superficie de terreno necesaria para producir un ferrado es diferente, dependiente del potencial agrológico de la zona, la superficie de un ferrado es diferente para cada comarca – más de una cincuentena en Galicia –. Treinta ferrados, en medida de la comarca de Lugo, es aproximadamente la superficie de la finca de prácticas objeto de estudio.

EL MARCO CONCEPTUAL

Ha pasado prácticamente medio siglo desde que el Club de Roma encargara al MIT el informe The Limits to Growth donde se concluía que si proseguía el crecimiento de la población, la industrialización, la contaminación, la producción de alimentos y la extracción de los recursos naturales se alcanzarían los límites absolutos del crecimiento en los próximos cien años.

Parte de estas alarmas continuaron encendidas en la crisis alimentaria mundial en 2007, que provocó hambrunas, pero en realidad supuso una crisis alimentaria, energética, financiera, climática, de derechos humanos. La agricultura industrial presenta notorios déficits socioeconómicos, ambientales y técnicos que se manifiestan en falta de calidad alimentaria, uso masivo de energía, degradación ambiental y pobreza, pérdida de los recursos genéticos de plantas y animales, proliferación de plagas y enfermedades. Se dibuja un sistema agroalimentario resquebrajado e insostenible.

Con esos antecedentes, en el momento presente importantes acciones están transformando la agricultura mundial y las economías rurales: la acción humana sobre el medio, la manipulación genética, la globalización, así como la revolución tecnológica. Se habla de multifuncionalidad, que abarca las funciones ambientales, económicas y sociales relacionadas con la agricultura y la utilización de las tierras. El análisis del carácter multifuncional de la agricultura permite entender mejor las posibles relaciones, sinergias y compensaciones necesarias para lograr una agricultura y un desarrollo rural sostenibles.

Con la agroecología se está tratando de integrar los saberes tradicionales aunándolos a unas bases científicas, metodológicas y técnicas para propiciar una revolución agroecológica. Los exigencias de esa revolución
agroecológica se refieren al manejo de los sistemas agrarios, a partir de principios agroecológicos: biodiversos, resilientes, eficientes energéticamente, socialmente justos y que constituyen la base de una estrategia fuertemente vinculada a la soberanía alimentaria.

La idea principal de la agroecología es ir más allá de las prácticas agrícolas alternativas y desarrollar agroecosistemas con una mínima dependencia de agroquímicos e insumos de energía.

MATERIAL Y MÉTODOS

La Propuesta se refiere a la Finca de Prácticas de Montirón, perteneciente a la EPSE-USC del municipio de Lugo. La finca, de 1,2 ha, se encuentra situada en el denominado polígono Sur-K del Concello de Lugo, y es una parcela de reemplazo de titularidad municipal, que cede su uso para prácticas docentes a la USC.

Al ejecutarse los viarios del polígono esta finca ha sido destino de diferentes acarreos de material, incluso de otros municipios limítrofes, y por tanto los suelos son difíciles de caracterizar. En todo caso presenta una elevada pedregosidad, debido a la presencia de cantos rodados provenientes de un terreno aluvial, e incluso material de obra, que ha sido depositado sobre una parte de la finca.

La finca presenta un relieve ondulado, con zonas de una pendiente pronunciada, con suelos con diferentes contenidos de materia orgánica y con profundidad efectiva variable. Los suelos, fruto de las circunstancias descritas, presentan una pobre estructura y con tendencia a la compactación, que dificulta su mejor aprovechamiento agrícola.

La metodología de trabajo se fundamentó en los principios básicos de agroecología, con una notable presencia de planificación participativa en la valoración de estrategias y la integración de métodos de diagnóstico para lograr el objetivo propuesto.

RESULTADOS

En general los informantes mostraron una buena predisposición al intercambio de experiencias entre los diferentes agentes implicados en el proceso de transformación como una vía satisfactoria para incorporar diferentes saberes, que pueden ir desde la producción y conservación de semillas a técnicas de gobierno de agua o bioconstrucción. El intercambio entre diferentes agentes incorpora nuevas formas de participación que refuerzan relaciones más horizontales.

Multifuncionalidad

La función primordial de la agricultura sigue siendo la producción de alimentos y de otros productos básicos, la combinación de las funciones económica, social y ambiental de la agricultura puede contribuir al cumplimiento de esos objetivos. La actividad agrícola y la utilización correspondiente de las tierras también generan una amplia gama de productos y servicios no alimentarios, configuran el medio ambiente, afectan a los sistemas sociales y culturales y contribuyen al crecimiento económico.

En el diseño estarán presentes tres funciones:

- La función ambiental. Relativa al buen uso de la tierra: recuperar el suelo y recuperar la fertilidad natural, el buen gobierno del agua. Incorporación de materia orgánica para mejorar la relación de la actividad agrícola-propiedades biofísicas. Incorporación de ganado, clave en el manejo agroecológico de la finca.
Repercusión prácticas docente: biodiversidad, efectos cambio climático, erosión, gestión hídrica, manejo del ganado.
• **La función económica.** La agricultura como importante activo en el desarrollo económico.

Repercusión práctica docente: Evaluar funciones económicas, ponderar beneficios, desarrollo de mercados (mercados locales), economía circular.

• **La función social.** Proyectado desde un prisma agroecológico y con la finalidad de mejorar la calidad de vida, integración de jóvenes y participación social.

Repercusión práctica docente: investigación participativa, conocimientos locales, conservación del legado cultural.

Las distintas funciones interaccionan y de ello se pueden producir acciones, antes de su ajuste, que pueden ocasionar menores productividades, como etapa previa a una más avanzada que signifique beneficios económicos y ambientales.

Incorporar la agroecología en el diseño de la finca

Para que la finca se asiente como un espacio agroecológico es preciso incorporar ciertos valores en el diseño de la misma:

• Introducir una vocación productiva de la finca: establecer parcelas y bancales con un modelo biointensivo – un buen modo de mantener la cubierta del suelo –, introduciendo los valores de cultivo de temporada, respetar el paisaje – introduciendo conceptos provenientes de la permacultura –.

• Conservar suelos y aguas: aportes de C al suelo mediante la aportación de compost elaborado con los residuos de poda, césped y biorresiduos del campus, que permite constituirse como sumidero de C, y a su vez consolidar el complejo arcillo-húmico del suelo, aumentar la capacidad de almacenamiento de agua, que debe derivar en las menores necesidades de riego y menor erosión. Realizar reservorios de agua de lluvia provenientes de las edificaciones e invernaderos y almacenarlos en los 25 depósitos de fibra con capacidad para 50 m³.

• Introducción de ganado ovino o aves. La agroecología no se entiende sin ganado. Sus beneficios radican en el control de adventicias, aprovechamiento de residuos domésticos y de cosecha, generación de estiércol y sus productos derivados: carne y huevos.

• Introducir especies arbóreas y frutales que brindan productos de recolección, madera y beneficios ambientales. Observar la adaptación de especies más meridionales ante los escenarios del cambio climático que se aventuran.

• Fomentar los circuitos cortos de comercialización, la economía circular, bienes para el consumo y transformación en un obrador artesanal.

• Mantener el legado cultural, preservar activamente los saberes tradicionales, con importantes facetas en la identificación y propiedades de las especies vegetales cultivadas y silvestres y el manejo sostenible del agroecosistema.

Esta nueva propuesta proyectada a futuro se pretende:

i. La transmisión a la sociedad de la importancia de la agricultura, productora de prácticamente la totalidad nuestra alimentación y fibras, y de los agricultores, los gestores del agroecosistema

ii. Integrar los vínculos agricultura-medio ambiente

iii. Presentar modelos de gestión de sistemas agroalimentarios que deriven equidad y justicia social

EPÍLOGO

Las Escuelas Agroecológicas, un modelo que se postula para la Finca de Prácticas, surgen en el mundo para ofrecer nuevas visiones frente a unas políticas agrarias caracterizadas la inestabilidad y la inexistencia de una visión estratégica del sector agropecuario y rural, lo que ha conllevado la invisibilidad de la sociedad rural...
campesina – estamos pensando en el sector que representa la agricultura familiar – y la profunda crisis del sector más industrial.

Las escolas do ferrado constituían un modo de instruir en Galicia, donde los escolantes – personas instruidas aunque sin graduación – formaban a los niños en una educación básica a cambio de una remuneración en especie, un ferrado de grano y, si era el caso, alojamiento y manutención. El sistema permitía compatibilizar escuela y trabajo, y llegó hasta la segunda mitad del siglo XX.

La metáfora de las escolas do ferrado, traídas al momento presente, pretende dar cabida a la academia a otros saberes, incluso las viejas cosmovisiones, se pretende entender y poner en valor los saberes de las comunidades campesinas basados en la participación, el conocimiento local y contando con la participación de los actores locales, la integración social y el diálogo intercultural y multidisciplinar.

Para ello el modo de gestión de la Finca de Prácticas debe variar para dar cabida a quienes deseen preservar el patrimonio natural y cultural, los que pretender transitar a un sistema agroalimentario que contemple la biodiversidad, la conservación del suelo y agua, la recuperación de las variedades locales y el patrimonio genético, la apuesta por el bienestar animal, los mercados locales, la elaboración y transformación de productos excedentes en finca, los mercados locales, la economía circular, la digna retribución por el trabajo.

Todos ellos valores que la agroecología, como movimiento y aglutinando las diversas maneras como es entendida, incorpora en su bagaje.

REFERENCIAS BIBLIOGRÁFICAS

AGRICULTURA ECOLÓGICA Y CONSERVACIÓN DE LA NATURALEZA. LA EXPERIENCIA DE RIET VELL

Cirera JC

RIET VELL, S.A.
Ctra. Eucaliptus, Km. 18,5. E-43870 Amposta, Tarragona
direccion@rietvell.com; Tel: 678757619

RESUMEN: Riet Vell es una empresa creada en 2001 por SEO/BirdLife, una de las principales organizaciones ambientales en España. Tras la realización entre 1997 y 2000 de un proyecto LIFE en el delta del Ebro para evaluar la viabilidad del cultivo ecológico del arroz, SEO/BirdLife promovió la creación de Riet Vell. Para ello contó con la implicación de sus propios socios y de otras ONGs ambientales y adquirió una finca de 52 Ha. Su objetivo fue iniciar aquí una explotación de arroz ecológico y trabajar por una agricultura viable que contribuyera a la conservación de especies y hábitats amenazados en espacios naturales sumamente valiosos como los humedales o las zonas esteparias. Actualmente Riet Vell trabaja con arroz, pasta y legumbres ecológicos. El arroz se cultiva en el delta del Ebro, una de las principales zonas húmedas europeas. Los arrozales son un cultivo vital para la conservación del propio delta y de numerosas aves acuáticas amenazadas. La pasta se elabora con trigo duro de zonas esteparias del valle del Ebro, cuya calidad se ve favorecida por un clima seco y extremo. Las legumbres provienen del entorno de humedales en las llanuras cerealistas de Castilla La Mancha. Su producción es supervisada por la Fundación Global Nature que trabaja con agricultores locales en la conservación de estos espacios. Los arroces, pastas y legumbres Riet Vell son alimentos saludables y sabrosos, procedentes de cultivos integrados plenamente en el concepto de la Agroecología y producidos en áreas de gran valor ambiental favoreciendo la conservación de su biodiversidad.

Palabras clave: arroz, biodiversidad, legumbres, pasta
HUERTOS EDUCATIVOS Y AGROECOLOGÍA ESCOLAR

Puente González A¹, Labrador Moreno J²

¹, ² Red Universidades Cultivadas/www.universidadescultivadas.org
Despacho 23 Facultad Educación – Campus Duques de Soria - 42004 SORIA
Cto: agroecobur@gmail.com – 660532536

RESUMEN: Desde no hace muchos años se están desarrollando proyectos de “Huertos Escolares Ecológicos” en muchos centros educativos de diferentes puntos de la geografía Nacional. En unos su gestión es autónoma, se diseña el proyecto y se desarrolla sin apenas conexión con el programa de otros centros. En otros, por el contrario, el Huerto Escolar Ecológico -en adelante HEE- se trabaja en una red constituida por varios centros coordinados en los que los trabajos de cada uno son conocidos por los demás, sirviendo en muchos casos, las experiencias más avanzadas pedagógicamente como referencia para otros colegios.

Habitualmente en las localidades donde los ayuntamientos destinan recursos económicos y/o personal técnico que colaboran en la creación de los proyectos y su posterior desarrollo, el avance es más significativo y generalizado. Algunos ejemplos son la Red de HEE de Madrid, de la Región de Murcia, San Cugat del Valles y la más antigua, la de Zaragoza, que funciona desde 1980.

Sea como sea, la experiencia, el proceso educativo interdisciplinario que genera tanto la creación como el posterior desarrollo de los HEE mejora notablemente la capacidad crítica, reflexiva, innovadora y comprometida con el cambio del colectivo docente implicado y del alumnado.

La implicación de la agroecología en este proyecto educativo innovador promueve una fuerte vinculación de la escuela con la comunidad y el territorio, además del uso de prácticas más eco compatibles que van asociadas al manejo de los huertos ecológicos.

INTRODUCCIÓN

En todos los contextos y las etapas educativas, y en particular en edades tempranas, debería hacerse un esfuerzo por priorizar los entornos naturales como escenarios educativos y por la naturalización de los entornos escolares, incluyendo en sus instalaciones elementos no artificiales que favorezcan la interacción de los niños y niñas con el medio natural (Martínez-Madrid y col., 2016)

Los huertos escolares ecológicos –HEE– son un paso más adelantado en este proceso de naturalización. Éstos constituyen recursos didácticos y entornos de aprendizaje que han venido proliferando en centros educativos españoles de Infantil, Primaria y Secundaria desde principios de los años 90.
Si en una primera aproximación fundamentalmente se han usado para complementar a nivel práctico los contenidos teóricos de las asignaturas de Ciencias de la Naturaleza en la etapa de Primaria, posteriormente con la incorporación del marco teórico agroecológico adaptado a los niveles y diseños curriculares se ha dado un nuevo salto conceptual.

Así surge la denominada agroecología escolar como “la transposición didáctica de la Agroecología, y que propone la incorporación del sistema alimentario, incluyendo producción, transporte, transformación y tratamiento de residuos, a los contenidos, la vida y las dinámicas escolares, para incorporar a los niños y niñas en la toma de decisiones críticas sobre estos ámbitos, tan relevantes en la vida y las sociedades humanas” (Llerena 2016).

En este contexto, Miriam Kauffman (1995) expone como “un huerto en la escuela posibilita el tratamiento de problemas reales, que se originan desarrollan y reformulan naturalmente, sin necesidad de plantear situaciones problemáticas artificiales”.

En la actualidad el interés de estos espacios educativos innovadores está aumentando, ya que facilitan la implementación de metodologías activas y experienciales y una enseñanza de las ciencias en relación a contextos del mundo real tan significativos como la producción de alimentos vegetales (Martinez-Madrid y cols., 2016).

Es evidente que la agroecología escolar promueve una fuerte vinculación de la escuela con la comunidad y el territorio; pero además el proceso educativo interdisciplinario que genera tanto la creación como el posterior desarrollo de los HEE mejora notablemente la capacidad crítica, reflexiva, innovadora y comprometida con el cambio del colectivo docente implicado y del alumnado.

Importante igualmente es la implicación de los HEE en la Educación para el Desarrollo Sostenible (EDS).

La Educación para la sostenibilidad del sistema agroalimentario, que se podría denominar como Educación Agroecológica, de acuerdo con los retos de la UNESCO, es uno de los desafíos prioritarios que habría que abordar en el sistema educativo, para disminuir o eliminar las nefastas consecuencias ambientales, socioeconómicas y culturales que produce el SAA globalizado imperante en la actualidad. Introducir en la EDS los principales conceptos y principios de la Agroecología es clave para evolucionar hacia un sistema más justo y equitativo, que esté en armonía con los recursos naturales y la salud humana y ambiental del planeta. Los huertos escolares ecológicos constituyen, muy probablemente, uno de los recursos más efectivos para afrontar este cambio en el sistema educativo (Egea-Fernández y cols., 2016).

Los huertos escolares (HEE), implantados bajo el paraguas de la pedagogía agroecológica, constituyen un recurso didáctico multidisciplinar para la EDS. En el huerto se puede estudiar el proceso de producción agrícola, combinado con prácticas orientadas a fortalecer los conocimientos teóricos en nutrición, alimentación y consumo (ciclo agroalimentario), al mismo tiempo que se familiariza a los escolares con los conceptos de seguridad y soberanía alimentaria (González 2012).
La forma divertida, amena y a través del desarrollo de la dinámica de grupos que engloba el HEE, permite desarrollar la agroecología escolar.

La producción de alimentos con técnicas de “Permacultura”, manejando insumos naturales ricos en carbono, madera fragmentada o paja, otros con abundancia de nitrógeno tales como césped segado, restos de cosecha, orgánicos de cocina, estiércoles, etc., nos aportan una excelente materia orgánica.

El empleo también de minerales en forma de harina de rocas volcánicas, pórfidos, basalto, ofitas, roca fosfórica, tierra de diatomeas, etc.
En combinación con multiplicaciones de microbiología edáfica y un adecuado manejo de estos elementos, nos proporciona un buen humus capaz de nutrir a las plantas, atendiendo todas sus necesidades nutricionales de macro y micro nutrientes, cuyo resultado es un desarrollo vegetal armónico de toda la morfología vegetal, pudiendo desarrollar las plantas del cultivo todos sus procesos enzimáticos adecuadamente, para fabricar sus defensas contra fitófagos y parasitos y los “regalos” a la entomofauna y microbiología amiga, con las que establecen relaciones mutualistas.

Los frutos, hojas y raíces de estas producciones son unos alimentos de alto poder nutricional con unas magnificas cualidades organolépticas, que nos proporcionan una alimentación saludable y eficaz contra enfermedades derivadas de malas prácticas alimenticias, que aumentan la morbilidad de la población, especialmente la infantil y juvenil.

Curiosamente en la base de este proceso esta la utilización de desechos que en línea con el principio permacultural de “convertir los problemas en recursos”, nos permite conseguir un cambio cualitativo en la gestión de sustancias que de otra manera se convierten en potentes contaminantes orgánicos y productores de gases de efecto invernadero, alimentando en el primer supuesto además a toda la vida del suelo y la simbiosis edáfica entre seres vivos, materia orgánica y elementos minerales.
Todo este entramado productivo en el que se combina botánica, edafología, biología y micro biología, técnicas de compostaje, etc. arrojan un balance netamente desequilibrado a favor de la concienciación y educación medioambiental, rompiendo de forma consistente el nefasto paradigma de que la agricultura ecológica no es capaz de alimentar a toda la humanidad y que por ello nos vemos abocados a la utilización masiva de agroquímicos, que nos dan de comer a la vez que nos mal nutren e intoxican, colapsando los ecosistemas esenciales para la vida en la Tierra y que provocan además una inexorable perdida de recursos naturales renovables para la coexistencia pacífica y armoniosa entre todas las especies que conformamos la biodiversidad.
CONCLUSIONES

El proceso educativo interdisciplinario que genera tanto la creación como el posterior desarrollo de los HEE mejora notablemente la capacidad crítica, reflexiva, innovadora y comprometida con el cambio. Todos estos ingredientes potencian en el alumnado un desarrollo del conocimiento que apunta en la dirección de una alta de estimulación de la imaginación en el escolar, cuyo fruto maduro es la formación de nuevas generaciones con altas dosis de creatividad eficiente a la hora de la contribución en la resolución de los problemas que ya tenemos en los aledaños del imperio, perdida del recurso suelo, eventos climáticos de extremada contundencia que generan disminución de biodiversidad, muertes, plagas, etc. y todo ello en la fase descendente del denominado “peak oil”, en el que las largas y costosas rutas de alimentación, simplemente no son posibles, cogiendo el relevo los alimentos y productos de kilómetro cero.

En el ser humano, la capacidad de resolver problemas está en la cúspide de toda su capacidad cognitiva, que se conforma como una actividad mental elevada y compleja. Los HEE, en esta dirección, entre otras, son una extremadamente valiosa herramienta pedagógica que sin embargo no ha sido valorada hasta fechas muy recientes en el contexto educativo.

La creciente evolución de la tasa de abandono escolar y el hastío de los que siguen adelante, inmersos en un sistema de enseñanza en el que prima notablemente la total memorización de datos y la memoria de procesos, contribuyen notablemente al letargo cultural.

En otra perspectiva la “transversalidad educativa” es ampliamente enriquecida por la gran capacidad que tienen los HEE para conectar y articular los distintos sectores de aprendizaje, estableciéndose conexiones inmejorables entre los “ contenidos educativos” (lo que hay que memorizar) y las “competencias clave” (habilidades que alumnos y adultos necesitamos manejar bien para nuestra interconexión vital, a lo largo de la vida). Si el resultado de todo este proceso desemboca en “la motivación por el aprendizaje”, el cambio en la cuenta real de resultados del sistema de enseñanza está garantizado y la adecuada evolución social hacia sistemas más equilibrados social y medioambientalmente hablando, también.

REFERENCIAS BIBLIOGRÁFICAS

• González M. 2012. El huerto escolar, como estrategia didáctica para impulsar el desarrollo endógeno, en la escuela bolivariana montaña de agua fría, parroquia vega de Guaramacal, municipio Bocoró del estado Trujillo.
LA EDUCACIÓN ALIMENTARIA EN ESCUELAS DE VALLECAS (MADRID)

Hernández de la Puerta N, Galindo Martinez P

RESUMEN: La escuela es un lugar privilegiado para promover buenos hábitos alimentarios en la comunidad, sumando un segundo objetivo pedagógico: enseñar a disfrutar comiendo bien. El objeto de investigación es la educación alimentaria en las escuelas de Vallecas, un barrio con alta diversidad social, precariedad laboral y vulnerabilidad en salud, se convierte en una prioridad. La investigación pretende evaluar las carencias de la dimensión alimentaria en el plan curricular del centro, los recursos educativos empleados y detectar los obstáculos para la introducción de la alimentación ecológica en el comedor, entre ellos la predominancia de empresas de “catering” sin cocina in situ en la gestión. Es preciso identificar las dificultades para plantear iniciativas educativas de transición a una alimentación agroecológica en el comedor escolar.

El método de investigación: encuesta online y entrevistas abiertas a miembros de la comunidad educativa (profesorado, familias, dirección, cociner@s) dirigida a escuelas, colegios e institutos del barrio. El final del curso ha reducido el número de centros y personas participantes por lo que las conclusiones no tienen significación representativa, aunque perfilan hipótesis para futuras investigaciones.

Resultados: a.) la preocupación por la alimentación saludable en la escuela es mayor cuanto menor es la edad de los escolares, b.) la alimentación ecológica en los comedores escolares es simbólica, c.) quienes consumen alimentos ecológicos demuestran un alto nivel de cultura alimentaria, y d.) existen grupos motores en las escuelas que expresan la voluntad de cambio. Los dos escenarios de intervención propuestos son: los comedores escolares y la sensibilización de toda la comunidad.

Palabras clave: alimentación ecológica, comedor, diversidad cultural, grupo motor, salud y transición.

INTRODUCCIÓN

La alimentación es un derecho humano que ha sido privatizado y mercantilizado. Lo que comemos determina nuestra salud o enfermedad, inteligencia, recursos y oportunidades. En el actual modelo alimentario industrializado y globalizado, cada vez es más difícil acceder a alimentos frescos, sanos, de temporada y cultivados en tierra fértil.

El actual desorden alimentario es consecuencia de una aberración fundacional: tratar la producción, distribución y consumo de alimentos como una actividad exclusivamente económica que produce y vende mercancías, cuando, al tratarse de un derecho fundamental, en realidad se trata de una actividad social y económica cuya finalidad es garantizar el derecho de todas las personas a una alimentación saludable, suficiente y sostenible.

Las grandes multinacionales de la alimentación están amparadas desde las instituciones de la Economía del mercado Global (Banco Mundial –BM–, Fondo Monetario Internacional –FMI–, Unión Europea -UE– y su Política Agraria Común –PAC– y Organización Mundial del Comercio –OMC–) que, a su vez, cuentan con el consentimiento y la complicidad de los estados. Las grandes corporaciones controlan la oferta alimentaria, los precios de la producción y distribución de los alimentos y modifican los hábitos de consumo de la población desplazando, en el caso de España, la Dieta Mediterránea. Hoy, más del 60% de la energía consumida por habitante en España procede de alimentos cargados de azúcar, sal y conservantes, a costa de la reducción de alimentos naturales, locales, frescos y de temporada (según Galindo, 2014).
La mercantilización de los alimentos provoca hambrunas, malnutrición y enfermedades alimentarias como obesidad y diabetes. Pero también expulsa recursos naturales, amenaza la biodiversidad y la fertilidad de la tierra y contamina el medio ambiente. En este contexto, asistimos al incremento de enfermedades alimentarias, como la diabetes o la obesidad infantil, considerada como la epidemia del siglo XXI por la OMS. La responsabilidad de la ciudadanía es combatir las causas de esta problemática alimentaria, sanitaria, social, medioambiental y económica recuperando hábitos de consumo responsables y una alimentación de temporada y cercanía (según Galindo, 2016).

La Producción Campesina Agroecológica y el Consumo Responsable son los instrumentos principales en el contexto de los Objetivos de Desarrollo Sostenible de la ONU (ODS) y de la Agenda 2030 para poner fin a la pobreza y el hambre, responder al cambio climático y conservar nuestros recursos naturales garantizando la Soberanía y Seguridad Alimentarias mediante sistemas alimenticios sostenibles y nutritivos.

El medio escolar es un lugar privilegiado para educar y reeducar en hábitos saludables, contando con todos/as sus actores (escolares, familias, profesores y cocineros/as). Los largos periodos escolares, la posibilidad de abordar la temática alimentaria de forma transversal en diferentes actividades curriculares, constituyen los centros escolares en un ámbito fundamental para la promoción de una alimentación sana. Los comedores escolares a través de la cooperación pueden cumplir una función pedagógica de gran alcance: disfrutar al comer bien.

En el ámbito nacional, existen otras experiencias que avalan la viabilidad de implementar proyectos por una alimentación saludable y consciente, como las que se inscriben dentro de la Plataforma por una Alimentación Responsable en la Escuela (Escuela Infantil Municipal A Caracola y Escuela Bosque Amadahi en A Coruña, así como más de 20 AMPAS de escuelas públicas de Madrid, Andalucía, Galicia, etc) (según Plataforma por una Alimentación Responsable en la Escuela, 2016 & Rodriguez del Rosario, 2011).

En el contexto local, el Ayuntamiento de Madrid, que firmó el Pacto de Milán en 2015, promueve estrategias para una alimentación sostenible. En mayo de 2017 se acordaban determinadas líneas de trabajo: incorporar la figura de dietista-nutricionista en los servicios de salud pública; incluir programas sobre alimentación en los currículums escolares; hacer campañas sobre alimentación, consumo responsable y reducción del desperdicio; así como apoyar redes de comercialización de productos agroecológicos dentro del marco de la economía social y solidaria.

El distrito de Puente de Vallecas, donde se realiza la investigación, es idóneo para realizar esta investigación por varias razones: por su recorrido histórico en la movilización vecinal y el fuerte tejido asociativo, la alta diversidad étnica, cultural y de nacionalidades existentes en el barrio y las características socioeconómicas de la población. Un distrito con una población de cerca de 233.000 habitantes, constituyendo el tercer distrito con más población de Madrid. Con cerca del 17% de sus vecinos de origen extranjero, Vallecas es el 6º distrito con mayor población inmigrante de la capital (según INE, 2018).

La Cooperativa La Garbancita Ecológica ha realizado desde sus comienzos una amplia y productiva intervención en el ámbito de la alimentación agroecológica y su anclaje con el ámbito educativo 1, trabajando con más de 3000 niños y niñas en edad escolar, elaborando unidades didácticas para el fomento de hábitos alimentarios

1 Por la Garbancita han pasado más de 3000 niños/as de primaria y secundaria en la unidad didáctica “Visita a la Garbancita. Exclusión a la autogestión alimentaria”. Acompañamos a las escuelas en un proceso integrado de educación alimentaria, metodologías para fomentar la alimentación ecológica escolar, grupos de consumo para las familias y suministro de alimentos para el comedor o eventos. Adaptamos nuestra oferta a las necesidades de cada comunidad educativa. Creamos recursos pedagógicos propios, como la “Pirámide de Alimentos, Actividad Física y Afectos”, donde se interconectan las 3 dimensiones desde el punto de vista agroecológico, y “La canción del tomate” y “La canción de las 3 Erres”. (Enlace a la Pirámide en: http://www.lagarbancitaecologica.org/comunicacion/piramide-de-la-garbancita) (Enlace a “La canción del tomate” en: http://www.lagarbancitaecologica.org/comunicacion/libros/comer-y-cantar-cancion-del-tomate)

Como actividades de educación alimentaria y ambiental fuera de la enseñanza regulada, la Garbancita Ecológica ha participado en la Escuela Abierta de Verano de Cañada Real Galanía, organizado por el equipo ICI en Cañada Real. Hemos impartido talleres a varios centenares de niños/as de diversas origenes culturales enterándose, de forma divertida y participativa, a disfrutar de un desayuno saludable y ecológico y a reconocer, separar, reutilizar y reciclar los residuos generados con la alimentación y la actividad cotidiana en clave de la “Economía Circular” y la “Strategia Residuos Zero”. (Enlace a las actividades de la Escuela Abierta de Verano -EAV – de Cañada Real http://www.lagarbancitaecologica.org/culturaalimentaria/educacionalimentaria/educacionalimentariaenelmadrideducativo/ alimentacion-saludable-y-cuidado-del-medioambiente-en-cañadarereal/2a-jornada-2016 Y enlace a video: https://youtu.be/P6lkEkAhHdc)
saludables y ecológicos. Desde un enfoque transformador ha desarrollado la metodología de investigación-acción-participativa, constituyendo espacios de diálogo comunitario, abriendo vías de intervención, uniendo la teoría y la praxis, con el objetivo de transformar las condiciones de posibilidad hacia un modelo de consumo y de alimentación sostenible, respetuoso y consciente. La Garbancita Ecológica se inserta dentro de los procesos ciudadanos de Vallecas. Algunos de los espacios comunitarios donde ha participado son: Escuela Abierta de Verano en Cañada Real y el Día de Acción Global, organizados desde el Proyecto Iniciativa Comunitaria de Intervención (ICI), con su actividad “Salud Bucodental, Alimentación saludable y Gestión de Residuos”; Curso de Cocineras de Escuelas Infantiles, organizado por la Sociedad Española de Agricultura Ecológica (SEAE) en el que ha colaborado La Garbancita Ecológica; Feria de la Salud, organizado desde el proyecto ICI; Día Infantil y Juvenil de Vallecas, organizado por la Coordinadora de Asociaciones de Ocio y Tiempo Libre.

MATERIALES Y MÉTODOS DE LA INVESTIGACIÓN

Para abordar esta investigación se hace imprescindible la definición teórica de algunos conceptos que orienten la Comunidad de Conocimiento hacia propuestas concretas de intervención. Los tres conceptos son:

1.) La Alimentación incorpora más dimensiones que la meramente biológica, al tratarse de una actividad con dimensión histórica, económica, cultural y política. La alimentación debe ser saludable, equilibrada y variada para cubrir las necesidades calóricas y nutricionales en función de la edad, el sexo, la actividad física y las costumbres, combinando alimentos de los diferentes macronutrientes (hidratos de carbono, proteínas y grasas), combinados siguiendo las proporciones adecuadas, así como agua, vitaminas, minerales y fibra. La alimentación saludable debe reunir otros requisitos que implican el plano emocional y el plano social. En este punto, enlazamos con el concepto de alimentación consciente (según Galindo, 2014).

2.) La Salud como concepto integral, implica la promoción y la prevención. Comer no es lo mismo que alimentarse. El acto de ingerir no necesariamente implica equilibrio de los nutrientes para el correcto funcionamiento de nuestro organismo. Los nutrientes saludables y de alta calidad se garantizan con: a.) cereales integrales fermentados con levadura madre; b.) proteína vegetal de alto valor biológico (legumbre combinada con cereales integrales y verdura); c.) grasas de alta calidad (frutos secos, pescado azul, semillas, aceite virgen extra primera prensada en frío); d.) abundancia de frutas y verduras ecológicas, alimentos integrales y agua; y e.) calidad, cantidad, vitalidad, proporción y orden de la ingesta de los nutrientes. (según Galindo, Galván & Murillo, 2005).

La salud alimentaria debe ir unida a otros elementos principales como ejercicio físico, higiene, descanso y afectos. La verdadera alimentación saludable – que combina nutrición, seguridad y soberanía alimentaria – es la alimentación ecológica que supone salud para nuestro cuerpo, la sociedad, los campesinos y la tierra (según Ramasco y Lema, 2015).

3.) La Educación Alimentaria y Diversidad constituyen un proceso integral dinámico, participativo, permanente y transversal de construcción y aprendizaje colectivo de conocimientos, habilidades, relaciones y prácticas alimentarias en función de necesidades vitales, pautas culturales y recursos locales.

Las hipótesis de partida de la investigación son tres:

a.) carencias fundamentales en la mayoría de centros educativos respecto al abordaje curricular de la dimensión alimentaria. Faltan contenidos que permitirían aumentar la conciencia y el disfrute por consumir alimentos de temporada y cercanía; vitalidad; agroecología; diálogo campo-ciudad; relación intergeneracional; disfrute organoléptico, etc. (según Galindo & Hernández, 2010)

b.) recursos educativos escasos y dependientes de los profesionales o las familias más comprometidas (huertos, ecococedores, cocina propia, talleres, charlas de sensibilización, visita a agricultores, grupos de consumo en la escuela, programas de alimentación saludable o reciclaje).
c.) La predominancia de catering en la gestión del comedor escolar dificulta la introducción de alimentos ecológicos desde los planes municipales de transición a ecológico. Hay que disminuir el consumo de proteína cárnica (a menudo presente en primer y segundo plato), fritos y postres procesados e incrementar el consumo de fruta, legumbres y vegetales.

Este conjunto de hipótesis de partida brota de más de 10 años de experiencia, diálogo e Investigación-Acción-Participativa de la Cooperativa La Garbancita Ecológica y diferentes actores de la comunidad educativa de Vallecas.

La investigación se desarrolla en un campo amplio y un tiempo estrecho. El campo de investigación se compone de 93 centros educativos en todo el distrito de Puente de Vallecas: 34 escuelas de educación infantil; 27 centros de educación infantil y primaria; 21 centros de educación infantil, primaria y secundaria; 10 institutos de educación secundaria y 1 centro de educación especial. En la siguiente tabla podemos observar la distribución por niveles y tipos de titularidad del centro (pública, privada-concertada y privada).

El tiempo disponible para la investigación ha sido muy corto (desde finales de mayo a mediados de julio) y en la etapa final del curso escolar, por lo que ha reducido el número de centros y personas participantes. En este sentido, las conclusiones no tienen significación representativa, aunque perfila hipótesis para futuras investigaciones.

<table>
<thead>
<tr>
<th>Nivel educativo/ Titularidad</th>
<th>Total centros</th>
<th>Público</th>
<th>Privado-Concertado</th>
<th>Privado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educación infantil</td>
<td>34</td>
<td>16</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Educación infantil y primaria</td>
<td>27</td>
<td>25</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Educación infantil, primaria y secundaria</td>
<td>21</td>
<td>0</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Educación secundaria</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Educación especial</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Cuadro 1. Elaboración propia. Fuente: Base de Datos de la Consejería de Educación de la CAM.

En la investigación se han utilizado dos herramientas metodológicas: la encuesta y la entrevista.

Encuesta online

Consiste en un formulario sobre infraestructuras y recursos del centro educativo, así como programas vinculados a la alimentación saludable: la disponibilidad en el centro de cocina propia, huerto escolar, alimentación ecológica en el comedor, programa de fruta en el recreo, Asociación de Madres y Padres de Alumnos (AMPA), grupo de consumo, talleres de reciclado o reutilización de materiales, excursiones-visita a productores/agricultores o cooperativas de consumo.

Formulario destinado a los actores de la comunidad educativa: profesorado, dirección, cocineros/as, personal de cocina, alumnos/as y familias. Para la encuesta online se utiliza la herramienta “Google Formularios”, que permite compartir -vía correo electrónico o plataforma de mensajería- el acceso a las preguntas de la encuesta, además de registrar las respuestas en una tabla categorizada.
La información recogida ha sido contrastada a través de llamadas telefónicas a las personas de los centros educativos. El formulario estuvo disponible un mes (última semana de mayo a última de junio).

Más allá de la información interesante de las respuestas a este formulario, los resultados obtenidos por esta herramienta metodológica han resultado insuficientes por diversos problemas:

a.) se comenzó tarde, coincidiendo con el cierre del curso escolar y la escasez de tiempo del profesorado, a pesar de considerarla una investigación muy interesante;

b.) el contacto telefónico o por correo electrónico con los centros educativos no es efectivo. La saturación del correo y los mensajes impersonales, sin la “línea caliente” de algún contacto previo, limitan estas vías de contacto;

c.) por el contrario, las visitas personales a los centros con documentación sobre la investigación son mucho más efectivas y permiten un contacto de alto valor comunicativo, aunque también implican mayor tiempo.

Entrevistas personales

La entrevista individual abierta aborda con más detalle las cuestiones expuestas en la encuesta online. El objetivo es captar el estado de la cuestión respecto a la educación alimentaria y la alimentación ecológica: expectativas, prioridades y obstáculos personales o colectivos. Las entrevistas permiten a la persona investigadora conocer la percepción de los actores en la comunidad educativa. Esta herramienta cualitativa permite analizar aspectos subjetivos y narrativos del discurso, imágenes sociales preconscientes, actitudes y motivaciones básicas de los distintos grupos sociales. El lenguaje es instrumento y objeto prioritario de la investigación social. El análisis del discurso también debe considerar la comunicación no verbal (posturas, gestos o silencios).

La elección de esta herramienta metodológica en esta fase de la investigación ha permitido que, en las propias entrevistas, se planteen informaciones y temáticas no previstas en el diseño, enriqueciendo las aportaciones y análisis de la coyuntura. La entrevista individual abierta genera un terreno idóneo para la reflexión colectiva, donde los roles de entrevistado y entrevistador se entrelazan. Las entrevistas que se realizaron a profesoras y consumidoras de productos ecológicos en La Garbancita, conocidas por los años de intervención en el barrio, permitió un nivel de interacción alto y de confianza.

A pesar de lo anterior, las limitaciones temporales de la investigación impidieron hacer extensiva la fase de las entrevistas para abordar la problemática alimentaria con más actores de la comunidad educativa.

RESULTADOS

Análisis de datos de las encuestas online

Se recibieron 8 respuestas a las encuestas online de las 34 invitaciones enviadas. Información obtenida de las encuestas online:

- Responden 7 centros: 5 colegios de primaria (CEIP Javier de Miguel, CEIP Madrid Sur, CEIP Palomeras Bajas, Colegio Gredos San Diego Vallecas y CEIP Manuel Núñez de Arenas) y 2 institutos de secundaria (IES Palomeras Vallecas –de este instituto dos personas- y Antonio Domínguez Ortiz).
- 3 de los 8 encuestados son profesores/as, otros 3 pertenecen a equipos de dirección y otros dos son familias.
- 6 de los 7 centros cuentan con cocina propia y elaboran su propia comida.
- La comida ecológica está presente en 2 de los 7 centros, aunque 3 de las respuestas manifiesta desconocer este asunto.
- 4 de los 7 centros cuentan con huerto escolar donde el alumnado realiza actividades medioambientales (CEIP Palomeras Bajas, CEIP Javier de Miguel, CEIP Núñez Arenas y CEIP Madrid Sur).
- 5 de los 7 centros disponen de programas de promoción de la dieta saludable, como la campaña de fruta en el recreo. Estos programas se desarrollan en los Centros Educativos de Primaria, no en los Institutos de Educación Secundaria.
• 6 de los 7 centros realizan talleres, actividades o bien disponen de alguna iniciativa para fomentar las 3 Erres: Reducir. Reutilizar y Reciclar. En el otro centro se desconoce por el familiar entrevistado.
• 1 de los 7 centros (CEIP Palomeras Bajas) organiza visita a productores de la zona.
• Todos los encuestados afirman que su centro dispone de Asociación de Madres y Padres de Alumnos (AMPA) que participa activamente.

Podría haber tenido un alcance mayor de haberse realizado los contactos con anterioridad.

Análisis de datos de las entrevistas personales.

Las entrevistas personales abiertas han aportado una densidad de información proporcional al conocimiento previo de la investigadora que acumula diez años de experiencia en el ámbito de la educación alimentaria en las escuelas de Vallecas. En las entrevistas personales han confluido conocimientos y experiencias compartidas desde el proceso de investigación-acción-participativa de largo recorrido realizado desde La Garbancita Ecológica.

Las dificultades para establecer contactos con representantes del ámbito educativo al final del curso fueron solventadas por los contactos personales establecidos durante años de intervención en el barrio. En cuatro semanas se realizaron 8 entrevistas. La mitad de ellas corresponden a consumidoras de La Garbancita Ecológica que, además, son madres o maestras en escuelas de Puente de Vallecas. Las otras cuatro entrevistas corresponden también a personas conocidas en la trayectoria educativa de la cooperativa en Vallecas.

• Perfil de las personas entrevistadas: 7 mujeres y 1 hombre. Entre 40 y 55 años. De las 8 personas entrevistadas, cinco de ellas son profesoradas, dos son madres y otra pertenece al equipo de dirección. Cuatro de ellas (el 50% del total) tienen conocimientos y experiencia práctica en el Consumo Responsable Agroecológico y la iniciativa en educación alimentaria en la escuela y transición ecológica del comedor escolar.
• Perfil de los centros representados, todos de titularidad pública: 1 escuela de educación infantil (El El Trébol), 4 centros de educación primaria (CEIP Virgen del Cerro, CEIP Doctor Tolosa Latour, CEIP La Rioja y CEIP Eduardo Roja) y 2 institutos de educación secundaria (IES Palomeras Vallecas e IES Madrid Sur).
• Comedor escolar y cocina propia: los cinco centros de educación primaria cuentan con cocina propia. Los dos institutos carecen de comedor. La escuela infantil, El Trébol, no tiene cocina y recibe la comida caliente del catering.
• Respecto a los conceptos de alimentación saludable y consciente, estas son algunas de sus aportaciones: “alimentación saludable es la dieta mediterránea, con una base en las verduras, frutas y legumbres”, “que incluye nutrientes suficientes en detrimento de aquellos nutrientes más manipulados”, “es aquella que se preocupa por leer y reflexionar sobre lo que comemos”, “es dedicar más tiempo a nuestra alimentación”, “hay que aprender a comer, no tirar la comida y aprovechar todo”, “es salud para nosotros y para nuestro entorno”.
• Destacamos algunas aportaciones interesantes que nos hace reflexionar: “la alimentación es un asesi-no silencioso. Hoy en día la alimentación se basa en la falsedad, creando adicción”, “mientras no comamos ecológico nos estaremos envenenando”, “las familias no estamos siendo conscientes del daño que provocamos a nuestros hijos. Una ración pequeña de puro azúcar provoca una continua demanda del cuerpo y la sobreex- citación de los pequeños”.
• La elaboración de los menús se realiza generalmente por el propio catering o empresa familiar de cocineros, no existiendo comisión de comedor. La valoración de los comedores escolares es variada: “los cocineros elaboren de forma casera la comida”, “lo importante es que los niños coman, porque algunos lo necesitan, es la única comida que hacen”, “la comida es muy procesada, utilizan alimentos con conservantes y la presentan de forma poco atractiva”.
• Entre las iniciativas de promoción de los buenos hábitos alimentarios, destacan aquellas que son promovidas de forma individual por el profesorado más implicado o preocupado. Algunas ideas interesantes: “prohibimos las chuches en clase, explicando a los pequeños por qué son malas”, “hemos pensado introducir alimentos saludables y ecológicos en los desayunos y meriendas que organizamos desde la propia escuela”. “Las familias de los niños de 3 a 5 años organizamos los desayunos cooperativos. Nosotros mismos nos encargamos del desayuno de todos los niños de la clase, en turnos rotativos, con lo que cada familia debe preparar, una vez al mes, la fruta pelada, o las tortitas, galletas o sándwich de los 25 alumnos de la clase”.

444
• Respecto a la introducción de los alimentos ecológicos en la escuela, por ejemplo, en el comedor, los entrevistados exponen obstáculos como el precio, resistencias desde el propio catering, la falta de educación de los adultos, la falta de concienciación y la necesidad de que el equipo directivo esté comprometido, que sea proyecto de centro, y que exista un grupo motor de maestros y familias involucradas. En el caso de uno de los colegios, el CEIP Eduardo Rojo, cuentan con dos alimentos ecológicos en el menú, lentejas y alubias “aunque se han quedado en sólo eso”. La profesora del CEIP Doctor Tolosa Latour “no siempre lo ecológico es más caro. Si incrementamos el consumo de producto ecológico, rebajaremos el precio”.

• Respecto a la diversidad, todos los centros son reflejo de la diversidad local del distrito. “Hay alumnos de familias procedentes de Marruecos, Palestina, Rumania, Ecuador y Perú”, “implementamos actividades y fiestas donde aparezca la diversidad a través de la gastronomía y la cultura de las familias”, “la diversidad es un valor”.

• Hay huerto escolar en 2 de los centros educativos entrevistados, valorado muy positivamente como herramienta educativa y medioambiental. En otros 3 centros, un colegio y dos institutos, tenían un huerto, pero dejó de destinarse a actividades educativas y terminó cerrando. La razón, en todos ellos, del cierre del huerto es la escasez de tiempo y de energía que necesita el equipo de profesorado para dedicar al huerto. En todos los centros educativos, además, se implementan medidas de separación de residuos (3 Erres –Reducir, Reutilizar y Reciclar), concienciando en su utilización al alumnado.

• Algunas propuestas desde los docentes para implementar la educación alimentaria en sus centros: “Es necesario que haya un proyecto de centro, con implicación de varios profesores, pero que noten que sus prácticas están reconocidas desde la dirección” “necesitamos que los equipos directivos reciban información de proyectos como La Garbanzita Ecológica. Es necesario que insistáis porque hay medios de introducir esta temática en los centros, máxime cuando hay cambios en la administración y empieza a hablarse más del tema”.

CONCLUSIONES

Las principales conclusiones que se derivan de este proceso de investigación no podemos considerarlas representativas del centro –no participan los diferentes actores de la comunidad educativa- ni generalizables a todos los centros educativos del distrito. Tal y como se ha descrito anteriormente, es una investigación hacia un sector que representa a una minoría dentro del ámbito educativo con nociones sobre alimentación saludable y sostenible y voluntad de cambio. La investigación ha aportado una información muy interesante y enriquecedora que, en un estudio más amplio, podrá ratificarse o no.

Este estudio abre vías de profundización para conocer mejor la cantidad y calidad de iniciativas de educación alimentaria en las escuelas de Vallecas (públicas, concertadas y privadas). Estas son las conclusiones extraídas:

1.) La preocupación por la alimentación saludable en el ámbito escolar es mayor cuanto menor es la edad escolar. La alimentación saludable y equilibrada goza de una centralidad en la etapa educativa de infantil, donde la experimentación y el aprendizaje pasa por los sentidos y por la función básica de nutrición. En la escuela primaria con la introducción de contenidos curriculares pareciera que la prioridad nutricional pierde su lugar para centrar la adquisición de información y contenidos. En la última etapa de la educación obligatoria, el instituto, se relega la temática alimentaria a un contenido dentro de un tema de una asignatura, sin una línea de trabajo transversal y obligatoria promovida como proyecto de centro. En esta última etapa, además, se distancia más el vínculo con la alimentación al ser jornadas continuas donde los jóvenes no almuerzan en el ámbito educativo, perdiéndose la oportunidad del comedor como espacio de formación y aprendizaje de buenas prácticas.

2.) Existen iniciativas impulsadas desde grupos motores en la comunidad educativa, a veces son las AMPAS y a veces el propio equipo directivo, que promocionan hábitos de vida saludables. Estas iniciativas expresan la voluntad de cambio y de modificación de pautas que consideran insalubres. Como ejemplo, la campaña de fruta en los recreos dos veces a la semana en el CEIP Palomeras Bajas y en el CEIP Javier de Miguel o los Desayunos Cooperativos en el CEIP La Rioja. A pesar de la mejora de estas propuestas desde un enfoque
agroecológico, debemos valorarlas como un avance y un símbolo de la sensibilidad al cambio. En el caso del Día de la fruta del CEIP Javier de Miguel, el AMPA intenta alternar fruta convencional con fruta ecológica una vez a la semana, los jueves.

3.) Las consumidoras de alimentos ecológicos, convencidas de sus beneficios y de la insalubridad de la alimentación convencional, demuestran un alto nivel de cultura alimentaria. En las entrevistas han manifestado cuidar mucho el equilibrio nutricional y el consumo de alimentos naturales para prevenir las enfermedades.

4.) La alimentación ecológica en los comedores escolares es simbólica. Tan sólo 3 de los 13 centros entrevistados tienen algún alimento en el menú mensual, pero todos son legumbres y cereales. En el CEIP Madrid Sur incluyen una vez al mes legumbre ecológica o arroz ecológico, a su vez siguen ofreciendo lentejas y arroz convencional en el menú del mes. En el CEIP Eduardo Rojo han introducido lentejas y alubias ecológicas en su comedor, ofreciéndolas en dos comidas al mes. En el CEIP Manuel Núñez de Arenas han introducido también las lentejas y el arroz de producción ecológica.

5.) La diversidad étnica y cultural se integra en algunos colegios en los servicios de comedor o en las actividades lúdicas. Es el caso del CEIP Palomeras Bajas que contempla un menú con diferencias alimentarias en el mes del Ramadán, elaborando un menú para musulmanes (además de los específicos de intolerancias: sin proteínas de la leche, sin huevo y celíacos).

RECOMENDACIONES E HIPÓTESIS DE TRABAJO

Tras las conclusiones extraídas del trabajo realizado, es recomendable realizar una propuesta de intervención en las escuelas de Vallecas. El análisis de las oportunidades que favorecen la puesta en marcha de esta propuesta en el ámbito educativo es:

A.) incremento de la conciencia social acerca de la inseguridad alimentaria y de los beneficios de una alimentación saludable para promocionar la salud y prevenir las enfermedades;

B.) estrategias municipales para la transición ecológica (Pacto de Milán) y la gran iniciativa internacional de los Objetivos de Desarrollo Sostenible (ODS) propuestos desde la ONU.

C.) elaboración de la Estrategia de Prevención y Gestión de Residuos del Ayuntamiento de Madrid para transformar la “gestión de residuos” en “gestión de recursos”, minimizando el impacto ambiental, como herramienta local para alcanzar los objetivos europeos propuestas para el 2020.

D.) aumento de las iniciativas en centros educativos para la mejora de hábitos alimentarios y salud medioambiental.

E.) incremento de la oferta de alimentos ecológicos y educación nutricional y ambiental desde proyectos sociales.

Las recomendaciones de líneas de trabajo a desarrollar son las siguientes:

1.) Comedores escolares. La entrada de alimentos ecológicos en el comedor es un proceso. La diversidad, continuidad y resultados de actividades educativas y suministro de alimentos ecológicos depende mucho de la sensibilidad y la experiencia en consumo de alimentos ecológicos por parte de la comunidad educativa. Hace falta un núcleo motivado, pero también hay que contar con la participación de profesores, alumnos, cocineras y monitores de comedor.

El 100% de alimentación ecológica es el punto de llegada. La transición entre la alimentación convencional y ecológica debe producirse con un crecimiento progresivo, atendiendo a la evolución de variables como participación de los diferentes actores de la comunidad educativa, responsabilidad compartida e incremento de la sensibilización.
Como objetivos, contemplando la evolución de esta transición, tendremos: A) A corto-medio plazo, la reducción del despilfarro de alimentos e incorporación de algunos productos ecológicos de temporada y proximidad. B) A medio-largo plazo, aumento paulatino de la variedad y el porcentaje de alimentos ecológicos respecto a la ingesta total.

Como herramienta metodológica, se realizará un proyecto piloto durante el primer año con los 2 centros que ofrezcan un perfil más favorable para la introducción de la alimentación responsable agroecológica. En coordinación con los actores educativos de estos 2 centros, se elaborará un plan de trabajo en profundidad y un calendario de las distintas etapas, incorporando actuaciones educativas vinculadas con la sensibilización del consumo responsable agroecológico.

En este proyecto piloto se atenderá especialmente el trabajo con los profesionales de cocina, empoderando la labor de los/as cocineros/as del centro y garantizará que cuentan con la dotación humana y los recursos técnicos necesarios.

Con el fin de integrar la diversidad cultural del alumnado, se introducirán comidas del mundo, en base a los criterios de equilibrio nutricional, alimentos ecológicos de temporada y proximidad. Esta innovación debería contar con la participación de las familias del alumnado.

ETAPAS Y METODOLOGÍA:

1.) Diagnóstico de la situación de los servicios de comedor de ambos centros (revisión del contrato, funcionamiento del servicio, instalaciones del centro, incorporación de nuevos alimentos y formas de cocinado).

2.) Encuentros de trabajo con los distintos actores del centro (profesorado, dirección, cociner@s-monitores-empresa de servicios-comisión de comedor, padres-madres-AMPAs) para consensuar las actuaciones y las etapas. Creación de un Grupo Motor en el centro para impulsar la educación alimentaria y la salud ambiental, con especial hincapié en la estrategia de residuos cero, la reducción del despilfarro de alimentos y la incorporación de alimentos de temporada, cercanía y ecológicos.

3.) Propuesta de actuación durante el curso, fortaleciendo la transición del comedor con actividades de sensibilización y formación de los actores de la comunidad educativa (Propuesta desarrollada en el Punto 3.5.)

4.) Coordinación, supervisión y análisis, desde el Grupo Motor, de las actuaciones de forma simultánea a su desarrollo.

5.) Evaluación del Grupo Motor debatiendo los resultados observados con los distintos actores.

2.) Sensibilización desde las actividades de educación alimentaria, que asocia los buenos hábitos alimentarios con la salud, el disfrute y la prevención de la obesidad y otras enfermedades. Desde el ámbito escolar, como lugar privilegiado, se puede activar la difusión de cultura alimentaria a través de métodos atractivos y procesos continuados.

La educación alimentaria debería ser uno de los temas fundamentales para la educación integral de la persona, planteando un abordaje interdisciplinar y formando parte de los objetivos que se pretenden alcanzar en el Proyecto Curricular de Centro (según Galindo, 2016).

Es necesario convertir la salud en una prioridad. La prevención debe iniciarse en la infancia, cuando se forman los hábitos alimentarios y contra la presión de un consumismo desenfrenado que incita hábitos poco saludables. Es fundamental educar desde la escuela en otro tipo de consumo: un consumo sano, rechazando la producción industrial de alimentos con productos químicos y transgénicos; un consumo crítico, ante el consumo despilfarrador e individualista, la contaminación y agotamiento de la naturaleza y el monopolio de la producción y distribución de alimentos por parte de las multinacionales para su exclusivo beneficio; y un consumo responsable y solidario con la situación de los pequeños agricultores y trabajadores del campo, sin
el cual no es posible recuperar una relación de reciprocidad entre el campo y la ciudad, entre el norte y el sur, entre autóctonos e inmigrantes. En la salud intervienen, además de los hábitos alimentarios, la higiene, el descanso y las actividades deportivas.

Algunas propuestas de actuación educativa son:

1) actividades de formación y sensibilización para los educadores sobre educación alimentaria, reflexionando sobre sus propios hábitos de consumo;
2) talleres, espacios de formación y la elaboración de materiales didácticos para el alumnado sobre hábitos alimentarios saludables y las consecuencias sobre la salud de la alimentación actual;
3) relacionar los contenidos propios de cada asignatura (en la medida en que la propia materia lo permita) con todo lo relativo a una alimentación justa y saludable;
4) fomentar actividades extraescolares que supongan un contacto con el mundo rural y la agricultura, (creación de un pequeño huerto escolar, contacto con agricultores de la zona) y con grupos o asociaciones de consumo ecológico que fomenten la relación directa con agricultores;
5) la incorporación, dentro de la propia vida escolar, de unas formas diferentes de consumo, lo cual supondría un control por parte del consejo escolar en cuestiones como: a quién y cómo compran los responsables de los comedores y cafeterías sus productos; qué tipo de alimentación se ofrece a los alumnos; intervención educativa en la creación de hábitos alimentarios saludables en la vida cotidiana de la escuela (recreo); qué tipo de promoción/subvención de actividades educativas extraescolares se acepta y de qué patrocinador, etc.

Algunos de las temáticas de los talleres son: Taller hoy ¿qué desayunamos?, Taller de Alimentación, consumo y salud en base a los sentidos, Taller de Cultura Alimentaria y Ejercicios, Taller de Fermentación y residuos o Visita a La garbancita Ecológica. Excursión a la Autogestión.

REFERENCIAS COMPLETAS

LA AGRICULTURA URBANA COMO UNA ALTERNATIVA AGROECOLÓGICA PARA LA TRANSFORMACIÓN SOCIAL DE LA COMUNIDAD LA CARRILERA, MUNICIPIO DE TULUÁ, COLOMBIA

Vélez Zabala FJ, Martínez Martina MA, Hidalgo Zapata VY, Soto González AM, Vélez ME

Unidad Central del Valle del Cauca - UCEVA
Carrera 27 A N° 48-144 Kilómetro 1 salida Sur Tuluá – Colombia
Correo electrónico: fvelez@uceva.edu.co

RESUMEN: En la actualidad, a nivel mundial los desplazamientos que realizan los habitantes del campo a las ciudades ha incrementado principalmente en los países en desarrollo, este fenómeno conlleva a un crecimiento de las comunidades que conforman la zona urbana en condiciones de vulnerabilidad, requiriendo de más bienes y servicios (Clavijo 2013). Por esta razón, se realizó una caracterización a la comunidad invasión “La carrilera”, la cual se encuentra poblada por desplazados y personas de muy bajos recursos económicos que al no tener donde más ubicarse invadieron un territorio, estableciendo viviendas improvisadas, sin servicios públicos, salud, trabajo formal, baja educación y falta de un nivel de vida digno, dando continuidad a infinidad de necesidades (Proyecto Integrador, 2017).

En este sentido, se reconoció la necesidad de intervenir evaluando las características sociodemográficas, culturales, ambientales y agroecológicas, para dar a conocer una alternativa viable como la agricultura urbana, a través del estudio de la calidad biológica del río Tuluá, afluente del cual se abastece toda la comunidad y además, realizando una caracterización de los residuos sólidos orgánicos, obteniendo como resultado altos grados de contaminación de las aguas y una producción de residuos orgánicos del 60,1% del total de los residuos sólidos generados. En base a lo anterior, se determinaron algunas estrategias de solución para llevar a cabo en la comunidad, las cuales contribuyan al desarrollo sostenible y mejoren las condiciones de vida de sus habitantes, consiguiendo un impacto a nivel sociocultural, ambiental y económico con la adopción de la agricultura urbana en la comunidad.

Palabras clave: comunidades, desarrollo, sostenibilidad, territorio, vulnerabilidad
CARTELES/PÓSTERES RELACIONADOS

EL CONTEXTO ACTUAL DEL PROYECTO LEISA REVISTA DE AGROECOLOGÍA
(22 AÑOS COMPARTEIENDO EXPERIENCIAS AGROECOLÓGICAS)

Dorrego Carlón A, Gianella-Estrems T, Pinzás García T, De la Cruz Abarca C

Asociación ETC Andes
Calle 6 de Agosto 589, Dpto. 306 Jesús María, Lima 11, Perú
leisa-al@etcandes.com.pe; www.leisa-al.org; anadorrego@gmail.com
Teléfono: + 51 1 423 3463

RESUMEN: En los últimos años, la FAO ha posicionado a la agroecología como motor del cambio hacia sistemas agroalimentarios sostenibles de manera que su enfoque integral posibilite abordar las causas de la pobreza, la desigualdad y el hambre. Asimismo, este organismo internacional ha reconocido la importancia de la agricultura familiar y la agricultura campesina. En América Latina, el 70% de los alimentos proviene de la agricultura familiar campesina, cuya relación con la agroecología pone las bases de un sistema agroalimentario alternativo al actual, dependiente de insumos externos, de la energía fósil y dominado por el agronegocio y la gran distribución minorista.

El objetivo del documento es presentar el contexto actual en que se desarrolla la experiencia de LEISA revista de agroecología como herramienta para la promoción y difusión de un sistema agroalimentario sostenible desde la agricultura familiar campesina. Esta revista, escrita en castellano, se caracteriza por recoger experiencias prácticas fundamentalmente de América Latina, España y otras regiones del mundo, las cuales son presentadas bajo un formato accesible a diferentes públicos; actualmente el 28% de sus lectores son profesionales vinculados al campo; el 23% son estudiantes, el 15%, docentes y un 8%, agricultores/as familiares. Desde 1996 se han publicado más de 80 ediciones y su versión digital registra un promedio mensual cercano a los 60.000 visitantes (segundo trimestre de 2018).

Se espera que esta revista amplíe su impacto, adaptándose a los retos del contexto actual, para seguir siendo usada en la promoción de sistemas agroalimentarios sostenibles desde una base agroecológica.

Palabras clave: americá Latina, agricultura familiar campesina, sostenibilidad, agroecología, revista

LAS CONDICIONES DEL CONTEXTO EN EL ENTORNO ESPECÍFICO DEL PROYECTO LEISA REVISTA DE AGROECOLOGÍA

Aunque no se trata de un cambio del año anterior, sino de una tendencia en marcha, desde hace varios años, y especialmente durante 2017, continúa el cierre de los programas y las oficinas de cooperación al desarrollo. Para las organizaciones de la sociedad civil, comúnmente llamadas organizaciones no gubernamentales (ONG), este hecho ha agudizado la crisis de financiamiento y ha llevado al empequeñecimiento o a la desaparición de prácticamente la mayoría de esas organizaciones.

Es posible sostener que el financiamiento ha sido y es el talón de Aquiles de la mayoría de ONG, dado que son escasas las opciones para la obtención de recursos al interior de los países de la región. La posibilidad de ejecutar proyectos de ampliación o escalamiento de la agroecología y, por ende, para la seguridad y soberanía alimentarias a nivel local es limitada. Por ejemplo, sabemos que muchas veces es posible trabajar conjuntamente con profesionales y personal técnico de gobiernos locales y regionales, personas auténticamente interesadas en aportar desde su profesión al desarrollo de sus zonas. El problema es que, por lo general, a ese nivel no se cuenta con recursos y es más bien la ONG quien tiene que solventar, del presupuesto de los proyectos, los fondos para gastos operativos y pequeñas inversiones. A nivel del gobierno central prevalecen la
burocracia, la rotación de funcionarios, el inmediatismo en respuesta a coyunturas políticas siempre urgentes y, con frecuencia, la inexistencia de políticas en cuya ejecución se podría aportar, todo lo cual hace en extremo difícil establecer relaciones de cooperación que demanden aporte de fondos con base en un proyecto, salvo oportunidades ocasionales y por lo general poco transparentes. Dicho esto, debemos reconocer que la alianza y la colaboración con organismos gubernamentales depende de los sectores administrativos y sus funciones, siendo en ciertos casos más posible que en otros.

Por otro lado, es frecuente que cuando las ONG, haciendo uso de su independencia, hacen pública su discrepancia u oposición a propuestas o iniciativas del gobierno, de empresas o de partidos políticos, en lugar de que se plantee un debate basado en evidencias y argumentos fundamentados se trata de descalificarlas con acusaciones de extremismo político y de actuar siguiendo las instrucciones y de acuerdo a los objetivos de oscuras organizaciones extranjeras.

Las propuestas de las ONG, en muchos casos adecuadas para los problemas que buscan resolver, no suelen ser aceptadas por los gobiernos. Hay sin embargo excepciones en las cuales se incorporan las propuestas y se aplican en programas nacionales. Un ejemplo en Perú es el programa Haku Wiñay (Vamos a Crecer, en quechua), del Ministerio de Desarrollo e Inclusión Social (MIDIS), cuya sistematización la llevó a cabo un equipo de ETC Andes. Una rápida mirada al pasado puede mostrar que hay más ejemplos en los cuales las propuestas de las ONG han precedido e inspirado políticas estatales (microfinanzas, género, derechos humanos, entre otros temas y entre estos cabe destacar la iniciativa y esfuerzo de la sociedad civil para la consecución de la Ley de Moratoria a la Introducción de Organismos Vivos Modificados, vigente por 10 años: 2010-2020 (OVM nombre oficial adoptado para denominar a los Organismo Genéticamente Modificados según el Protocolo de Cartagena sobre Bioseguridad el 29 enero 2000). Por eso es posible decir que, en general, el debilitamiento de las ONG empobrece el escenario del desarrollo.

Dos temas que deseamos mencionar, por su importancia desde el punto de vista de los objetivos del proyecto, son el problema del uso excesivo e inadecuado de agrotóxicos de síntesis química y la situación actual de las políticas sobre organismos genéticamente modificados.

En el caso del uso de agrotóxicos, se trata de un tema que muestra claramente la falta de interés de los gobiernos por la salud de la población y por el impacto del uso de esos productos en la contaminación ambiental y la biodiversidad. La selección de plaguicidas es importante, ya que hay productos que están prohibidos en otros países por ser altamente contaminantes y constituir un peligro para la salud de los usuarios y para los consumidores de los productos – especialmente alimentarios – en cuyo cultivo se han aplicado. También son muy importantes el manejo y la forma de aplicación de estos productos. Ante la ausencia de regulación y control estatal y falta de información para agricultores y consumidores, todo esto queda en manos de las empresas vendedoras. En el caso de Perú, se ha verificado que, en los valles de Lima (valle del río Chillón por ejemplo) los agricultores utilizan agrotóxicos que están prohibidos en muchos países y que los aplican en grado excesivo, y sin la debida protección. Es de esperar que esta situación sea más grave en zonas rurales más alejadas.

Sabemos que en otros países hace años que se trabaja sobre este problema. En Brasil, por ejemplo, tenemos información de la colaboración entre organizaciones de agroecología y de salud pública. La RAAA, una organización peruana creada en Lima hace años, originalmente se llamaba Red de Acción por Alternativas a los Agroquímicos. Hoy su nombre ha cambiado a Red de Acción en Agricultura Alternativa, y formaba parte de la Red de Acción en Plaguicidas y sus Alternativas para América Latina (RAP-AL) fundada en 1983. En el caso de Perú y otros países, pensamos que debido al caso del glifosato hay un justificado interés en el peligro y los efectos de los agrotóxicos para la salud humana, que es otro argumento en favor de una agricultura que no utilice esos peligrosos productos, o que solamente los emplee en casos especiales con el debido control para evitar riesgos. En línea con ese renovado interés el primer número de LEISA de 2018 tuvo como tema: Manejo Ecológico de Plagas (http://leisa-al.org/web/index.php/volumen-34-numero-1). El aumento de consumidores conscientes del riesgo del uso de agrotóxicos y de la forma inadecuada en que se aplican, así como la preocupación por los efectos sobre la salud de los usuarios y de la población expuesta a su uso renuevan la preocupación por este tema.
En cuanto a las políticas gubernamentales sobre organismos genéticamente modificados (OGM), comúnmente llamados transgénicos, encontramos que en Bolivia, Ecuador y Perú las disposiciones legales o incluso constitucionales en contra de su uso, están siendo sorteadas de diversas formas. En Bolivia, a excepción de la soya, está prohibida por ley la producción e importación de alimentos genéticamente modificados. Sin embargo el Instituto para el Desarrollo Rural de Sudamérica (IPDRS) sostiene en una publicación en su página web que pese a la restricción legal se estima que en Bolivia hay 40,000 hectáreas de cultivos ilegales de maíz transgénico y que todo el algodón es transgénico. En 2012 solamente el 0,4% de plantaciones de soya eran de semillas convencionales. Además, “en los hechos, la población está expuesta al consumo de estos productos que ingresan al país a través de la importación o el contrabando”, explicó en una entrevista Reinaldo Díaz Salek, el presidente de la Asociación de Productores de Oleaginosas (ANAPO).

La nueva Constitución ecuatoriana, aprobada por consulta popular en 2008, declara a Ecuador en su artículo 401 “libre de cultivos y semillas transgénicas”. Nueve años después, poco antes de la salida de Rafael Correa Delgado, por medio de un veto parcial del Ejecutivo, se reformó el artículo 56 de la Ley Orgánica de Agrobiodiversidad, Semillas y Fomentos de la Agricultura, que permite el ingreso de semillas transgénicas únicamente para efectos de investigación científica. Con esto se generó una situación no bien definida, que ante la falta de lineamientos claros y la poca capacidad estatal de control, abre la puerta para la entrada y uso de semillas transgénicas en la producción.

Y en el caso peruano, en noviembre del 2011 se promulgó la Ley N°29811 que establece la Moratoria al Ingreso y Producción de Organismos Vivos Modificados al Territorio Nacional por un periodo de 10 años. El reglamento de la ley debía haberse aprobado en 60 días pero tomó un año aprobarlo, el 15 de noviembre de 2012. En el 2015 el Ministerio del Ambiente publicó un Reporte del estado de la implementación de la Ley de Moratoria a los Transgénicos, donde se daba cuenta de los avances hechos y sobre todo de aquellos aspectos y provisiones de la ley que faltaba realizar. Casi tres años después, es claro que esa hoja de ruta no se ha cumplido y, dada la correlación de fuerzas políticas en el Congreso, no parece realista contar con que los requisitos y acciones contenidos en la ley de Moratoria se completen.

Lo que comentamos en relación con los agrotóxicos y con la situación de los OGM en nuestros países, teniendo como telón de fondo la precariedad de las organizaciones no gubernamentales de desarrollo, nos ratifica la importancia de proporcionar información objetiva y actualizada sobre estos temas a productores y consumidores.

¿DE QUÉ FORMA HA CAMBIADO LA SITUACIÓN DE LOS GRUPOS DESTINATARIOS?

Al igual que en el punto anterior, debemos referirnos a procesos en marcha, que durante el año 2017 y primer trimestre de 2018 continuaron sin alteraciones profundas. Como se sabe, entre 2000 y 2012 los países exportadores de minerales, entre ellos Bolivia y sobre todo Perú, se beneficiaron de un ciclo de precios históricamente muy altos. En el caso de Perú, la bonanza de precios de minerales hizo que su PBI creciera anualmente, en promedio, 6.3%. A pesar del fin de este ciclo y la “normalización” de las cotizaciones, a fines del 2017 el PBI anual per capita del Perú alcanzó más de 6.500 dólares, y el de Bolivia US$ 3200 aproximadamente, en ambos casos más de tres veces el nivel en el año 2000. Con el término de este ciclo el ritmo de crecimiento de las economías y de los ingresos públicos disminuyeron significativamente.

Aunque en los países de América Latina, especialmente en Perú, la distribución del ingreso muestra alta concentración, los años de elevado crecimiento económico hicieron posible una reducción de la pobreza. Adicionalmente, con la reformulación de las políticas sociales en los países andinos, mediante programas de transferencias monetarias, se incrementaron los ingresos de poblaciones que calificaban como beneficiarias

1 Según el Boletín del Banco Mundial, en el Perú entre 2004 y 2013 la pobreza se redujo de 49% a 26% y la pobreza extrema de 28.4% a 11.4%.
por su situación de pobreza. Los ajustes a estos programas han enfatizado la mejora de la focalización y otros aspectos de gestión. Sin embargo, hay que mencionar que a pesar de la mencionada reducción de la pobreza, un alto porcentaje de la población depende de ingresos precarios y podría descender a la categoría de pobre como resultado de la evolución de la política fiscal y las perspectivas de crecimiento de la economía, ambas dependientes de la vinculación con los mercados internacionales de minerales.

Un cambio positivo, tampoco exclusivo del 2017 pero en rápido crecimiento en los últimos años, es el creciente acceso de la población de bajos ingresos, urbana y rural, a la telefonía móvil. Con la competencia, tanto los precios de los equipos como el costo de la conexión se han reducido significativamente y se proyecta que continuarán haciéndolo. La telefonía móvil tiene muchas aplicaciones relacionadas, por ejemplo, con la salud pública, la información sobre precios, y los estudios de mercado. Su alta penetración es una ayuda para muchos trabajadores independientes, hombres y mujeres, que laboran en el sector servicios y utilizan sus teléfonos para comunicarse con sus clientes, con sus viviendas, etc. Los teléfonos celulares (o, más ampliamente, las TIC) pueden ser más utilizados en nuestros países por ser un medio de gran importancia para comunicar y difundir información útil para agricultores campesinos, por ejemplo sobre precios o sobre temas prácticos de la agroecología, en combinación con emisoras radiales locales, como ya se está haciendo en países africanos, con el auspicio de diversas organizaciones como el Banco Mundial y la FAO.

Durante 2017 también ha continuado un cambio de naturaleza diferente, con impactos en aumento con el paso del tiempo. Se trata del cambio climático, que se manifestó con gran fuerza en la primera mitad del año 2017, con el Fenómeno del Niño Costero que afectó a Perú y, con menor intensidad, a Ecuador e incluso a otros países de América del Sur. Según el Instituto de Defensa Civil de Perú, El Niño Costero dejó casi 286 mil habitantes damnificados, 1,5 millones de afectados y 162 fallecidos. Los daños causados a infraestructura (1.900 km de carretera y 159 puentes destruidos) y viviendas (más de 20.000 colapsadas o inhabitable) se estimaron en 3.124 millones de dólares. En el invierno del presente año las zonas altas, en especial en los Andes del sur del Perú, se han registrado temperaturas muy bajas y nevadas, que afectan sobre todo a las familias rurales, cuyas viviendas y equipamiento doméstico no son adecuados para ese clima. Estas condiciones climáticas, junto con la lejanía y el escaso acceso a medidas preventivas y atención de emergencia, inciden en alta morbilidad y mortalidad, sobre todo en las zonas rurales. En el Perú, según el Ministerio de Salud, en lo que va del año se han registrado 12.262 casos de menores de cinco años afectados por neumonía, de los cuales 192 han fallecido. En el grupo de 60 años a más, se registraron hasta ahora 484 defunciones y 8.506 personas afectadas por neumonía. (El Comercio 23.06.2018)

LOGRO DE LOS OBJETIVOS Y REALIZACIÓN DEL PROYECTO

El proyecto LEISA revista de agroecología tiene dos objetivos específicos. El primero plantea que los usuarios de los productos y servicios del proyecto han mejorado su conocimiento de experiencias innovadoras y aplican ese conocimiento en su actividad profesional con campesinos, estudiantes, funcionarios locales y consumidores. En el documento del proyecto tratamos de explicar ese proceso por medio de la siguiente figura (Fig.1).

Por la naturaleza del proyecto, no planteamos valores cuantitativos de partida ni intermedios. En la situación final, al término del proyecto, se espera detectar cambios en el accionar de los destinatarios finales del proyecto (agricultores familiares, consumidores urbanos, estudiantes, autoridades locales). En este punto de la ejecución del proyecto, pensamos que un indicador indirecto de la llegada a los “intermediarios” del proyecto (profesionales y técnicos de campo y profesores) puede ser el aumento en el número de visitas a

2 “…el mercado móvil de América latina es el cuarto más grande del mundo, con casi 326 millones de suscriptores únicos y 718 millones de conexiones, de acuerdo con datos de GSMA. Según la Unión Internacional de Telecomunicaciones (UIT), en la región existen más conexiones que personas. La penetración de la telefonía celular en la zona —independientemente de las características del aparato al que se tiene acceso— ha alcanzado un 112%, cuando en la media global es de 85% y en España alcanza el 108%, según Bellu. “América Latina vive un milagro, cada vez hay más personas comunicándose a través de un móvil”, dice Jesús Romo, analista de Telconomia, consultora de IT” (El País, 29.08.2015).

la página web de LEISA. Nuestra última encuesta a lectores (2013) arrojó que las experiencias presentadas en la revista se usaban como referencia para trabajos similares o para hacer réplicas (en el caso de lectores autoidentificados como técnicos y profesionales de campo) y para la enseñanza (lectores autodefinidos como profesores). En el caso de la página de LEISA en redes sociales como Facebook, nos interesa el aumento en el número de seguidores y otros indicadores como el número de veces que las notas o artículos que colocamos son compartidas.

Figura 1.

Aunque pensamos que ambos objetivos presentan a nuestro equipo dificultades arduas de superar, nuestra experiencia nos hace más alcanzable el primer objetivo. El segundo, siendo a nuestro juicio de mucha importancia, nos plantea nuevos desafíos.

En el primer objetivo específico del proyecto se incluye como productos y actividades:

- LEISA revista de agroecología: Cuatro ediciones trimestrales. Las revistas se encuentran en la página web, donde pueden ser leídas o descargadas sin costo (www.leisa-al.org)

Cuadro 1. Ediciones de 2017

<table>
<thead>
<tr>
<th>TEMAS en 2017</th>
<th>N° ARTÍCULOS</th>
<th>AUTORES</th>
<th>GÉNERO</th>
</tr>
</thead>
<tbody>
<tr>
<td>33-1 Las montañas en la agroecología y la alimentación</td>
<td>13</td>
<td>26</td>
<td>M=17 F=9</td>
</tr>
<tr>
<td>33-2 Producción de alimentos en sistemas resilientes al clima</td>
<td>10</td>
<td>25</td>
<td>M=12 F=13</td>
</tr>
<tr>
<td>33-3 Agricultura familiar y tecnología</td>
<td>11</td>
<td>21</td>
<td>M=17 F=4</td>
</tr>
<tr>
<td>33-4 Relación de confianza entre consumidores y productores</td>
<td>13</td>
<td>26</td>
<td>M=10 F=16</td>
</tr>
</tbody>
</table>

Fuente: www.leisa-al.org
- **Página web de LEISA**: Se muestran los datos correspondientes al periodo que abarca desde el 2do trimestre de 2017 hasta el 1er trimestre de 2018. La disminución en el número de visitas a la página web que se observa en el tercer trimestre coincide con el ataque de hackers a la página web, que sucedió en agosto. En el tercer trimestre la tendencia al alza en el número de visitas parece recuperarse.

Cuadro 2. Total visitas a web [por trimestre].

Fuente: Google Analytics

![Gráfico de visitas](image)

Cuadro 3. Promedio trimestral de visitas

Fuente: Google Analytics.

- **Página de LEISA en Facebook**: Se actualiza permanentemente. Tiene 20.876 seguidores, los cuales van en aumento.

 En el segundo objetivo específico, el avance en la ejecución de actividades es menor. En general, para poder compartir experiencias es necesario primero documentarlas. En ese sentido, cada número de LEISA reúne autores que pueden ser base de un proceso de intercambio. La iniciativa que apunta hacia la documentación de experiencias ha sido la realización de un taller de sistematización de experiencias, llevado a cabo en febrero de este año en La Paz con representantes de la Plataforma de Suelos de Bolivia.
Estas iniciativas se concretaron con apoyo de asesores locales de Misereor en Colombia y, sobre todo, en Bolivia. Se espera que el taller de sistematización tenga una segunda etapa para concretar los avances realizados en documentos que pueden ser difundidos por medio de LEISA (revista, página web y página en Facebook). También, es posible contactar una red existente y difundir los productos de su trabajo. En julio del año pasado se llevaron a cabo coordinaciones con el grupo de sistemas alimentarios locales, integrado por organizaciones que integran la Comunidad de Práctica del Programa Colaborativo de Investigación sobre Cultivos (Fundación McKnight) para la realización de investigaciones. La selección de artículos basados en esas experiencias ha sido publicada en LEISA 34-2 “Sistemas alimentarios locales” (junio 2018). Estos son avances iniciales que deben continuarse y ampliarse en el transcurso de este año.

CONSIDERACIONES FINALES

Las tendencias en el contexto socioeconómico durante el periodo 2016-2018 no han tenido cambios significativos. Aunque a un ritmo menor, las economías de la región –con especial referencia a Bolivia, Ecuador y Perú- han continuado creciendo. El periodo de bonanza de los precios de los minerales e incluso los hidrocarburos no se aprovechó para reducir el carácter extractivista de las economías. El crecimiento económico permitió reducir los niveles de pobreza y pobreza externa, avance en el cual los programas sociales fueron de importancia. Pero esa mejoría es precaria, por la dependencia de las exportaciones de materias primas y las políticas de reducción del gasto público que se adoptan para controlar la inflación. En el marco de la continua ción de tendencias que anteceden el periodo de ejecución del proyecto el cambio climático global se manifiesta con eventos extremos, como El Niño Costero, que perjudican principalmente a agricultores de pequeña escala y habitantes de centros poblados rurales, población destinataria del proyecto.

El aumento de organizaciones, tanto de consumidores que demandan alimentos saludables, como de productores que buscan la transición hacia la producción orgánica, ha resaltado el retroceso en las políticas que prohíben el ingreso de semillas de OGM (OVM según el Protocolo de Cartagena) y sobre todo el uso excesivo de agrotóxicos ante la prácticamente inexistencia de control gubernamental. Al mismo tiempo, el creciente acceso de la población urbana y rural a la telefonía móvil, abre posibilidades para su uso en la circulación de información objetiva sobre estos temas y sobre la agricultura sostenible.

El proyecto tiene dos objetivos específicos. El primero plantea que los usuarios de los productos y servicios del proyecto mejoren su conocimiento de experiencias innovadoras y apliquen ese conocimiento en su actividad profesional con campesinos, estudiantes, funcionarios locales y consumidores. El segundo es que “las redes y organizaciones de técnicos y profesionales de campo, agricultores familiares y consumidores urbanos compartan experiencias innovadoras y aprendizajes de prácticas agroecológicas, en la perspectiva de generar alternativas a las políticas existentes”. Ambos objetivos presentan a nuestro equipo dificultades arduas de superar; nuestra experiencia nos hace más alcanzable el primer objetivo.
EXPERIENCIA SOBRE LA TRADUCCIÓN DEL ESPAÑOL A LA LENGUA CABÉCAR EN EL TERRITORIO INDÍGENA COSTARRICENSE

Morales- Morales J

Universidad Nacional, Costa Rica
moralesjeylin@gmail.com
(506) 86410591

RESUMEN: Compartir la experiencia estudiantil, sobre la traducción del español a la lengua cabécar durante el desarrollo de los talleres impartidos por el proyecto: Autogestión y sostenibilidad de las unidades productivas en territorios indígenas del Valle la Estrella, con miras a la consolidación de un sistema de producción basado en una cosmovisión indígena e intercambio de saberes ancestrales.

Con las traducciones se resuelve dificultades como la comunicación entre las persona emisor y receptor, lo cual hace que el mensaje que se transmita sean claros y flexibles para los escuchas, además, con la traducción de algunos libros que están en proceso de publicación se resolverá el problema de transmisión de saberes a las nuevas generaciones, ya que no sería solo para el núcleo familiar sino también en las escuelas y esto sería un respaldo para que no se desaparezca la lengua cabecar, por otra parte beneficiara la flexibilidad y rapidez de impartir los talleres y minimizar la preocupación de los nativos en lo que es la transmisión de saberes.

Los resultados esperados son los libros que están por publicarse, que los talleres sean más efectivos, que haya un balance en el intercambio de saberes culturales y que se contribuya con algunos sectores de la agricultura sostenible.

Se espera poder demostrar el impacto que tiene el proyecto en las comunidades indígenas, para poder seguir con el plan y poder llegar a los sectores de difíciles accesos.

Palabras clave: cosmovisión indígena, pueblos originarios, saberes ancestrales.

Experience on the translation of Spanish into the Cabécar language in the Costa Rican indigenous territory.

Summary.

Share the student experience, on the translation of Spanish into the Cabécar language during the development of the workshops given by the project: Self-management and sustainability of productive units in indigenous territories of Valle la Estrella, with a view to the consolidation of a production system based on an indigenous worldview and exchange of ancestral knowledge.

Which makes the message that is transmitted clear and flexible for listeners, also, with the translation of some books that are in the process of publication, the problem of transmitting knowledge to the new generations will be solved, since it would not be only for the family nucleus but also in the schools and this would be an endorsement so that the local language does not disappear, On the other hand, it will benefit the flexibility and speed of giving the workshops and minimizing the concern of the natives in what is the transmission of knowledge.

The expected results are the books that are about to be published, that the workshops are more effective, that there is a balance in the exchange of cultural knowledge and that it contributes to some sectors of sustainable agriculture.

It is expected to be able to demonstrate the impact that the project has on the indigenous communities, to be able to continue with the plan and reach the sectors of difficult access.

KEYWORDS: Indigenous worldview, original peoples, ancestral knowledge.
INTRODUCCIÓN

Los nativos que durante siglos habitaron estos territorios utilizaron los recursos disponibles para satisfacer sus necesidades básicas, permitiéndoles desarrollar la cacería, la pesca, la elaboración de artesanías, la práctica de la medicina tradicional y la construcción de ranchos, sin causar daño y en lo que se puede llamar un aprovechamiento sostenible. Para los indígenas, el bosque es un espacio importante de uso social, tradicionalmente aprovechado y asociado con prácticas culturales relativos a la conservación de las especies. El linaje y uso de los recursos naturales por los grupos indígenas costarricenses se considera como una actividad cultural, unidas a distintas practicas socio-culturales.

Durante la colonización y conquista los pueblos indígenas no solo disminuyeron, sino también sus culturas tradicionales, su relación armónica con lo naturaleza y en algunas partes perdieron de manera drástica su lenguaje natal, lo cual es muy impactante ver como la colonización logró hacer un impacto negativamente en los pueblos originarios y hoy en día muchos jóvenes no saben hablar el lenguaje originario y en algunos casos no conocen sus culturas, tradiciones, historias, entre otros. No obstante, los pocos pueblos originarios que lograron resistir después de la conquista aún mantienen muchos rasgos culturales ancestrales que se resisten a morir, y otros donde la colonización y la conquista tuvo poco impacto todavía conserva en 98 % de sus culturas, lenguajes y la relación con la naturaleza.

El territorio indígena Tjái Cabécar del Valle la Estrella de la provincia de Limón, Costa Rica es uno de los pocos colonizados y es por eso que los procedentes de dicho territorio conservan un 90% de sus culturas tradicionales (cabécares), un 97% su lenguaje natal (cabécar) y 99% de armonía con la naturaleza, esto hace que el acceso y la comunicación con el territorio sea un poco complicado, más sin embargo, gracias al Ministerio de Educación (MEP) muchos jóvenes pueden comunicarse oral y escrito en español y en su propio idioma, logrando así un pequeño balance. Aunque el territorio Tjái se haya logrado un pequeño balance con respecto a la educación esta no deja de ser la poca conocida por los mismos costarricenses, una vez que se menciona una zona indígena de la provincia de Limón en lo primero que piensan es en el pueblo de Talamanca el cual es otro territorio indígena de la misma provincia pero de diferente sector, cultura, lengua y de más y en el que menos se menciona es el territorio Tjái Cabecar, mas sin embargo gracias a la educación superior como lo es el Campus Sarapiquí de la Universidad Nacional de Costa Rica (UNA), ha logrado llegar a dicho territorio ofreciéndole a los jóvenes carreras universitarias y al pueblo en general proyectos con enfoques gastronómicos, ambientales, generado por la implementación de los proyectos de Extensión de la Universidad Nacional (UNA) y la Vicerrectoría de Extensión, la Sección Regional Huetar Norte y del Caribe Campus Sarapiquí, la Escuela de Ciencia Agrarias y el Instituto de Investigación y Servicios Forestales de la UNA, lo cual impacta de manera positivamente a los habitantes, debido a que se llega crear una interculturalidad y también el reconocimiento y ubicación de dicha zona indígena, aunque no en su totalidad.

En este documento podrán encontrar cual es el objetivo de libro que está en proceso de publicación.

ANTECEDENTES

Este documento está basado en la experiencia obtenida en el proyecto de “Autogestión y sostenibilidad de las unidades productivas en territorios indígenas del Valle la Estrella, con miras a la consolidación de un sistema de producción basado en una cosmovisión indígena e intercambio de saberes ancestrales.” La cual, implementada por la Extensión de la Universidad Nacional y la Vicerrectoría de Extensión, la Sección Regional Huetar Norte y del Caribe Campus Sarapiquí, la Escuela de Ciencia Agrarias y el Instituto de Investigación y Servicios Forestales de la UNA.

Con el objetivo de dar a conocer el impacto que tiene el proyecto en los centros educativos y comunidades indígenas del Valle la Estrella; Una joven indígena quien es estudiante asistente de la coordinadora del proyecto narra su experiencia vivida durante la gestión del proyecto y la traducción del español a su lengua natal (cabécar) un libro que está en procesos de publicación.
No todos los territorios indígenas del país han logrado mantener un balance favorable con el medio ambiente, más sin embargo cinco pueblos originarios del distrito del Valle la Estrella de Limón y los proyectistas de la Universidad Nacional; han conseguido un desarrollo endógeno con la aplicación de técnicas de enseñanza y de producción que innoven y que permitan potenciar sus conocimientos, en busca de un mejor aprovechamiento y beneficio de los recursos locales, y por otra parte también logran una interculturalidad que le permite a ambos a aprender más.

Quizás, la comunicación no sea fluida por ambas partes pero se puede percibir la manera en que se entienden a la hora de realizar sus trabajos, como por ejemplo, talleres participativos para el aprendizaje de los actores locales, el cual conlleva un enfoque en procesos para la creación de productos innovadores y el aprovechamiento de los recursos existentes y los saberes ancestrales, el cual tiene como propósito la presencia en los procesos unidos al sector productivos como los mercados locales, el sector comercio y servicios como el turismo, enlazando a su vez la protección de los recursos naturales y el ambiente.

Debido al párrafo anterior, los actores del proyecto deciden crear un libro que haga mención de las plantas útiles que existen en el territorio, desde la perspectiva histórico y cultural de los habitantes autóctonos de la zona, con el fin de que no se pierda la utilidad que se les da a las plantas desde el punto de vista cultural ancestral, y por tal motivo es que una vez que se edita el libro deciden traducirlo a la dialecto originaria que es el cabecar, pero cabe recalcar que traducir un libro más de cinco páginas es complicado y mas cuando se trata de una lengua autóctona, debido a su tipo de escritura.

Cuando me contactaron para ver si podía ser la traductora del libro ya que soy indígena de dicho territorio, hablo y esrigo mi lengua natal en un 95% a 97%. Accedí a la oportunidad que se me daba en ese entonces y sin pensarla mucho ya que escribir y sobre todo hablar mi lengua es algo que yo como joven valoro mucho y más que valorar me encanta hacerlo. En esta ocasión todo fue distinto, debido a que el libro era extenso, estaba escrito en español y con palabras un poco técnicas, se me dificultó poder hacer mi labor de manera rápida, tanto así que duré seis meses para poder traducirlo a mi lengua natal porque aparte de sacar mi tiempo para traducir el documento, también tenía que cumplir con mis deberes de la universidad.

La traslación se complicó un poco ya que en un día lo máximo que podía traducir era una página, esto porque tenía que relacionar algunas palabras técnicas acorde a la lengua cabécar y en algunas ocasiones las palabras que está escrita en español no existen en mi idioma el cual fue un pequeño obstáculo para poder culminar la transcripción de manera rápida.

Durante el transcurso de la traslación del libro aprendí nuevas cosas, palabras que quizás no conocía, y para ser mi primera vez como traductora de un documento logré salir adelante y poder cumplir con mi objetivo que era entregar el libro en escrito totalmente en cabécar.

Con la traducción del español a cabécar del dicho libro se resuelven dificultades como el problema de transmisión de saberes a las nuevas generaciones, ya que no sería solo para el núcleo familiar sino también en las escuelas y esto sería un respaldo para que no se desaparezca la lengua.

Por otra parte, colaboro como traductora, pero de manera oral durante algunos talleres que se imparte en las comunidades del territorio lo cual se me es un poco fácil ya esta es de forma oral y poco técnico lo cual es más flexible a la hora de traducción, aunque en ocasiones tengo que pensar y relacionar una palabra de manera rápida en el dialecto para que los receptores tanto niños como adultos entiendan sin perderse durante los talleres, es cansado, pero se logra transmitir el mensaje de manera clara, y sobre todo se logra visualizar la satisfacción de los receptores ya que lograron captar el mensaje y así poder trabajar en lo que se les pide en el transcurso del taller. También de manera viceversa ya que en algunas ocasiones los indígenas desean compartir algún punto de vista o conocimiento, pero le es más difícil hablar el español entonces yo les colabo e transmitir la información de manera rápida, lo cual es mucho más fácil para mí.
Con la traducción en los talleres se beneficia tanto los emisores como receptores debido a la flexibilidad y rapidez de impartir los talleres y minimizar la preocupación de los nativos en lo que es la transmisión de saberes, ya que se sienten cómodos y en libertad para poder expresarse.

El libro contiene información acerca de las plantas útiles que existen en el territorio, la utilidad que le daba los antepasados y con la innovación que les da los indígenas actuales, su finalidad es que los niños y jóvenes le puedan dar usos a estos materiales que se les brindará a través del libro y que quede como un respaldo de que cada planta contiene diferentes utilidades.

ORIENTACIONES TEÓRICAS

Desarrollo endógeno: se basa en los criterios para el desarrollo específicos de los pueblos locales y considera su bienestar material, social y espiritual. (Boonzaaijer, Van Otterloo, Heijster, & Hiemstra, 2008)

Se precisó hallar las mejores maneras en las que las formas tradicionales o locales de aprendizaje puedan fortalecerse y donde sea posible y relevante concluir con prácticas y formas externas de aprendizaje, respetando los orígenes, cultura y tradiciones de las comunidades involucradas, dentro de un marco de priorización de las necesidades propias de cada comunidad.

Colonización: se refiere a una acción y efecto de colonizar, también hace referencia a todo aquel hecho o proceso histórico en el cual un Estado extranjero ocupa un territorio ajeno, que llamaremos colonia, alejado de sus fronteras con la finalidad de explotar sus recursos económicos y dominarlo política y culturalmente. (Perez Porto & Merino, 2014)

Este territorio fue poco colonizado debido a su ubicación geográfica y al acceso con el que se contaba décadas atrás, es por eso que es poco conocido por algunos costarricenses.

CONCLUSIÓN

Se espera demostrar el impacto que tiene el proyecto en los centros educativos y comunidades indígenas del territorio, para que este plan siga adelante y pueda llegar a los sectores con difíciles accesos debido a su ubicación geográfica y que en gran forma están interesados en los proyectos que imparte la Universidad Nacional Campus Sarapiquí.

También, es necesario recalcar la interculturalidad que no pudo pasar omitido en el marco de la gestión del proyecto, ya que el intercambio de saberes fue la manera más clara donde se refleja la interculturalidad.

En lo personal puedo decir que el simple hecho de ser traductora durante el proyecto desde cualquier punto fue un gran impacto ya que me permitió resaltar mi identidad como indígena rescatando mi lengua autóctona y cultural, también me permitió desenvolverme como estudiante en la trayectoria de mi carrera y como ser humano ya que permite interactuar con personas de forma directa o indirectamente.

El desarrollo endógeno es importante para seguir promoviendo la participación de las comunidades en la resolución de sus problemas y necesidades, porque son los habitantes de la zona quienes conocen desde su entorno, cuáles son las dificultades que enfrentan día con día.

Como opinión personal, los indígenas del territorio cabecar han respondido positivamente a los talleres que se les ha ofrecido de parte de la UNA Campus Sarapiquí, por ende, puedo afirmar que el libro que esta por publicarse será de gran provecho al pueblo Tjai y a todos los actores del proyecto.
BIBLIOGRAFÍA

LA AGRICULTURA ECOLÓGICA EN EL CONGRESO GENERAL DE LA UNIÓN EUROPEA DE CIENCIAS DE LA TIERRA (EGU): SIETE AÑOS DE ANDADURA

Moreno MM, Villena J, González-Mora S, Moreno C

Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha. Ronda de Calatrava 7, 13071 Ciudad Real. Tfno: 926 29 53 00. Fax: 926 29 53 51. E-mail: martamaria.moreno@uclm.es

RESUMEN: La aplicación de las técnicas agroecológicas al manejo del suelo, ganadería, comercialización y consumo de alimentos está en progresivo auge en nuestro entorno, motivado por la creciente preocupación por el deterioro del medio ambiente y la búsqueda de alimentos saludables. La investigación en campo, laboratorio y gabinete, desarrollada por grupos de investigación de todo el mundo preocupados por la sostenibilidad del sistema Tierra, permiten este progresivo avance. Continuamente se van incorporando ideas y técnicas que han de ser debatidas a través de Simposios, Asambleas y Congresos antes de ser introducidos, mediante la correspondiente divulgación y formación, al sistema productivo.

En este contexto de investigación cabe destacar el importante papel desempeñado por la Unión Europea de Ciencias de la Tierra (EGU), sociedad científica de ámbito mundial sin ánimo de lucre que anualmente y desde 2004 viene celebrando su Asamblea o Congreso General. En la última, celebrada en abril de 2018, se reunieron más de 15.000 científicos con la presentación de más de 17.500 trabajos. Desde 2012, investigadores españoles han conseguido incluir en este encuentro anual de la EGU una sesión específica sobre manejo de suelo y agricultura ecológica, donde expertos de todo el mundo participan con sus contribuciones. Se incluyen también estudios centrados en energías renovables, eficiencia energética y emisiones de gases efecto invernadero, todo ello relacionado con el impacto de la agricultura y la ganadería en el ambiente.

En esta comunicación se desglosan las principales áreas temáticas presentadas hasta la fecha, indicativo del interés de los investigadores en estas materias.

Palabras clave: agroecología, congreso, investigación, sesión científica

La Unión Europea de Ciencias de la Tierra (EGU) es la principal sociedad científica europea dedicada al estudio de las diferentes y numerosas disciplinas que afectan a la Tierra como sistema cerrado, en beneficio de la humanidad en todo el mundo, así como su papel en el entorno planetario. Fue creada en septiembre de 2002 como una fusión de la Sociedad Europea de Geofísica (EGS) y la Unión Europea de Geociencias (EUG), y tiene su sede en Munich (Alemania). Se trata de una sociedad internacional sin fines de lucro y cuenta en la actualidad con en torno a 15.000 miembros de todo el mundo. La EGU publica periódicamente diversas revistas científicas de acceso abierto, y organiza reuniones temáticas y actividades de educación y divulgación.

Se encuentra estructurada en 22 divisiones científicas que abarcan el estudio de la Tierra y el medio ambiente, así como del sistema solar en general (Ciencias de la atmósfera, Ciencias de los océanos, Ciencias hidrológicas, Biogeociencias, Sismología, etc.). Una de estas divisiones es la División de Ciencias del Suelo (Soil System Sciences, SSS), que se centra en el estudio del suelo como la interfaz entre la corteza terrestre y la atmósfera y es la base de la vida en la tierra. La división SSS se encuentra a su vez estructurada en 13 subdivisiones (Historia, educación y sociedad de las ciencias del suelo, Degradación, erosión y conservación del suelo, Los suelos como registro del espacio y del tiempo, Biología, microbiología y biodiversidad de los suelos, Química del suelo y dinámicas de la materia orgánica, Ciencia general del suelo, Física del suelo, Contaminación y recuperación del suelo, Interacciones suelo-ambiente-ecosistemas, Suelos, silvicultura y agricultura, Métrica, informática, estadística y modelos en suelos, Métodos y avances tecnológicos en la ciencia del suelo, Sesiones coorganizadas).
La EGU celebra anualmente en Viena su Asamblea General, el mayor y más importante evento de ciencias de la tierra en Europa, y que en su última edición de abril de 2018 recopiló en torno a 17.500 trabajos científicos congregando a más de 15.000 acreditados de diferentes disciplinas pertenecientes a las más prestigiosas Sociedades Científicas, Universidades e Instituciones Privadas de Investigación de 106 países, situándose España en décima posición después de Alemania, Reino Unido, Francia, Italia, Estados Unidos, China, Austria, Suiza y Holanda, con un total de 479 participantes. Cabe destacar el importante aumento de la participación china en este evento, pasando de ocupar el puesto número 14 en 2012, con 192 participantes, al 6º lugar en 2018, con 756 representantes.

Desde el año 2012 investigadores españoles han conseguido incluir en este encuentro anual de la EGU, y concretamente en la División de Ciencias del Suelo (SSS), Subdivisión Suelos, silvicultura y agricultura, una sesión científica sobre agricultura ecológica y suelos donde se invita a los científicos de todo el mundo a participar con sus contribuciones y profundizar en el conocimiento acerca de las propiedades del suelo (biota, agua, minerales y materia orgánica), así como las técnicas y la productividad del suelo en este sistema de cultivo. También se recogen en dicha sesión estudios centrados en las energías renovables y la eficiencia energética como instrumentos de crecimiento económico y bienestar social, con menores emisiones de gases efecto invernadero y menor efecto contaminante, así como el impacto de la agricultura y la ganadería en el ambiente.

En las siete sesiones sobre esta temática celebradas hasta la fecha (Organic farming, soils and energy balance, año 2012; Organic farming and Sustainable productivity of soils: a question of balance, año 2013; Organic farming and Soil management, años 2014 a 2018), investigadores de 31 países han presentado un total de 175 trabajos, incluyendo tanto comunicaciones orales como presentaciones en formato poster o PICO (modalidad interactiva que combina las dos anteriores), lo que pone de manifiesto la importancia que aspectos relacionados con la agricultura ecológica está alcanzando a nivel global.

España, Austria e Italia han sido los países que más han contribuido en esta sección, sumando un total de 78 trabajos, seguidos de China, Suiza, Georgia y Alemania, con un total de 23 contribuciones, hasta el total de 31 nacionalidades de los cinco continentes que han aportado su esfuerzo en esta área del conocimiento.

En cuanto a las temáticas, los aspectos relacionados con la fertilización en agricultura ecológica y el balance de nutrientes en el suelo han sido los más estudiados (más de 40 trabajos), seguidos de las técnicas de cultivo en agricultura ecológica (34 trabajos) y de temas relacionados con el consumo y el balance energético en estas prácticas (14 comunicaciones). Destacan también los aspectos relativos al suelo, su manejo y su conservación, la materia orgánica del suelo en sus diferentes formas y manejos, efectos de las prácticas agrarias en la contaminación de suelos y aguas o el efecto de las prácticas convencionales y ecológicas sobre la fitopatología de los cultivos, entre otros temas.

En consecuencia, gracias especialmente a la iniciativa de investigadores españoles y tras muchos años de incomprensión y escasa consideración, la agroecología se va abriendo paso en los foros científicos internacionales y es considerada ya como una ciencia más de la que participan científicos del más alto nivel.

REFERENCIAS BIBLIOGRÁFICAS

EL PROYECTO PERMIND: UNA OPORTUNIDAD DE ASESORAMIENTO, DIVULGACIÓN, COMUNICACIÓN, FORMACIÓN E INVESTIGACIÓN DE LA PERMACULTURA

Mazuelas Repetto D, Reyes Barroso J, Sánchez García J

Asociación para el Desarrollo de la Permacultura
C/ Miranda, s, San Juan, E-38350 Tacoronte
E-mail: info@permaculturatenerife.org
Teléfono: 609010664

RESUMEN: Veintidós años de ensayo y error permacultural y dieciséis años de uso de la permacultura como terapia para la salud mental en la Finca El Mato Tinto (Tacoronte, Tenerife), sede de la Asociación para el Desarrollo de la Permacultura, se han traducido en una amplia actividad formativa en la finca con diferentes ámbitos de aprendizaje: educación primaria, secundaria, universitaria, formación profesional reglada y no reglada, formación en inserción pre-laboral y laboral, actividades formativas con las administraciones públicas, formación de campesino a campesino y campesino - experto. Una rica experiencia que ha hecho que la finca se convierta en fuente de inspiración de diferentes proyectos tanto a nivel local como europeo: “Lo Hacemos en el Huerto” (2011-18), LASOS (2014-16), Cursos Interdisciplinares de la Universidad de La Laguna (2012-16) y PERMIND (2017-19).
La comunicación se centrará en los ejercicios de transferencia de conocimiento y potencial replicabilidad de estos proyectos a modo de asesoría, divulgación, comunicación, formación e investigación de la permacultura.
Como estudio de caso nos centraremos en los cinco proyectos piloto PERMIND puestos en marcha durante este año en Grecia, Suecia, Eslovenia y España a partir del Curso de Formación de Formadores impartido en nuestra finca a sus monitores, y de la guía PERMIND elaborada por nuestra asociación en los primeros seis meses del proyecto a partir de nuestra experiencia; guía formativa que fue contrastada por los monitores en el mencionado curso y que será de libre acceso una vez finalizado el proyecto mediante la plataforma virtual de aprendizaje PERMIND.

Palabras clave: guía, inspiración, replicabilidad, transferencia
PROYECTO "ADAPTA AGROECOLOGÍA" GENERACIÓN Y DIFUSIÓN DE PRÁCTICAS AGROECOLÓGICAS QUE SE ADAPTAN AL CAMBIO CLIMÁTICO

Cifre H, Escutia M, González V, Maixent F

Sociedad Española de Agricultura Ecológica (SEAE)
Tlf: 961267122 Email: proyectos@agroecologia.net

RESUMEN: El cambio climático (CC) es uno de los grandes problemas de nuestros tiempos. Sus impactos ya son patentes en nuestros cultivos, dado que la agricultura es uno de los sectores más vulnerables. El CC están alterando factores indispensables para los cultivos, tales como la temperatura y las precipitaciones. La lucha contra el cambio climático es responsabilidad de todos. La Sociedad Española de Agricultura Ecológica (SEAE) aglutina a una parte de los científicos y técnicos que en España trabajan en el sector de la producción ecológica. También acoge a agricultores y ganaderos que, en su trabajo diario, aplican prácticas agroecológicas. Es por tanto un espacio de encuentro y transferencia de conocimientos en red muy útil para generar conocimientos y ayudar a su divulgación.

Recientemente se ha puesto en marcha el proyecto “Adapta Agroecología” Generación y difusión de prácticas agroecológicas que se adaptan al cambio climático que propone una serie de actuaciones para la co-generación, transferencia y capacitación de agricultores y técnicos así como la sensibilización a grupos de consumidores. Este proyecto está financiado por la Fundación Biodiversidad dentro de su convocatoria, en concurrencia competitiva, para la realización de proyectos en materia de adaptación al CC. Es de ámbito nacional y tiene una duración de 11 meses.

El objetivo general del proyecto es contribuir a la adaptación de la agricultura al cambio climático con prácticas agroecológicas. Entre sus acciones conviene destacar la realización de una Jornada Técnica Internacional así como un Estudio-Diagnóstico situacional de las prácticas agroecológicas en España que facilitan la adaptación al CC. También se realizarán cursos cortos a técnicos y agricultores convencionales sobre prácticas agroecológicas que facilitan la adaptación en la agricultura que reforzcan su capacidad para afrontar las consecuencias del cambio climático. La sensibilización de los consumidores a través de Jornadas demostrativas en fincas ecológicas será otro de los pilares del proyecto.

Palabras clave: acciones, clima, divulgación, transferencia de conocimientos
ADAPTA TU DIETA CUIDA TU CLIMA

Cifre H, Gonzálvez V, Maixent F

Sociedad Española de Agricultura Ecológica/Agroecología (SEAE)
Cami del Port, s/n. Km 1- Portón 1 Edif ECA. Apdo 397 E-46470 Catarroja (Valencia)
Tel: +34 96 126 71 22
www.agroecologia.net; proyectos@agroecologia.net

RESUMEN: La agroecología trata de garantizar que nuestros sistemas alimentarios —la forma en que se producen, comercializan y consumen los alimentos—, sean más justos y sostenibles en el futuro. Las acciones de información y divulgación respecto a la importancia de la alimentación en la mitigación y adaptación al cambio climático (CC) se hacen fundamentales para empoderar a la población y hacerla consciente de los impactos de sus decisiones respecto a la alimentación.

La promoción y puesta en valor de los sistemas alimentarios agroecológicos resultan esenciales para adaptar los patrones de consumo a las necesidades actuales así como a escenarios futuros de escasez de recursos, fortaleciendo un rol responsable de los consumidores como agentes de cambio en el sistema alimentario.

El proyecto “Adapta tu Dieta - Cuida tu Clima”, de ámbito nacional, es un conjunto de actuaciones para divulgar conocimientos y recomendaciones que contribuyen a un consumo alimentario agroecológico más adaptado al CC.

Está promovido por la Sociedad Española de Agricultura Ecológica/Agroecología (SEAE) y cuenta con el apoyo de la Fundación Biodiversidad del Ministerio para la Transición Ecológica.

Los objetivos del proyecto son: contribuir al desarrollo de un patrón de consumo alimentario agroecológico que favorezca la adaptación al cambio climático, compartir conocimientos y analizar experiencias e iniciativas en el desarrollo de sistemas agroalimentarios agroecológicos frente al cambio climático. Promover sistemas alimentarios agroecológicos que incluyan la calidad ecológica y consideren el cambio climático. Elaborar y divulgar conclusiones y recomendaciones sobre sistemas alimentarios agroecológicos y cambio climático.

El proyecto desarrollará en sus 10 meses de duración diversas actividades:

- Un congreso internacional sobre los sistemas alimentarios agroecológicos y el cambio climático donde se presentan y debaten resultados de estudios y experiencias diversas sobre la temática. Un Estudio-Diagnóstico participativo sobre la situación de los sistemas alimentarios sostenibles ecológicos en España y su contribución al cambio climático.
- Cuatro encuentros informativos sobre calidad, sistemas alimentarios locales y cambio climático. Reuniones de grupos focales y debates de expertos en sistemas alimentarios ecológicos sostenibles y en cambio climático que concluyen y recomiendan acciones en distintos niveles de actuación para implantar o modificar actitudes y normas que impulsen un consumo más respetuoso con el clima.

Palabras clave: adaptación, agroecología, cambio climático, sistemas alimentarios
PROMOVIENDO EL USO DE SEMILLAS ECOLÓGICAS PROCEDENTES DE CULTIVOS ECOLÓGICOS ADAPTADOS. PROYECTO LIVESEED

Almenar L, Cifre H, Gonzálvez V, Maixent F

Sociedad Española de Agricultura Ecológica/Agroecología (SEAE)
Cami del Port, s/n. Km 1- Portón 1 Edif ECA. Apdo 397 E-46470 Catarroja (Valencia)
Tel: +34 96 126 71 22
www.agroecologia.net; proyectos@agroecologia.net

RESUMEN: El uso de semillas ecológicas es obligatorio según el reglamento ecológico europeo. Sin embargo, las semillas convencionales no tratadas todavía son empleadas en mayor o menor medida en varios países a través de las derogaciones que permite la normativa. El proyecto Liveseed, con 49 socios de 18 países europeos, tiene objetivo principal mejorar la sostenibilidad, la transparencia y la competitividad del sector de las semillas ecológicas y fomentar un mayor uso de estas, promoviendo la implantación homogénea del reglamento de la UE sobre semillas ecológicas, incrementando la disponibilidad y la calidad de las semillas ecológicas, acelerando el proceso de mejora genética y la adopción de nuevas variedades y fomentando la innovación relacionada con las semillas y la mejora genética en el sector ecológico.

La Sociedad Española de Agricultura Ecológica (SEAE) y Ecovalia participan en el proyecto en consorcio como entidades representativas del sector ecológico profesional a nivel nacional, realizando la función de interlocución con los actores principales y como parte investigadora. En mayo de 2018 se organizó la visita nacional, en la cual se entrevistó a diferentes actores del sector como agricultores ecológicos, empresas productoras de semillas y de plantel ecológico como punto de partida para el análisis de la situación y la definición de estrategias a nivel europeo para la consecución de los objetivos del proyecto. También están previstas visitas prácticas en diferentes países para promover prácticas inteligentes en producción de semillas ecológicas con el objetivo de aumentar la calidad y productividad de las mismas. El presente año 2 personas (un investigador y un agricultor) se desplazaron hasta a Francia para visitar experiencias de cultivos extensivos. En abril de 2019 se realizará un taller sectorial nacional, en el cual se ahondará en el contexto español con la visión de identificar recomendaciones conjuntamente autoridades y proveedores de semillas ecológicas. Asimismo, se tratará de iniciar un grupo de trabajo nacional sobre normativa de semillas ecológicas.

Palabras clave: calidad, disponibilidad, innovación, normativa, UE
LA REVISTA AGROECOLÓGICA DE DIVULGACIÓN: AE

Raigón MªD, Serrano S, Gonzálvez V, Cifre H, Maixent F

Sociedad Española de Agricultura Ecológica/Agroecología (SEAE)
Cami del Port, s/n Km 1. Edif ECA, portón 1 (Apdo 397)
E-46470 Catarroja (Valencia)
email: comunicacion@agroecologia.net - www.agroecologia.net

RESUMEN: Comunicar y divulgar las iniciativas y novedades en Agroecología no es sólo una cuestión de actualidad o de interés general, sino una filosofía de vida que choca con la corriente dominante, tanto la relacionada con la producción industrial agroalimentaria como la relacionada con la forma y consumo de información por parte de la mayoría de la sociedad. Esta experiencia presenta el recorrido de la Revista Ae, un proyecto de divulgación técnica de la Sociedad Española de Agricultura Ecológica (SEAE) en una innovadora apuesta por compartir conocimientos y experiencias prácticas procedentes de técnicas aplicadas y resultados de trabajos científicos, dirigidas a aquellos agentes del sector de la producción agroecológica, principalmente agricultores/as y ganaderos/as, pero también elaboradores y asesores, inspectores, etc. Se trata de difundir la Agroecología práctica, a través de un proyecto gestionado de manera colectiva y con el propósito de ser un medio de divulgación y comunicación e intercambio.

Para la consecución de ese objetivo, ha sido necesario analizar el desarrollo de esta publicación, así como hacer preguntas sobre su evolución. La coyuntura actual, también indica que es oportuno disponer de una herramienta de autocrítica sobre su trayectoria y, a partir de ese análisis y reflexión evaluativa, emprender la búsqueda de una “mejor forma” de comunicar y divulgar las técnicas y conocimientos agroecológicos. Por tanto, se trata pues de un punto de partida para un proceso de discusión, búsqueda de estrategias y co-creación entre los/as diversos agentes o partes interesadas y experiencias existentes.

Palabras clave: agroecología, comunicación agroecológica, difusión agroecológica, información, intercambio conocimientos
DESCRIPCIÓN DE UN MODELO DE AGRICULTURA SOSTENIBLE. APLICACIÓN EN FINCAS DE CULTIVO DE PLATANERA

Huertas E¹, Hernández M²

¹Cabildo de La Palma. Servicio de Agricultura Ganadería y Pesca, calle Virgen de La Luz, n°7 E-38700 Santa Cruz de La Palma
²Agencia de Extensión Agraria de Breña Alta. Avda. de Europa, n°8, E-38710 Breña Alta

RESUMEN: El cambio hacia una agricultura sostenible es una tendencia que cada vez está tomando más importancia dentro del sector primario. La principal razón para este cambio de tendencia ha sido la evidencia de la eficiencia de los sistemas agroecológicos en la conservación del suelo y la biodiversidad. En este trabajo se describe la elaboración de un tipo de fertilizante orgánico mineral producido a partir de purines de animales estabulados, tales como cerdos, conejos y cabras, los cuales son enriquecidos con otros residuos agrícolas desechados en las propias explotaciones agrícolas. Se analiza la caracterización química y microbiológica de este fertilizante orgánico y cómo se ha implementado su uso en el cultivo de plataneras en las Islas Canarias. Los resultados del establecimiento de este modelo denominado SEFEL (Sistema de Elaboración de Fertilizantes Ecológicos Líquidos) en cuatro plantaciones de plátanos independientes, constatan que este modelo además de seguro, es una herramienta altamente efectiva para técnicos agrícolas y agricultores debido a los numerosos beneficios observados en las plantaciones de este cultivo. A su vez se ha cuantificado la huella de carbono y la huella hídrica de las fincas en estudio obteniendo porcentajes de más del 30% en la reducción del consumo de agua de riego.

Palabras clave: huella de carbono, huella hídrica, orgánico, purines
CONOCIMIENTO TRADICIONAL EN EL HUERTO AGROECOLÓGICO

Caetano C, Angel-Sanchez D, Orjuela-García C

Universidad Nacional de Colombia
Programa Curricular de Ciencias Naturales y Biodiversidad
Carrera 32 No. 12-00 Palmira, Valle del Cauca, Colombia
E-mail: jcorjuelag@unal.edu.co
Teléfono: (+57+2) 286 88 88

RESUMEN: La práctica de huertos caseros tiene inmerso componente social, y una de sus ramas: interacción familiar, posibilitando el fortalecimiento de redes sociales familiares, recordar y practicar saberes ancestrales (Cantor 2010). La pérdida de diversidad agrícola es directamente proporcional a pérdida de diversidad cultural (Calvet-Mir et al 2014).

El objetivo es identificar el conocimiento tradicional practicado con manejo agroecológico del huerto, como estrategia para reestablecer tejido social en dos comunidades (afrocolombiana y campesina) víctimas del conflicto armado en Colombia.

Los departamentos en que se realiza la investigación tienen abundantes conflictos socioambientales, modelos socioeconómicos basados en monocultivos; minería, cultivos ilícitos, etc., actividades altamente demandantes de bienes ecosistémicos. Por 60 años comunidades estuvieron expuestas al conflicto. El compartir del conocimiento tradicional entre generaciones disminuyó debido a la fractura que hubo en familias y comunidades causada por desplazamientos, muertes, cambios de rol, etc.

La agroecología introduce cambios encaminados a proponer un nuevo enfoque hacia agroecosistemas basado en la revalorización del conocimiento tradicional, tanto en el manejo productivo como en la organización social y cultural (Sevilla-Guzmán et al 2011), esta ha puesto mayor énfasis en aspectos técnico-agronómicos que en sociales y relaciones (González-Molina 2011).

Las herramientas participativas usadas son caminata guiada (Bahru 2014), entrevista semi-estructurada (Geilfus 2002), menú, línea del tiempo, movilización y grupos de discusión.

Los resultados esperados son identificar prácticas agroecológicas utilizadas como estrategia para la recuperación del conocimiento tradicional y reestablecer tejido social en cada una de las comunidades objeto. Además iniciar el reconocimiento de redes sociales inter-comunitarias para futuros mercados agroecológicos.

Palabras clave: comunidad afrodescendiente, investigación acción participativa, tejido social, postacuerdo
OBJETIVOS DEL PROYECTO LIFE LIVEADAPT PARA ADAPTAR LA GANADERÍA EXTENSIVA AL CAMBIO CLIMÁTICO

Ruiz-Garrido I, Díaz-Gaona C, Sanz-Fernández S, Reyes-Palomino C, Aguilera E, Sánchez-Rodríguez M, Rodríguez-Estévez V

1Cátedra Ganadería Ecológica Ecovalia-Clemente Mata. Campus Universitario de Rabanales. Ctra. Madrid-Cádiz Km. 396. E-14071, Córdoba; +34 957212074/ +34 607197863
2FEDEHESA (Federación Española de Asociaciones de la Dehesa)
*pa2digac@uco.es

RESUMEN: El cambio climático (CC) tendrá un efecto especialmente adverso para las producciones agrarias en el Sur de Europa, y particularmente para la ganadería extensiva y ecológica dependientes de los pastos. La búsqueda de soluciones y alternativas para la adaptación son los objetivos del proyecto LIFE17 CCA/ES/000035 - LiveAdapt “Adapting livestock farming to climate change”, financiado por el programa europeo LIFE. Este proyecto, cuya coordinación es responsabilidad de la Universidad de Córdoba, tiene una duración de 4 años y en él participan empresas e instituciones de España, Portugal y Francia. Sus objetivos son: I) Demostración de tecnologías innovadoras para adaptación al CC: mejoras de captación y uso del agua, tecnologías TIC para la gestión ganadera, mejora de calidad de los pastos y de su biodiversidad (con sustitución de los antiparasitarios convencionales y refuerzo de las poblaciones naturales de coleópteros coprófagos y lombrices de tierra). II) Identificación, adaptación y transferencia de las mejores prácticas (eficiencia y producción energética, pastizales y manejo de la tierra, residuos, agua, manejo agroforestal, sanidad animal, biodiversidad y la valorización y comercialización de productos ecológicos). III) Propuesta de nuevos modelos de negocio. IV) Capacitación y asesoramiento a ganaderos (curso MOOC). V) Definición de un plan de acción para la adaptación de modelos de producción ganadera extensiva. Los resultados esperados son: mejora de la gestión del agua y los desechos, reducción del consumo de energía, reducción de las emisiones de GEI, aumento de biodiversidad, reducción de costes, mejora de pastos y mayor fertilidad del suelo, y mayor fijación de carbono.

Palabras clave: ahorro de agua, antiparasitarios, biodiversidad, fauna coprófaga, ganadería ecológica, mejora de pastos
USO DE ESPECIES CRASAS COMO CUBIERTA VERDE Y BARRERA TÉRMICA EN AZOTEAS DE EDIFICIOS

Gurrea-Ysasi G, Blanca-Giménez V, Fita-Fernández I, Fita A, Fernández-de-Córdova P, Cortés-Olmos C, Prohens J, Rodríguez-Burruezo A

Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Edificio 8E, Acceso J. Universitat Politècnica de València (UPV). Camino de Vera s/n CP 46022. Valencia.
adrodbur@doctor.upv.es

RESUMEN: En el actual contexto de cambio climático se están abordando diversas iniciativas para mitigar la emisión de CO₂ y el incremento de temperaturas. Así, cada vez es más común emplear cubiertas verdes en azoteas de las grandes ciudades. Por un lado, imprimen una imagen más atractiva de estas superficies. Además, la presencia de masa vegetal contribuye a reducir y mitigar los efectos del cambio climático al: i) actuar como aislante térmico de estas superficies edificadas, ii) reducir en consecuencia del uso excesivo de climatización y emisión correspondiente de CO₂, y iii) captar CO₂ urbano. En regiones mediterráneas lo más apropiado serían especies crasas con baja demanda hídrica. En esta contribución, se estudió el efecto de cubiertas vegetales de: Aeonium arboreum y Aptenia cordifolia sobre la variación de temperatura y humedad relativa (HR) dentro de una reproducción de edificios situados en la Universitat Politècnica de Valencia durante el mes de julio de 2018. Adicionalmente, se emplearon como controles azoteas a escala cubiertas de piedra o pintadas con aislante hídrico rojo, habituales en el Mediterráneo. Las reproducciones de edificios con cubiertas verdes presentaron una mayor inercia térmica y un rango más reducido de mínimos y máximos en temperatura que las cubiertas control, confirmando su eficiencia frente al espectro térmico. Si bien se hallaron diferencias entre cubiertas verdes, estas diferencias deben ser validadas en futuros trabajos con varios testigos por tipo de cubierta y en diferentes meses de un año.

Palabras clave: Aeonium arboreum, Aptenia cordifolia, ciudades sostenibles, humedad relativa, temperatura

INTRODUCCIÓN

Las ciudades son núcleos urbanos con una densidad de población elevada, donde el consumo de combustibles fósiles es muy elevado no sólo por el elevado uso de vehículos, sino por la proximidad a polígonos industriales. En este entorno se dispara la concentración de CO₂ así como el aumento de la temperatura.

En ciudades del área Mediterránea, la edificación más habitual está formada por edificios de más de siete alturas, con cubiertas planas. Generalmente estas cubiertas están despejadas y no se les da ningún uso, salvo por la ocupación de algunos equipos de aire acondicionado. Por tanto, estas cubiertas ofrecen una oportunidad de proporcionar espacios verdes que pueden ayudar a mejorar el aislamiento de los edificios (Saadatian et al. 2013, Huang et al. 2018), así como disminuir el nivel de contaminación ambiental, consecuencia de reducir el uso de sistemas de climatización (PNACC, 2015) y de fijar CO₂ ambiental en el sistema vegetativo dispuesto en la cubierta (Li et al. 2014).

El proyecto desarrollado por nuestro equipo de trabajo pretende evaluar diferentes propuestas de cubierta vegetal adaptadas a las condiciones climáticas del área mediterránea con objeto hacer recomendaciones para su implantación práctica en azoteas.

En este trabajo se compara el efecto que tienen diferentes cubiertas planas sobre las condiciones físicas del ambiente en el interior de un edificio.
Los objetivos son:
- Comprobar el efecto de la cubierta vegetal sobre la temperatura y humedad en el interior del edificio.
- Determinar si alguna de las especies vegetales ensayadas en la cubierta atenua más la temperatura en el interior de un edificio.

MATERIALES Y MÉTODOS

Se prepararon maquetas de madera con superficie 120x80 cm² y altura 62 cm, para simular las condiciones de una manzana de edificios. El volumen de cada maqueta se dividió en dos, de forma que el suelo, las paredes externas y la separación entre los dos compartimentos fueron aisladas mediante una capa de poliestireno extruido de 40 mm de espesor.

A cada compartimento se le asignó una cubierta diferente. Se ensayaron dos tipos de cubierta de referencia: grava y pintura aislante roja (Fig. 1 A y B) por ser los más comunes en la ciudad de Valencia. Las cubiertas vegetales seleccionadas para el ensayo fueron especies crasas, por ser especies con baja demanda hídrica, ya adaptadas a las condiciones climatológicas del clima mediterráneo. Concretamente se eligieron: *Aeonium arboreum* y *Aptenia cordifolia* (Fig. 1 C y D).

En el interior de cada compartimento se colocó un sensor/data-logger TESTO 174H. El sensor de humedad logra una exactitud de hasta ± 3 %HR durante la medición de la humedad ambiente. El sensor de temperatura NTC interno tiene una precisión de ± 0.5 °C, y cubre un rango de medición de -20 a +70 °C.

Se registraron medidas de temperatura y humedad cada 15 minutos durante todos los días durante un año en una parcela de la Universitat Politècnica de València. En este trabajo se presentan los datos correspondientes a los diez días más calurosos del mes de julio de 2018 que fueron los días: 2, 4, 9, 12, 16, 19, 24, 26, 28 y 31 de julio. Las cubiertas vegetales recibieron un régimen de riego mínimo de aproximadamente 1 riego/semana.

Con objeto de determinar parámetros globales del comportamiento de las distintas cubiertas que permitan identificar diferencias significativas, se definen los siguientes parámetros:

- Integral térmica: área por debajo de la curva de temperatura, respecto de temperatura 0°C. Ejemplo en la Fig.2: la integral térmica para Aeonium es el área amarilla por debajo de la curva de temperatura. Este parámetro está relacionado con la energía térmica acumulada dentro del compartimento.
- Temperatura máxima (Tmax): temperatura máxima alcanzada en un día.
- HR (Tmax): humedad relativa a la temperatura máxima.
- Salto térmico (ΔT): diferencia entre la máxima temperatura y la mínima temperatura alcanzada en un día.

Figura 1: Maqueta de dos compartimentos anexos con cubiertas de referencia: grava (A) y aislante hídrico rojo (B). Maqueta de dos compartimentos anexos con cubierta vegetal: *Aeonium arboreum* (C) y *Aptenia cordifolia* (D).
RESULTADOS Y DISCUSIÓN

En la Fig. 2 se presenta la evolución de la temperatura a lo largo del día 19 de julio a modo de ejemplo. En esta gráfica se observa como en las horas centrales del día de mayor irradiación (9:00-18:30) las temperaturas alcanzadas en los compartimentos con cubiertas de referencia (roja y grava) fueron superiores a las registradas para las cubiertas vegetales. Llegando a superarse una diferencia máxima de temperatura de 8 °C entre cubierta roja y Aeonium. Sin embargo, el resto de horas del día las temperaturas en los compartimentos de cubierta vegetal la temperatura fue mayor con una diferencia máxima de 3 °C entre cubierta roja y Aptenia.

También cabe destacar que Aeonium registró menores temperaturas que Aptenia durante las 24 horas del día, mostrando mayores diferencias en las horas de mayor irradiación.

![Figura 2: Curvas de temperatura, resultado del registro de temperatura cada 15 min durante 24 h del día 19 de julio de 2018, en compartimentos con diferentes cubiertas: Aptenia cordifolia, Aeonium arboreum, pintura aislanente roja y grava.](image)

En la Fig. 3 la integral térmica para los diez días más calurosos del verano en las cuatro cubiertas ensayadas, así como la correspondiente a la temperatura ambiente exterior. Los valores más elevados corresponden a las cubiertas control: roja y grava, mostrándose efectivo el uso de las cubiertas vegetales con menor valor de la integral térmica. Entre las cubiertas vegetales se observan diferencias significativas durante todo el mes de julio, siendo la especie Aeonium la más efectiva, pues acumula menos temperatura.

En cuanto a la temperatura máxima, la Fig. 4 muestra claras diferencias entre las cubiertas control y las cubiertas vegetales. También aparecen diferencias importantes entre las cubiertas roja y grava, siendo la cubierta roja la que registra mayores temperaturas. Entre las cubiertas vegetales, Aeonium registró las menores temperaturas.

Cabe destacar dos días del mes, en los que la temperatura ambiente máxima alcanzó valores extremadamente altos (45°C, 2 y 16 de agosto), y en los que la cubierta vegetal de Aeonium contuvo el ascenso de la temperatura por debajo de 38°C. En la Fig. 5 se puede comprobar que estos días corresponden a bajos niveles de HR (T_máx) en el ambiente exterior, y que las cubiertas vegetales conservaron la HR (T_máx) entre 8-17 % superior a la humedad ambiente. Así mismo, en la Fig.5 se observa como las cubiertas vegetales mantienen una HR (T_máx) superior a las cubiertas tradicionales (roja y grava), y semejante a la humedad ambiente, salvo los días en que la HR (T_máx) ambiente se sitúa en valores mínimos por debajo de 25%.
Figura 3: Integral térmica registradas en los compartimentos con cuatro tipos de cubierta y en el ambiente exterior para los días 2, 4, 9, 12, 16, 19, 24, 26, 28 y 31 de julio de 2018.

Figura 4: Datos de temperatura máxima registrada en los compartimentos con cuatro tipos de cubierta y en el ambiente exterior, para los días 2, 4, 9, 12, 16, 19, 24, 26, 28 y 31 de julio de 2018.

Figura 5: Datos de humedad a la temperatura máxima, para los días 2, 4, 9, 12, 16, 19, 24, 26, 28 y 31 de julio de 2018.
En cuanto al salto térmico, la Figura 6 muestra de nuevo una separación importante entre las cubiertas de referencia (roja y grava) y las cubiertas vegetales. También se aprecian diferencias significativas en el salto térmico entre las diferentes cubiertas vegetales, en las que destaca *Aeonium* como la especie que más reduce los cambios de temperatura a lo largo del día (Figura 6).

CONCLUSIONES

En este trabajo se ha comprobado la efectividad del uso de cubiertas vegetales para reducir la temperatura y aumentar la HR respecto de las cubiertas tradicionales, mucho más expuestas a las variaciones del ambiente exterior.

Teniendo en cuenta la integral térmica, las temperaturas máximas, humedad relativa y salto térmico presentados en este trabajo, hay indicios de que la especie *Aeonium* puede ofrecer mejores condiciones ambientales en el interior de edificios.

Para llegar a una conclusión definitiva, este estudio debe completarse añadiendo alguna especie adicional, considerando diferentes testigos para cada tipo de cubierta y un número mayor de registros de temperatura y HR, que permita obtener información para todos los meses y estaciones del año.

BIBLIOGRAFÍA

DISEÑO DE UN HUERTO ECOLÓGICO URBANO “BARATXURI” CON UN PROCESO PARTICIPATIVO EN EL BARRIO DE BUZTINTXURI EN PAMPLONA (NAVARRA)

Duque I, Virto I, De Soto I, Enrique A
Universidad Pública de Navarra. E.T.S. de Ingenieros Agrónomos, Edificio los Olivos, Campus de Arrosadia, 31006 Pamplona; alberto.enrique@unavarra.es

RESUMEN: Baratxuri es el nombre elegido para designar el proceso participativo pensado para la creación de un huerto urbano comunitario en Buztintxuri. Baratxuri es un acrónimo que nace de la unión de las palabras baratza (huerto) y Buztintxuri. Los huertos urbanos comunitarios suministran múltiples beneficios a los espacios que las acogen: une dimensión social, medioambiental, educativa, sanitaria, económica; y de ocio. Los huertos urbanos son espacios que, por sus características, tienen el potencial de fomentar la participación ciudadana.

En su fase inicial, el proyecto contempla la constitución, a través de un llamamiento público al conjunto del vecindario de Buztintxuri, de un denominado “grupo semilla” que dé inicio al señalado proceso participado. El proceso está abierto al conjunto del vecindario de Buztintxuri y en su participación e implicación reside el éxito de la iniciativa. Es un proyecto que nace con vocación colectiva y, por lo tanto, dirigido al conjunto de la comunidad.

Los objetivos que se pueden lograr si se lleva a cabo la ejecución del huerto comunitario son: 1) Crear un espacio de encuentro, fortalecimiento de vínculos y promoción de nuevas relaciones (interculturales, intergeneracionales, etc.) entre el vecindario del barrio 2) Impulsar, a través de la agricultura urbana, un espacio de aprendizaje conjunto y colaborativo donde puedan adquirirse productos, conocimientos y habilidades sociales. 3) Fomentar la sensibilización medioambiental y favorecer diversas prácticas responsables con el medio ambiente. 4) Contribuir a la adquisición de hábitos de vida saludable y a la obtención de beneficios terapéuticos. 5) Generar una alternativa de ocio no ligada al consumo. La parcela objeto de estudio de este proyecto tiene una superficie total de 2.300 m2 y un perímetro de 281,1 m. Su anchura máxima es de 30 m y su longitud máxima es de 113 m.

Palabras clave: agricultura ecológica, huerto urbano, proyecto comunitario
6. ELABORACIÓN, CALIDAD, NORMAS Y COMERCIALIZACIÓN

AGROBOCA. CANAL CORTO DE DISTRIBUCIÓN ONLINE
Fernández-Villanueva JL
Agroboca, S.L. Mendel 4 bajos E08034 Barcelona. 934150024. jl.fernandez@agroboca.com

RESUMEN: Agroboca nació con el objetivo de colaborar en la recuperación del sabor, el valor nutricional y un precio justo en frutas y hortalizas. La calidad necesita ser definida también por agentes cercanos al consumidor e independientes de la rentabilidad. Un modelo independiente de distribución puede ofrecer una solución correctiva y complementaria. Agroboca.com actúa como canal corto online independiente, con el propósito de que el ahorro obtenido al reducir la intermediación pueda potencialmente ser invertido en la calidad deseada y más valor en origen. La actividad de Agroboca desde 2016, entre otras, ha consistido en la creación de un buscador especializado y un marketplace online que ofrece a los productores tiendas gratuitas online para la promoción y venta directa de sus productos. El resultado es un modelo inicial en funcionamiento de gran aceptación entre consumidores y productores, especialmente entre los pequeños o aquellos que no encuentran una distribución estándar para sus productos, como es el caso de los productos ecológicos no intensivos. Con la ayuda de un grupo operativo, actualmente se están estudiando posibles áreas de mejora de la plataforma actual para consolidarla como canal corto de distribución online para frutas y hortalizas. Por un lado se plantea incluir otros tramos de comercialización aparte de los consumidores, y por otro buscar la forma de agregar más oferta y diversidad de productos. Para ello las actividades principales han ido encaminadas a definir los actores imprescindibles en la nueva cadena de valor y las herramientas digitales necesarias para facilitar su participación.

INTRODUCCIÓN
La importancia de una dieta rica en frutas y hortalizas de calidad es una preocupación creciente entre los ciudadanos.

Desde distintos ámbitos y organizaciones se realizan esfuerzos para asegurar su calidad.

Desde Agroboca apostamos por construir un canal digital corto donde la rentabilidad no sea el único objetivo y con nuevas reglas de juego a favor de los dos extremos más sensibles de la cadena: productores y consumidores.

Nuestra labor no consiste en un trabajo de investigación sino una actividad empresarial con impacto social en la medida que pretende aportar soluciones correctivas a problemas estructurales, y con carácter innovador al unir canal corto, digitalización y gratuidad.

Con esta comunicación en el Congreso deseamos dar a conocer nuestra experiencia inicial y compartir la con otros actores interesados en impulsarla.
OBJETIVOS DE AGROBOCA

Recuperación del sabor, valor nutricional, precio justo en frutas y hortalizas frescas.

Agroboca se creó como un agente independiente para recuperar la calidad tradicional de las frutas y hortalizas, entendida en términos de sabor, valor nutricional y a un precio justo para la población en un escenario donde de forma creciente los productores no consiguen precios rentables en origen para sus explotaciones y los consumidores demandan productos más saludables y de mejor calidad.

JUSTIFICACIÓN

Necesidad de un modelo independiente de distribución para una solución correctiva y complementaria.

Desde Agroboca entendemos que el problema es estructural y que con la compleja realidad de intereses de los actores implicados no parece fácil construir un nuevo modelo correctivo desde el mismo sector. No creemos en soluciones excluyentes y buscamos soluciones estratégicas que promuevan cambios complementarios que promuevan una transición ordenada.

Como consumidores entendemos que la única forma de cuidar nuestra dieta es cuidar de quiénes la producen, creando un modelo que colabore en la comercialización de sus explotaciones.

HIPÓTESIS

Canal corto online correctivo: Invertir en calidad el ahorro de intermediación

Buscamos construir un modelo independiente de distribución con un ahorro de intermediación para que éste pueda ser invertido en los dos extremos de la cadena: mayor renta agraria en origen y mejor calidad objetiva en los hogares.

Como en la lógica de mercado actual no es creíble producir calidad si esta no es rentable, planteamos un canal corto online en forma de marketplace universal y de acceso gratuito donde se puedan encontrar los productores y sus clientes para dinamizar la venta directa y colaborar en la comercialización de las explotaciones de frutas y hortalizas. Creemos que este modelo es correctivo y sí puede promover soluciones a algunos de los problemas estructurales citados.

TAREAS O ACTIVIDADES INICIALES

En 2009 creamos el primer directorio y buscador gratuito online en España que ofrecía los datos de contacto y productos de los agricultores de frutas y hortalizas.

En 2016 creamos una sociedad AGROBOCA SL, para aportar transparencia y buscar la rentabilidad necesaria para el sostenimiento de la actividad de forma independiente. Agroboca añade a su buscador, nuevas tiendas básicas y avanzadas, ecommerces de creación gratuita, con transporte integrado. Con ellos los productores pueden publicar y vender sus catálogos de productos a consumidores finales con tan solo un registro como requisito y de forma gratuita.

RESULTADOS CUALITATIVOS

Los resultados de la experiencia Agroboca como Canal Corto de distribución online desde sus inicios nos indican que la propuesta es ampliamente aceptada por los propios productores, consumidores y la administración.
El canal corto online es especialmente aceptado por los pequeños productores o aquellos que no encuentran una distribución o canal estándar para la comercialización de sus productos, como es el caso de productos ecológicos no intensivos u otros de calidad diferenciada.

Observamos que la agregación de oferta es un problema para el pequeño productor con escasos recursos para afrontar la comercialización en solitario y que una oferta poco variada es poco atractiva para el consumidor online.

Como en otros sectores online, el impacto de los costes logísticos sobre el precio final penaliza la compra de productos de bajo valor añadido. En el caso de frutas y hortalizas esta penalización se ve agravada por la competencia ejercida por los comercios detallistas que se aprovisionan en mayoristas ubicados en los mercados centrales próximos a todas las grandes ciudades.

También observamos que los cortos tiempos de comercialización unidos a la falta de información predictiva de los precios dificultan la organización de estrategias a medio y largo plazo entre productores a favor de los comercializadores que concentran el producto y fijan su precio.

Para potenciar el canal corto digital y animar a sus diferentes actores a participar activamente entendemos que hay que seguir trabajando en la maduración del modelo de marketplace, en tres direcciones principales: volumen de ventas, concentración de oferta y reducción de costes logísticos.

Creación GO 2018.
Digitalización de circuitos cortos de comercialización agroalimentarios en frutas y hortalizas

Teniendo en cuenta los resultados iniciales, se decidió liderar la creación de un Grupo Operativo (GO) en 2018, dentro del Programa Nacional de Desarrollo Rural (2014-2020), que tuviera en cuenta los resultados obtenidos hasta el momento y estudiara los requerimientos para la mejora de la plataforma actual agroboca.com, para convertirla en el canal corto online ideal para productores de frutas y hortalizas.
El trabajo del Grupo ha servido por un lado para preparar la inclusión de otros tramos de comercialización, aparte de los consumidores, para aumentar el volumen de transacciones; y por otro, para buscar la forma de agregar más oferta de productos a través de nuevas figuras, como la del concentrador o los grupos de consumo, y proponiendo una estructura ordenada de precios.

El GO supra autonómico lo integran dos productores ecológicos, Frutos Los Pisaos (Granada) y Cooperativa Agra (Murcia); un centro de investigación agroalimentario, CRENDA (Barcelona); y Agroboca (Barcelona) como plataforma digital para transacciones de circuito corto.

OBJETIVOS PRINCIPALES Y ÁREAS DE TRABAJO DEL GO

Las actuaciones del grupo operativo han ido encaminadas a la mejora de la competitividad de los productores de frutas y hortalizas integrándolos mejor en la cadena de valor a través del fomento de los canales cortos y su digitalización.

Para ello el GO ha analizado y definido los requerimientos para futuras actuaciones dentro de 2 grandes áreas con distintos objetivos específicos:
- A. Organización comercial del canal y nuevas herramientas digitales
- B. Información sobre precios, e indicadores de gestión y control

Objetivo 1. Identificación de actores, roles y precios imprescindibles para la cooperación
Para Incluir todos los tramos de comercialización y completar el modelo con todos sus actores.

Objetivo 2. Identificación de nuevas herramientas digitales para la inclusión de nuevos tramos de comercialización
Para promover la participación y la gestión diaria de las tiendas por parte de los productores y otros actores.

Objetivo 3. Estudio de parámetros de control del modelo de negocio y estadísticos
Como fuente de información relevante para usuarios y potencialmente para instituciones públicas.

ACTIVIDADES DEL GO

Las actividades han servido para determinar los requerimientos necesarios para futuras actuaciones en distintos ámbitos que fortalezcan los servicios y el funcionamiento independiente de la plataforma de acuerdo a los objetivos planteados.

Actividad 1. Definición de actores y roles

Se ha tratado de identificar las figuras y el reparto de funciones imprescindibles en un canal de mínima intermediación.

Los actores principales propuestos son: productor, concentrador, horeca / minoristas, grupos de consumo y consumidores.
En el nuevo canal, donde los productores también comercializan, resultará útil la nueva figura de un “concentrador” que además de comprar y vender ofrezca un servicio de “venta inversa” para proveer a los productores de aquellos productos que no produzcan.

Figura 1. Actores. En el canal corto digital el productor debe poder acceder a todos los tramos: concentrador, mayoristas, horeca / minoristas, grupos de consumo y consumidores, y cada tramo debe poder acceder a los anteriores.

Destacamos las figuras de los Productores y la de un Concentrador.

Sobre los Productores “comercializadores”

Cultiva y vende frutas y/o hortalizas, u otros productos agroalimentarios que tengan un perfil de compra similar. Además y en algunos casos, envasa los productos a través de alguna infraestructura (almacén, cooperativa, asociación).

Sobre el concentrador

Figura que compra grandes y medianos volúmenes y debería ser capaz de construir una oferta con las siguientes características dirigidas a todos los escalones.

- Productos de calidad, preferentemente ecológicos (certificados o tradicionales)
- Surtido diverso
- Oferta presente durante todo el año
- Precios estables

El concentrador también puede envasar los productos a través de alguna infraestructura para vender al detalle los productos al consumidor.

En el modelo de Agroboca el concentrador debería asumir la función de venta al escalón anterior o “venta inversa”, es decir, vender a los productores a un precio competitivo para su venta a otros escalones distintos del
concentrador. Este requerimiento es delicado pero se plantea como oportunidad para facilitar la cooperación horizontal entre productores a través de los concentradores.

Para desempeñar este nuevo rol es deseable invitar a cooperativas y productores que ya operan como mayoristas en origen, y que pueden aportar su experiencia y realizar una importante labor.

El Grupo Operativo señala la conveniencia de buscar, dentro del GO o fuera, actores que deseen unirse desarrollar el rol de concentrador para realizar una experiencia piloto que permita analizar sus resultados.

Actividad 2. Definición de la estructura de precios por tramos y de intercambio.

Se ha querido estudiar y definir la conformación del precio para asegurar una cooperación horizontal y vertical que asegure la participación y el abastecimiento a un precio estable.

Se identifica una necesidad mayoritaria en los productores de trabajar con precios libres y fijados con simetría.

Para atender esta necesidad y al mismo tiempo ordenar los precios dentro de la cadena de valor, se propone, como en el mercado industrial, un precio de tarifa venta al público y descuentos según posición en la cadena dependiendo de qué figura y rol se esté adoptando.

![Diagrama de descuentos](image)

Figura 2. Descuentos. Ejemplo de descuentos o márgenes brutos por tramo sobre PVP (%). Productor 55%. Concentrador 65%. Minorista, Grupos de consumo y Horeca, 40%. Consumidor, PVP. Canal digital: tasa Comercializador 8% sobre ventas.

Sobre el PVP

El hecho de elegir este sistema no implica que el precio PVP ofrecido en el mercado sea el asumido siempre como real en el canal, pues no siempre la conformación del precio del PVP obedece a la oferta y demanda.
Se elige este sistema porque ofrece orientación y transparencia, es el más fácil de obtener y porque la recopilación de sus datos podría automatizarse mediante herramientas TIC, si fuera necesario.

El servicio de venta inversa del Concentrador unido a un precio conocido y previsible de PVP, dará al productor la oportunidad de comercializar más productos de los que habitualmente produce (de producción ajena), fomentándose una mayor colaboración entre productores, pues estos se podrían presentar como comercializadores de otros productores.

Actividad 3. Definición de herramientas digitales para la inclusión de nuevos tramos de comercialización

Introducción sobre las herramientas digitales y su gratuidad

Cuando hablamos de herramientas TIC, estamos hablando de funcionalidades online de acceso gratuito destinadas principalmente a todos los productores de frutas y hortalizas.

Cuando decimos gratuitas, entendemos que su uso y disfrute es gratuito.

También debe contemplarse el coste del servicio para monetizar y sostener el servicio. Este coste puede tomar la forma de comisiones sobre las ventas, tarifas planas y, cuando se trata de usar un número limitado de servicios, puede proponerse la compra o adquisición de bonos de servicios. Las comisiones o tasas deben ser proporcionadas y no erosionar abusivamente el margen legítimo del vendedor, y en lo posible estar ligados al éxito comercial. Es decir, que solo se abonan en caso de que el vendedor obtenga un beneficio. De esta forma el uso de la plataforma es gratuito en la mayoría de los casos y fomenta la digitalización al favorecer la iniciación y uso de herramientas digitales en la operativa diaria del productore.

Nuevas tiendas y/o listados online

3A. Anuncios de ofertas para producción (para venta de cosechas)

Para la venta de cosechas sin envasar y ligada a grandes volúmenes, alta estacionalidad, duración corta de la oferta y fuerte orientación al mercado exterior, se propone desarrollar un nuevo listado independiente de los actuales de la venta al consumidor o al mayor y que consista en la gestión y publicación en varios idiomas de los productos disponibles, orientando la oferta a los clientes de exportación e industria alimentaria, de transformación o elaboración.

Los principales contenidos a gestionar serán la variedad vegetal, el origen, volúmenes disponibles, certificados, mínimos de compra y precio

3B. Tiendas Premium (para potenciar la venta al mayor y minorista)

Los productores medianos y grandes de frutas y hortalizas necesitarán tiendas con mayores prestaciones que las actuales para potenciar la venta al mayor y minorista, si queremos invitarles a disfrutar del canal corto digital.

Algunas de las prestaciones propuestas y adicionales a las de las actuales tiendas Avanzas de Agroboca.

- Plantillas de diseño. El vendedor podrá elegir entre estilos distintos o plantillas
- Actualizaciones masivas: importación Excel. De esta forma el stock y precios semanales serán más fáciles de importar y actualizar
- Gestión privada de usuarios. El vendedor podrá realizar ofertas y descuentos personalizados con carácter privado a los clientes de su elección previo registro o alta en la plataforma.
- Ventas recurrentes y calendarios. Pensado para aquellos clientes que realizan compras de suscripción repetida.
· Productos representados. Posibilidad de comercializar los productos de otro vendedor y mostrar sus certificados previo consentimiento, y opcionalmente usar su sistema logístico y de transporte, como elemento de refuerzo de la colaboración entre productores
· Alertas de disponibilidad. Avisos automáticos de nuevo stock para clientes suscritos al producto
· Panel demandas. Avisos de demandas de producto procedentes de los compradores.
· Generación de facturas. Posibilidad de generar facturas desde la propia plataforma con el desglose del IVA separado según productos y servicios
· Verificación de requisitos de perfil Premium del vendedor para cuidar especialmente la calidad de estas tiendas

3C. Tiendas para Grupos de Consumo

Tiendas para que los Grupos de Consumo puedan operar como compradores y vendedores, gestionando sus propios productos y usuarios y servicios logísticos.

Algunas de las prestaciones propuestas y adicionales a las ya descritas para tiendas Premium.

· Gestión de compras compartida. Permitiría a los usuarios de un grupo participar y decidir en las compras de aprovisionamiento del grupo
· Gestión de altas y bajas de miembros
· Productos públicos de compra compartida. Para invitar usuarios externos a probar ofertas del grupo de consumo
· Tablón o listado de demandas. Publicación de anuncios destinados a los productores
· Contenidos adicionales. Información sobre el funcionamiento del grupo y su filosofía

Definición de parámetros de control del modelo de negocio y estadísticos

En la medida en que el volumen de transacciones aumenta y es significativo, la información estadística registrada es valiosa y se convierte en fuente de información para la gestión del modelo de negocio, referencia de precios para los usuarios y en registro de datos para otros estudios y aplicaciones.

Por este motivo Agroboca tiene interés ya en esta fase inicial en preparar la arquitectura de la información necesaria y colaborar con actores expertos en su tratamiento.

Actividad 6. Diseño y elaboración de la información

Para preparar el trabajo, CREDA en fase exploratoria ha estudiado experiencias de canal corto en entornos digitales en distintos países de la UE para conocer el estado y situación de partida para afrontar una segunda fase de proyecto futura.

CREDA sería el responsable de elaborar y aportar 4 tipos de información y en especial sobre los precios:

1- Información derivada de la operativa diaria

a. Resumen de actividad

Datos por producto (convencional/ecológico) y tipo de usuario (productor, mayorista, consumidor)

b. Información de precios
A futuro y con volúmenes significativos de transacciones, se podría generar información agregada de precios, en principio para los usuarios a fin de que tengan una referencia interna, aunque parte de dicha información podría hacerse pública. En este sentido, la plataforma sería una de las pocas fuentes de información existentes sobre circuitos cortos de comercialización.

2 - Información no derivada de la operativa diaria

En este caso, se plantea ofrecer dos tipos de información a los usuarios.

a. Información de precios semanal

b. Informes anuales de la oferta y la demanda

Estudio sobre las características de proveedores y compradores a fin de establecer tipologías de usuarios y elaborar indicadores de intensidad de utilización, satisfacción, fidelidad, elementos de mejora. Este tipo de información tendrá una triple finalidad: a) proporcionar información a proveedores y compradores como usuarios de la plataforma; b) proporcionar información relevante a los gestores de la plataforma a fin de adaptarse a las nuevas necesidades de los usuarios; y c) elaboración de estudios e informes objeto de divulgación para instituciones públicas relacionadas con el sector agroalimentario y, sobre todo, con la promoción de circuitos cortos de comercialización.

Actividad 7. Control y gestión del modelo

KPIs del Estado y evolución de las transacciones y tipología de actores presentes en el modelo de negocio

Se estima necesario dotar a la plataforma de un conjunto de indicadores que permitan evaluar la actividad del modelo de forma cuantitativa y cualitativa, para poder controlar y gestionar equilibradamente la promoción y servicios necesarios para las distintas ofertas por tramos de clientes y productos: consumidores, grupos de consumo, horeca, concentradores, productores.

2 grupos de indicadores a trabajar

1. Indicadores de Control

Indicadores para el control de la evolución del modelo de negocio, utilizando métricas habituales en otros marketplaces y adaptándolas a las características del producto fresco y tipos de agricultura, ecológica y convencional.

2. Indicadores para Gestión y Business Intelligence

Indicadores para actuar en la gestión comercial y de promoción en cada tramo de transacciones en función de sus necesidades y peso específico en el modelo.

El tratamiento o inteligencia de datos permitirá a los gestores del modelo conocer por tramos de negocio que esfuerzos y de servicios adicionales se necesitan para el mantenimiento y crecimiento del negocio, atendiendo a criterios como perfil de cliente, producto, época del año, precio o distribución geográfica.

CONCLUSIONES

Para alcanzar nuestros objetivos y mejorar los resultados, entendemos que el modelo necesita algunas mejoras si queremos animar a sus diferentes actores a participar activamente.
- **Volumen de ventas.**
 Incentivo principal para la participación de los productores (vendedores).
 Sólo y exclusivamente con la oferta al consumidor final es difícil incrementar el volumen en estados iniciales. Por ello se plantea incluir el tramo de venta de cosechas y al mayor para mejorar el coste por operación sin descuidar progresivamente la venta al consumidor.

 En su consecución será imprescindible la creación de nuevas tiendas y listados para los nuevos tramos y actores.

- **Concentración de oferta**

 Atractivo principal para los compradores. La actual plataforma podría vender más si consigue mayor presencia de productores y productos. Por ello se plantea potenciar figuras que por sí solas puedan constituirse como mercados laterales, como la de Concentradores o Grupos de Consumo, que pueden organizar la oferta y dar salida a la demanda de producto en la medida que la presencia de vendedores distintos no la asegure.

 En este sentido no se descarta en actuaciones futuras la promoción de un concentrador o grupo de consumo propio o externo para asegurar el servicio a los compradores.

- **Optimización de recursos y costes.**

 Hay que continuar concentrando la compra de servicios de marketing y logísticos para conseguir unos costes más competitivos favorables tanto a vendedores como a compradores.

- **Información y precios.**

 Disponer de una información veraz permite a todos los actores identificar mejor las oportunidades y actuar con menos riesgo. En este sentido las actividades relacionadas con información de precios, indicadores de gestión y registro estadístico son esenciales para ofrecer valor a los usuarios.
RESUMEN: En los Sistemas Agroalimentarios Alternativos al actual se demanda la participación activa e interacción entre las personas productoras y consumidoras. Los SPG son procesos organizativos que vinculan a ambos actores en la generación de confianza sobre lo que se produce y se come. Los SPG surgieron en Latinoamérica. Llegaron a Andalucía hace más de una década a través de un proyecto de la Junta de Andalucía. Este estudio tiene como objetivos conocer qué ha sucedido con los SPG en Andalucía durante estos años. Cuáles han sido los avances y las limitaciones en la implementación y desarrollo de estos sistemas de garantía y organización.

Se realizó una Investigación-Acción a través de metodologías participativas y cualitativas por considerarlas como las más adecuadas debido a que se trabajaba con procesos sociales y de reconstrucción de realidades, y porque el enfoque metodológico admite al investigador como parte del estudio.

Los SPG en Andalucía se han seguido realizando, aunque con limitaciones propias del territorio y los actores que han hecho suyo el sistema. Se han desarrollado en este tiempo herramientas y formas de proceder adaptadas a la realidad de la pequeña producción ecológica andaluza. A pesar de haber marcadas diferencias ideológicas entre los SPG y la certificación de tercera parte, en la práctica las y los pequeños productores en muchos casos emplean ambas formas de garantía debido principalmente a la falta de reconocimiento legal de los SPG y la falta de mayores puntos de venta donde se acepte esta garantía participativa, pero también como reivindicación.

Palabras clave: agroecología, procesos organizativos, investigación-acción, España, confianza

1. INTRODUCCIÓN: SPGS, TRANSICIÓN Y PROCESOS AGROECOLÓGICOS EN LA DEMOCRATIZACIÓN DE LOS SISTEMAS AGROALIMENTARIOS

La transición social aborda desde un enfoque agroecológico el proceso de los colectivos y la sociedad en su camino para alcanzar la sustentabilidad y soberanía alimentaria. Usa los conceptos y las herramientas de la agroecología para analizar, construir y promover procesos sociales, políticos y económicos que desarrollan sistemas agroalimentarios agroecológicos de naturaleza local y endógena (Cuéllar 2008, Calle, Gallar y Candón 2013), emergen desde las bases (personas consumidoras y productoras, agricultoras y agricultores familiares y sus organizaciones) como alternativas al sistema agroalimentario globalizado - SAG.

1.1 Sistema Agroalimentario Globalizado

El SAG es el entramado construido por las corporaciones dedicadas a la agricultura y la alimentación a nivel mundial, tejido corporativo a través del cual adquieren cada vez más cuota de mercado, representación y poder de negociación o presión ante organismos internacionales y gobiernos, para asegurar y mejorar sus beneficios económicos (ETC Group 2013 y Ruiz 2013). El sistema agroalimentario globalizado a través de su acción, modelo de expansión y control, invisibiliza, ralentiza, limita o anula la creación o desarrollo de alternativas basadas en dinámicas y estrategias de cooperación social: tradicionales o emergentes, bases de una transición social agroecológica (Calle, Gallar y Candón 2013 y Calle, Soler y Rivera 2011).

Las grandes multinacionales agroalimentarias y las poderosas cadenas de distribución minorista (hipermercados, grandes superficies, etc.) limitan las dinámicas de transición social agroecológica (Gaëtan y Baret 2009,
McMichael 2009, Bello 2012). La conformación de oligopolios concentra en unos pocos grupos de empresas internacionales una capacidad de decisión y estructuración del sistema agroalimentario a escala mundial, lo que lleva a algunos autores a hablar de imperios agroalimentarios (Ploeg 2010, ETC Group 2011) como establecen los informes de 2010 del IAASTD (International Assessment of Agricultural Knowledge, Science and Technology for Development). Las consecuencias de dicha concentración de poder y por ende falta de democratización de este sistema agroalimentario global son evidentes: dificultades para sobrevivir por parte de las y los pequeños productores, escasa participación en la definición de las reglas del sistema por parte del conjunto de consumidores y de productores, creciente pérdida biodiversidad, fuerte impacto del cambio climático en los agro-ecosistemas, alta dependencia de insumos fósiles cada vez más escasos, aparte de hambrunas y el acaparamiento de tierras en países y zonas empobrecidas. Sin la posibilidad de establecer una apertura de las formas de producción, comercialización y consumo hacia otros sistemas agroalimentarios más localizados y con mayor implicación de los actores que conforman las cadenas agroalimentarias no podrá llegarse a una transición agroecológica, mucho menos plantear una cultura de la sostenibilidad en el manejo global de los recursos naturales (Gliessman 2015).

1.2 Transición y procesos agroecológicos

Existen diversas aproximaciones al campo de la agroecología, sus procesos y la transición agroecológica (Wezel et al 2009). Las aproximaciones macro señalan la importancia de introducir sistemas productivos y sustentables que desarrollen un nuevo metabolismo social (Gliessmann 2010, Altiere y Nicholls 2007, Koohafkan et al 2011). Desde una perspectiva meso-micro destacamos los estudios que ponen de relieve la importancia de las innovaciones y los procesos de cooperación o que abogan por una construcción de investigaciones participativas - implicativas que impulsen sistemas agroalimentarios localizados (Renting et al 2012, Ploeg 2010, Pelling y Manuel-Navarrete 2011, Chagas, Calle y Leite 2012). Finalmente, contamos con perspectivas propias de la Ecología Política que visibilizan estrategias de post-desarrollo donde los fines y los medios de los sistemas agroalimentarios son analizados en clave de co-evolución o de demandas nacidas en los movimientos sociales como la soberanía alimentaria (Siliprandi 2009, Redclifft y G. Woodgate 2013, Cuéllar, Calle y Gallar 2013).

Todas las perspectivas señaladas anteriormente participan, en mayor o menor medida, de la visión de la agroecología como ciencia o conjunto de estudios fuertemente anclados en formas de acción y conocimientos colectivos (Pretty 1995), caracterizadas por principios de inclusión, equidad y valores de sostenibilidad ambiental que apunten a una transformación social de nuestros sistemas agroalimentarios (Sevilla y Woodgate 2013).

Cuadro 1: Dimensiones de los procesos de transición agroecológica.

<table>
<thead>
<tr>
<th>Dimensión</th>
<th>Proceso</th>
<th>Se expresa en:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal o familiar</td>
<td>Cambio en la conciencia del individuo o la familia (en qué creen, cuál es su motivación, etc.)</td>
<td>Unidad productiva o finca</td>
</tr>
<tr>
<td>Microsocial</td>
<td>Cambio en los manejos productivos y la cooperación social</td>
<td>Pequeñas organizaciones o colectivos</td>
</tr>
<tr>
<td>Eco-Estructural</td>
<td>Creación de soportes o bases que cierren circuitos de todo tipo: producción, comercialización, acción socio-política.</td>
<td>En producción en el uso de tecnología apropiada y recursos endógenos. En comercialización en el desarrollo de circuitos cortos, SPG, etc. En la acción política practicando la democracia directa y participativa.</td>
</tr>
<tr>
<td>Meso y Macro social</td>
<td>Desarrollo de alianzas e instituciones que faciliten y sostengan los procesos agroecológicos</td>
<td>Unión entre colectivos, acuerdos entre organizaciones, formación de redes. Acciones de incidencia política y de participación en instituciones públicas.</td>
</tr>
</tbody>
</table>

Elaboración propia en base a: Calle, Gallar y Candón 2013.

1 La transición agroecológica tiene cuatro dimensiones o ejes relacionados.
1.3 Sistemas Agroalimentarios Alternativos

La producción ecológica no implica necesariamente un sistema agroalimentario alternativo. Puede ser enfocada como nicho de mercado en el SAG o puede trabajarse como alternativa en la construcción de otros sistemas agroalimentarios. En los últimos años se aprecian importantes inversiones de grandes compañías agroalimentarias en el sector ecológico, que van desde la compra de empresas de productos ecológicos hasta la incorporación de líneas Bio en las estanterías de las grandes distribuidoras minoristas (hipermercados, cadenas de supermercados, etc.), pasando por incorporación de líneas blancas y fuertes campañas publicitarias de la alimentación Bio.

Algunas características presentes en los Sistemas Agroalimentarios Alternativos – SAA son: a) las relaciones de poder que se dan dentro del sistema, relaciones simétricas entre los actores b) orientación a circuitos cortos de comercialización, mercados de cercanía o locales c) pequeña producción familiar o campesina, d) estrategias de articulación entre las personas que producen y las que consumen y relación equitativa y empática, e) precios justos al productor que le permitan vivir dignamente de su vocación y asequibles al consumidor que les permitan adquirir los alimentos que necesita, f) el menor impacto ambiental en la producción, transformación y distribución (transporte), g) acciones colectivas en la producción y/o consumo, h) sistema de producción menos dependiente de insumos externos y energía fósil, i) preservación de la cultura gastronómica local, las variedades tradicionales y el manejo de la biodiversidad.

Los Sistemas Agroalimentarios Alternativos al actual demandan la participación activa e interacción entre las personas productoras y consumidoras y leyes que no los limiten o penalicen. Por el contrario, se requiere políticas públicas que promuevan alternativas al Sistema Agroalimentario Globalizado. Los SPG son procesos organizativos que vinculan directamente a las personas que producen y las que consumen para generar confianza sobre la producción, distribución y/o consumo en circuitos cortos de comercialización. Los SPG surgieron en Latinoamérica. Llegaron a Andalucía hace más de una década a través de un proyecto de la extinta Dirección General de Agricultura Ecológica de la Junta de Andalucía.

Teniendo en cuenta lo planteado hasta este momento, el presente trabajo tiene como objetivos: 1) presentar los SPG dentro del marco de la transición agroecológica, sus principios, rasgos y situación a nivel mundial, relación con la certificación de tercera parte, 2) Referenciar el desarrollo de los SPG en Andalucía, conocer qué ha sucedido con los SPG durante estos años en esta comunidad, la primera en desarrollar este sistema de garantía colectiva en España. Cuáles han sido los avances y las limitaciones en la implementación y desarrollo de estos sistemas de garantía y organización. Qué hemos aprendido.

Se realizó una Investigación-Acción a través de metodologías participativas y cualitativas por considerarlas como las más adecuadas debido a que se trabajaba con procesos sociales y de reconstrucción de realidades, y porque el enfoque metodológico admite al investigador como parte del estudio. Se recogió información de otros SPG donde no se trabajó directamente y se realizó una búsqueda y revisión bibliográfica relacionada al tema. Se trabajó directamente con las siguientes organizaciones: Asociación Biocastril, Asociación Ecovalle, Federación Andaluza de Consumidores y Productores Ecológicos. A través de informantes clave, de entrevistas y revisión de documentos se recogió información de otros SPG con los que no se trabajó directamente. Así tenemos datos de la Red Agroecológica de Granada, Red Agroecológica de Cádiz, Red Agroecológica de las Alpujarras, Red Sevilla Ecoartesana, Como de Graná y asociación Ecomercado de Córdoba.
2. APROXIMACIÓN A LOS SPG

2.1 Qué son y cómo funcionan los SPG

Los SPG son en esencia procesos pedagógicos y organizativos que devuelven el poder de acción y decisión a las personas productoras y consumidoras respecto a la forma en que se produce, distribuye y comercializa en base a relaciones cercanas y de igualdad que generan garantía - confianza de la calidad ecológica y cualidad social de los alimentos. Se desarrollan en un entorno cercano físico, cultural y/o ideológico, lo cual posibilita la creación de redes y la expansión de estos sistemas más allá de la venta directa y la escala local. Por sus principios y funcionamiento los SPG favorecen la generación e incremento de experiencias, canales cortos de comercialización y mercados locales, muchas veces interconectados, que se presentan como alternativas al sistema agroalimentario globalizado (Cuellar, 2008. Flores, P. y Arbenz, M. 2013).

Los SPG surgen de las necesidades locales de las personas que producen y de las que consumen, es por ello, que más que una norma única global para todos los casos, estos sistemas se basan en un conjunto de principios y valores que están presentes en las experiencias que se desarrollan en diferentes partes del mundo y que vienen facilitando el empoderamiento de las personas, la dinamización de las organizaciones, la mejora de los sistemas productivos, la generación y acceso a mercados locales y otras formas de CCC (AGROECO, 2014; May, 2008). A continuación presentamos los principios y valores de los SPG bajo el enfoque con que fueron trabajados en España en el caso de la FACPE:

- **Proceso pedagógico y organizativo:** las personas en interacción van construyendo y desarrollando su SPG, aprendiendo a manejarse dentro de él y adquiriendo y compartiendo conocimientos. Van fortaleciendo su organización y ganando autonomía.

- **Visión compartida:** Los productores/as y consumidores/as comparten los valores y principios del sistema que se desarrolla.

- **Transparencia del sistema:** todos y todas conocen y tienen acceso a las estructuras y mecanismos del sistema – funcionamiento y toma de decisiones. El sistema es abierto, visible y mostrable.

- **Horizontalidad:** las personas involucradas tienen la posibilidad de participar con los mismos derechos, deberes y responsabilidades. Significa compartir el poder de decisión y acción.

- **Participación:** el sistema presenta un método que facilita la mayor participación posible de todas las personas interesadas en la generación de confianza.

- **Confianza y confiabilidad:** productoras/es y consumidoras/es acuerdan y comparten una serie de dinámicas, mecanismos e instrumentos de generación de confianza. Los que, organizadamente, contribuyen al desarrollo de un sistema viable que transmite confianza.

Los SPG se vertebran a través del conjunto de acciones o dinámicas colectivas que denominamos factores de generación de confianza. Acciones que están organizadas y estructuradas, en mayor o menor grado, de acuerdo con la realidad de cada grupo humano inmerso en el desarrollo de su SPG. Lo importante es que en el proceso estén incorporados los valores y principios antes mencionados.

2 De generación de nuevas organizaciones o de fortalecimiento organizativo.
3 Participan otros actores, pero su objetivo debe ser dar soporte a las personas que producen y las que consumen para que se empodere en y se den los procesos propios de los SPG
4 La calidad se refiere al producto técnico en sí, y la cualidad es inherente al proceso social del que surge ese producto. Lleva tras de sí necesariamente un conjunto de relaciones sociales, culturales y valores (equidad, solidaridad, autonomía, etc.) que no las presenta un producto técnicamente producido como ecológico. Ver Ecuador 2004
6 Pueden ser visitas de seguimiento a los campos de los productores/as, intercambio de experiencias entre productores/as, jornadas y actividades de formación, visitas de consumidores, análisis de laboratorio (suelo/planta), actividades de organización y decisión colectiva, desarrollo de reglamentos internos, elaboración consensuada de guías de visita, auto declaración de compromiso del productor/ra, etc. Las visitas cruzadas entre productoras/es quizá sea la dinámica más conocida.
Dado su carácter local los SPG usualmente van más allá de las normas oficiales (generalistas) de certificación ecológica por tercera parte, en unos casos incorporando prácticas de manejo y enfoques sociales-culturales a su actividad y en otros casos discrepando con las normas impuestas, por ejemplo, la obligatoriedad de usar semillas ecológicas de variedades comerciales si están disponibles.

2.2 Los SPG y su relación con la Certificación por Tercera Parte (CPT)

Los SPG rompen con la “supuesta” confrontación de intereses entre las personas que producen y las que consumen, divergencia por la cual sería necesaria una mediación, una tercera parte, la certificadora. Los SPG equiparan el conocimiento técnico-científico con el saber tradicional basado en la experiencia y con la construcción colectiva de conocimientos (Cuellar 2008). Son importantes para la transición agroecológica y la soberanía alimentaria (Cuellar, 2008; Torremocha 2012; Haro 2013) por el gran potencial que tienen de articular a las personas productoras y consumidoras en la generación de respuestas colectivas y la construcción de alternativas al SAG. Por ello, están presentes en las agendas de trabajo de organizaciones político-sociales, a nivel local, regional, nacional e internacional (Carrasco 2015, AGROECO 2014).

Desde diversos sectores se viene señalando que más allá de los servicios al mercado mundial, la CPT presenta problemas y consecuencias para gran parte de la pequeña agricultura ecológica como la exclusión legal de los mercados ecológicos, exceso de burocracia y altos costes, la propensión de uniformizar la producción, la falta de valoración de la experiencia y cultura de las y los pequeños agricultores porque están sometidos a una reglamentación rígida y ajena a su realidad, el distanciamiento entre el sector producción y consumo, etc. (Cuellar, 2008: 67 – 77, FLACSO, 2014: 1 – 9). IFOAM (Federación Internacional de Movimientos de Agricultura Orgánica) trabajó y propuso la CPT con Sistemas Internos de Control – SIC con el objetivo de facilitar que los pequeños productores pudieran entrar al mercado mundial de productos orgánicos (El-Hage y Hattam, 2003). Esta forma de certificación colectiva consiste en que organizaciones de productores ecológicos se hacen cargo de la inspección del total de parcelas y la certificadora vela porque la inspección realizada sea fiable, para lo cual el control de los productores, evalúa el proceso y puede realizar visitas a una muestra del total de predios. Así se abarata el precio de la certificación trasladando los costes de inspección en finca a la organización de pequeños agricultores y agricultoras. Pero los otros problemas y consecuencias señaladas persisten, aunque algunos se atenúan (Cuellar, 2008: 73 – 76. Dankers y Liu, 2004. IFOAM, 2008) y otros se agravan porque el propietario del certificado puede ser la empresa exportadora.

Antes de la implantación de la CPT eran las redes sociales locales, más o menos estructuradas y organizadas, las que avalaban el sistema productivo, principalmente a través de lazos de confianza y cercanía entre productores y consumidores, principios que retoman los SPG. Al irrumper con fuerza la economía de mercado en el ámbito de la producción ecológica y usar la certificación de tercera parte como herramienta comercial y única de reconocimiento y valor legal, se fue desarticulando aquel tejido social por, supuestamente, innecesarias y no fiables en esta sociedad cada vez más tecnocrática (Cuellar, 2008). A continuación presentamos el cuadro que compara los SPG, la CPT y la CPT por grupos con SIC.
Cuadro 2: Comparación entre los sistemas participativos de garantía, la certificación de tercera parte individual y por grupos [con sistema interno de control]

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>SISTEMA PARTICIPATIVO DE GARANTÍA</th>
<th>CERTIFICACIÓN TERCERA PARTE</th>
<th>CERTIFICACIÓN TERCERA PARTE (GRUPOS-SIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orientación del Mercado</td>
<td>Mercado interior. Mercados regionales y mercados locales.</td>
<td>Mercado exterior de exportación y mercado interior.</td>
<td>Mercado exterior de exportación y mercado interior.</td>
</tr>
<tr>
<td>Función en el mercado eco-</td>
<td>Visibilizar y facilitar acceso a pequeños productores a mercados locales. Dar valor a las estrategias locales de comercialización. Hacer participes a los consumidores.</td>
<td>Incrementar el mercado mundial y el conocimiento global de los productos ecológicos.</td>
<td>Facilitar el acceso a pequeños productores a grandes mercados de exportación.</td>
</tr>
<tr>
<td>lógico - agroecológico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfil del consumidor</td>
<td>Consumidor comprometido e implicado en el cambio del sistema agroalimentario vigente.</td>
<td>Consumidor que cuida su salud y la del medio ambiente. Poca implicación en el cambio del sistema agroalimentario vigente.</td>
<td>Consumidor que cuida su salud y la del medio ambiente. Poca implicación en el cambio del sistema agroalimentario vigente.</td>
</tr>
<tr>
<td>Decisión - libertad para</td>
<td>El productor que participa del sistema.</td>
<td>El productor que tiene el certificado.</td>
<td>Comercializan las entidades que ostentan el certificado (empresas exportadoras, cooperativas, etc.). No el productor.</td>
</tr>
<tr>
<td>comercializar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legalidad y denominación</td>
<td>En varios países del sur global están reconocidos legalmente y se pueden denominar y llamar ecológicos. En los países del norte no se les reconoce.</td>
<td>Reconocimiento a nivel mundial, tanto países del norte como del sur.</td>
<td>Reconocimiento a nivel mundial, tanto países del norte como del sur.</td>
</tr>
<tr>
<td>como producto ecológico en el mercado.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacto en el mercado mundial</td>
<td>Fuerte incremento del número de pequeños productores, de la diversidad comercializada y de los mercados locales y otras formas de canales de proximidad. Fortalecimiento de organizaciones y estructuras locales.</td>
<td>Mayor incremento del área certificada que el de productores (proceso de concentración). Incremento de ventas en mercados convencionales (grandes distribuidores minoristas).</td>
<td>Incremento del número de pequeños productores que pueden colocar determinados productos en el mercado de exportación. Presencia en la gran distribución y tiendas especializadas.</td>
</tr>
</tbody>
</table>

2.3 Los SPG y su relación con las políticas públicas

Podemos encontrar ejemplos de políticas públicas que se han orientado hacia a los SPG, favoreciendo o limitándolos (Cuellar 2008; Mauricio 2013; Velleda, Sacco y Lozano 2014). Por ejemplo, en el caso de Andalucía, España, fue una iniciativa de la administración pública la que financió un proyecto piloto en tres zonas de montaña con la finalidad de elaborar una propuesta de SPG adaptada a la realidad andaluza. La visión agroecológica de las y los investigadores y dinamizadores del proyecto permitió la construcción de una propuesta desde los pequeños/as productores/as. Aunque luego por falta de apoyo político y el contexto socio-cultural de las personas participantes no se pudo avanzar más (Cuellar 2008). Sin embargo, la experiencia fue valorada, tomada como base y/o re-creada por organizaciones vinculadas a la agroecología española (De la Cruz 2011A). En los últimos años el gobierno de la India ha promovido y apoyado fuertemente los SPG para su mercado interno a través de un programa coordinado por el Centro Nacional de Agricultura Orgánica del Ministerio de Agricultura. Ha financiado la conversión a la agricultura orgánica y la adopción del Sistemas Participativos de Garantía. El resultado ha sido que la India es el país con más productores vinculados al SPG, pasando de 6000 en 2015 a más de 250000 en 2017 (Moura e Castro y Varini, 2017).

Obtener el reconocimiento oficial de los SPG de los gobiernos usualmente significa negociar y aceptar regulaciones específicas y ceder parte de la independencia al aceptar la supervisión de terceros que constaten que se cumplen las reglas (Katto-Andrighetto 2011). Esto ha ocasionado adaptaciones en las propuestas y/o dinámicas de las organizaciones para mantener lo más posible los principios, valores y potencial de desarrollo endógeno de los SPG. Por ejemplo, en Brasil, luego de un largo proceso entre las organizaciones sociales y el gobierno, los SPG se presentaron en dos modalidades: la primera, basada en Organismos de Evaluación Participativos, que da derecho a usar el logo oficial y vender a nivel nacional y la segunda, basada Organizaciones de Control Social, de la que se obtiene el reconocimiento como producto ecológico, pero no se puede usar el logo oficial, está limitada y diseñada para la venta directa del productor al consumidor. Dos de los mayores retos de los SPG en su búsqueda de reconocimiento oficial, dados sus orígenes, es evitar complejizar los trámites (Fonseca et al 2008) y, dado su carácter socio-cultural, es lograr un marco legal más holístico que vaya más allá de aspectos técnico-burocráticos (Hochreiter 2011).

2.4 Datos de los SPG a nivel global

Hay 66 países en los que se desarrollan los SPG, ubicados principalmente en el sur global. Existen más de 311 mil productores involucrados dentro de por lo menos 242 iniciativas en todo el mundo. En el continente asiático hay 260366 productores involucrados (el mayor número en la India), 22726 en América Latina, 22699 en África, 2671 en Oceanía, 1767 en Norte América (Estados Unidos y Canadá) y 1220 en Europa. El desarrollo de los SPG ha sido mayor en los países donde gobiernos nacionales o regionales han reconocido los SPG como garantía o certificación de producción ecológica. No es de extrañar que en el hemisferio norte sea donde se han estancado o crecido mínimamente las experiencias de Sistemas Participativos de Garantía (Moura e Castro y Varini, 2017). Tanto porque los términos ecológico, orgánico, biológico sólo pueden ser usados por los productos con certificación por tercera parte (CPT), así como porque las sociedades de estas regiones son poco crédulas de este tipo de garantía, pasando porque las políticas agrarias, el individualismo y la economía de mercado han desarticulado la organización de las y los pequeños productores.

3. LOS SPG EN ANDALUCÍA

Los SPG fueron introducidos y promovidos como tal en España por la Dirección General de Agricultura Ecológica de la Junta de Andalucía en 2006 hasta 2008. Durante este tiempo, se trabajó de forma coordinada un proyecto piloto con pequeños productores en tres zonas de montaña de Andalucía, Castril, Serranía de

7 Más orientadas a cuestiones burocráticas y técnicas. Con el enfoque tradicional de incorporar a los pequeños productores al mercado, enfoque poco crítico con la economía de mercado y que no cuestiona mayormente las estrategias e instrumentos de los mercados competitivos y el SAG. Mientras que las organizaciones que hacen SPG usualmente trabajan bajo criterios de economía social y solidaria, donde la rentabilidad económica es un medio y no un fin, existiendo criterios de cooperación social y desarrollo endógeno como estrategias de funcionamiento de los proyectos (Azkunse 2013).
Ronda y Sierra de Segura. Como resultado se obtuvo una primera propuesta de SPG adaptada a la realidad andaluza y se desarrollaron herramientas para su implementación. Cuando el director general fue sustituido el proyecto perdió apoyo público y no se pudo trabajar la etapa de legalización y las actividades de SPG fueron cesando (Calle y Cuellar 2011). Sin embargo, este sistema de garantía quedó insertado en el espacio de pensamiento y acción de colectivos e instituciones que estudian, practican y/o desarrollan la agroecología, a los que podríamos llamar “movimiento agroecológico andaluz”. Está presente en organizaciones de producción y consumo, en la universidad de Córdoba, en la Internacional de Andalucía, en la Autónoma de Madrid, en la SEAE, entre otras entidades (De la Cruz 2011A; Haro 2013), que generaron un efecto irradiador de los SPG. Como ejemplo del interés generado se puede señalar que los más de 30 representantes de organizaciones de producción – consumo en el Encuentro de Experiencias de Canales Cortos de Comercialización en Andalucía realizado en 2013, eligieron a los SPG como el tema más importante a trabajar.

Podemos señalar que los SPG en Andalucía han pasado por tres etapas: la primera, correspondería a la puesta en marcha del proyecto piloto promovido desde la Junta de Andalucía (2006-2008), la segunda, concerniría a la asunción, adaptación y desarrollo del SPG por parte de organizaciones agroecológicas vinculadas a la FACPE (2010-2014) y la tercera, estaría marcada por la apropiación de los conceptos y herramientas generadas en las etapas anteriores por diversas organizaciones agroecológicas andaluzas (2013-2018)

3.1 Etapa de la puesta en marcha del proyecto piloto de SPG para Andalucía (2006-2008)

La Dirección General de Agricultura Ecológica (DGAE) de la Junta de Andalucía después de un estudio sobre la situación de la certificación del sector de la agricultura ecológica realizado en 2005 decide poner en marcha el 2006 un proyecto piloto de certificación participativa atendiendo a demandas de un sector de productores y productoras (Cuellar y Torremocha, 2009). Se decidió trabajar en zonas donde había un cierto cuestionamiento a la certificación por tercera parte, una demanda de un sistema alternativo y se estaba trabajando en la promoción de la agricultura ecológica desde la universidad, el grupo de desarrollo local o los ayuntamientos 8. Castril fue el único territorio que formó parte del proyecto piloto por una voluntad política de la DGAE, en los otros dos territorios hubieron demandas de actores locales para abordar la problemática de la CPT. Desde la DGAE se consideró que por el trabajo que se venía desarrollando en investigación agroecológica en Castril se podrían generar sinergias importantes. Producto de la relación con los alumnos y profesionales de las universidades y centros de investigación vinculados al ISEC la población aceptaba y valoraba el impulso externo a sus procesos locales (Cuellar 2008).

Se buscaba construir un modelo de manera participativa que se adaptara a la realidad social y productiva y formas de funcionar de las y los pequeños productores andaluces. No se pretendía replicar modelos de otras partes del mundo, aunque su referencia era importante. Cada una de las tres zonas siguió las siguientes etapas: un autodiagnóstico de la producción y la certificación ecológica, construcción de alternativas para abordar los problemas detectados y el ensayo y corrección del SPG trabajado. Los aportes territoriales se debatieron en reuniones en las que se encontraron las y los productores de las tres zonas y se acordaron, con un margen de flexibilidad, formas organizativas, procedimientos y herramientas, dando origen a un SPG de perfil Andaluz (Cuellar y Torremocha 2009).

Se pretendió desde la administración pública buscar una forma de legalizar los SPG, trabajo que no se pudo terminar debido al blindaje de la legislación europea al respecto y a que la DGAE cambió de director y posteriormente desapareció. Asimismo, el intento de cohesionar los territorios del proyecto piloto a través de una Red de SPG no se terminó de conseguir más allá de los encuentros mencionados anteriormente y algunas acciones puntuales de participación conjunta en actividades como las Bioferias andaluzas, aunque con una fuerte preponderancia de BioCastril, asociación surgida a raíz del proyecto piloto y que adquirió una dinámica de comercialización local en puestos de mercadillos en pueblos de la comarca de Huéscar, la creación de la cooperativa de producción-distribución EcoAltiplano y el posterior abastecimiento al programa de Alimentos Ecológicos para el Consumo Social en Andalucía (De la Cruz, 2015).

De los tres territorios Castril mantuvo su organización y SPG hasta 2010. La asociación Biocastril compartió los avances conseguidos en la etapa del proyecto piloto con otros colectivos, estudiantes universitarios de post grado e investigadores.

3.2 Etapa del desarrollo del SPG por parte de organizaciones agroecológicas vinculadas a la FACPE (2010-2014)

La FACPE – Federación Andaluza de Consumidores y Productores Ecológicos, organización sin ánimo de lucro, es importante a nivel andaluz y español como entidad de la sociedad civil que viene trabajando más 20 años en el desarrollo de alternativas al SAG. Está compuesta por organizaciones federadas de distintas provincias de Andalucía. Funciona a través de acciones acordadas en las asambleas, crean estrategias y mecanismos colectivos desde la lógica de que el consumo es un acto político que genera transformaciones solidarias y necesita de mercados locales y alternativos. La FACPE trabaja por preservar el medio ambiente y para apoyar a los pequeños productores y productoras ecológicas (FACPE, 2007 y De la Cruz 2015).

La FACPE en el 2010 decidió trabajar en la construcción de su SPG. Se partió del hecho que cada organización social implementaba desde sus orígenes formas de garantía directa con sus productores y productoras. Sin embargo, estas formas, aunque compartían principios éticos y políticos, les pertenecían a ellas y no estaban consensuadas a nivel de federación. Asimismo, las referencias Latinoamericanas, el conocimiento del proyecto piloto de SPG en Andalucía y que algunas de sus organizaciones ya habían empezado a trabajar individualmente sus SPG, hacían ver la pertinencia de este sistema dentro de la FACPE.

“….veíamos que lo que era el SPG era la figura que a nosotros nos faltaba para darle un poquito más una forma reglada de lo que nosotros teníamos como sistema de garantía y confianza dentro de nuestras organizaciones…una manera de formalizar con una estructura que no conocíamos, que vienen de experiencias que se desarrollaron en Latinoamérica y también recuperar la experiencia que hubo en Andalucía desde la Dirección General de Agricultura Ecológica…y aprovecharlas, adaptarlas a nuestro contexto, nos vino como anillo al dedo.”

Alejandro Brome (presidente de la FACPE 2007 - 2012)

El trabajo se dividió en dos fases, la primera fue de implementación teórica del SPG (información, sensibilización y acuerdos base para empezar a experimentar). La segunda fue de implementación y desarrollo del SPG en base a la experiencia.

El proceso se inició con los siguientes objetivos: a) darle una estructura organizativa y operativa a lo que ya se tenía, b) dinamizar la participación, acercamiento e integración de productores/as, sobre todo, y consumidores/as. c) dar carácter andaluz al SPG, d) servir como una vía para revitalizar la federación, como un motor de dinamización del sector agroecológico y los mercados locales, y que se visibilizara más su trabajo como alternativa al sistema agroalimentario globalizado.

Como resultados del proceso de construcción de este SPG son el acuerdo de criterios comunes, los factores de generación de confianza mínimos (cada organización puede incluir más si así lo considera), un reglamento interno de SPG – FACPE y diferentes formas de involucrarse en el proceso: a) facilitando la venta y/o formas de consumo de productos de SPG, b) promocionando el SPG en diferentes medios y formas, c) implementando los factores de generación de confianza consensuados, y d) participando en las instancias o estructuras que se acuerden a nivel de federación.

Los SPG dentro de la FACPE se plantearon también como dinamizadores y recuperadores de la participación de los productores/as. Se acordó que cada organización debía trabajar el grado de exigencia y motivación para que los productores se involucren en el SPG. Los mínimos propuestos para promover la participación de los productores/as en el SPG se basaron en los siguientes criterios: a) Visibilizar más sus productos en las tiendas,
b) Favorecer la compra de productos de SPg, c) priorizar a los productores SPg en las visitas técnicas y visitas de intercambio, y d) Enfatizar la difusión de los SPg en diferentes medios.

Estos mínimos tienen el objetivo de compensar a los productores y productoras de SPg por el tiempo que van a invertir y el trabajo que van a hacer en el sistema, en la organización; y para cambiar una actitud un tanto pasiva a una más activa y participativa. Como se aprecia todas las propuestas tienen carácter organizativo y de clara orientación a mejorar su posición en el mercado local.

Al igual que otros SPg en el mundo, una limitante para su extensión es el tiempo demandado a sus participantes, tanto para llevar a cabo todos los acuerdos, así como para coordinarse mejor. A diferencia de experiencias en el Sur global9, donde ONG’s con financiación de cooperación internacional asumen responsabilidades que alivian la carga a los productores/as y sus organizaciones, en el caso de las organizaciones FACPE están dependiendo de sus propios recursos, debido a la falta de interés de las administraciones públicas en apoyar este tipo de iniciativas.

Las cuatro organizaciones federadas (El Encinar, Ecovalle, La Ortiga y La Borraja) que desarrollaron su SPg señalaron que en sus zonas hay un alto interés y toma de contacto de diversos colectivos y profesionales para informarse sobre este sistema de garantía. Muestra de ello es la existencia de CCC en Cádiz, Sevilla y Granada que aceptan productos de SPg aun no siendo socios de la FACPE. Asimismo, hay flujo de productos de SPg entre las organizaciones de la federación y se ha facilitado información sobre el tema en diferentes espacios y foros del estado. Todo un conjunto de relaciones organizativas y comerciales que van tejiendo una red, basada en los SPgs. Sin embargo, también se expresó una preocupación conjunta porque se estaba utilizando el término SPg por personas y colectivos, sin entender el concepto y los criterios del mismo, con nulo o escaso trabajo de organización, sólo con la idea de acceder a determinados mercados locales.

3.2.1 Comparación entre dos casos correspondientes a dos etapas diferentes del SPG en Andalucía

Se presentan los casos de la asociación Biocastril y la asociación Ecovalle, dos organizaciones pioneras en el desarrollo del SPG en Andalucía y España. Estas dos pequeñas organizaciones desarrollaron procesos agroecológicos con características propias en dos zonas de la provincia de Granada. La primera, de base más tradicional con agricultores de la localidad y la segunda, con personas, jóvenes profesionales que querían vivir del campo, con poca experiencia en cultivar la tierra pero con ideas alternativas y agroecológicas y muy críticos con el sistema agroalimentario vigente. El desarrollo de sus SPg se vino inicialmente pero luego los procesos de transición agroecológica han sido diferentes.

Respecto al SPG, en el caso de Biocastril fue un tema más a trabajar en su proceso agroecológico, mientras que en el caso de Ecovalle, fue el “paraguas” de todo el proceso, fue el motor. La experiencia del SPG de Biocastril fue fuente de información directa para la construcción del SPG de Ecovalle.

Los socios de Biocastril tenían una práctica y una visión más ligada con el desarrollo técnico de la agricultura ecológica y la comercialización clásica de sus productos. Inicialmente con la intervención externa de personas y entidades de educación e investigación vinculadas al ISEC (Instituto de Sociología y Estudios Campesinos) y luego con el proyecto piloto de SPG estaban empezando a conocer y a practicar la agroecología, aunque no la habían interiorizado por la corta duración del proyecto para un cambio de visión colectiva, como se vio en su desarrollo organizativo y comercial posterior. En ese contexto, el SPG fue algo totalmente nuevo que se incorporó como una línea a trabajar. En el caso de Ecovalle, las personas que se integraron en esta organización tenían una fuerte visión agroecológica, la que llevaron a todas sus líneas de trabajo. Encontraron en el SPG una herramienta potente de organización que les permitía alcanzar sus objetivos. Muchos de ellos estaban influenciados por el ISEC al haber estudiado postgrados en la Universidad de Córdoba o la Universidad Internacional de Andalucía (De la Cruz 2015).

9 Ver Cuellar, 2008 y AGROECO, 2014
En los dos procesos agroecológicos, en los que tuvo presencia el SPG, hay similitudes y diferencias que presentamos en el siguiente cuadro:

Cuadro 3: Similitudes y diferencias de los procesos agroecológicos de Biocastil y Ecovalle.

<table>
<thead>
<tr>
<th>ASPECTOS INTERNOS DE LOS PARTICIPANTES Y DEL COLECTIVO</th>
<th>Biocastil</th>
<th>Ecovalle</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visión agroecológica</td>
<td>Vinculada al desarrollo técnico de la AE.</td>
<td>Potente en todas sus dimensiones.</td>
<td>En Biocastil empezaba a conocer y practicar la agroecología con el ISEC y el proyecto piloto de SPG</td>
</tr>
<tr>
<td>Visión del SPG</td>
<td>Autocertificación. Relación consumidor – productor. Intercambio de experiencias.</td>
<td>Herramienta de organización. Visión política, alternativa a la CPT y por tanto al SAG</td>
<td></td>
</tr>
<tr>
<td>Visión comercial</td>
<td>Distribución a tiendas y centros educativos (programa de consumo social)</td>
<td>Distribución directa a personas consumidoras. Ecosetas, Ecomercado</td>
<td>En el caso de Biocastil, la visión se materializó en Ecoaltiplano, una distribuidora.</td>
</tr>
<tr>
<td>Tipo de liderazgo, toma de decisiones.</td>
<td>La persona que dirige. El presidente, el gerente.</td>
<td>Asamblearia. Consenso. Delegación de responsabilidades</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ASPECTOS EXTERNOS AL COLECTIVO</th>
<th>Biocastil</th>
<th>Ecovalle</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redes y organizaciones agroecológica o de AE cercanas físicamente a las asociaciones</td>
<td>Ninguna organización de este tipo en la zona del altiplano.</td>
<td>El Vergel de la Vega. El Encinar La Red Agroecológica de Granada.</td>
<td>En cuanto a SPG Biocastil estaba sola en el altiplano. Tuvo interacción puntual con el Encinar de Granada.</td>
</tr>
<tr>
<td>Redes de organizaciones agroecológicas o de AE en Andalucía</td>
<td>Socios de la FACPE (luego Ecoaltiplano establece relación comercial con varias organizaciones de la federación) Socios de la RAS</td>
<td>Socios FACPE (hay trabajo conjunto del SPG) Socios RAS Socios RAG (se aceptan productos de SPG)</td>
<td>La Red Andaluza de SPG que pretendía cohesionar y generar trabajo conjunto de las tres organizaciones del proyecto piloto no terminó de cuajar.</td>
</tr>
<tr>
<td>Entidades públicas y educativas y personas externas</td>
<td>Muy alta influencia. Varias subvenciones y ayudas. Proyecto piloto de SPG. Taller de oficio</td>
<td>Baja influencia. Una subvención. Dinamizador externo del SPG.</td>
<td></td>
</tr>
</tbody>
</table>
Potenciales consumidores

<table>
<thead>
<tr>
<th></th>
<th>En el altiplano personas con bajos recursos económicos y desconocimiento de lo que es un producto ecológico.</th>
<th>En Granada capital y cinturón metropolitano hay más conocimiento de lo que es un producto ecológico y más recursos económicos.</th>
<th>Los puntos de venta en mercados en los pueblos fracasaron en ambos casos.</th>
</tr>
</thead>
</table>

Ubicación geográfica

| | Alejada de grandes centros urbanos. | Cerca de Granada capital y la costa. |
|---------------------|---|--|---|

Clima

| | Desfavorable para cultivos hortícolas (ventana de producción de 3 a 4 meses) | Favorable para cultivos hortícolas prácticamente todo el año (cultivos de temporada) |
|---------------------|---|--|---|

Propiedad/acceso a la tierra

| | Tierra en propiedad. Mayormente olivos y almendros. | Tierra cedida o alquilada. Condiciona inversiones y mejoras en infraestructura, cultivos y manejos agronómicos. En el caso de Ecovalle, por el abandono de tierras han podido acceder a cesiones o arrendamientos sin gran problema. |
|---------------------|---|--|---|

3.3 Etapa de apropiación de los conceptos y herramientas generadas en las etapas anteriores por diversas organizaciones agroecológicas andaluzas (2013-2018) - El tránsito de los SPG por Andalucía.

De los tres primeros proyectos piloto de SPG que se emprendieron en 2006, el SPG de la asociación Biocastril se mantuvo hasta 2010. Aportó las experiencias y herramientas construidas en esa etapa conjuntamente con los otros dos grupos a la asociación Ecovalle y en parte a la asociación El Encinar, quienes desarrollaron sus propios SPG. Estas experiencias nutrieron el proceso de construcción del SPG de la FACPE. Desde esta federación se compartió los criterios, reglamentos, documentos y herramientas consensuadas por las organizaciones que la conformaban y que habían adquirido experiencia en el desarrollo del SPG. En 2018 desarrollan sus SPG el Encinar (Granada), La Ortiga (Sevilla), La Borraja (San Lucar de Barrameda) relacionados a través de la FACPE. Sólo Ecovalle ha paralizado su SPG como producto de la fusión con el Vergel de la Vega y la creación de la cooperativa Valle y Vega, lo que les ha demandado mucho tiempo.

Los principios, herramientas y experiencia de desarrollo del SPG en Andalucía vienen sirviendo para que otras organizaciones construyan sus sistemas participativos de garantía. Así tenemos que desde el 2013 la Red Sevilla EcoArtesana trabaja en la implementación de su SPG como garantía en sus grupos de consumo. La asociación Como de Graná sostiene su sistema de garantía participativa desde 2013, abasteciendo a su grupo de consumo, a comedores escolares y los Ecomercados de Granada. La Red Agroecológica de Cádiz – RAC trabaja en su SPG desde 2016 e inicialmente ha sido su motor de organización y articulación. Es una de las dos formas de garantía en su Ecomercado. Desde 2017 la Red Agroecológica Alpujarra y Costa Granadina desarrolla su SPG. En octubre de 2018 la asociación Ecomercado de Córdoba viene trabajando para poner en marcha su Sistema Participativo de Garantía. La Red Agroecológica de Granada no tiene directamente un SPG aunque tiene socios que sí desarrollan ese sistema social de garantía y acepta en sus ecomercados productos avalados por un SPG. Como se puede ver, los SPG se vienen practicando por diversas organizaciones andaluzas, las que se han venido incrementando poco a poco.

En general, las herramientas y los factores de generación de confianza se han mantenido con algunas adaptaciones propias de la forma organizativa y disposición de personal de cada colectivo. Han surgido algunas innovaciones interesantes como la Guía de visita para las personas consumidoras (una guía reducida, una especie de “ayuda memoria” de lo que deben observar en las visitas), que se realiza a la par de la Guía que trabajan las y los productores socios del Encinar que participan de la visita SPG.

Varias de estas experiencias manifiestan algunas limitaciones o retos:
- La sobrecarga de trabajo que recae sobre las personas que dinamizan los procesos de SPG debido a que usualmente son las mismas que trabajan en otros procesos organizativos de los colectivos.
- Dispersión territorial de las unidades productivas. En algunos casos, como el de la Ortiga en Sevilla, la...
La experiencia y el desarrollo del SPG en Andalucía ha servido para que colectivos en otras zonas de España trabajen en la construcción de sus SPG. En 2017 se celebró el segundo encuentro nacional de sistemas participativos de garantía y en 2018 Granada acogerá la tercera edición de este evento.

Cuadro 4. Aspectos de las etapas del SPG en Andalucía

<table>
<thead>
<tr>
<th></th>
<th>Primera etapa (Proyecto piloto)</th>
<th>Segunda etapa (FACPE)</th>
<th>Tercera etapa (otros colectivos)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso</td>
<td>Adaptación de experiencias y herramientas foráneas (principalmente latinoamericanas)</td>
<td>Adaptación de herramientas y procedimientos del proyecto piloto</td>
<td>Adecuación de las herramientas y procedimientos de las dos etapas anteriores (sobre todo de la FACPE)</td>
</tr>
<tr>
<td>Actores principales</td>
<td>Productores ecológicos no organizados o en proceso. Administración pública (DGAE), Universidad de Córdoba - ISEC</td>
<td>Organizaciones FACPE (El Encinar, La Ortega, La Borraja, Ecovalle) con más de 15 años trabajando en organización y canales cortos</td>
<td>Otras organizaciones con visión agroecológica (Como de Graná, Red Agroecológica de las Alpujarras, Red Sevilla EcoArtesana, Red Agroecológica de Cádiz, etc.)</td>
</tr>
<tr>
<td>Uso del SPG como Garantía.</td>
<td>En acciones puntuales de comercialización (Bioferias andaluzas, puestos en mercadillos).</td>
<td>En las ecotienda de organizaciones socias de la FACPE. En el Ecomercado de Granada.</td>
<td>En diversas estrategias de Circuitos Cortos de Comercialización (Grupos de consumo, ecomercados, ecotiendas, etc.)</td>
</tr>
<tr>
<td>Uso del SPG como herramienta de organización</td>
<td>En la integración de criterios de las tres zonas del proyecto piloto. En el intento fallido de montar una Red de SPG</td>
<td>En la unificación de criterios de garantía de los socios FACPE. En la Implementación de una red de SPG que intercambie información y productos a nivel FACPE. Información sobre SPG a otros colectivos.</td>
<td>Como herramienta de cohesión interna de los colectivos. Como reivindicación frente al sistema de certificación por tercera parte. Como herramienta para la articulación en otras redes agroecológicas.</td>
</tr>
<tr>
<td>Algunas limitaciones o retos importantes</td>
<td>Dispersión de las y los productores en los territorios del proyecto. Visión agroecológica en construcción. Falta de organización funcional de las y los productores.</td>
<td>Dispersión de las fincas dentro de los SPG FACPE. Sobrecarga de trabajo para las personas que dinamizan el SPG. Incrementar el número de personas consumidoras</td>
<td>Dificultad de implicar a más número de personas productoras y consumidoras. Necesidad de ser más sistemáticos en sus SPG. Sobrecarga de trabajo en las personas que participan y dinamizan los SPG.</td>
</tr>
</tbody>
</table>

Elaboración propia y en base a De la Cruz 2015.
4. A MODO DE REFLEXIONES O CONCLUSIONES:

Como hemos visto a partir de lo sucedido en Andalucía y la reseña de lo que sucede a nivel global, los Sistemas Participativos de Garantía (SPG) son herramientas importantes para una democratización agroalimentaria que facilite una transición agroecológica. Los SPG, como instrumento pedagógico y organizativo, suponen un cuestionamiento de las instituciones que promueven el sistema agroalimentario globalizados. En lugar de dinámicas cerradas y verticales que promueven los oligopolios agroalimentarios los SPG apuntan a fomentar estrategias de empoderamiento social que dan lugar a la creación de: redes de apoyo entre las diferentes unidades productivas, mecanismos directos de confianza entre productores y consumidores, mercados locales, precios más justos, fomento de la biodiversidad cultivada, entre otros. De esta manera, los SPG proponen una nueva institucionalidad abierta y más horizontal que se opone a las dinámicas de los actuales sistemas agroalimentarios globalizados. Dinámicas locales que son capaces de generar articulaciones territoriales de mayor escala.

Los SPG tienen un enfoque agroecológico y sistémico de la producción y el consumo que les brindan características que los convierten en herramientas potentes de organización y de apoyo a la generación de mercados de proximidad.

Los SPG en ese sentido demuestran ser claves por el gran potencial que tienen de articular a las personas productoras y consumidoras en la generación de respuestas colectivas y la construcción de una alternativa al SAG desde los circuitos cortos de comercialización.

Los SPG son altamente innovadores porque generan nuevos procesos sociales, tanto de organización, comercialización y aprendizaje, así como porque visibilizan experiencias existentes, que se reafirman y/o recrean a través de este sistema de garantía. Promueve la innovación en la producción a través del intercambio de experiencias y la creación conjunta de conocimiento. Asimismo, el trabajo directo en circuitos cortos de comercialización y la relación horizontal con otros productores y consumidores generan experimentación e innovación, que luego adoptan o recrean otros colectivos bajo nuevas situaciones, en una red de conocimientos creciente y abierta.

Los SPG en Andalucía se han seguido realizando, aunque con limitaciones propias del territorio y los actores que han hecho suyo el sistema. Se han desarrollado en este tiempo herramientas y formas de proceder adaptadas a la realidad de la pequeña producción ecológica andaluza. A pesar de haber marcadas diferencias ideológicas entre los SPG y la certificación de tercera parte, en la práctica las y los pequeños productores en muchos casos emplean ambas formas de garantía debido principalmente a la falta de reconocimiento legal de los SPG y la falta de mayores puntos de venta donde se acepte esta garantía participativa, pero también como reivindicación.

Los SPG han sido asumidos por organizaciones agroecológicas críticas con el sistema agroalimentario globalizado y que desarrollan circuitos cortos de comercialización.

Existen limitaciones para el desarrollo del SPG producto de la falta de reconocimiento legal de este sistema de garantía, de la falta de apoyo económico de las administraciones públicas y el sobre esfuerzo organizativo.

Si la función garantizadora de un SPG no es reconocida legalmente, lo que motiva a los colectivos a tratar de sostener sus SPGs son los beneficios de la interacción entre productores y productoras, una mayor relación con las personas que consumen, el carácter reivindicativo de este sistema de garantía y una posición ideológica que busca transformar el sistema agroalimentario vigente.
5. REFERENCIAS BIBLIOGRÁFICAS

- AGROECO. 2014. Global comparative study on interactions between social process and participatory guarantee systems. Germany: IFOAM.
VALORACIÓN NUTRICIONAL DE VARIETADES TRADICIONALES DE JUDÍA GRANO DE CULTIVO ECOLÓGICO

Martínez-Gurrea L, Figueroa Zapata M; García-Martínez MD; Raigón MD

Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
luimarg4@etsiamn.upv.es; slaverde89@yahoo.es; magarma8@qim.upv.es; mdraigon@qim.upv.es

RESUMEN: Las legumbres siempre han formado parte de las comidas familiares y han sido incluidas en mayor o menor medida en los menús diarios de todas ellas, principalmente debido a las grandes aptitudes a nivel nutricional que pueden aportar como por ejemplo, los altos valores en fibra, proteínas e hidratos de carbono de absorción lenta, así como de minerales, vitaminas y compuestos bioactivos, sin olvidar además su bajo contenido en grasas y en azúcares simples; cualidades imprescindibles para una dieta equilibrada y que cada vez más se imponen como propiedades deseables de la materia prima en la industria de alimentos.

En el presente trabajo, se ha abordado el estudio de la composición nutricional de nueve variedades de judía o alubias (Phaseolus vulgaris), procedentes de una colección chilena, que custodia un grupo multidisciplinar que está trabajando por la conservación y recuperación de la biodiversidad alimentaria. Las semillas proceden de cultivo ecológico, siendo la primera siembra en España. Se determinaron los principales parámetros que definen su calidad (grasa, fibra, nivel de antioxidantes, proteína, minerales, humedad e hidratos de carbono). Los resultados obtenidos demuestran que las variedades analizadas presentan alta variabilidad, aunque los niveles de nutrientes están dentro del rango óptimo. Los niveles en proteína oscilan entre el 17 y el 21% y la fibra oscila entre el 4 y el 5%. El potencial antioxidante de las legumbres estudiadas es muy alto, destacando los ecotipos que presentan colores rojizos y negros. También destaca una alubia procedente del territorio como fuente de sustancias antioxidantes.

PALABRAS CLAVE: biodiversidad, grasa, fibra, proteínas, minerales, nutrición

KEY WORDS: biodiversity, fat, fiber, minerals, nutrition, proteins

INTRODUCCIÓN

Las legumbres son cultivos leguminosos anuales principalmente utilizados por el aprovechamiento de sus semillas o grano seco, aunque en algunos casos también se pueden consumir sus cosechas en verde, tanto para consumo humano, como para el consumo animal, empleándose en este caso también, como pasto o forraje para el ganado.

Existen una amplia y diversidad genética en la familia de las leguminosas, tanto por el número de especies, como por el número de variedades dentro de cada especie, como por ejemplo y por orden alfabético, alfalfa, algarroba, almörtas, altramuz, alubia, judía, poroto o frijol, cacahuete, carilla, guisantes, garbanzo, haba, lentejas, soja, tritó, trébol, veza, yeros, etc. entre las conocidas y comunes en la cuenca mediterránea, pero otras menos conocidas y presentes en el continente americano como canavalía (Canavalia ensiformis), dúpico (Lablab purpureus), cajan (Cajanus cajan L) o mucuna (Stizolobium niveum), aprovechables también por sus granos y como forrajes. Algunas de las especies son arbóreas, como el algarrobo, otras son arbustivas y la gran mayoría de forma herbácea, incluso algunas se emplean como ornamentales. El término legumbre se reserva para las que se cosechan y se consumen en grano seco, mientras que las de consumo verde como habas, judía verde, o guisantes, se clasifican como hortalizas. Por lo que desde el punto de vista botánico esta familia es importantísima por su aportación a la biodiversidad cultivada y espontánea del planeta.
Las legumbres o granos secos presentan una alta diversidad de tamaños, formas y colores, se muestran en un número variable de uno a doce granos, en el interior de una vaina. Desde el punto de vista nutricional, la importancia de las legumbres recae en que son la principal fuente de proteína de origen vegetal, aunque también son fuente de glúcidos o carbohidratos complejos, fibra, minerales, etc. Lo que influye en grandes beneficios para la salud humana.

Las leguminosas han sido una parte esencial de la dieta del ser humano durante siglos y, también, un componente destacado en la dieta mediterránea. En general, las semillas de las leguminosas, desde un punto de vista nutricional, se pueden dividir en dos grupos, un grupo formado por soja, cacahuete, etc. cuya energía es almacenada en forma de lipidos y un segundo grupo y más mayoritario, en el que la energía se deposita en forma de hidratos de carbono (entre un 30 y un 60%), destacando en este grupo las judías, garbanzos, lentejas, etc. La mayor parte de los glúcidos presentes en las legumbres son complejos y por tanto de absorción lenta y bajo índice glucémico, que ayudan a controlar los niveles de glucosa en sangre y pueden ser muy útiles para los diabéticos. Excepto las legumbres del primer grupo, el resto contienen muy poca grasa (2-5%), por lo que el aporte calórico es bajo, aproximadamente unas 300 kcal por 100 g de la legumbre cruda o unas 100-150 kcal por cada 100 g cuando la legumbre está cocinada, además no aporta colesterol.

Pero la característica nutricional y que abarca a los dos grupos es que principalmente son fuente de proteína (Gatel, 1992), siendo esta proteína de composición variable, en función de las especies y las variedades, y no aporta gluten. El contenido en proteína puede variar entre el 20 y el 40%, con una fracción en aminoácidos esenciales muy importante.

Las leguminosas también aportan fibra (12-25%) que ayuda en el control de los niveles de colesterol y de glucosa en sangre y en prevenir el estreñimiento. El alto contenido de fibra presenta un efecto saciante que ayuda en los regímenes de adelgazamiento.

También presentan niveles de vitaminas pertenecientes al grupo B, minerales, como potasio, fósforo, magnesio, zinc y en especial hierro y calcio. Y componentes fitoquímicos, entre los que destacan los fitoesteroles, compuestos con capacidad para modular el desarrollo de ciertos tipos de cáncer y evitar la absorción colesterol (Anderson et al., 1999). Los fitoesteroles comprenden compuestos fenólicos tales como los flavonoides, a los cuales se le atribuyen propiedades antioxidantes y como fitoestrógenos, destacando las isoflavonas. Su relación con la disminución del riesgo de desarrollar ciertas enfermedades tales como cáncer pancreático, cáncer de mama y de colon, enfermedades coronarias e inflamaciones, se ha relacionado en gran parte, con la actividad antioxidante atribuida a los compuestos fenólicos presentes (Mazur et al., 1998).

Por todos estos aspectos beneficiosos, se recomienda que la dieta incluya unas dos o tres raciones de legumbres a la semana, es decir unos 160-240 g por semana, lo que equivale entre 150 y 200 g de legumbres ya cocinadas por ración.

El completo aprovechamiento de las leguminosas también es afectado por la presencia de ciertos factores antinutricionales, aunque los tratamientos térmicos usuales a los cuales son sometidas las leguminosas para aplanar su textura y poder así ser consumidas, también eliminan o disminuyen los factores antinutricionales e incrementan su valor nutricional, digestibilidad de proteínas y de almidones. Otros métodos, como la germinación de las semillas de leguminosas, reducen los componentes antinutricionales y aumentan los niveles fitoquímicos presentes en estas semillas.

El cultivo de legumbres en los últimos 50 años ha tenido un retroceso en la superficie y en consecuencia del consumo, que ha descendido notablemente desde los 13 kg por persona y año, hasta los 3 kg, aumentando en cambio la producción de legumbres para producción animal (González-Bernal y Rubiales, 2016). Se está intentando revertir esta situación mediante el fomento de una alimentación saludable, en la que las legumbres deberían tener un papel principal, gracias a los muchos beneficios de este alimento.
Las legumbres son un recurso medioambiental, principalmente por:

Para producir 1 kg de proteína procedente de judías se requiere nueve veces menos de tierra, diez veces menos agua y doce veces menos de fertilizantes, que para producir 1 kg de proteína de ternera (Sabaté et al., 2014).

Fijan el nitrógeno atmosférico en nódulos situados en sus raíces en simbiosis muy específica con la bacteria Rhizobium, lo que contribuye a aumentar la fertilidad del suelo, sin la aplicación de fertilizantes, incrementando la fracción de la materia orgánica en el suelo, y en consecuencia la mejora de su estructura, la disminución de la contaminación de los suelos y de las aguas subterráneas, por disminución de la lixiviación (Zargar et al., 2017).

Contribuyen a la salud de los suelos y a la mitigación de los efectos del cambio climático mediante sus propiedades de fijación del nitrógeno, siendo adecuadas para la recuperación de suelos erosionados y/o degradados.

El principal objetivo del presente trabajo es tipificar nutricionalmente, una colección de nueve ecotipos de judía grano. La particularidad de estas semillas se centra en su singularidad, ya que la gran mayoría no se encuentran de forma regular en el mercado, al no estar disponibles, en grandes cantidades, para su cultivo masivo, o bien por el desconocimiento de los agricultores hacia estos materiales extraños o particulares. Los resultados pueden ser también de interés para la industria de transformación alimentaria.

MATERIAL Y MÉTODOS

Las nueve variedades de judía o alubias pertenecen al género Phaseolus, dentro del que existen distintas especies, procedentes de una colección chilena, que custodia un grupo multidisciplinar que está trabajando por la conservación y recuperación de la biodiversidad alimentaria (https://www.biodiversidadalimentaria.cl/). Todas las semillas son legumbres comestibles de la familia Fabaceae. Las variedades de judía se diferencian por el color. Existen dos ecotipos de color blanco, una de ellas se trata de una variedad comercial (Blanca de referencia, BR), tiene forma ligeramente arriñonada-oval y color blanco veteado. La variedad Coyunda (CO), también de color blanco veteado, presenta una forma marcadamente arriñonada, con un tegumento con gran cantidad de hendiduras (figura 1).

De las judía grano de color oscuro se encuentra la judía Pinta (PI) y la Burrito (BU), la primera de color marrón claro con trazas de color rosáceo y de forma ovalada; y la segunda de color amarronado, y de forma redondeada (figura 2). Las variedades Edy (ED) y Hayado de Café (HC), las dos de mayor tamaño comparadas con las demás variedades, la primera con forma arriñonada oval y fácilmente reconocible por su intenso color negro, con pequeñas manchas marrones; la segunda, también de gran tamaño con forma muy arriñonada y de color marrón claro con manchas de un color marrón más oscuro (figura 3).

El tercer grupo de judías se caracterizan por tener motas oscuras sobre colores del tegumento que oscilan del blanco al marrón-rojizo. Son las variedades de judía Sapito (SA), Tongo Negro (TN) y Cabrito (CA), todas ellas de gran calibre (figura 4).

Las determinaciones realizadas para evaluar la composición nutricional en las legumbres han sido el contenido en humedad, el contenido en grasa, el contenido en nitrógeno total y determinación de la proteína, el contenido en fibra, el contenido en hidratos de carbono, actividad antioxidante total, contenido en polifenoles, el contenido en potasio, fósforo, calcio, magnesio, hierro, cobre, zinc. Se han empleado métodos oficiales de análisis (AOAC, 2000).

El contenido de humedad (%) se obtiene mediante diferencia del peso de la materia inicial y la sustancia seca (SS) obtenida después de un proceso de secado en estufa con aire forzado a 70 °C ± 2 °C, hasta pesada constante, que se calcula como:
\[SS = \frac{P(\text{seco+crisol}) - P(\text{crisol})}{P(\text{muestra inicial})} \times 100 \]

Donde: \(P(\text{seco + crisol}) \) es el peso (g) de la cápsula de porcelana más la muestra desecada, \(P(\text{crisol}) \) es el peso (g) de la cápsula de porcelana, \(P(\text{muestra inicial}) \) es el peso (g) de la muestra fresca.

Figura 1. Judía variedad blanca de referencia (izquierda) y variedad Coyunda (derecha).

Figura 2. Judía variedad Pinta (izquierda) y variedad Burrito (derecha).

Figura 3. Judía variedad Edy (izquierda) y variedad Hayado café (derecha).
El análisis de grasa se realiza mediante extracción con equipo Soxhlet. Para ello, se pesan aproximadamente 2 g de muestra molido, y se introducen en un cartucho. Se tara un matraz, desecado en la estufa y enfriado en el desecador, y se introduce el cartucho con la muestra en el extractor. Se añaden unos 300 mL de n-hexano y una vez conectado el matraz, se procede a la extracción. Son suficientes unas 4 horas a una velocidad de destilación de 4 a 5 gotas por segundo. Transcurrido el tiempo de extracción, se saca el cartucho del extractor y se recupera el n-hexano con el rotavapor. Finalmente, se deja enfriar el matraz en el desecador y, en cuanto alcance la temperatura ambiente se pesa. El porcentaje de grasa bruta sobre sustancia seca viene dado por la fórmula:

\[
Grasa \ (\%) = \frac{(P_1 - P_2)}{P} \times 100
\]

Donde: \(P_1\) es el peso \((g)\), del matraz con el extracto etéreo, \(P_2\) el peso \((g)\), del matraz vacío y \(P\) el peso \((g)\) de la muestra inicial.

Para la determinación del contenido en proteína se pesan 0.5 g aproximadamente de cada legumbre, y se introduce en el tubo especial de digestión, se añaden la mezcla de catalizadores y de ácidos, agitando suavemente el tubo digestor y se deja reposar unos minutos, para evitar excesiva formación de espuma, colocándolo seguidamente en el bloque digestor a 420 ºC, durante 30 minutos.

Al cabo de los 30 minutos de digestión, se dejan enfriar durante 10 minutos, se añaden con precaución 50 mL de agua destilada a cada tubo, se coloca el tubo de digestión en la unidad de destilación, previamente preparada y ajustada, se sitúa en la unidad de destilación un erlenmeyer de 250 mL, con 15 mL de la mezcla de ácido bórico + indicador y una vez recogidos de 100 a 125 mL de destilado, se valora con \(H_2SO_4\) 0.05 N, hasta el viraje de verde a rojo pálido. Se realizará una prueba en blanco. El nitrógeno total se expresa en tanto por cien sobre la materia seca, y se calcula por la fórmula:

\[
\%N_{TOTAL} = \frac{(V_m - V_b) \times f \times N \times 100}{mg} \times 14
\]

Donde: \(V_m\) es el volumen de \(H_2SO_4\) \((ml)\) gastados en la valoración de la muestra, \(V_b\) es el volumen de \(H_2SO_4\) \((ml)\) en la valoración del blanco, \(f\) es el factor de normalización del \(H_2SO_4\), \(N\) es la concentración normal del \(H_2SO_4\) y \(mg\) es el peso \((mg)\) de la muestra. Para la determinación de la proteína bruta se multiplica en contenido en nitrógeno total por el factor de 6.25.
El contenido en fibra de las legumbres se determina mediante la obtención del residuo etéreo después de diversas extracciones ácidas y básicas. El último paso es el secado y calcinado de las muestras. Para ello se introducen las cápsulas y los crisoles en estufa a 130 °C durante 2 h y posteriormente se dejan enfriar en el desecador. Se pesan las cápsulas y los crisoles y se introducen en la mufa a 600 °C durante 4 horas. Transcurrido el tiempo se dejan enfriar en el desecador y se pesan las cenizas resultantes. El contenido en fibra se expresa en porcentaje sobre la materia seca, y se calcula por la fórmula:

\[
\text{FB(\%)} = \frac{W3-(W1 \times C)-(W5-W4-D)}{W2} \times 100
\]

Donde: W1 es el peso (mg) de la cápsula vacía previamente secada y enfriada, W2 es el peso (mg) de la muestra de la legumbre pulverizada, W3 es el peso (mg) de las cápsulas con la muestra digerida y secada, W4 es el peso (mg) del crisol vacío y secado, W5 es el peso (mg) del crisol con las cenizas de la cápsula y la muestra, C es el valor del blanco establecido como ratio entre el peso de la cápsula digerida y seca, y la cápsula sin digerir, D es el peso (mg) de las cenizas del blanco.

Para la determinación del contenido en cenizas o minerales totales hay que realizar una destrucción de la materia orgánica por incineración en horno de mufa a 450 °C. En el procedimiento se pesan con exactitud aproximadamente 2 g de la muestra molido y se deposita en el crisol de porcelana previamente tarado. Se introduce en la mufa fría y se eleva la temperatura a 450 °C, manteniéndose durante dos horas. A continuación se deja enfriar, observando que las cenizas obtenidas son generalmente claras.

El contenido mineral total, representado por la concentración en cenizas, se determina por la siguiente fórmula, expresando el resultado en porcentaje de cenizas sobre material vegetal seco:

\[
\text{Cenizas (\%)} = \frac{P1 - P2}{P} \times 100
\]

Donde: P1 es el peso (g) del crisol con las cenizas, P2 es el peso (g) del crisol vacío y P es el peso (g) de la muestra de legumbre.

Con las cenizas o minerales totales se determina la concentración de los minerales individuales. Para ello, se humedecen las cenizas con 2 o 3 mL de agua destilada y 2 mL de ácido clorhídrico concentrado, agregándolo lentamente. Se calienta sobre placa calefactora a unos 40 °C unos 5 minutos aproximadamente o hasta la aparición de los primeros vapores y se le añaden 2-3 mL de agua destilada, toda esta operación se realizará en la campana de aire por seguridad. Por último, se filtra con filtro exento de cenizas, enjuagando el crisol tres o cuatro veces con agua templada y se enrasa con agua destilada, en matraz de 100 mL.

La determinación de potasio se realiza por fotometría de llama, la de fósforo por espectrofotometría UV/Vis, la de calcio, magnesio, hierro, cobre y zinc, por absorción atómica.

La determinación de los carbohidratos se realiza por equivalencia con el extracto libre de nitrógeno (ELN). El ELN de un alimento se determina por diferencia porcentual entre el peso de la muestra y la suma de los porcentajes de grasa, fibra, proteína y el contenido en cenizas, mediante la fórmula:

\[
\text{Hidratos de carbono (\%)} = 100 - \left[\text{ceniza (\%)} + \text{fibra (\%)} + \text{grasa (\%)} + \text{proteína (\%)}\right]
\]

El conjunto de los compuestos fenólicos presentes en las legumbres se determina por la reacción con el reactivo de Folin-Ciocalteu, y el producto resultante se mide espectrofotométricamente a una \(\lambda=725\) nm.

La determinación de la actividad antioxidante total en la legumbre se realizó según el método expuesto por Brand-Williams et al. (1995), con modificación de Moura et al. (2007), basado en la captura del radical
libre DPPH. La extracción de la muestra se llevó a cabo pesando aproximadamente 0,150 g de legumbre que se introducen en tubos Falcon de 10 mL a los que se añaden 5 mL de metanol al 50%, y se lleva a agitación durante una hora y posteriormente se centrifuga durante 20 min a 1600 rpm. El sobrenadante de cada tubo se guarda en aforados individuales de 10 mL en oscuridad para evitar oxidaciones. Se realiza una segunda extracción añadiendo 5 mL de acetona al 70% a los sólidos que quedan en cada tubo y se llevan a agitación durante una hora y centrifugación durante 20 minutos. Se filtra la segunda extracción y se enrasa con agua destilada. Inmediatamente antes del análisis se preparó una curva.

patrón de Trolox en etanol desde 0 a 1,8 mM. Las medidas se realizaron a la absorbancia de 515 nm mediante espectrofotometría UV/V transcurrido un minuto desde la introducción de la cubeta conteniendo 0,1 mL de patrón o muestra y 3,9 mL de disolución DPPH. La actividad antioxidante total de la muestra se obtiene a partir de la absorbancia, extrapolando el resultado en la curva DPPH-absorbancia y se expresa como μM Trolox Equivalent (TE) por gramos de materia fresca.

Para contrastar los resultados se ha calculado la desviación estándar de los valores obtenidos para cada parámetro analizado, en cada tipo de legumbre. Se han contrastando los resultados con los valores publicados en las tablas de composición de alimentos de Novartis Medical Nutrition (http://farmacia.ugr.es/nutrire/tabla/pdf/tabla.pdf), que a su vez se alimenta de los estándares de las tablas de McCance y Widdowson (1946) y en los de USDA (Bernice y Merrill, 1975). También se han contrastado con los valores de la Base de Datos Española de Composición de Alimentos (http://www.bedca.net/bdpub/) y para el caso específico de los componentes antioxidantes se contrasta con lo publicado por Pellegrini et al. (2006). También se ha consultado el Handbook en materia de legumbres (De Ron, 2015).

RESULTADOS Y DISCUSIÓN

La tabla 1 muestra los valores de los resultados de los macronutrientes (fibra, grasa, proteína, humedad e hidratos de carbono), para la colección de semillas grano de leguminosas estudiada. Se muestran los valores promedio de cada parámetro y la desviación estándar. En los casos donde no se disponía de un tamaño de muestra suficiente, no aparece el valor de la desviación estándar.

El contenido en humedad de las legumbres estudiadas oscila entre el 4.0% para el caso de la judía tipo Pinta y el 5.1% para la judía tipo Coyunda. En todos los casos, muestran menor contenido en agua, que los niveles que se citan en bibliografía (Bedca, 2013). Las legumbres en general y las judías en particular se caracterizan por un valor bajo en agua. La humedad en este tipo de alimentos es un factor decisivo para mantener la calidad del mismo durante la conservación y comercialización. Debido a ello, en su consumo directo, una de las etapas previas es la hidratación o remojo durante unos 12 h previas a su elaboración, en este proceso las legumbres se hidratan e incrementan su volumen.

Además, el contenido en agua es un factor crucial en los procesos industriales de estos alimentos, ya que afecta de manera notable a las propiedades reológicas del producto final. Si por ejemplo se pretende fabricar un snack, su textura crujiente dependerá mayoritariamente de su contenido en humedad. Además, durante el propio proceso industrial, afecta a la gelatinización y la digestibilidad del almidón, y a la estabilidad de algunos de los compuestos bioactivos. Se recomienda que la humedad no sea superior al 19%, para no acelerar la pérdida de nutrientes por reacciones de Maillard (Singh et al., 2007).

El contenido en grasa oscila entre casi el 0.4% al 0.8%, siendo los valores inferiores a los datos citados en bibliografía (Bedca, 2013; Moreiras et al., 2013; De Ron, 2015). Las legumbres, en general, contienen bajos niveles de lípidos, a excepción de las de tipo oleaginoso. Por su bajo contenido en grasa se proponen como un alimento de bajo riesgo cardiovascular (Bazzano et al., 2011). Al ser alimentos que contienen menos de 3 g de grasa por 100 g, estas leguminosas podrían clasificarse como alimentos de bajo contenido en grasa, o con cualquiera otra declaración que pueda tener el mismo significado (Reglamento CE Nº 1924/2006; Reglamento (UE) Nº 116/2010).
Tabla 1. Valores promedio y desviación estándar de los macronutrientes (%)

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Humedad (%)</th>
<th>Grasa (%)</th>
<th>Proteína (%)</th>
<th>Fibra (%)</th>
<th>Hidratos de carbono (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>4.896 ± 0.279</td>
<td>0.482 ± 0.499</td>
<td>17.745 ± 0.410</td>
<td>5.585 ± 0.078</td>
<td>62.780 ± 0.611</td>
</tr>
<tr>
<td>CO</td>
<td>5.133 ± 0.041</td>
<td>0.843 ± 0.176</td>
<td>21.052 ± 0.297</td>
<td>4.860 ± 0.092</td>
<td>58.091 ± 0.683</td>
</tr>
<tr>
<td>CA</td>
<td>4.175 ± 0.086</td>
<td>0.819 ± 0.148</td>
<td>16.788 ± 0.261</td>
<td>4.040 ± 0.438</td>
<td>60.383 ± 0.978</td>
</tr>
<tr>
<td>BR</td>
<td>4.585 ± 0.021</td>
<td>0.415 ± 0.211</td>
<td>19.237 ± 0.121</td>
<td>4.315 ± 0.841</td>
<td>62.934 ± 1.096</td>
</tr>
<tr>
<td>BU</td>
<td>4.317 ± 0.121</td>
<td>0.773 ± 0.700</td>
<td>17.948 ± 0.639</td>
<td>4.255 ± 0.078</td>
<td>61.226 ± 0.908</td>
</tr>
<tr>
<td>PI</td>
<td>4.056 ± 0.102</td>
<td>0.624 ± 0.251</td>
<td>19.579 ± 0.354</td>
<td>5.115 ± 0.474</td>
<td>59.841 ± 0.184</td>
</tr>
<tr>
<td>SA</td>
<td>4.358 ± 0.070</td>
<td>0.381 ± 0.275</td>
<td>18.070 ± 0.292</td>
<td>4.265 ± 0.742</td>
<td>61.502 ± 0.767</td>
</tr>
<tr>
<td>ED</td>
<td>4.222 ± 0.216</td>
<td>0.659 ± 0.153</td>
<td>17.013 ± 0.273</td>
<td>4.360</td>
<td>63.591 ± 2.170</td>
</tr>
<tr>
<td>TN</td>
<td>4.835 ± 0.078</td>
<td>0.379 ± 0.237</td>
<td>19.389 ± 0.439</td>
<td>4.250</td>
<td>61.535 ± 1.989</td>
</tr>
</tbody>
</table>

Desde el punto de vista tecnológico, los bajos niveles en grasa favorecen algunos procesos de extrusión y elaboración de pastas, por lo que las judías tendrían una buena aptitud para la industria de alimentos, en estos procesos y también para conservas, bien cocidas o condimentadas con verduras. Un exceso en el porcentaje lípido podría afectar a la fuerza de torsión durante el proceso, además de que un exceso de ácidos grasos libres también afectaría a las características organolépticas del producto final, dándose un sabor u olor indeseable.

El contenido en proteínas oscila, en promedio, entre el 16% para el caso de la variedad cabrito (CA), hasta el 21% en el caso la variedad Coyunda (CO) de judías. En general son valores altos de proteína, excepto para el caso de las judías tipo CA, ED y VA, donde los valores son inferiores al 17% (De Ron, 2015), aunque otros autores (Moreiras et al., 2013) proponen valores del 19% para el caso de las judías o alubías. En cualquier caso, son alimentos con un alto contenido en proteína. Y teniendo en cuenta que los contenidos en proteínas aportan como mínimo el 12% del valor energético del alimento, estas legumbres pueden declararse como alimentos de fuente de proteínas, así como de cualquier otra declaración que pueda tener el mismo significado para el consumidor (Reglamento CE Nº 1924/2006; Reglamento (UE) Nº 116/2010). Las variedades de judías del presente estudio que presentan altos valores proteicos, podrían ser de gran aptitud para la industria de alimentos puesto que en los procesos industriales realizados con harinas de leguminosas se pretende que éstas lleven una carga adicional de proteína para ayudar en los procesos de extrusión (Shah et al., 2016), incrementando el valor añadido en estos alimentos. Además, el procesado de las proteínas facilitaría su digestibilidad, proporcionando mayor beneficio al alimento final (Singh et al., 2007; Morales et al., 2015).

Las legumbres son alimentos ricos en fibra soluble, es decir, de la que es fermentada en el colon por las bacterias (pectinas, gomas, mucilaginos, β-glucanos y algunas hemicelulosas). Se ha demostrado el efecto beneficioso de la fibra sobre diversos factores de riesgo, como hipercolesterolemia, diabetes tipo II, hipertensión arterial y obesidad (Fernández-Miranda, 2010). Los niveles de consumo de fibra, con los que se observa mayor protección para la enfermedad cardiovascular en los estudios clínicos, está alrededor de 28 g/día en la mujer y 36 g/día en el varón. Los niveles de fibra encontrados en las judías están por debajo del valor (6.3%) que indica la bibliografía para este tipo de legumbres (De Ron, 2015), destacando el HC, como las de mayor cantidad. En el caso de las judías al ser alimentos que contienen más de 3 g de fibra por 100 g, podrían clasificarse como alimentos “fuente de fibra”, o con cualquier otra declaración que pueda tener el mismo significado para el consumidor (Reglamento CE Nº 1924/2006; Reglamento (UE) Nº 116/2010). Tecnológicamente, el contenido en fibra afectará de manera positiva a las propiedades relacionadas con la textura como por ejemplo la dureza, cohesividad o elasticidad (Shah et al., 2016), por lo que las legumbres estudiadas aportarían beneficios en la elaboración de harinas y en los procesos tecnológicos.
El contenido en hidratos de carbono de las legumbres estudiadas oscila, en promedio, entre el 58% para el caso de la variedad Coyunda (CO) de judías y el 63% para la variedad Edy (ED). Los contenidos en hidratos de carbono que indica la bibliografía son variables, en función de los autores. En cualquier caso, los valores del presente estudio están próximos a los datos bibliográficos [Novartis, 2010; Moreiras et al., 2013]. Este contenido en hidratos de carbono se traduce en que se trata de alimentos de gran aporte de energía, muy valorada como alimento base en elaboraciones de cuchara en la ingesta diaria. También los altos valores de hidratos de carbono (superiores al 50%) hacen de estas legumbres una buena materia prima para su procesado en harinas, para elaboraciones posteriores en la industria alimentaria.

La tabla 2 muestra los valores (mg/100 g de judía) del contenido mineral (calcio, magnesio, fósforo, potasio, hierro, cobre y zinc), para la colección de semillas grano de leguminosas estudiada. Se muestran los valores promedio de cada parámetro y la desviación estándar. Se observa que el mineral mayoritario en todos los casos es el potasio, seguido del calcio, fósforo y magnesio, en este orden, excepto en algunos casos, donde los niveles de fósforo superan a los de calcio (HC, CA, ED). De los oligoelementos, el de mayor concentración es el zinc, seguido del hierro y del cobre.

Al comparar los datos bibliográficos (Bejarano et al., 2002) con aquellos obtenidos en el presente trabajo se concluye que los niveles en cenizas de las judías analizadas en el presente estudio son superiores, posiblemente debido a los diversos factores que influyen en la concentración de estos micronutrientes en la planta como la composición y características del suelo, las condiciones medioambientales, las técnicas agronómicas, así como la especie y la variedad. Las condiciones de producción ecológica pueden influir en la mayor acumulación de estos nutrientes minerales.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Ca (mg/100 g)</th>
<th>Mg (mg/100 g)</th>
<th>P (mg/100 g)</th>
<th>K (mg/100 g)</th>
<th>Fe (mg/100 g)</th>
<th>Cu (mg/100 g)</th>
<th>Zn (mg/100 g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>400.64±10.22</td>
<td>200.09±11.09</td>
<td>484.39±63.62</td>
<td>1805.16±171.32</td>
<td>2.688±0.197</td>
<td>1.567±0.017</td>
<td>3.909±0.044</td>
</tr>
<tr>
<td>CO</td>
<td>798.64±452.42</td>
<td>159.72±37.31</td>
<td>496.24±114.88</td>
<td>1583.75±184.09</td>
<td>2.910±0.523</td>
<td>2.342±0.098</td>
<td>3.643±0.064</td>
</tr>
<tr>
<td>CA</td>
<td>416.80±35.45</td>
<td>139.74±14.06</td>
<td>430.40±103.31</td>
<td>1323.80±112.86</td>
<td>2.139±0.267</td>
<td>1.717±0.122</td>
<td>2.977±0.191</td>
</tr>
<tr>
<td>BR</td>
<td>626.21±144.01</td>
<td>180.07±9.94</td>
<td>488.58±62.79</td>
<td>1488.40±19.54</td>
<td>1.955±0.089</td>
<td>1.863±0.011</td>
<td>3.207±0.068</td>
</tr>
<tr>
<td>BU</td>
<td>835.71±49.33</td>
<td>213.04±48.85</td>
<td>372.45±110.66</td>
<td>886.14±48.67</td>
<td>3.366±0.306</td>
<td>1.108±0.049</td>
<td>3.079±0.109</td>
</tr>
<tr>
<td>PI</td>
<td>714.30±100.75</td>
<td>205.50±10.63</td>
<td>411.69±18.86</td>
<td>1470.73±19.64</td>
<td>2.384±0.135</td>
<td>1.516±0.038</td>
<td>3.639±0.088</td>
</tr>
<tr>
<td>SA</td>
<td>855.35±21.55</td>
<td>235.26±49.86</td>
<td>392.35±70.05</td>
<td>1252.58±116.23</td>
<td>2.247±0.078</td>
<td>2.013±0.095</td>
<td>3.317±0.144</td>
</tr>
<tr>
<td>ED</td>
<td>407.60±23.88</td>
<td>202.15±13.44</td>
<td>464.15±19.37</td>
<td>1352.44±157.59</td>
<td>2.168±0.039</td>
<td>0.772±0.013</td>
<td>3.537±0.016</td>
</tr>
<tr>
<td>TN</td>
<td>408.98±41.59</td>
<td>145.48±14.77</td>
<td>330.50±26.85</td>
<td>1330.91±144.66</td>
<td>2.869±1.328</td>
<td>1.691±0.143</td>
<td>2.759±0.255</td>
</tr>
</tbody>
</table>

El contenido en potasio de las legumbres estudiadas oscila, en promedio, entre los 886 mg por cada 100 g para el caso de la variedad Burrito (BU) de judías y los 1800 mg de la variedad Hayado de Café (HC). Los granos de la variedad Burrito son los únicos que no alcanzan el valor de referencia. Las necesidades diarias de potasio son de aproximadamente 3000 mg 4000 mg de potasio al día, por lo que la única ingesta de 200-250 g de judía tipo Hayado Café HC), de la Pinta (PI) cubrirían las necesidades de este elemento.

El contenido en calcio de las legumbres estudiadas oscila, en promedio, entre los 886 mg por cada 100 g hasta los 855 mg de Ca que muestra (SA). En todos los casos, los niveles de calcio son superiores a los valores de referencia. Una de las grandes ventajas que presenta el calcio es su invariabilidad en el tiempo desde el momento de su recolección, envasado, etc. hasta el momento de consumo, es decir que el contenido de calcio de los alimentos no se altera en ninguna etapa. La cantidad diaria recomendada de calcio es de 800 mg, por lo que entre 100 y 150 g, dependiendo de la variedad, podrían cubrir las necesidades diarias de este elemento mineral.
El contenido en fósforo excepto para el caso de las judías tipo Burrito (BU) y Tongo Negro (TN) están en concentraciones superiores a los de referencia. Para el caso del manganes, los granos de judías de la variedad Cabrito y Tongo Negro son los que tienen valores de manganes inferiores a los de referencia. La cantidad diaria recomendada para el manganes está cifrada en 300 mg/día, por lo que una ración de 150-200 g de legumbre, dependiendo del tipo, aportan las cantidades de manganes recomendadas.

En todos los casos los niveles de hierro de los granos de legumbres estudiados están por debajo de los valores de referencia. La cantidad de hierro que la planta absorbe depende de la biodisponibilidad de este elemento en el suelo. La cantidad diaria recomendada de este elemento está cifrada en 12-18 mg/día en una persona adulta, cantidades que no son asumibles cubrir únicamente con la ingesta de este tipo de legumbres, ya que las cantidades de legumbre para alcanzar las necesidades serían de unos 400 g. Algo similar ocurre con los niveles en zinc.

La tabla 3 muestra los valores de los parámetros con acción antioxidante evaluados en la colección de judías (capacidad antioxidante total y contenido polifenólico). Se muestran los valores promedio de cada parámetro y la desviación estándar.

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Capacidad antioxidante (µmoles/100 g)</th>
<th>Polifenoles totales (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>52562.10 ± 12751.183</td>
<td>5.657 ± 0.307</td>
</tr>
<tr>
<td>CO</td>
<td>53014.58 ± 17106.853</td>
<td>5.224 ± 1.093</td>
</tr>
<tr>
<td>CA</td>
<td>43838.64 ± 21386.736</td>
<td>6.185 ± 0.815</td>
</tr>
<tr>
<td>BR</td>
<td>58174.20 ± 21930.973</td>
<td>7.417 ± 0.038</td>
</tr>
<tr>
<td>BU</td>
<td>48764.23 ± 22951.507</td>
<td>6.500 ± 1.844</td>
</tr>
<tr>
<td>PI</td>
<td>52777.54 ± 19014.865</td>
<td>7.898 ± 0.992</td>
</tr>
<tr>
<td>SA</td>
<td>45566.61 ± 22213.146</td>
<td>6.606 ± 0.589</td>
</tr>
<tr>
<td>ED</td>
<td>54707.21 ± 22263.637</td>
<td>18.119 ± 8.481</td>
</tr>
<tr>
<td>TN</td>
<td>40379.71 ± 26399.897</td>
<td>8.668 ± 0.861</td>
</tr>
</tbody>
</table>

Los datos indican que la legumbre con mayor capacidad antioxidante es la judía blanca de referencia (BR), la única judía de procedencia de Castilla-León, seguida por la judía ED, que además coincide que es la que mayor contenido en polifenoles totales. La judía tipo Hayado Café (HC) es la que se comporta con menor variabilidad respecto a los resultados obtenidos.

El contenido en polifenoles totales de las legumbres estudiadas oscila, en promedio, entre los 5.2 mg por cada g para el caso de la judía tipo Coyunda (CO) y los 18.1 mg por gramo de legumbre de la judía tipo Edy (ED). En todos los casos las concentraciones de sustancias polifenólicas de las legumbres estudiadas en este trabajo son superiores a las de referencia.

Estas sustancias son muy abundantes en los vegetales a los que dan aromas y colores. Los polifenoles limitarían el desarrollo del proceso canceroso en varios niveles, inhibiendo la formación de cancérgenos y facilitando su eliminación o inhibiendo el crecimiento de tumores. La acción beneficiosa de estas sustancias se materializa en la defensa ante enfermedades cardiovasculares, por la protección de las lipoproteínas LDL (de baja densidad) contra la oxidación provocada por los radicales libres. Pero estos beneficios no deberían llevar a consumir grandes cantidades de polifenoles porque éstos son capaces de tener interacciones con proteínas, péptidos y minerales presentes en la alimentación modificando así su biodisponibilidad y pueden formar compuestos muy estables con ciertos minerales como el hierro e impedir su absorción.
Xu y Chang (2007) en un trabajo sobre una gran colección de legumbres encontraron que las variedades rojas y negras de judía, eran las que presentaban los mayores contenidos en polifenoles totales. En este trabajo también se obtienen resultados similares, ya que las variedades que contienen mayor contenido polifenolico son también de color rojizo y canela.

La capacidad antioxidante total de las legumbres estudiadas oscila, en promedio, entre los 40379 µmol por cada 100 g para el caso de TN y los 58174 µmol por cada 100 g de la judía blanca de referencia. La judía Edy, junto con otros ecotipos son otras referencias de las legumbres estudiadas con alta capacidad antioxidante total. En todos los casos, los valores de la capacidad antioxidante total, de las legumbres estudiadas en este trabajo son superiores a los de referencia.

La bibliografía existente en relación a la valoración nutricional de las legumbres no aporta mucha información respecto a la capacidad antioxidante total, relacionada con la composición fitoquímica. Es posible, según indica Gorshkova et al. (2000), que en la pared primaria no lignificada existan enlaces éter entre el ácido ferúlico y las proteínas de la pared que supondrían una alternativa sobre los enlaces insolubles de las formas fitoquímicas que afectan de manera directa a la capacidad antioxidante total y por ello, los materiales con mayor contenido polifenolico son las que mayor capacidad antioxidante presentan.

CONCLUSIONES

Las variedades de judías grano de producción ecológica pueden identificarse como alimentos de alto nivel en fibra, bajo nivel en grasa y alto contenido en proteína, lo que las convierte en atractivas de cara a una posible producción a gran escala, tanto para consumo directo, o como materia prima para la industria de alimentos, en la elaboración de nuevos productos con base en harinas de legumbres.

El potencial antioxidante de las legumbres estudiadas es muy alto, destacando los ecotipos que presentan colores rojizos y canela, como los que más acumulan sustancias de carácter antioxidante. También destaca una alubia procedente del territorio como fuente de sustancias antioxidantes.

La ingesta de 150 a 200 g de judía ecológica proporciona las dosis diarias recomendadas de los nutrientes básicos. La ingesta regular de estas leguminosas pueden ser un reclamo de salud, frente a las enfermedades de alto impacto del siglo XXI.

BIBLIOGRAFÍA

• Pellegrini N, Serafini M, Salvatore S, Del Rio D, Bianchi M, Brighenti F. 2006. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals and sweets consumed in Italy assessed by three different in vitro assays. Molecular nutrition & food research, 50(11): 1030-1038.
• Reglamento (CE) Nº 1924/2006 del Parlamento Europeo y del Consejo de 20 de diciembre de 2006 relativo a las declaraciones nutricionales y de propiedades saludables en los alimentos.
• Reglamento (UE) Nº 116/2010 de la Comisión de 9 de febrero de 2010 por el que se modifica el Reglamento (CE) nº 1924/2006 del Parlamento Europeo y del Consejo en lo relativo a la lista de declaraciones nutricionales.
ESTUDIO NUTRICIONAL DE LECHUGA ICEBERG, HOJA DE ROBLE VERDE Y COGOLLO DE ROMANA PROCEDENTE DE CULTIVO ECOLÓGICO Y CONVENCIONAL

Antón L, García-Martínez MD, Raigón MD

Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
lausanmar@etsiamn.upv.es; magarma8@qim.upv.es; mdraigon@qim.upv.es

RESUMEN: La lechuga (Lactuca sativa L.) es una de las hortalizas de mayor consumo mundial, siendo muy consumida en fresco para ensaladas. En el momento actual el mercado ofrece una amplia gama de variedades de lechuga, pero faltan datos sobre su composición nutricional y como ésta se ve afectada por el sistema de producción. El principal objetivo del presente trabajo es evaluar la composición nutricional, en concreto de los componentes mayoritarios, así como de compuestos de naturaleza antioxidante (clorofilas, polifenoles, capacidad antioxidante total) y de sustancias antinutritivas como los nitratos, en tres variedades de lechuga de hoja verde (Iceberg, Hoja de roble verde y cogollo de Romana), procedentes de dos sistemas productivos, ecológico y convencional. Tanto las muestras de producción ecológica como las convencionales son lechugas comerciales, por lo que se pretende obtener información, sobre la composición nutricional que llega directamente al consumidor.

Los sistemas de agricultura ecológica generan lechugas de menor contenido en humedad y mayor nivel en minerales totales. Estas diferencias vienen marcadas principalmente por la fuente de fertilización nitrogenada aplicada en el modelo ecológico, que también influyen en la menor concentración de nitratos en las hojas de lechuga. Esta menor acumulación de nitratos y la mayor concentración clorofilica en las muestras de producción ecológica generan mayor contenido en hidratos de carbono y fibra. La lechuga de producción ecológica tipo Hoja de Roble verde es la que presenta el valor nutricional más balanceado, junto a una baja concentración en nitratos.

PALABRAS CLAVE: agricultura convencional, agricultura ecológica, cogollo, macronutrientes lechuga, nitratos

KEY WORDS: conventional agriculture, head lettuce, lettuce, macronutrients, organic farming

INTRODUCCIÓN

Existe un potente debate en torno a las prácticas de producción agrícola más apropiadas para alcanzar la meta de una producción de alimentos más alta y sostenible (Perfecto y Vandermeer, 2010). Pero desde diferentes sectores se apunta a que la agricultura ecológica puede ser la alternativa a los sistemas productivos globales (Seufert et al., 2012). En cualquier caso, parece necesario desarrollar modelos de producción agrícola basados en los recursos locales, para garantizar la seguridad alimentaria (Bruinsma et al., 2015).

La agricultura ecológica es un sistema holístico de manejo de la producción que aumenta la salud del agrosistema haciendo uso, tanto de conocimiento tradicional como de conocimiento científico y cuyo objetivo es obtener alimentos de calidad (Stolz et al., 2010; Matt et al., 2011; Mdithswa et al., 2017). Los sistemas de agricultura ecológica se basan más en el manejo de los ecosistemas que en el uso de insumos agrícolas externos.

En muchos países, la agricultura ecológica cuenta con una clara base legislativa y sistemas de certificación para la producción y la transformación. Muchas de las prácticas agroecológicas están reguladas por políticas nacionales y controladas por organizaciones supranacionales que promueven la agricultura ecológica. Los reglamentos que especifican la producción ecológica y de la transformación de alimentos ecológicos son muy estrictos, y adherirse a ellos debe generar garantía de una alta calidad del producto. Desde el punto de vista técnico, la
agricultura ecológica debe basarse principalmente en recursos renovables dentro de los sistemas agrícolas organizados localmente, minimizando el uso de recursos no renovables, de forma que los residuos y subproductos de plantas y animales deben ser reciclados para devolver los nutrientes al suelo.

La demanda de alimentos ecológicos se incrementa de forma exponencial. Desde 2015, las tierras de cultivo orgánico se han visto incrementadas en un 15%. España es el primer país en superficie de agricultura ecológica de la Unión Europea y está situado entre los 10 primeros países a nivel mundial en términos de volumen de mercado interior y crecimiento interanual, generándose un importante aumento del número de consumidores y del consumo per cápita nacional (IFOAM, 2017).

La lechuga (Lactuca sativa L.) es uno de los cultivos más extendidos, ya que se encuentra distribuido en casi todos los países del mundo. La producción mundial de lechuga pese a haber sufrido en España un descenso con la crisis; a partir del 2010 ha tenido una recuperación; pasando de 809000 t en 2010 (pico más bajo de producción) a 930081 t en 2016 (FAOSTAT, 2016).

Aunque la lechuga es uno de los alimentos más consumidos, no se considera un alimento nutritivo, debido a su alto contenido en agua (≥95%) (Kim et al., 2016). Este vegetal junto con la escarola (Cichorium intybus), es uno de los vegetales más populares para consumirse en ensaladas de manera cruda, aportando texturas y colores (Edziri et al., 2011).

Las propiedades saludables de la lechuga son atribuidas a una gran cantidad de componentes antioxidantes (Vitamina C y E, carotenoides, polifenoles…) y su contenido en fibra (Baslam et al., 2013).

El valor nutricional y la capacidad antioxidante de la lechuga están estrechamente relacionados con las técnicas empleadas en el cultivo (sistema productivo, riego, fertilización, aplicación fitosanitaria, etc.) y con la variedad (Mulabaga et al., 2010). Por ello, el principal objetivo del presente trabajo es evaluar la composición nutricional, en concreto de los componentes mayoritarios, así como de compuestos de naturaleza antioxidante (clorofílas, polifenoles, capacidad antioxidante total) y de sustancias antinutritivas como los nitratos, en tres variedades de lechuga de hoja verde (Iceberg, Hoja de roble verde y cogollo de Romana), procedentes de dos sistemas productivos, ecológico y convencional. Tanto las muestras de producción ecológica como las convencionales son lechugas comerciales, es decir, se consiguieron en canales de distribución. Con ello se pretende obtener información, sobre la composición nutricional que llega directamente al consumidor.

MATERIAL Y MÉTODOS

Procedencia y tratamiento previo de las muestras. Las lechugas ecológicas proceden de una tienda especializada en la ciudad de Valencia, que se abastece directamente de productores ecológicos certificados (figura 1). En este caso las lechugas proceden de zona de cultivo de la Marjal del Moro (Sagunto). En el caso de las lechugas de cultivo convencional (figura 2), se tomaron muestras de tres mercados diferentes (mercado de Algirós, mercado del Cabanyal y mercado central de Valencia), de los tres mercados se consiguieron los tres tipos de lechugas, incorporando mayor variabilidad en la procedencia convencional. De cada procedencia y tipo de lechuga se analizaron tres muestras diferentes.

Todas las muestras fueron tratadas de idéntica manera. Por un lado, una porción del material vegetal se sometió a un desecado donde se determina el contenido en materia seca y por diferencia el de humedad. La muestra seca se Tritura en un molinillo eléctrico, de uso doméstico, hasta un tamaño de partícula similar al polvo fino. Este material triturado y homogeneizado se conserva a temperatura ambiente en un frasco de cierre hermético y se emplea para la cuantificación del contenido en minerales totales, proteínas, fibra, grasa y por diferencia el contenido en hidratos de carbono.

Con otra porción se realiza un jugo en una licuadora de uso doméstico (Braun Type: 4191, 220-230V–50/60 Hz, 500W). El licuado se conserva congelado a -20 °C, hasta su uso. Este extracto se emplea para la determinación...
de nitratos, polifenoles totales y capacidad antioxidante. Para la determinación del contenido en clorofila a, clorofil b, clorofilas totales, se emplea la muestra de lechuga sin procesar.

FIGURA 1. Lechuga Iceberg (superior izquierdo), Hoja de Roble verde (superior derecho) y cogollo de Romana (inferior) de producción ecológica

FIGURA 2. Lechuga Iceberg (superior izquierdo), Hoja de Roble verde (superior derecho) y cogollo de Romana (inferior) de producción convencional

Determinación de la materia seca y humedad. El contenido en materia seca de las lechugas se realiza mediante una desecación directa, con estufa de aire forzado, a una temperatura de 65 °C±2 °C, para evitar la caramelización, hasta alcanzar un peso constante, aproximadamente en 24 horas, calculando el residuo por diferencia de peso (Matissek et al., 1998). El procedimiento consiste en introducir entre 20 o 70 g, pesados exactamente, en una cápsula de porcelana previamente pesada y tarada. A continuación, se coloca en la estufa a 65 °C durante 24 h. Transcurrido el tiempo, se deja enfriar en el desecador y a continuación se determina el peso de la muestra seca. La cantidad de materia seca (MS) expresado como porcentaje se calcula de acuerdo con la siguiente ecuación:

\[
MS (%) = \frac{P (\text{seco + crisol}) - P (\text{crisol})}{P (\text{muestra})} \times 100
\]

Donde:
- \(P (\text{seco + crisol}) \) es el peso (g) de la cápsula de porcelana más la muestra desecada.
- \(P (\text{crisol}) \) es el peso (g) de la cápsula de porcelana.
- \(P (\text{muestra}) \) es el peso (g) de la muestra fresca.

La diferencia porcentual entre el contenido en materia seca es el contenido en humedad de la muestra (H).

Determinación del contenido mineral total. Esta determinación consiste en la destrucción de la materia orgánica mediante la incineración en mufla a 450 °C (MAPA, 1994), hasta la obtención de las cenizas o minerales totales.
El procedimiento consiste en pesar, con exactitud, 2 g de muestra de lechuga molida, en un crisol de porcelana previamente tarado. Se introduce en la mufla fría y se eleva la temperatura a 450 °C, manteniéndose durante cuatro horas. Tras sacarlo de la mufla se deja enfriar en un desecador, observando que las cenizas obtenidas son claras. Se vuelve a pesar la muestra y por diferencia se obtiene la cantidad de minerales totales. El contenido mineral total (porcentaje de cenizas) sobre material vegetal seco se calcula mediante la fórmula:

\[
\text{Cenizas (\%) = \frac{P1 - P2}{P} \times 100}
\]

Donde: P: peso de la muestra, en gramos; P1: peso del crisol con las cenizas, en gramos; P2: peso del crisol vacío, en gramos

Determinación del contenido en proteína. El fundamento de la determinación de proteína se basa en calcular el valor del contenido en nitrógeno total por el método Kjeldahl, en el cual los compuestos orgánicos se digieren en medio ácido sulfúrico concentrado dando como resultado sulfato amónico, dióxido de carbono y agua principalmente. La digestión se hace en medio ácido, en una batería de digestión a 420 ºC con el fin de eliminar la materia orgánica. El porcentaje de proteína se calcula multiplicando el contenido en nitrógeno total por el factor de 6.25 (MAPA, 1994).

Determinación del contenido en grasa. El contenido en grasa de la lechuga se ha determinado con un extractor semiautomático Soxtec (modelo ST 243, Soxtec, Suecia) siguiendo el protocolo de extracción de grasa en alimentos en general. Las muestras, finamente trituradas, se introducen en los dedales de extracción. En los pocillos de recogida de grasa se añaden 40 ml de éter de petróleo a 40-60 °C y se realiza un ciclo durante 85-135 minutos. Una vez finalizada la extracción, los pocillos se secan a 80 °C durante 10 minutos, para eliminar un posible resto de disolvente, después se enfrian en un desecador y se pesan a temperatura ambiente (FOSS, 2007). La determinación de la grasa, expresada en porcentaje, se calcula mediante:

\[
\text{Grasa (\%) = \frac{\text{peso final pocillo (g)} - \text{peso inicial pocillo (g)}}{\text{peso de la muestra (g)}} \times 100}
\]

Donde: peso final pocillo=peso (g) del pocillo+peso (g) la grasa extraída

Determinación del contenido en fibra bruta. La fibra representa la porción no digerible de los alimentos. La naturaleza química de la fibra está constituida por celulosa, hemicelulosa y lignina. Su determinación se basa en la simulación de la digestión por tratamientos ácidos y alcalinos. En el procedimiento para la determinación de fibra se parte de una muestra de lechuga seca y triturada. Primero se pesan las cápsulas con la tapa (W1), dónde se introducen 2 g de muestra (W2), posteriormente se cierran las cápsulas y se colocan en el carrusel debidamente identificadas. Seguidamente, se realiza una digestión ácida con H2SO4 0.13 M y se lleva a ebullición, constante y homogénea. Se mantiene en ebullición durante 30 minutos y transcurrido este tiempo se realiza el lavado, por triplicado, de las cápsulas con agua caliente. El siguiente paso consisten en una digestión básica con KOH que se realiza de forma análoga, excepto el lavado, que se hace una vez con agua caliente, otra con HCl 0.5 M y, por último, dos veces con agua caliente. Por último, se realiza un secado y calcinado de las muestras, para ello se introducen las cápsulas a 130 ºC durante 2 h y posteriormente se deja enfriar durante 30 minutos. Transcurrido este tiempo se pesan los crisoles de porcelana (W3) y las cápsulas secas (W4). A continuación, se introducen en la mufla a 600 ºC durante 4 h y pasado este tiempo se deja enfriar hasta los 200 ºC y en este momento se introducen en el desecador hasta que estén fríos y se pesan (W5). El contenido en fibra se determina por la siguiente fórmula, expresando el resultado en porcentaje de fibra bruta sobre materia seca:

\[
\text{Fibra bruta (\%) = \frac{[[W3 - (W1 * C) - (W5 - W4 - D)] / W2] \times 100}{W2}}
\]

Donde: C=peso blanco después de extracciones (W3)/peso blanco inicial (W1);
D=peso cenizas cápsulas blanco (W5-W4)
Determinación del contenido en hidratos de carbono. La determinación del contenido total de hidratos de carbono (HC) se realiza por diferencia porcentual, del contenido en proteína total, minerales totales o cenizas, grasa total y fibra bruta, según la siguiente fórmula:

\[HC\% = 100 - \text{(humedad} + \text{proteína} + \text{minerales totales} + \text{grasa total} + \text{fibra bruta)} \]

Determinación del contenido en nitratos. La determinación de nitratos se basa en un análisis potenciométrico empleando un electrodo selectivo de íon nitrato (Greenberg et al., 1992). El método experimental para la determinación de la concentración de nitratos consiste, en medir 10 ml de jugo de lechuga y adicionar 40 ml de agua destilada y 1 ml de disolución reguladora de fuerza iónica. Las lecturas se realizan sumergiendo los dos electrodos (electrodo de referencia y electrodo selectivo) en la disolución problema, y esperando que la lectura se estabilice. Para realizar los cálculos existe una relación lineal entre el potencial proporcionado por el equipo y el logaritmo de la concentración de íon nitrato en la disolución. La determinación automática de nitratos en las muestras se efectúa por tanto por interpolación del potencial obtenida en la recta de calibrado obtenida a partir de los patrones. Posteriormente se tienen en cuenta los factores de dilución adecuados para expresar el resultado como mg NO₃⁻/1000 g de lechuga fresca.

Determinación del contenido en clorofilas. El fundamento de la determinación de clorofilas se basa en la extracción con acetona al 90% (v/v) de las clorofilas del material vegetal y determinación espectrofotométrica, mediante la medición de la absorbancia de la disolución de la muestra a 645, 652 y 663 nm. En la extracción se pesa 1 g de hojas fresas de las muestras de lechuga, sin las venas grandes, cortadas en trozos de aproximadamente 0.5 cm². Se agregan 4 ml de acetona al 90% y se procede a la molienda del tejido con ayuda del mortero hasta la obtención de una pasta fina. A continuación, se añaden unos 10 ml de acetona y se transfiere el extracto al equipo de filtración. Una vez filtrado, se añora a 25 ml con acetona a 90%. A continuación, se realizan las mediciones en el espectrofotómetro a longitudes de onda de 645, 652 y 663 nm. Como blanco se emplea acetona al 90%.

La cantidad de clorofila presente en el extracto, se expresan como mg de clorofila por 100 g de material vegetal fresco, de acuerdo a las siguientes ecuaciones:

Clorofila a = 12.7 \times (D663) – 2.69 \times (D645) \times V / (1000 \times pf)
Clorofila b = 22.9 \times (D645) – 4.68 \times (D663) \times V / (1000 \times pf)
Clorofila total = 20.2 \times (D645) + 8.02 \times (D663) \times V / (1000 \times pf)
Clorofila total = (D652) \times (1000 / 34.5) \times V / (1000 \times pf)

Donde, D es la absorbancia leída a la longitud de onda indicada y corregida por la lectura a 750 nm. V es el volumen (ml) final del extracto clorofila – acetona 90%. pf es el peso fresco, en gramos, de lechuga.

Determinación del contenido en polifenoles. El conjunto de los compuestos fenólicos presentes en la lechuga se oxida por el reactivo de Folin-Ciocalteau. Este último está constituido por una mezcla de ácido fosfotungstico (H₃PW₁₂O₄₀) y ácido fosfomolibdico (H₃PMo₁₂O₄₀) que se reduce por la acción de los fenoles, en medio básico. El producto resultante se mide espectrofotométricamente a una \(\lambda=725 \) nm. El procedimiento consiste en introducir en un matraz de 25 ml, 10 ml de agua destilada y a continuación 1 ml de jugo de lechuga y 1.25 ml del reactivo Folin – Ciocalteau; se homogeniza y se deja reposar durante tres minutos. A continuación, se añaden 2.5 ml de NaOH al 6%, se enrasa con agua destilada y se homogeniza. Se deja reposar durante 1 hora. A continuación, se mide la absorbancia a 725 nm, frente a un blanco. En paralelo se realiza la curva de calibrado con los patrones, que se preparan a partir de una disolución madre de 1000 mg/L de ácido cafeico, siguiendo la disolución 1:3 (0 ppm, 2 ppm, 4 ppm, 6 ppm, 8 ppm y 10 ppm). Los resultados se expresan en mg de ácido cafeico por 100 g de material vegetal fresco al interpolar los valores dados por las muestras en la curva obtenida por los patrones.
Determinación de la capacidad antioxidante total. Este método, desarrollado por Brand-Williams et al. (1995) se basa en la reducción de la absorbancia medida a 517 nm del radical DPPH•, por antioxidantes. Para ello se añade 0.1 ml de la muestra o en su caso del patrón, la mezcla se homogeniza cuidadosamente, y se mantiene en la oscuridad durante 30 minutos. Las medidas de absorbancia a 517 nm se realizan antes de añadir la muestra y pasados los 30 y 60 minutos. La concentración de DPPH• en el medio de reacción se calcula a partir de una curva de calibrado obtenida por regresión lineal. Los resultados se expresan en TEAC, o sea, actividad equivalente a Trolox (µM/g de muestra peso fresco). El antioxidante sintético de referencia Trolox, a una concentración de 0.08-1.28 mM en disolución de metanol al 80%, se ensaya en las mismas condiciones, expresándose los resultados en TEAC.

Análisis estadístico. Para el cálculo y tratamiento de datos se empleó el programa Microsoft Excel 2010. Para el tratamiento comparativo de los resultados, mediante el programa Statgraphics Centurion versión XVII.11. Los datos experimentales fueron evaluados mediante ANOVA de dos factores, error estándar de estimación y la menor diferencia significativa del test de Fisher (F-test) y el p-valor derivado como describe Ott (1977). Los resultados se consideran significativos cuando p≤ 0.05.

RESULTADOS Y DISCUSIÓN

El valor bromatológico de los alimentos o su concentración en nutrientes es variable y depende de múltiples factores, entre ellos las técnicas de producción donde se incluye el potencial genético, así como del resto de factores que intervienen en el sistema de producción (fertilización, productos fitosanitarios, agua de riego, exposición a luz, etc.) (Gomiero, 2018). Por ello, es difícil establecer generalidades respecto a la composición nutricional. En general, los valores obtenidos para los caracteres de composición analizados, presentan variabilidad, pero los valores presentan concordancia con los señalados en la bibliografía (Mou, 2008; Kelly & Bateman, 2010; Gent, 2011).

Valoración del contenido en agua, materia seca y minerales totales. El agua es el mayor componente de la lechuga, formando parte de entre el 90-95% de su composición. La humedad está relacionada inversamente con el contenido en materia seca, por lo que, el nivel de significación del contenido en agua de la lechuga es trasladable al contenido en materia seca. El cuadro 1 muestra el resultado del análisis ANOVA para los parámetros de humedad y minerales totales o cenizas. Se han observado diferencias significativas en el contenido de humedad en función del sistema de producción y en función del tipo de lechuga, pero no entre la interacción. De forma que las lechugas de producción convencional presentan mayor contenido en agua que las de producción ecológica. El mayor contenido en agua está acompañado de una menor densidad nutricional. Algunos autores han encontrado resultados similares, indicando que el sistema de fertilización química puede ser el responsable de estas diferencias (Baslam et al., 2013; Yu et al., 2018). Por otro lado, las lechugas tipo Iceberg contienen concentraciones significativamente superiores (p<0.05) de agua frente a los cogollos de lechuga Romana y la Hoja de Roble verde (figura 3). El alto contenido en agua de la lechuga tipo Iceberg, la convierte en un alimento altamente saciante, aunque este alto contenido en agua provoca en esta lechuga un bajo nivel nutritivo, acompañado de escaso sabor, aunque más crujiente, parámetros que influyen de la voluntad de compra del consumidor. Algunos autores (Kim et al., 2016) concluyen que a medida que la lechuga es más crujiente, peor es su contenido nutricional, posiblemente debido al mayor contenido en agua.

El contenido mineral total expresado en el porcentaje de cenizas de las muestras de lechugas presenta diferencias estadísticamente significativas para el sistema de producción y para la variedad de lechugas, pero no existen diferencias significativas en la interacción de los dos factores. Muchos factores influyen en la concentración de los elementos minerales en la planta como la composición y características del suelo, las condiciones medioambientales, las técnicas agronómicas, así como la variedad de lechuga o la fase de maduración. En este trabajo, el sistema de producción ecológico produce mayor concentración en minerales totales en el material vegetal, siendo los cogollos de lechuga Romana y la Hoja de Roble, las lechugas que mayor contenido mineral presentan (figura 3).
Cuadro 1. ANOVA para los parámetros de humedad y contenido mineral

<table>
<thead>
<tr>
<th>EFECTO</th>
<th>HUMEDAD</th>
<th>CONTENIDO MINERAL TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suma de cuadrados</td>
<td>GL</td>
</tr>
<tr>
<td>Efecto principal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de producción (P)</td>
<td>7.056*</td>
<td>1</td>
</tr>
<tr>
<td>Tipo de lechuga (T)</td>
<td>3.673*</td>
<td>2</td>
</tr>
<tr>
<td>Interacción</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PxT</td>
<td>0.902NS</td>
<td>2</td>
</tr>
<tr>
<td>Error</td>
<td>4.967</td>
<td></td>
</tr>
</tbody>
</table>

* Efecto significativo p<0.05 y NS No Significativo para p<0.05

FIGURA 3. Contenidos promedio de humedad (%) y cenizas (%) en la lechuga Iceberg, Hoja de Roble verde y cogollo de Romana de producción ecológica y convencional

Valoración del contenido en proteína y nitratos. El nitrógeno es un elemento imprescindible para todos los seres vivos, y es absorbido por las plantas, en forma de nitrato en disolución acuosa o del ion amonio presente en las proximidades de las raíces como fuente de nitrógeno. El contenido en proteínas viene determinado por el contenido en nitrógeno total. Las proteínas son los materiales que desempeñan un mayor número de funciones en las células de todos los seres vivos. La forma en la cual el nitrógeno es transportado en el interior de la planta depende de la fuente de nitrógeno absorbida y del metabolismo de la raíz, por donde se realiza la absorción. Además, la forma y cantidad de nitrógeno suministrado a la planta puede influenciar la acumulación de carbohidratos en diferentes partes de la misma, debido a diferencias en las necesidades energéticas de la absorción y asimilación del ion amonio y del nitrato (Gallegos et al., 2000).

El cuadro 2 muestra el resultado del análisis ANOVA para los parámetros de proteínas y nitratos. A excepción del contenido en nitratos del cogollo de Romana de producción ecológica, las concentraciones de ambos parámetros son superiores en el material vegetal procedente de agricultura convencional, posiblemente debido a las prácticas de fertilización, aunque, estas diferencias no son significativas. Sí existen diferencias estadísticamente significativas (p<0.05) en función del tipo de lechuga. La interacción de los dos factores tampoco es significativa para la concentración proteica y de nitratos en las lechugas estudiadas. Las lechugas Hoja de Roble y los cogollos de Romana son los que presentan mayor contenido en proteína y nitratos frente a las lechugas Iceberg (figura 4). La función específica del ion nitrato es suministrar nitrógeno para las diferentes funciones en la planta, pero fundamentalmente para la síntesis de proteínas. La lechuga acumula nitratos en las vacuolas de las hojas cuando la absorción radicular excede a la reducción y transformación a proteínas en la planta (Hill, 1990). La acumulación de nitratos conlleva otras repercusiones como el desplazamiento en la síntesis y acumulación de ácidos orgánicos e hidratos de carbono (por su relación con la fotosíntesis) (Behr & Wiebe, 1992). El contenido de nitratos es una cuestión que influye en la calidad de la lechuga y está relacionada con la salud del consumidor. El contenido de nitratos aceptable en la ingesta diaria corresponde a 3.65 mg/kg de peso vivo (Sánchez, 2010). Es decir, la
La ingesta de nitratos diaria de una persona con un peso corporal de 70 kg no debería superar los 259 mg. Por el bajo contenido en nitratos, las lechugas Iceberg y Hoja de Roble verde, de producción ecológica, podrían ser las más recomendadas para el consumo.

Cuadro 2. ANOVA para los parámetros de proteína y nitratos

<table>
<thead>
<tr>
<th>EFECTO</th>
<th>PROTEÍNA</th>
<th>NITRATOS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suma de cuadrados</td>
<td>GL</td>
</tr>
<tr>
<td>Efecto principal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de producción (P)</td>
<td>0.0004<sup>NS</sup> 1</td>
<td>83166,7<sup>NS</sup> 1</td>
</tr>
<tr>
<td>Tipo de lechuga (T)</td>
<td>0.005* 2</td>
<td>412828* 2</td>
</tr>
<tr>
<td>Interacción</td>
<td>0.0005<sup>NS</sup> 2</td>
<td>93366,5<sup>NS</sup> 2</td>
</tr>
<tr>
<td>Error</td>
<td>0.002</td>
<td>383075</td>
</tr>
</tbody>
</table>

* Efecto significativo p<0.05 y NS No Significativo para p<0.05

FIGURA 4. Contenidos promedio de proteína (%) y nitratos (ppm) en la lechuga Iceberg, Hoja de Roble verde y cogollo de Romana de producción ecológica y convencional

Valoración del contenido en grasa, hidratos de carbono y fibra. Las lechugas son alimentos que presentan un bajo contenido energético, ya que las concentraciones de los nutrientes energéticos (hidratos de carbono, proteínas y grasas) son muy bajas, aunque el contenido en fibra es alto (Koudela & Petříková, 2007). Los hidratos de carbono y las grasas tienen funciones estructurales y de almacenamiento de energía y, por lo tanto, constituyen una gran fuente de energía alimentaria.

El cuadro 3 muestra el resultado del análisis ANOVA para los parámetros del contenido en grasa, hidratos de carbono y fibra. No existen diferencias estadísticamente significativas en el contenido en grasa, en función del sistema productivo. El contenido en hidratos de carbono y fibra sí que dependen del sistema de producción, siendo la agricultura ecológica donde se alcanzan las mayores concentraciones de estos nutrientes. La variedad de lechuga influye significativamente (p<0.05) en el contenido en grasa, hidratos de carbono y fibra, siendo las lechugas de Hoja de Roble verde las que mayores concentraciones de estos nutrientes presentan, seguido de los cogollos de Romana y por último las lechugas tipo Iceberg (figura 5).
Cuadro 3. ANOVA para los parámetros de grasa, hidratos de carbono y fibra

<table>
<thead>
<tr>
<th>Efecto principal</th>
<th>GRASA</th>
<th>HIDRATOS DE CARBONO</th>
<th>FIBRA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suma de cuadrados</td>
<td>GL</td>
<td>Suma de cuadrados</td>
</tr>
<tr>
<td>Efecto principal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de producción (P)</td>
<td>0.203<sup>NS</sup></td>
<td>1</td>
<td>18.330<sup>*</sup></td>
</tr>
<tr>
<td>Tipo de lechuga (T)</td>
<td>10.593<sup>*</sup></td>
<td>2</td>
<td>38.864<sup>*</sup></td>
</tr>
<tr>
<td>Interacción</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PxT</td>
<td>0.242<sup>NS</sup></td>
<td>2</td>
<td>1.103<sup>NS</sup></td>
</tr>
<tr>
<td>Error</td>
<td>0.604</td>
<td></td>
<td>8.907</td>
</tr>
</tbody>
</table>

* Efecto significativo p<0.05 y NS No Significativo para p<0.05

FIGURA 5. Contenidos promedio de hidratos de carbono (%), fibra (%) grasa (%) en la lechuga Iceberg, Hoja de Roble verde y cogollo de Romana de producción ecológica y convencional.

Solamente la interacción de los dos factores es significativa, para el caso del contenido en fibra. Los niveles de grasa de la lechuga Iceberg de producción convencional es superior a los de la producción ecológica, mientras que, en el resto de lechugas estudiadas, los contenidos en grasa se mantienen similares entre los dos sistemas productivos. Estas diferencias pueden estar debidas al sistema de fertilización y a la estrecha relación bioquímica entre la acumulación de nitratos y la menor síntesis de hidratos de carbono (Behr & Wiebe, 1992), ya que la lechuga produce los azúcares en el proceso de fotosíntesis, durante el cual absorbren el dióxido de carbono del aire y, por acción de la energía solar, producen glucosa y otros compuestos químicos necesarios para que los organismos sobrevivan y crezcan.

Valoración del contenido en clorofilas. La luz solar es la fuente primaria de energía para las plantas, es hasta cierto punto de esperar que el ambiente de radiación determine las respuestas de las plantas, en muchos ámbitos de su crecimiento y desarrollo. La radiación controla los procesos de fotosíntesis, la morfogénesis y regula también en mayor o menor medida otros procesos como la respiración, movimientos estomáticos y metabolismo del...
carbono, entre otros. En la lechuga, cualquier señal ambiental es traducida a una señal bioquímica o fisicoquímica por la acción de diferentes transductores que, para el caso de la radiación electromagnética, son pigmentos que absorben la radiación de diferente longitud de onda en cromóforos específicos (Serger & Schmidt, 1986) y sensores redox. En cualquier caso, en el rendimiento de la fotosíntesis influyen diversos factores como la temperatura, la concentración de dióxido de carbono, la concentración de oxígeno, la intensidad luminosa, la falta de agua, la fertilización, el tiempo de iluminación y el color de la luz Zhang et al. (2007).

El cuadro 4 muestra el resultado del análisis ANOVA para los parámetros del contenido en clorofila “a”, clorofila “b” y clorofila total 1 y 2 (en función del tipo de cálculo). La clorofila es de color verde debido a que absorbe preferentemente la luz roja y azul y transmite la verde. Se distinguen dos tipos de clorofila, la clorofila tipo “a” y la de tipo “b”, que se diferencian por el grupo de sustitución lateral en la molécula. Esta diferencia es suficiente para causar un cambio notable en la coloración como también en el espectro de absorción de esta molécula, así la clorofila “a” tiene un color visual verde-hierba, mientras que la clorofila “b” es de color visual verde-azulado. Las concentraciones en clorofilas son estadísticamente significativas (p<0.05) para los dos factores (sistema de producción y tipo de lechuga) y para la interacción entre ambos. En todos los casos el sistema de producción ecológico produce lechugas con mayor concentración clorofílica, y la variabilidad entre tipos de lechuga indica que el cogollo de Romana, presenta las mayores cantidades en clorofilas, con diferencias estadísticamente significativas (p<0.05) frente a los contenidos de clorofilas de las lechugas tipo Iceberg y Hoja de Roble verde (figura 6). Estas diferencias pueden ser debidas a las diferencias en los sistemas de fertilización y a la morfología de la planta. Ya que en la lechuga Iceberg, la parte acogollada impide la entrada directa de luz y con ello la síntesis de clorofilas, dando lugar a hojas más blancas.

Cuadro 4. ANOVA para los parámetros de clorofilas “a”, “b” y totales

<table>
<thead>
<tr>
<th>EFECTO</th>
<th>CLOROFILA a</th>
<th>CLOROFILA b</th>
<th>CLOROFILA TOTAL 1</th>
<th>CLOROFILA TOTAL 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suma de cuadrados</td>
<td>GL</td>
<td>Suma de cuadrados</td>
<td>GL</td>
</tr>
<tr>
<td>Efecto principal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de producción (P)</td>
<td>0.025*</td>
<td>1</td>
<td>0.005*</td>
<td>1</td>
</tr>
<tr>
<td>Tipo de lechuga (T)</td>
<td>0.017*</td>
<td>2</td>
<td>0.002*</td>
<td>2</td>
</tr>
<tr>
<td>Interacción</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PxT</td>
<td>0.013*</td>
<td>2</td>
<td>0.002*</td>
<td>2</td>
</tr>
<tr>
<td>Error</td>
<td>0.003</td>
<td></td>
<td>0.0004</td>
<td></td>
</tr>
</tbody>
</table>

* Efecto significativo p<0.05 y NS No Significativo para p<0.05

FIGURA 6. Contenidos promedio de clorofila “a”, clorofila “b” y clorofilas totales 1 y 2 (ppm) en la lechuga Iceberg, Hoja de Roble verde y cogollo de Romana de producción ecológica y convencional
Valoración del contenido en polifenoles y antioxidantes totales. Los polifenoles son un conjunto heterogéneo de moléculas que comparten la característica de poseer en su estructura varios grupos bencénicos sustituidos por funciones hidroxílicas. Algunos estudios indican que las lechugas son hortalizas de alto contenido en estas sustancias, que junto con las clorofilas proporcionan a estos alimentos un alto valor antioxidante (Llorach et al., 2008).

El cuadro 5 muestra el resultado del análisis ANOVA para los parámetros del contenido en polifenoles y la capacidad antioxidante total en las muestras de lechugas, en función de la variedad y del sistema de producción. No existen diferencias estadísticas (p<0.05) en la capacidad antioxidante total de las lechugas estudiadas. Siendo los valores comparables entre los obtenidos por los dos sistemas productivos y por las diferentes variedades de lechuga. La interacción entre los dos factores para este parámetro tampoco es significativa. El contenido polifenólico es significativo para el tipo de lechuga, mientras que el sistema productivo no influye en las diferencias de este parámetro. Tampoco la interacción entre los factores es significativa.

El contenido en polifenoles es ligeramente superior en las lechugas de producción convencional, excepto para el caso de la lechuga Iceberg, donde las muestras procedentes de sistemas ecológicos generan mayor contenido polifenólico. En cambio, la capacidad antioxidante total muestra valores superiores en las lechugas de producción ecológica tipo Hoja de Roble verde y en el cogollo de Romana (figura 7).

Cuadro 5. ANOVA para los parámetros de polifenoles y capacidad antioxidante total

<table>
<thead>
<tr>
<th>EFECTO</th>
<th>POLOFENOLES</th>
<th>CAPACIDAD ANTIOXIDANTE TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Suma de cuadrados</td>
<td>GL</td>
</tr>
<tr>
<td>Efecto principal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de producción (P)</td>
<td>1.354 NS</td>
<td>1</td>
</tr>
<tr>
<td>Tipo de lechuga (T)</td>
<td>132.89 *</td>
<td>2</td>
</tr>
<tr>
<td>Interacción</td>
<td>23.085 NS</td>
<td>2</td>
</tr>
<tr>
<td>Error</td>
<td>109.533</td>
<td></td>
</tr>
</tbody>
</table>

*Efecto significativo p<0.05 y NS No Significativo para p<0.05

FIGURA 7. Contenidos promedio de polifenoles (mg/100 g) y capacidad antioxidante total (meq Trolox/100 g) en la lechuga Iceberg, Hoja de Roble verde y cogollo de Romana de producción ecológica y convencional.
CONCLUSIONES

Los sistemas de agricultura ecológica en la producción de lechugas verdes (Iceberg, Hoja de Roble y cogollo de Romana) generan alimentos de menor contenido en humedad y mayor nivel en minerales totales. Estas diferencias vienen marcadas principalmente por la fuente de fertilización nitrogenada aplicada en el modelo ecológico. Ello influye en una menor absorción de nitratos y por tanto en la menor concentración de los mismos en las vacuolas de las hojas. Esta menor acumulación de nitratos y la mayor concentración clorofílica en las lechugas ecológicas va a repercutir en el mayor contenido en hidratos de carbono y fibra de estos alimentos.

Los bajos valores de grasa obtenidos en las muestras de lechuga estudiadas ponen en evidencia que estos alimentos son de bajo contenido calórico. Además, presentan una elevada capacidad antioxidante y alto contenido en fibra, siendo por ello, alimentos muy adecuados para dietas saludables.

La lechuga de producción ecológica tipo Hoja de Roble verde es la que presenta el valor nutricional más balanceado, junto a una baja concentración en nitratos.

Los resultados de este estudio proporcionan datos de nutrientes comparativos de varios cultivares de lechuga de consumo popular que se cultivaron en diferentes sistemas productivos. Esta información ayudará a los consumidores a elegir alimentos que brinden un mayor valor nutricional.

BIBLIOGRAFÍA

EFECTOS DE LA MATERIA PRIMA Y EL PROCESO SECADO-MADURACIÓN SOBRE LA CALIDAD DEL JAMÓN CURADO

Domínguez Gómez MJ, Raigón MD

Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, E 46022 Valencia, 963 87 70 00 madogo2@posgrado.upv.es, mdraigon@qim.upv.es

RESUMEN: La calidad de la carne de cerdo es fundamental para evaluar la potencialidad de la misma para el proceso de secado y curado en la obtención del jamón. Factores como el genotipo del animal, la alimentación, el bienestar animal, el manejo presacrificio, etc. deberán tenerse en cuenta para la evaluación de la calidad del jamón amparado por las figuras de calidad. El principal objetivo de este trabajo es aportar datos sobre la calidad de la carne para el proceso de secado maduración en la elaboración de jamón, en función del tipo de carne (carne de cerdo blando convencional graso, carne con destino final a jamón de la Denominación de Origen Protegida y carne de cerdo ecológico). La materia prima, pernil fresco de cerdo, es seleccionada por el secadero para iniciar el proceso de elaboración en sus instalaciones. El secadero es un operador inscrito, tanto en el Registro de Elaboradores del Comité Aragonés de Agricultura Ecológica, como en el del Consejo Regulador de la DOP Jamón de Teruel. Los parámetros medidos en la carne son el color, el contenido en minerales totales, el contenido en sodio, el contenido en hierro, el contenido en grasa, la humedad de la carne y el contenido en proteína. La carne ecológica se caracteriza por un menor contenido en agua, factor que puede ser beneficioso en los subsiguientes procesos del secado de la carne, mayor contenido en minerales y destaca el mayor índice de color de esta carne. Las condiciones del valor proteico y el contenido en grasa no presentan diferenciación, aunque la carne blanca grasa es la que mayor fracción lipídica presenta. Estas características podrán ser de utilidad para optimizar el proceso de secado en cada caso.

PALABRAS CLAVE: Ganadería ecológica, proteína, minerales, grasa, color de la carne, humedad, DOP.
KEY WORDS: organic livestock, protein, minerals, fat, color of meat, humidity, DOP.

INTRODUCCIÓN

Para la elaboración de jamón curado se emplean piezas osteomusculares correspondientes a las extremidades posteriores del cerdo, seccionadas por la síntesis isquio-pubiana, constando de los huesos coxales, fémur, rótula, tibia, peroné, tarso y, opcionalmente metatarso y falanges, así como la masa muscular que los envuelve, de los animales de las razas Duroc, Landrace, Large White, Pietrain o sus cruces. El tipo de materia prima que se emplee en la elaboración de jamón curado es de gran importancia, puesto que en función de las características de ésta, el proceso de curación de jamón va a verse condicionado en cuanto al desarrollo de su proceso: cantidad de sal empleada, tiempo de salazón, tiempo de maduración, etc, dando lugar a un producto con unas cualidades nutricionales y organolépticas diferentes. Por ejemplo, la carne que posee un elevado potencial proteolítico es menos adecuada para la elaboración de jamones curados, sobre todo si se desea que el contenido en sal sea bajo (Virgili et al., 1995).

A partir de las razas de cerdo de capa blanca se pueden obtener diferentes tipos de carne, en función del sistema productivo.

La carne convencional procede de animales criados en intensivo alimentados con pienso en su mayoría, a base de cereales. Con ella se puede elaborar jamón curado o jamón serrano. La mención jamón serrano, reconocida como Especialidad Tradicional Garantizada, se reserva para las piezas que cumplen ciertos requisitos, como el gramaje mínimo de las piezas en sangre (9.5 kg para aquellos que se presenten con pata y 9.2 kg para los jamones sin pata), el espesor de la grasa (0.8 cm como mínimo medido en el punto de convergencia del músculo vasto lateral y la punta superior del hueso isquion, que es el punto donde termina la babilla y se encuentra con el hueso de la cadera, de forma que los jamones en los que se practique el corte en “V” queden cubiertos de grasa),
la temperatura de recepción a la llegada a la industria, que no debe ser superior a 3 ºC, el tiempo de curación mínimo de 210 días, contados desde el inicio de la salazón y la merma mínima del 33%, sobre el peso en sangre (BOE, 2016).

La carne que vaya destinada a la obtención de figura de calidad jamón con Denominación de Origen Protegida Teruel ha de cumplir los requisitos establecidos en el anexo I del pliego de condiciones publicado por el Gobierno de Aragón. Éstos son:

- Forma: alargada, perfilada y roondeada en sus bordes hasta la aparición del músculo, conservando la pata. Puede presentarse con toda la corteza o perfilado en corte en “V” cuyo vértice quedará alineado con el eje de la pata del jamón o de la paleta curada.
- Peso: superior o igual a 7 kg en los jamones y a 4,5 kg en paletas curadas, al cumplir el tiempo mínimo de elaboración establecido.
- Zona de producción: provincia de Teruel.
- Zona de elaboración: por aquellos términos municipales de la provincia de Teruel cuya altitud media no sea inferior a 800 m, siempre que el secadero se encuentre a una altitud igual o superior a 800 m sobre el nivel del mar.

Sólo los cerdos nacidos y cebados en granjas situadas en la provincia de Teruel podrán suministrar perniles y paletas aptos para ser destinados a la elaboración de los jamones y paletas curadas protegidos.

La alimentación del ganado para la obtención de esta figura de calidad, se basa fundamentalmente en cereales, definiendo los porcentajes de materias primas que entran a formar parte de la composición del pienso, que se formulará con un mínimo de 50% de cereales, que en la medida de lo posible, procederán de la zona de producción.

Los machos estarán castrados antes de la entrada en el cebadero y las hembras no estarán en celo en el momento del sacrificio (BOA, 2017).

La carne para la obtención de jamón con denominación ecológico procederá de animales cuya granja esté inscrita en algún organismo de control de agricultura ecológica, cumpliendo con los criterios de la normativa (Reglamento (CE) nº 834/2007). Los animales certificados bajo el epígrafe ecológico, deben cumplir con unas limitaciones en la alimentación y en el bienestar animal, así como en la profilaxis de la explotación. Respecto a la alimentación se debe cumplir que los animales hayan sido alimentados con piensos ecológicos, debiendo incluir en su alimentación diaria forrajes comunes. Los cerdos deberán haber podido realizar ejercicio y haber tenido acceso regular a pastos donde se evitará la sobrecarga. Los animales sólo habrán podido recibir medicamentos veterinarios como tratamiento curativo, en ningún caso como preventivo. Las densidades de los alojamientos serán las adecuadas para asegurar el bienestar y comportamiento natural de los animales.

El proceso básico de secado-maduración implica una serie de pasos que dan lugar a un producto con unas características muy específicas. La duración de este proceso va a depender del tipo de producto que se quiera obtener y de las características de la materia prima (peso, composición, temperatura de recepción, etc.), dando lugar a las siguientes categorías:

- Proceso inferior a los 7 meses: Jamón curado.
- Duración superior a 7 meses: Jamón serrano.
- Bodega o cava: 9 meses de curación.
- Reserva o añejo: 12 meses de curación.
- Gran reserva: 15 meses de curación (BOE, 2014).

El proceso básico de secado-maduración implica:
- Salado: proceso de mezcla de la sal con la carne, con el objetivo de reducir el contenido en humedad del producto, dar el sabor característico y reducir o eliminar la posible carga microbiana. Se mantiene en la salazón
a razón de 1 día por kg de peso. En el caso de la carne convencional está autorizado la adición de sales nítricas (principalmente nitrato sódico). En caso de la producción ecológica no está autorizado la adición de sales nítricas, debido a los potenciales problemas de estas sustancias sobre la salud (Sebranek y Bacus, 2007).

- Lavado: proceso que se realiza para retirar la sal superficial y así evitar que puedan producirse defectos en el producto.
- Reposo o post-salado: proceso que tiene el objetivo de difusión de la sal hacia el interior de la carne, saliendo el agua y por lo tanto eliminándose la misma. En esta fase la temperatura deberá ser baja (en torno a 4°C) y la humedad relativa elevada (sobre 70%), previniendo así posibles defectos en el producto final. Aquí permanecerá aproximadamente dos meses.
- Curado (secado-maduración): en esta fase la grasa se funde y se distribuye por el lejido muscular. Este proceso tiene una duración en torno a 6 meses.
- Envejecimiento: momento en el que se van a producir las reacciones bioquímicas responsables del aroma y sabor del jamón. El tiempo de permanencia en esta fase determinará la categoría del jamón en cuanto a su grado de curación.

El jamón curado es uno de los alimentos más característicos de la gastronomía española. Y la tendencia de consumo sigue en aumento, más aún cuando la producción de jamón está protegida o amparada con denominaciones de origen. Esta tendencia se observa también en la demanda de jamón de producción ecológica, en línea con el incremento de las cifras globales en producción ecológica, en cuanto a superficie de cultivo, explotaciones ganaderas y elaboradores. El crecimiento del sector de los alimentos ecológicos supera con mucho el crecimiento de los sectores alimentarios convencionales, y los criterios en la elección de compra de los consumidores son la salubridad e inocuidad de los alimentos ecológicos, aunque la preocupación por la protección del medio ambiente y el bienestar de los animales constituye también una motivación fundamental para esa elección (García y Teixeira, 2017). Este crecimiento contrasta con los bajos estudios que pongan en valor la calidad de un alimento tan preciado como el jamón curado.

El principal objetivo de este trabajo es aportar datos sobre la calidad de la carne empleada en la elaboración de jamón curado, evaluando los efectos sobre la procedencia de la misma: convencional semigraso, ecológica y amparada bajo de DO Teruel. Se evaluarán parámetros físicos de la carne, en concreto los relacionados con el color, parámetros bromatológicos como el nivel en proteína, grasa, el contenido en humedad y el contenido mineral total, así como el contenido específico de hierro y sodio en la carne de las diferentes procedencias.

MATERIAL Y MÉTODOS

La toma de muestras de la carne se realiza en el propio secadero situado en la provincia de Teruel. El momento del muestreo es justo en la recepción de las piezas y antes del salado de las mismas. Al tratarse de piezas de diferente procedencia, existe un plan de trazabilidad establecido, ya que cada lote (procedencia de la carne) se incluye en depósitos debidamente identificados a cada procedencia.

De cada tipo de carne se toman 12 repeticiones, es decir que para cada variable (procedencia de la carne) se disponen de doce piezas de jamón. El muestreo se realiza cortando la carne de la misma zona, en concreto de la punta (figura 1). La cantidad de carne que se corta de cada pieza es aproximadamente de unos 100 g.

El resto de la pata de jamón, seguirá el proceso para la curación, ya que se irá realizando un posterior chequeo sobre la evolución de cada carne en el proceso de curado de la misma.
Las muestras se introducen en viales asépticos y se transportan al laboratorio en frío. El transporte de las muestras desde el secadero a los laboratorios de la Universitat Politècnica de València se realizó en el mismo día de la toma de muestras, en envases individuales y protegidos de la temperatura ambiente por cajas de poliestireno, garantizando en todo momento la cadena de frío. Una vez en el laboratorio se procedió al tratamiento de las muestras y al análisis de la carne.

El color se mide directamente sobre la carne sin procesar, en el mismo momento de la recepción de las muestras en el laboratorio. La medida del color se realizó mediante el colorímetro de Konica Minolta Color Reader CR-10 (Japan). Para la determinación del color se empleó el espacio CIE L*a*b*, donde L* indica la luminosidad y a* y b* son las coordenadas cromáticas. Con las variables a y b se determina el croma o saturación (c*) y el Hue o tono (H*), que permiten realizar una descripción numérica del color en términos de luminosidad, tonalidad (H*) y saturación (c*) (CIE, 2004):

$$H^* = \arctan \left(\frac{b^*}{a^*} \right)$$
$$c^* = (a^2 + b^2)^{1/2}$$

Posteriormente a la medición del color, toda la muestra se tritura en una con una picadora doméstica, obteniéndose una muestra homogénea. Esta carne homogénea se divide en fracciones para la realización de los diferentes análisis. Si la muestra no se analiza en el momento, se introduce en una bolsa de conservación de alimentos y se introducen en el congelador (a la temperatura de -20 ºC) y se van consumiendo a medida que se van realizando los correspondientes análisis.

Para la determinación de la humedad (AOAC, 1990) se pesan con exactitud 4 g aproximados de carne y se introducen en un crisol, previamente tarado. La muestra se pasa a estufa a una temperatura de 100 ± 5 ºC durante 24 h o hasta peso constante. Transcurrido este tiempo, se sacan las muestras de la estufa y se colocan en un desecador hasta que alcancen la temperatura ambiente. Momento en el cual se vuelven a pasar las muestras. El contenido en humedad expresado en porcentaje se calcula empleando la siguiente fórmula:

$$\text{Humedad (%) } = \frac{\text{peso inicial (g)} - \text{peso final (g)}}{\text{peso muestra húmeda (g)}} \times 100$$

Donde:
- peso inicial=peso (g) de la cápsula de porcelana + peso (g) de la muestra húmeda
- peso final=peso (g) de la cápsula de porcelana + peso (g) de la muestra desecada

Figura 1. Esquema de las zonas del jamón. Ubicación de la punta.
El contenido de los minerales totales o cenizas de la carne están formados por los residuos que se obtienen después de incinerar completamente la materia orgánica de la carne. Tanto el agua, como los ácidos volátiles se evaporan y las sustancias orgánicas se queman en presencia del oxígeno del aire, hasta convertirse en CO₂ y óxidos de nitrógeno. La determinación de las cenizas de la carne se realiza por un método gravimétrico, para ello se pesan 2 g de carne y se introducen en la mufla donde la temperatura aumenta 20 °C por minuto hasta alcanzar los 500 °C, temperatura a la que se mantienen durante cinco horas. Transcurrido este tiempo, hay que esperar hasta que se alcance la temperatura ambiente y se sacan las muestras de la mufla y se colocan en un desecador hasta que alcanzan la temperatura ambiente. Momento en el cual se vuelven a pasar las muestras (Marshall, 2010). El contenido mineral total, expresado en porcentaje de cenizas se calcula aplicando la fórmula siguiente:

\[
Cenizas (\%) = \frac{peso\ inicial\ (g) - peso\ final\ (g)}{peso\ muestra\ húmeda\ (g)} \times 100
\]

Donde:
- peso inicial = peso (g) de la cápsula de porcelana + peso (g) de la muestra húmeda
- peso final = peso (g) de la cápsula de porcelana + peso (g) la muestra incinerada

Desde 1880, Johan Kjeldahl propuso el método para la determinación de proteína cruda. El método Kjeldahl se basa en la destrucción de la materia orgánica con mezclas ácidas, principalmente ácido sulfúrico, formándose sulfato de amonio, que en exceso de hidróxido sódico libera amoníaco, el cual se destila recibiendo en ácido bórico, formando borato de amonio, que se valora con ácido clorhídrico (Salo-vääänänen y Koivistoinen, 1996).

En el procedimiento para la determinación del contenido en proteína se pesan cantidades de carne picada de aproximadamente 0,4 g, y se introduce en el tubo especial de digestión, a continuación se añaden 4 g de la mezcla de catalizadores y 10 mL de la mezcla de ácidos, agitando suavemente el tubo digestor y se deja reposar unos minutos, para evitar excesiva formación de espuma, colocándolo seguidamente en el bloque digestor a 420 °C, durante 30 minutos, para que se produzca la digestión. Al cabo de los 30 minutos de digestión, se sacan los tubos en el soporte porta-tubos y se dejan enfriar durante 10 minutos y se añaden con precaución 50 mL de agua destilada a cada tubo.

Posteriormente se realiza la destilación, colocando el tubo de digestión en la unidad de destilación, previamente preparada y ajustada, a la par se sitúa en la unidad de destilación un erlenmeyer de 250 mL, con 15 mL de la mezcla de ácido bórico + indicador, una vez recogidos de 100 a 125 mL de destilado, se valora con H₂SO₄ 0,05 N, hasta el viraje de verde a rojo pálido. En paralelo se realiza una prueba en blanco, efectuando la digestión sin poner muestra y continuando con una posterior destilación y valoración.

El nitrógeno total de expresa en porcentaje sobre la materia seca, y se calcula por la fórmula:

\[
Nitrógeno\ total\ (\%) = \frac{(V_m - V_b) \times f \times N \times 100 \times 14}{peso\ muestra\ (mg)} \times 100
\]

Donde:
- \(V_m\) = Volumen de H₂SO₄ (ml) gastados en la muestra.
- \(V_b\) = Volumen de H₂SO₄ (ml) gastados en el blanco.
- \(f\) = Factor del H₂SO₄.
- \(N\) = Normalidad del H₂SO₄.
- \(mg\) = Peso de la muestra (mg).
Finalmente, para la determinación de la proteína bruta se multiplica en contenido en nitrógeno total por el factor de 6.25.

En la determinación de la grasa de la carne, se debe realizar previamente una hidrólisis ácida para romper las uniones de los lípidos enlazados tanto covalente como iónicamente a proteínas e hidratos de carbono (Nielsen, 2003). Para ello, se pesa 1 g de carne de jamón picada, se añaden 150 mL de HCl 4 N y se lleva a ebullición suave durante una hora y media. El vaso de precipitado se debe tapar con un vidrio de reloj.

Una vez acabada la hidrólisis se filtra la muestra y se lava con agua destilada. Los filtros que contienen la muestra se introducen en la estufa a 100 ºC durante 24 horas.

La segunda parte del método consiste en la extracción de la grasa, que se realiza con un equipo Soxhlet semiautomático que permite procesar seis muestras simultáneamente.

Para ello, los pocillos del equipo se secan previamente en estufa con unas bolitas de vidrio, se enfrian en desecador y se pesan. Los filtros que contienen la muestra se introducen dentro de otro filtro con 0.5 g de sulfato sódico anhidro y se introducen en los cartuchos de celulosa, colocándose posteriormente en el equipo. En cada pocillo se vierten alrededor de 40 mL de éter de petróleo, se colocan en la placa y se activa el programa que consiste en sumergir durante 30 minutos los cartuchos del éter de petróleo, 1 hora y media de goteo por gravedad de la parte soluble, 8 minutos de evaporación y 3 minutos de secado. Al acabar la extracción se espera hasta la completa evaporación del éter de petróleo y se pesan. La determinación de la grasa, expresada en porcentaje, se calcula empleando la siguiente fórmula:

\[
\text{Grasa (\%)} = \frac{\text{peso final pocillo (g) - peso inicial (g) x 100}}{\text{Peso muestra (g)}}
\]

Donde:
- peso final pocillo=peso (g) del pocillo+ peso (g) la grasa extraída
- peso inicial=peso (g) del pocillo + las perlas de vidrio

En la determinación del contenido en sodio hay que mineralizar la muestra calcinada y disolverla en una disolución de HCl al 2%. En la determinación se emplea el fundamento de la emisión espectral del sodio que se mide a 590 nm en fotómetro de llama, comparándose las lecturas obtenidas con las de la curva patrón (MAPA, 1994). La preparación de la curva de calibrado se realiza con unos patrones de 0 a 6 mg L⁻¹ de sodio a partir de una disolución de 100 mg L⁻¹ de sodio en matrazes de 25 mL, y enrasándolos con ácido clorhídrico al 2%. Se efectúan las lecturas fotométricas de las muestras mineralizadas según se indica en las instrucciones del fotómetro equipado con llama de aire-butano, midiendo la señal de los puntos de la curva de calibrado y por comparación la concentración de la muestra, a la longitud de onda fijada.

Para realizar los cálculos se llevan las lecturas obtenidas sobre la curva de calibrado y se expresa el contenido de sodio en mg sobre 100 g de materia fresca, teniendo en cuenta las diluciones efectuadas.

Para la determinación del contenido en hierro de la carne, se parte de la muestra mineralizada y en disolución de HCl al 2%. El método para la determinación es la medida de la absorción del átomo de hierro a 248.3 nm, en un equipo de absorción atómica, comparándose las lecturas obtenidas con las de la curva patrón (MAPA, 1994).

Para realizar los cálculos se llevan las lecturas obtenidas sobre la curva de calibrado y se expresa el contenido de hierro en mg sobre 100 g de carne, teniendo en cuenta las diluciones efectuadas.

El estudio estadístico se realizó con el programa Statgraphics Centurion versión XVII.II. Los datos experimentales fueron evaluados mediante ANOVA unifactorial, error estándar de estimación y la menor diferencia significativa del test de Fisher (F-test) y el p-valor derivado como describe Ott (1977). Los resultados se consideran significativos cuando p≤ 0.05.
RESULTADOS Y DISCUSIÓN

La tabla 1 muestra los resultados de los parámetros relacionados con el color de la carne.

Tabla 1. Análisis comparativo de los parámetros del color de la carne

<table>
<thead>
<tr>
<th>Tipo de carne</th>
<th>Parámetros de color</th>
<th>(\text{Luminosidad (L*)})</th>
<th>(\text{Tonalidad (H*)})</th>
<th>(\text{Saturación (c*)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convencional</td>
<td>Significación Promedio ± LSD</td>
<td>a 34.92±1.40</td>
<td>a 0.478±0.208</td>
<td>a 11.434±1.172</td>
</tr>
<tr>
<td>Ecológica</td>
<td>Significación Promedio ± LSD</td>
<td>a 34.70±1.40</td>
<td>a 0.339±0.208</td>
<td>b 15.161±1.172</td>
</tr>
<tr>
<td>DO Teruel</td>
<td>Significación Promedio ± LSD</td>
<td>a 34.16±1.40</td>
<td>a 0.312±0.208</td>
<td>b 15.280±1.172</td>
</tr>
</tbody>
</table>

Se observa que de los tres parámetros de color estudiados en la carne, solamente existen diferencias estadísticamente significativas \((p<0.05)\) en el valor de la saturación, donde la carne convencional presenta valores significativamente inferiores a los de la carne ecológica y a los de la carne de la DO Teruel, no existiendo diferencias entre los valores de saturación de estas dos últimas procedencias. En todos los casos, los valores están dentro de los intervalos encontrados en bibliografía sobre los parámetros de color (Carvalho et al., 2014). En el color de la carne influyen factores genéticos, pero también otros factores externos, como la alimentación del animal, la velocidad de enfriamiento de la canal, el tipo de músculo, la orientación de las fibras, el pH del músculo, el tiempo y la temperatura \textit{post mortem}, y muchos factores relacionados con el procesamiento. El color de la carne, principalmente aporta información sobre la concentración de pigmentos y el estado químico del grupo hemo (Mancini y Hunt, 2005), siendo el contenido en mioglobina el factor que más influye sobre estabilidad del color de la carne (Xianqun, 2010).

El parámetro de la luminosidad (L*) aporta información sobre lo claro u obscuro que es el color de la carne. Además se relaciona con el estado físico de la carne, debido al valor del pH final que alcanza la carne del músculo, a la estructura de las fibras musculares y a la cinética implicada para establecer el rigor mortis. Los valores similares en las tres procedencias de carne empleadas para la curación del jamón ponen de manifiesto, las idénticas e idóneas condiciones de la carne, independientemente de la procedencia para la finalidad de la curación.

La tonalidad (H*) es el parámetro del color de la carne que más está relacionado con los diferentes pigmentos que influyen en el color de la carne, como la mioglobina (Mb, de color rojo púrpura), oximioglobina (MbO\(_2\) de color rojo vivo), metamioglobina (MetMb, de color pardo). Aunque no existen diferencias estadísticamente significativas en los valores de la tonalidad de la carne, la de procedencia convencional presenta valores ligeramente superiores a los de las procedencias ecológicas y de DO Teruel. Los valores similares de tonalidad de las tres procedencias muestran las buenas condiciones de la carne, independientemente de la procedencia, para el procesado de curación.

La saturación (c*) es el parámetro del color relacionado directamente con la concentración de mioglobina y que está afectado por los factores \textit{ante mortem}, como el tipo de músculo, la edad del animal, la alimentación, la genética, etc. Los valores de saturación de la carne ecológica y de la DO Teruel son significativamente superiores a los de la carne convencional, teniendo en cuenta que algunos de los factores influyentes son idénticos, como el tipo de músculo, deben ser los sistemas productivos, como la alimentación o el bienestar animal, los que influyan en el mayor valor de este parámetro para la carne ecológica y de la DO Teruel, aportando más valor añadido para el proceso de secado de la carne en el curado de la misma.

La tabla 2 muestra los resultados de los parámetros del contenido en humedad/materia seca, contenido mineral total, contenido en proteína y grasa de la carne.
Tabla 2. Análisis comparativo de los parámetros nutricionales de la carne

<table>
<thead>
<tr>
<th>Tipo de carne</th>
<th>Parámetros nutricionales (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Humedad</td>
</tr>
<tr>
<td>Convencional</td>
<td>Significación</td>
</tr>
<tr>
<td>Ecológica</td>
<td>Significación</td>
</tr>
<tr>
<td>DO Teruel</td>
<td>Significación</td>
</tr>
</tbody>
</table>

Se observan diferencias estadísticamente significativas para el contenido en humedad (agua libre de la carne) y para el contenido en grasa. El músculo contiene aproximadamente el 75% de agua. Los otros componentes principales incluyen proteínas (entre el 15-20%), lípidos o grasas (entre el 15-20%), carbohidratos (aproximadamente 1%) y vitaminas y minerales (analizados como cenizas, aproximadamente 1%) (Capra et al., 2013).

La carne contiene aproximadamente entre el 70 y 75% de agua, de la cual el 70% es agua libre, que se encuentra entre los espacios de los filamentos de los aminoácidos actina y miosina, el resto es agua ligada a las proteínas. El contenido en agua libre de la carne permite conocer indirectamente, el grado de dilución de los nutrientes (Bradley, 2010). La mayor parte del agua en el músculo se mantiene dentro de su estructura, ya sea dentro de las miofibrillas, entre las miofibrillas y entre la membrana celular (sarcolema), entre las células musculares y entre los grupos de células musculares. La cantidad de agua en la carne puede cambiar dependiendo de numerosos factores relacionados con el tejido en sí y de cómo se maneja el producto.

Los niveles del agua libre de la carne son significativamente superiores en la carne de procedencia convencional. En concreto, existe un 9% más de agua en la carne convencional frente a la ecológica y un 6% más frente a la carne de la DO Teruel. Teniendo en cuenta que esta carne va para el proceso de secado y elaboración de jamón, este alto contenido en agua podría ser un problema para la calidad final del producto. Uno de los problemas de calidad de la carne de cerdo es la pérdida de humedad inaceptablemente alta, que ocurre en los productos frescos y mínimamente procesados. Se ha estimado que la pérdida de humedad inaceptablemente en el producto fresco puede ocurrir hasta en un 50% de la carne de cerdo (Kauffman et al., 1992). El exceso en la pérdida de agua produce pérdidas económicas de muchas maneras, incluida la reducción del peso del producto final. Además, las proteínas valiosas solubles en agua y las vitaminas se pierden junto con la pérdida de agua.

No se encuentran diferencias estadísticamente significativas en los contenidos en minerales totales, aunque la carne ecológica es la que mayor fracción mineral presenta y la convencional la que menor contenido minral acumula. Siendo la diferencia en el contenido mineral entre ambas procedencias del 15% aproximadamente.

Los niveles de proteína de la carne ecológica son los más bajos, aunque las diferencias encontradas con respecto al resto de las procedencias no son estadísticamente significativas, estas diferencias pueden ser debidas a las diferentes fuentes proteicas y a la cantidad de proteína consumida en la alimentación del ganado, en función de la procedencia. Las diferencias pueden ser debidas a la menor ingesta proteica de los animales de producción ecológica. Siderer et al. (2005) indican que las altas aplicaciones de nitrógeno fertilizante pueden incrementar los contenidos en proteína cruda de los alimentos vegetales, pero disminuir el valor nutricional de esa proteína. Grassi et al. (2017) indican que una disminución de los niveles de proteína en las dietas de cerdos no afecta significativamente a los rasgos de calidad de los jamones curados.

Los niveles en grasa de la carne de cerdo son significativamente superiores en el caso de la procedencia DO Teruel, posiblemente debido a los requisitos que debe cumplir esta carne para el proceso de curado. No existen diferencias significativas en los niveles de grasa de las carnes ecológicas y convencionales, aunque la procedencia de la convencional es semigrasa. Los bajos niveles en grasa de la carne podrían llevar a desarrollar problemas durante el proceso de curado, siendo altamente importante los niveles de grasa infiltrada en la carne para el...
desarrollo del perfil aromático y la palatividad del jamón. Cuanto mayor sea el contenido de grasa intramuscular, más atrapados estarán los compuestos aromáticos en el jamón (Pugliese y Sirtori, 2012), mientras que una grasa subcutánea más gruesa permite procesos de curado prolongados y evita el desprendimiento de la corteza del músculo subyacente (Koutina et al., 2012). Por otro lado, es importante el perfil de ácidos grastos de la carne (datos no mostrados) para evaluar la calidad de la misma y la potencialidad para la curación en el proceso de elaboración del jamón.

La tabla 3 muestra los resultados de los parámetros del contenido en hierro y sodio de la carne, de todas las procedencias.

Tabla 3. Análisis comparativo de los contenidos en hierro y sodio de la carne

<table>
<thead>
<tr>
<th>Tipo de carne</th>
<th>Parámetros minerales</th>
<th>Hierro (ppm)</th>
<th>Sodio (mg/100 g mf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Significación</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Promedio ± LSD</td>
<td>28.256±4.319</td>
<td>94.658±18.452</td>
</tr>
<tr>
<td>Convencional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecológica</td>
<td></td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Promedio ± LSD</td>
<td>33.098±4.319</td>
<td>78.161±18.452</td>
</tr>
<tr>
<td>DO Teruel</td>
<td></td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Promedio ± LSD</td>
<td>34.051±4.319</td>
<td>91.666±18.452</td>
</tr>
</tbody>
</table>

No existen diferencias estadísticamente significativas (p<0.005) en los contenidos de hierro y sodio en las carnes en función de la procedencia. Si bien, para el caso del hierro, las carnes de procedencia ecológica y de la DO Teruel son las que mayores niveles de hierro presentan y menores en sodio, siendo la carne ecológica la de menor concentración en este elemento mineral. Los niveles de hierro están en sintonía con los resultados de color, en concreto con el parámetro de saturación, que a su vez es el parámetro del color relacionado directamente con la concentración de mioglobina. El sodio tiene un papel muy importante en todo el proceso de exudación en la fase de elaboración del jamón, pero en este caso se muestran los valores iniciales que presenta la materia prima, antes de recibir aportes externos de sal común. Las diferencias encontradas en la materia prima son debidas a las diferentes alimentaciones del ganado. Los valores de hierro y sodio de las carnes analizadas son ligeramente superiores a las registradas en bibliografía para este tipo de carne (BEDCA, 2018).

CONCLUSIONES

La calidad de la carne se ve afectada por múltiples factores a lo largo de la cadena cárnica. La alimentación juega un papel determinante en ciertos atributos de calidad, siendo también importantes otras interacciones como el bienestar animal o las condiciones de sacrificio o post-mortem. Promover el uso de dietas bajas en proteínas en cerdos en crecimiento, serían estrategias sostenibles para el sector, con el fin de reducir no solo el uso de fuentes de proteínas caras, sino también el riesgo de un impacto ambiental negativo.

La carne ecológica se caracteriza por un menor contenido en agua, y un equilibrio en los niveles de nutrientes. Las condiciones del valor proteico y el contenido en grasa no presentan diferencia, aunque la carne blanca grasa es la que mayor fracción lipídica presenta. Estas características encontradas en la carne podrán ser de utilidad para optimizar el proceso de secado en la producción de jamón.

REFERENCIAS

• Reglamento (CE) nº 834/2007 del Consejo de 28 de junio de 2007 sobre producción y etiquetado de los productos ecológicos y por el que se deroga el Reglamento (CEE) nº 2092/91.
LA HUELLA DE CARBONO DEL CONSUMO CÁRNICO EN ESPAÑA. UNA EVALUACIÓN A TRAVÉS DE LA HERRAMIENTA GLEAM DE LA FAO

Porras J, Ruíz M, López CA

Calle Darwin 2, Edificio de Biología.
Universidad Autónoma de Madrid.
Ciudad Universitaria de Cantoblanco, 28049 Madrid

javier.porras@estudiante.uam.es // 669502212 // J. Porras Gómez
cesaragustin.lopez@uam.es // 91 497 8097 // C.A. López Santiago

RESUMEN: El drástico cambio climático que estamos viviendo actualmente es causa directa de las emisiones continuadas de Gases de Efecto Invernadero generadas por la actividad humana. La ganadería y concretamente el aumento creciente del consumo de productos cárnicos a nivel mundial se ha puesto recientemente en el foco de atención y se postula como un punto estratégico a la hora de paliar los efectos de calentamiento global. La Food Agriculture Organization (FAO) ha desarrollado la herramienta de Análisis de Ciclo de Vida “Global Livestock Assessment Model” (GLEAM), que permite estimar las emisiones de CO₂ equivalentes generadas por la ganadería de múltiples países del mundo. En este trabajo, la huella de carbono del consumidor cárnico de España es estimada a través de dicha herramienta, analizando en el proceso los principales factores que caracterizan la ganadería e industria cárnica nacionales y evaluando a su vez la aplicabilidad del modelo de la FAO al caso español.

Palabras clave: Cambio climático, Climate change, consumo cárnico, España, FAO, ganadería, Gases de Efecto Invernadero, GLEAM, greenhouse gases, livestock, meat consumption, Spain

1. INTRODUCCIÓN

Según el quinto informe del IPCC de 2013, el calentamiento de la atmósfera y el océano son fenómenos que de manera sumamente probable han sido provocados y siguen siendo perpetuados por la actividad humana, siendo necesario para la contención de estos reducir de forma sustancial y sostenida las emisiones de gases de efecto invernadero (GEI). La ganadería genera una cantidad estimada de 7,1 gigatoneladas de dióxido de carbono equivalente (CO₂-eq) por año, representando el 14,5% de las emisiones GEI inducidas por la actividad antrópica (Gerber et al. 2013).

El reconocimiento internacional del papel de la agricultura y ganadería en el cambio climático no se produjo hasta la Cumbre del Clima de 2015 (COP21). En esta se señaló al consumo de alimentos actual como un factor relevante para alcanzar el objetivo establecido en la Cumbre de París (CE, 2015), el cual busca evitar que la temperatura media global aumente más de 2º C respecto a la era preindustrial. Si bien históricamente la agricultura y ganadería han dependido del potencial productivo que un agro-ecosistema ofrecía a los habitantes de una región, actualmente y de forma creciente la demanda de los consumidores es el principal moldeador de la producción de alimentos a escala global (Gerber et al. 2013). Por ello, el conocimiento de la huella de carbono del consumo de productos ganaderos, y concretamente de productos cárnicos, es de especial importancia para los nuevos retos que se plantean para afrontar el cambio climático. En España, entre los años 1960 y 2015 se pasó de producir aproximadamente 600 mil toneladas de carne a 5,8 millones (FAO, 2017), mientras que la población aumentó de 30 millones de habitantes a 46 (INE, 2017). De ser uno de los países europeos que más tardíamente se industrializó, pasó a formar parte de la Comunidad Económica Europea (CEE) como país miembro en 1985, siendo la capacidad de producción agraria uno de los mayores pilares económicos que cimentó el Acta de Adhesión a la CEE.
No obstante, la literatura científica existente en relación con la huella de carbono del consumo cárnico en España es prácticamente nula. Sí bien hay documentos como el Inventario Nacional de Emisiones de Gases de Efecto Invernadero fruto de la aplicación europea del Protocolo de Kyoto en España, este no da datos aplicables de manera concreta a los productos ganaderos o cárnicos. La gastronomía tradicionalmente cárnica tan arraigada en España, las características de la rápida industrialización del modelo agrario, la carencia de literatura científica y la necesidad creciente de ampliar el conocimiento disponible para afrontar el cambio climático son las bases que fundamentan la realización de este documento.

2. OBJETIVOS

El objetivo principal de este documento es estimar la huella de carbono que el consumidor promedio español de carne posee en términos de kilogramo de CO$_2$ equivalente por kilogramo de tipo de carne consumida. Las carnes estudiadas serán la carne de vacuno, de ovino-caprino, de cerdo y de pollo. Concretamente, esta huella se centrará en las emisiones generadas desde la producción del alimento del animal hasta el empaquetamiento y procesado del mismo.

No obstante, al hacer una previa revisión de las herramientas de Análisis de Ciclo de Vida (ACV) se observa una serie de incoherencias en los resultados que estas generaban. Una de estas es la predicción de que en España la ganadería extensiva genera más emisiones que la ganadería intensiva. Por ello, otro pilar ineludible de este trabajo es la evaluación de la herramienta ACV utilizada, llamada Global Livestock Environmental Assessment Model (gLEAM) elaborada por la Food and Agriculture Organization (FAO). A través de esta evaluación se podrá conocer con exactitud tanto la herramienta como la ganadería e industria cárnica española.

3. METODOLOGÍA

Este es un estudio de ACV de un producto de una trazabilidad sumamente compleja, razón por la cual se hace uso de una herramienta ACV ya diseñada como es la ya mencionada GLEAM.

Como su propio nombre indica, esta herramienta es sólo un modelo de emisiones de carbono no validado a priori en ninguna parte del mundo. Por ello, en este trabajo se realizará un análisis de la metodología de GLEAM en su capacidad de evaluar el caso concreto español, revisando las fuentes de datos utilizadas por la FAO, metodología utilizada y resultados generados para después compararlos con manuales e informes sectoriales del Ministerio de Pesca, Agricultura y Medio Ambiente (MAPAMA). De esta forma, los datos de MAPAMA se entenderán como la validación experimental del modelo teórico GLEAM. El modelo genera estimaciones para el año 2010, por lo que todos los datos utilizados del MAPAMA serán del mismo año. Esta evaluación permitirá por un lado determinar si los resultados demuestran de forma veraz la diferencia de emisiones entre explotaciones intensivas y extensivas y por otro, si estas pueden ser utilizados para calcular de forma aproximada la huella de carbono per cápita para el caso español.

Una vez evaluados el potencial y límites de GLEAM, se usará para calcular la huella de carbono per cápita española. Para ello se usarán datos de consumo cárnico de los Informes de Consumo en Hogares del MAPAMA y datos demográficos del INE. Se realizarán comparaciones entre ambas familias de datos para tratar de obtener estimaciones coherentes de kg de CO$_2$/kg de carne consumido o kg de CO$_2$-eq/proteína de carne consumida.

4. ANÁLISIS DE GLEAM: RECURSOS UTILIZADOS Y ESTIMACIONES GENERADAS.

A lo largo de este punto se comparará, en la medida de lo posible, las predicciones generadas por el modelo con las evidencias aportadas mayoritariamente por el MAPAMA a través de censos, encuestas y estudios sectoriales.
4.1 Tipos de carne estudiadas

El modelo realiza un seguimiento de la ganadería bovina, ovino-caprina, porcino industrial y broiler para el caso español. Si se compara con las Encuestas de Sacrificio del Ganado elaboradas por el MAPAMA para el año 2015 (aquí no es necesario que sean datos de 2010 al querer saber de forma básica las carnes más producidas en España) se puede observar que por lo general la aproximación de GLEAM es correcta.

Para ser más precisos, para “Aves” la carne de pollo broiler representa un 86% del total (MAPAMA, 2018), por lo que se puede considerar que casi la totalidad de la producción es en régimen intensivo de broiler. Por otro lado, el censo de ganado porcino extensivo o ibérico en el año 2015 corresponde con un 8,5% del total, siendo el 91,5% restante el ganado porcino intensivo (MAPAMA, 2018), pudiendo hacer la misma aproximación.

4.2 Clasificación de los sistemas productivos ganaderos

La clasificación de los sistemas productivos ganaderos plantea un reto difícil, ya que difiere en función de la perspectiva de estudio y es dependiente de multitud de variables. La FAO subrayó en 2007 la necesidad de establecer una clasificación de sistemas de producción ganadera a través del uso de Sistemas de Información Geográfica (SIG) (Wint y Robinson, 2007). Esto se realiza con el propósito de integrar los sistemas agrícolas y ganaderos, entendiendo ambos como una dualidad productiva del terreno que interactúan de manera funcional.

Estas bases de datos basadas en SIG son fundamentadas por diversos trabajos científicos habitualmente llevados a cabo por la propia FAO y los cuales son utilizados por GLEAM a la hora de estudiar los diferentes sistemas ganaderos. No obstante, es muy importante señalar que estos estudios científicos concluyen que sus estimaciones no han podido ser validadas científicamente debido principalmente a las limitaciones económicas impuestas por las propias dimensiones globales del trabajo.

4.2.1 Sistemas de producción de rumiantes

GLEAM divide los sistemas de producción ganadera rumiantes (vacuno y ovino-caprino) en 3: cebaderos, sistemas pastoriles extensivos (SPE) y sistemas mixtos (SM). La definición de los cebaderos coincide con la ofrecida en el Real Decreto 1047/2003. Por otro lado, los SM y los SPE son diferenciados a través de distintos parámetros geoespaciales como la densidad poblacional, el periodo de crecimiento primario y el origen del alimento. No obstante, el hecho más reseñable en este apartado es que GLEAM añade a la definición de los SPE un límite de 10 Unidades de Ganado Mayor (UGM) por hectárea. Esto es incompatible con la definición de SPE española ofrecida en el Real Decreto 1221/2009 de 17 de julio donde se establece un límite de, como máximo, 2,4 UGM/ha.

Con la intención de resolver esta incongruencia, se mantiene una conversación vía e-mail con el equipo informativo de GLEAM (info-GLEAM). En palabras literales de info-GLEAM “este límite no es necesariamente válido en sus modelos” al provenir del trabajo de Sere y Steinfeld, 1996, cuyos datos carecen de aplicabilidad geoespacial. Si esto es así, que sea incluido en la definición de los SPE en el propio manual de GLEAM da a entender cierta imprecisión en su exposición metodológica. Además, en la misma comunicación se añade que la literatura científica de la cual se han extraído los datos para dividir los rumiantes es Robinson et al. 2014, mientras que en el manual de GLEAM en todo momento se hace referencia a Robinson et al. 2011. La mayor problemática viene cuando se observa que el SIG que utiliza cada trabajo es diferente, aumentando de esta forma los interrogantes sobre la precisión de la metodología del modelo.

Ignorando estos factores, los SM propuestos no tienen una compatibilidad clara con los existentes en España. En España, los sistemas ovino-caprino son divididos en extensivos y cebaderos, siendo estos últimos una parte ínfima del total (MAPAMA, 2016). Para el vacuno se realiza una división en dos subsectores: el cebadero y las vacas nodrizas. Los sistemas pastoriles y los sistemas mixtos propuestos por GLEAM actúan de la misma forma de “fuente” de individuos para los cebaderos, lo que si que permite establecer cierto paralelismo con el modelo GLEAM. No obstante, el modelo de producción mixta da a lugar a multitud de interpretaciones que no permiten asemejarlo con ningún sistema español.
4.2.2 Sistemas de producción porcino y avícola

Como ya se ha indicado en el punto 4.1, los sistemas de producción más relevantes para el porcino y el ave son ambos intensivos. Al no haber diferenciación de sistemas productivos extensivos el análisis de estos es menos exhaustivo. No obstante, las definiciones que aporta GLEAM sobre ambos sistemas productivos intensivos coinciden con la dada en la Orden APM/353/2017, de 4 de abril.

4.2.3 Cabaña ganadera

La cabaña ganadera hace referencia al número de cabezas de ganado que una explotación contiene. Esta es estimada por GLEAM a través de los parámetros de dinámicas poblacional (tipo de animal, el peso, la fase de producción en la que se encuentra y la alimentación que recibe).

La principal problemática que se observa en los parámetros de dinámica poblacional es que los inputs utilizados para el calculo de estos son un promedio regional. Para España, al pertenecer a la región de Europa Occidental, se utilizan los promedios obtenidos de todos los países miembros de dicha región. Esto supone una simplificación geográfica al comparar explotaciones ganaderas de países de clima oceánico como Bélgica, los Países Bajos, Francia o Suiza con un sistema productivo de clima mediterráneo continental como es España en gran parte de su territorio. Para el caso del ganado porcino y broiler esta simplificación regional no tiene mayor importancia al ser ambos casos de explotación industrial aislados de las dinámicas agroecológicas zonales y estar regulados bajo legislación europea, pero de nuevo, para la trazabilidad más compleja de los rumiantes y su dependencia de factores naturales propios de cada zona hace de su estudio una tarea donde las simplificaciones y estandarizaciones no pueden ser válidas.

A pesar de las simplificaciones regionales realizadas, GLEAM muestra una gran precisión para calcular la cabaña ganadera. Esto sugiere que probablemente el modelo realice una corrección posterior sobre los datos estimados con outputs de datos de FAOSTAT.

En base a lo descrito en los 4.2.1, 4.2.2. y 4.2.3, se puede concluir que la metodología utilizada por GLEAM para estudiar los sistemas productivos ganaderos españoles no resulta totalmente eficaz principalmente a la hora de diferenciar los SPE y SM rumiantes. Esto es debido a la falta de claridad para definir los SPE rumiantes, a la falta de coherencia a la hora de referenciar la literatura científica y base de datos geográficos utilizados, la no validación experimental de los mismos, la incompatibilidad de los SM para el caso español y la utilización de parámetros poblacionales promediados para Europa occidental. Estos factores influirán en todo el desarrollo posterior del modelo, acumulando un sesgo metodológico que probablemente se refleje en los resultados generados de huella de carbono.

4.3. Alimento del ganado

En este punto GLEAM se centra en el cálculo de la composición porcentual de la ración diaria de alimento a cada tipo de animal estudiado. Esta se divide en tres grupos principales: las fibras, que engloban el pasto fresco, el heno, el forraje y residuos fibrosos de la cosecha; los concentrados, que agrupan los cereales y los subproductos de distintos tipos de especies vegetales (soja, palma, remolacha, cebada, etc.); y los aditivos alimenticios. Una de las mayores problemáticas observadas en la metodología de GLEAM para el cálculo de esta ración es el uso de modelos globales como el Global Agro-Ecological Zones (GAEZ), promedios regionales de Europa Occidental y los propios parámetros de dinámica poblacional utilizados para la cabaña ganadera, pudiendo observar que GLEAM se retroalimenta de sus propios resultados, aumentado así el sesgo acumulado.

No obstante, los datos de consumo animal de pienso o forrajes en España están restringidos al público en la plataforma SILUM del MAPAMA por ser propiedad privada de las empresas del sector, lo que supone una gran problemática a la hora de comprar las estimaciones generadas por GLEAM y la realidad española. Por ello, la validez de los datos estará sujeta a resultados subyacentes que sí puedan ser comparados a lo largo del estudio.
4.3.1. Alimentos más consumidos

Aproximadamente, el 60% del alimento consumido por los animales corresponde con las fibras, el 25% con los granos y 15% con subproductos. El consumo total, por su parte, se divide en un 60-12-9-19 para el ganado vacuno, ovino-caprino, porcino y broiler respectivamente.

Como se puede observar en la Fig. 1 los alimentos más consumidos son el forraje de maíz MAIZESIL (22%), el pasto fresco GRASSF (15%), el heno GRASSH (14%), granos de maíz CORN (12%), habas de soja SOYBEANS (6%), granos de trigo WHEAT (5%) y subproductos de la producción de aceite de palma PKEXP (4%). De los alimentos mencionados, las habas de soja y los subproductos de la palma son productos sobre los que hay que maximizar la atención, ya que la prácticamente nula producción de ambos en España (MAPAMA, 2015) hace que la industria ganadera del país sea totalmente dependiente de las importaciones del exterior.

4.4. Producción y productividad animal

Al igual que la ingesta del alimento, los datos de producción cárnica son resultado de las estimaciones del modelo. Si se comparan los datos generados por GLEAM con los recopilados por la FAOSTAT y los emitidos por el MAPAMA en las encuestas de sacrificio de ganado para el 2010 se obtienen los siguientes valores:

Cuadro 1. Dados de producción cárnica en toneladas de peso en canal para distintas fuentes: GLEAM, FAOSTAT y MAPAMA.

<table>
<thead>
<tr>
<th>Unidades</th>
<th>Bovino</th>
<th>Ovino-caprino</th>
<th>Cerdo</th>
<th>Broiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>GLEAM</td>
<td>ton PC</td>
<td>423.291</td>
<td>286.893</td>
<td>3.673.153</td>
</tr>
<tr>
<td>MAPAMA</td>
<td>ton PC</td>
<td>617.299</td>
<td>145.125</td>
<td>3.368.920</td>
</tr>
</tbody>
</table>

Como se puede observar en el cuadro 1, hay una gran diferencia de producción cárnica entre los datos censados por MAPAMA y los generados por las estimaciones de GLEAM. El ganado bovino y broiler son infraestimados en un 30%, mientras que el ovino-caprino es sobreestimado en un 80%. El porcino es la única carne que no sufre variaciones significativas. Esta clara diferencia de datos de producción cárnica tendrá sus consecuencias en la interpretación de la productividad animal y la huella de carbono total asignada a cada grupo animal. A pesar de
ello, resulta interesante poder conocer los datos de productividad que GLEAM predice para los distintos animales. La productividad animal se estudia en unidades de masa producida (peso seco en canal o masa proteica) por unidad de alimento ingerido. Para ello, se dividen los datos de producción carníca entre los datos de ingesta total estimados por GLEAM. Los resultados se muestran en la siguiente tabla:

Cuadro 2. Productividad animal por tipo de explotación.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Bovino</th>
<th>Ovino-Caprino</th>
<th>Cerdo</th>
<th>Pollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod. PC</td>
<td>%</td>
<td>4,01</td>
<td>4,01</td>
<td>10,38</td>
</tr>
</tbody>
</table>

Prod. PC: productividad en Peso en Canal (kg de peso en canal/kg de ingesta). Realización propia con datos de GLEAM-i (FAO) para España.

Lo primero que llama la atención sobre los datos mostrados en la tabla es la productividad del cerdo. En comparación con los demás tipos, el rendimiento carníco es tajantemente imposible (235,25%). La producción carníca en peso de canal propuesta por GLEAM es muy aproximada a la que muestran los datos del MAPAMA, lo que sugiere que la principal fuente de error resida en los datos de ingesta total, que además no han podido ser comprobados en el punto 4.3.

Una mayor productividad se traduce en un mayor aprovechamiento de los recursos ingeridos y por lo tanto en una menor producción de desechos, por lo que, de acuerdo con las estimaciones de GLEAM, los rumiantes son potencialmente más contaminantes que el resto. A nivel de explotación ganadera, se observa como los cebaderos del vacuno cuentan con una mayor productividad, lo que hace presuponer que estos sistemas intensivos son más eficaces a la hora de aprovechar los recursos que los sistemas extensivos pastoriles o mixtos, afirmación sujeta a un gran número de incongruencias y carencias metodológicas como se puede ir observando.

4.5. Emisiones de gases de efecto invernadero de GLEAM

Los numerosos y significativos errores que con alta probabilidad GLEAM comete en su metodología a la hora de estudiar la división de los sistemas ganaderos, la ingesta animal y la producción y productividad animal para el caso español da a entender que el sesgo acumulado llegados a este punto es considerablemente alto. No obstante, con el propósito de dar un valor estimado acorde al principal objetivo de este trabajo, las emisiones estimadas son analizadas igualmente. En el análisis se tienen en cuenta los gases dióxido de carbono (CO₂), metano (CH₄), y óxido nitroso (N₂O). Estos 3 GEI tienen diferente potencial de calentamiento global o global warming potential (GWP) (IPCC, 2014), por lo cual los resultados de GLEAM son generados en unidades de equivalentes de CO₂ (CO₂-eq).

Los cálculos se realizan en cuatro componentes del ciclo: las emisiones de la producción del alimento, las emisiones de la cría animal, emisiones del uso energético y emisiones post-industriales. Los datos de emisiones están en unidades de Intensidad de Emisión. Esta hace referencia a la cantidad equivalente de CO₂ generada por cantidad de proteína producida para cada explotación ganadera (kg CO₂-eq/kg prot). Para ello, para cada explotación animal se divide la cantidad de CO₂-eq generada en cada sección por la producción total de kg de proteína. A forma de síntesis, en la figura 2 se puede observar una comparación general entre todos los parámetros estudiados en cada grupo emisor. A rasgos generales, las principales fuentes de emisión de la ganadería española son: el cambio de uso del terreno de los cultivos de soja (Soja-LUC CO₂) con un 28%, la fermentación entérica (CH₄ F. entérica) y la producción de alimentos con un 20% cada uno y la gestión de los purines (CH₄ purines) con un 12%.
Figura 2. Gráfico de la contribución porcentual de cada fuente de GEI a la huella de carbono de la ganadería española.

Fuente: Elaboración propia con datos de GLEAM-i para España. En tonos marrones: emisiones de la producción de alimentos; en tonos rosados: emisiones de la cría animal; en tonos verdes: emisiones del uso energético.

Es muy importante señalar que GLEAM no aporta resultados para las emisiones post-industriales a pesar de que la metodología para ello es detallada en el manual del modelo. GLEAM-i no genera estimaciones para este apartado ni para España ni para ningún otro país tras una comprobación. Esto influye a la hora de acotar las dimensiones abarcadas por los resultados de huella de carbono de consumo cárnico.

En lo que respecta a la contribución de cada explotación ganadera a la huella de carbono total de España estimada por GLEAM, el porcino acapararía el 61% del total, seguido de los SPE y SM de vacuno.

Figura 3. Contribución porcentual al total de las emisiones GEI generadas en España por cada explotación ganadera

Fuente: Elaboración propia con datos de GLEAM-i para España
5. POTENCIAL DE CONSUMO HUMANO SOBRE LA PRODUCCIÓN PRIMARIA DE UN AGRO-ECOSISTEMA

A lo largo de la revisión de las estimaciones generadas por GLEAM, se ha podido ir observando una clara tendencia a posicionar a la ganadería intensiva como menos contaminante que la extensiva. Dejando de un lado los evidentes fallos metodológicos y la incompatibilidad de algunos datos utilizados y generados por GLEAM para el caso español, hay un parámetro que se considera el estudio no tiene en cuenta bien por la dificultad técnica que plantea su implementación o por otras causas no conocidas. A este parámetro se le ha denominado “potencial de consumo humano sobre la producción primaria de un agroecosistema”. Este haría referencia al potencial calórico que un terreno ofrece al ser humano para ser ingerido directamente.

Para entenderlo mejor es preferible dar un ejemplo que lo ilustre. La dehesa es un ecosistema que, por características edáficas (suelos típicamente ácidos, con capas superficiales poco desarrolladas y de escasa materia orgánica), no es propicia para cultivos, siendo la actividad agrícola relegada a un puesto secundario (Campos, P. 2010). Por ello, la principal forma de obtener un potencial calórico consumible por el ser humano de este terreno es a través del pastoreo de ganado bien rumiante o porcino que pueda alimentarse de las herbáceas que caracterizan la dehesa. En contraposición, los cultivos industriales destinados a la producción de alimento para el exclusivo consumo animal como la soja tienen un potencial de consumo humano sobre su producción muy alta. No obstante, en vez de alimentar directamente a la población humana, se alimenta a ganado criado en regímenes intensivos, lo que supone un intermediario no necesario, perdiendo gran parte del potencial de producción calórica del terreno sea cual sea el rendimiento cárnico del animal. Esto supone un coste de oportunidad muy alto para la carne producida en sistemas intensivos al dejar de lado la posibilidad de alimentar directamente al ser humano frente al coste de oportunidad nulo que encontramos en los sistemas ibéricos adehesados.

Al no tener en cuenta este parámetro y ser difícilmente medible en términos económicos o a través de una metodología científica, el valor teórico del alimento para consumo animal difiere del real. Por ello, la huella de carbono generada por la producción de alimento para el ganado en régimen intensivo es una huella opcional con alto coste de oportunidad; mientras que la generada por el ganado extensivo al consumir el pasto es una huella implícita en el propio sistema agrario, con muy bajo coste de oportunidad. Si este parámetro fuera tenido en cuenta, estudiado y validado, la huella de carbono asignada a la carne de producción intensiva en España podría ascender al mismo tiempo que la asignada a la de producción extensiva bajaría.

6. APROXIMACIÓN DE LA HUELLA DE CARBONO PER CÁPITA Y NACIONAL DE ESPAÑA

En este apartado se pretende realizar una evaluación de la huella de carbono per cápita y nacional tal y como se planteaba en el objetivo principal de este documento. Esta es, la cantidad equivalente de CO2 que hay detrás del consumo promedio de carne del individuo español y la que hay detrás del consumo nacional. No obstante, dadas las críticas realizadas a la metodología de GLEAM a lo largo de este documento, los resultados no podrán ser considerados significativos ni relevantes para el caso español por lo que la aproximación que se realizará en este apartado será ilustrativa, descriptiva y muy generalista.

Para los datos de consumo cárnico se hará uso de las encuestas realizadas por el MAPAMA para el consumo per cápita en hogares para el año 2010. Los datos de consumo cárnico se encuentran disponibles en kg de carne fresca por lo que, con el objetivo de poder cruzar datos de huella de carbono con datos de consumo, se transformarán estos en kg de proteína utilizando los datos de composición nutricional realizados en estudios españoles (NOVARTIS, 2010). Al haber diferencias proteicas dependiendo de la parte del cuerpo del animal, se realizará un promedio entre los datos. En la siguiente tabla se muestra el consumo per cápita obtenido del MAPAMA en kg de carne, el contenido proteico de cada una, el consumo per cápita en kg de proteína y por último el consumo nacional, calculado con datos de censo poblacional nacional del Instituto Nacional de Estadística (INE, 2010).
Cuadro 3. Datos de consumo cárnico per cápita y nacional

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Vacuno</th>
<th>O-C</th>
<th>Cerdo</th>
<th>Pollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumo per cápita</td>
<td>kg carne/habitante-año</td>
<td>7,1</td>
<td>2,33</td>
<td>22,61</td>
<td>15,56</td>
</tr>
<tr>
<td>Contenido proteico</td>
<td>%</td>
<td>18%</td>
<td>18%</td>
<td>16%</td>
<td>17%</td>
</tr>
<tr>
<td>Consumo per cápita</td>
<td>kg proteína/habitante-año</td>
<td>1,28</td>
<td>0,42</td>
<td>3,62</td>
<td>2,65</td>
</tr>
<tr>
<td>Consumo nacional</td>
<td>kg proteína/año</td>
<td>59.795.831</td>
<td>19.623.139</td>
<td>169.262.439</td>
<td>123.765.205</td>
</tr>
</tbody>
</table>

El pollo se asume como boriler al abarcar el 86% de la producción. La carne de cerdo ibérico ha sido discriminada de los datos del MAPAMA. Fuente: MAPAMA, INE.

Una vez reunidos los datos de consumo cárnico per cápita y nacional se procede a asignar la carga de huella de carbono a cada parámetro. Los resultados se muestran en el cuadro 4., habiendo multiplicado la IE para cada explotación ganadera (para el caso de los rumiantes se da un total promediado, no haciendo diferencias entre SPE y SM) por los datos de consumo.

Cuadro 4. Resultados para la huella de carbono per cápita y nacional

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>Vacuno</th>
<th>O-C</th>
<th>Cerdo</th>
<th>Pollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>IE</td>
<td>kg CO₂-eq/kg prot</td>
<td>168</td>
<td>228</td>
<td>67</td>
<td>26</td>
</tr>
<tr>
<td>Consumo per cápita</td>
<td>kg proteína/habitante</td>
<td>1,28</td>
<td>0,42</td>
<td>3,62</td>
<td>2,65</td>
</tr>
<tr>
<td>Consumo nacional</td>
<td>kg proteína</td>
<td>59.795.831</td>
<td>19.623.139</td>
<td>169.262.439</td>
<td>123.765.205</td>
</tr>
<tr>
<td>HC per cápita</td>
<td>kg CO₂-eq/habitante</td>
<td>214,70</td>
<td>95,62</td>
<td>242,38</td>
<td>68,78</td>
</tr>
</tbody>
</table>

De acuerdo con lo mostrado en la tabla, el consumidor de carne promedio en España generó en el año 2010 un total 621,48 kg de CO₂-eq/año, siendo las carnes consumidas más contaminantes ordenadas en orden descendente el vacuno, el ovino-caprino, el cerdo y el pollo broiler. El total nacional fue de 29.078.254 toneladas equivalentes de CO₂. No obstante, estos no tienen en cuenta todo el ciclo de vida de la carne hasta el consumo humano en el hogar debido a las limitaciones propias de GLEAM y a la carencia de resultados en el apartado de emisiones postindustriales. Sumado a esto, lo ya indicado anteriormente sobre los fallos metodológicos de GLEAM y su limitada aplicación al caso español hace de los resultados de huella de carbono per cápita del consumo cárnico en España no puedan ser aplicados a un caso real.

7. CONCLUSIONES

En base a los objetivos establecidos y el análisis realizado a lo largo de este estudio se pueden establecer las siguientes conclusiones:
El modelo GLEAM desarrollada por la FAO utilizado en este estudio como herramienta de ACV para la estimación de la huella de carbono cárnica limita la posibilidad de generar resultados aplicables al caso español por la excesiva estandarización en su aproximación metodológica, los errores encontrados en algunas de las estimaciones generadas, el desorden en la exposición bibliográfica y la omisión de ciertos parámetros de carácter local que influirían fuertemente en los resultados.

Por consiguiente, no se puede concluir que los sistemas extensivos generan una huella de carbono más alta que los sistemas intensivos en España como GLEAM sugiere en muchos de los resultados de IE mostrados en este trabajo.

Por último y en consonancia con lo ya descrito, los datos la huella de carbono que el consumidor promedio español de carne genera en términos de kilogramo de CO2 equivalente por kilogramo de tipo de carne consumida no pueden ser aplicados al caso real. No obstante, a título ilustrativo, de acuerdo con GLEAM y datos del INE y MAPAMA, serían 29,078.254 toneladas equivalentes de CO2 en 2010 para el total nacional y 621,48 kilogramos equivalentes de CO2 per cápita para el mismo año. De la misma forma se puede afirmar que la huella de carbono por kg de carne es mayor para el ganado bovino, seguido del ovino-caprino, del porcino y por último de pollo broiler.

Con las prevenciones anteriores, estas estimaciones permiten ilustrar el efecto de nuestro consumo cárnico en el cambio climático, al mismo tiempo que orientar posibles líneas futuras de investigación que mejoren la metodología adaptándola al caso español.

8. BIBLIOGRAFÍA

• Orden APM/353/2017, de 4 de abril. Definiciones de las explotaciones asegurables, las condiciones técnicas mínimas de explotación y manejo, el ámbito de aplicación, el periodo de garantía, el periodo de suscripción y el valor unitario de los animales en relación con el seguro de explotación de ganado aviar de carne, comprendido en el trigésimo octavo Plan de Seguros Agrarios Combinados. Boletín Oficial del Estado, nº 94, págs. 30941-30960.
• Real Decreto 1221/2009 de 17 de julio. Normas básicas de ordenación de las explotaciones de ganado porcino extensivo y por el que se modifica el Real Decreto 1547/2004, de 25 de junio, por el que se establecen las normas de ordenación de las explotaciones cunicolas. Boletín Oficial del Estado, nº 187, págs. 66585-66597.
• Real Decreto 1131/2010, de 10 de septiembre. Criterios para el establecimiento de las zonas remotos a efectos de eliminación de ciertos subproductos animales no destinados a consumo humano generados en las explotaciones ganaderas. Boletín Oficial del Estado, nº 239, págs. 83996-83999.
EFECTO DEL CULTIVO ECOLÓGICO Y LA VARIEDAD SOBRE CONTENIDO EN AZÚCARES REDUCTORES EN PIMIENTO

Pires Cherrine K1, Adalid AM2, Moreno-Peris E2, Fita AM2, Rodríguez-Burruezo A2

1Campus UFRJ-Macaé, Universidade Federal do Rio de Janeiro. Macaé, Brasil. 2Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Edificio 8E, Acceso J. Universitat Politècnica de València (UPV). Camino de Vera s/n CP 46022. Valencia, España.
adrodbur@doctor.upv.es

RESUMEN: El pimiento (Capsicum annuum L.) es una hortícola de gran importancia económica y valor añadido, siendo nuestro país el principal productor y exportador de la UE. En este sentido, la producción ecológica de esta hortaliza se está incrementando considerablemente. Asimismo, el consumidor reclama cada día productos de mayor calidad, atribuyendo a las variedades modernas una calidad interna peor que las tradicionales. Así, se han desarrollado diversos estudios dirigidos a caracterizar el impacto del cultivo ecológico sobre la calidad del pimiento, especialmente compuestos bioactivos o volátiles responsables del aroma/flavor, mientras que el contenido en azúcares reductores apenas se ha estudiado. Posiblemente, la generalización del pimiento como fruto con bajo contenido en azúcares frente a otras hortalizas ha contribuido a esta situación. Sin embargo, consumidores y técnicos de cooperativas coinciden en señalar diferencias varietales para el dulzor en pimiento. Este trabajo presenta resultados preliminares de un estudio pionero para determinar por HPLC el contenido en glucosa, fructosa y sacarosa de una colección de pimientos y chiles en estado maduro en cultivo ecológico (normativo) vs. convencional, producidos en Valencia en 2017. Se encontró una contribución significativa del sistema de cultivo (E), la variedad (G) y la interacción G×E en el contenido total de azúcares y en la mayoría de azúcares individuales. Nuestros resultados ponen de manifiesto un impacto positivo considerable del cultivo ecológico en la composición de azúcares reductores de la mayoría de variedades, si bien en algunas este efecto es mayor que otras por la interacción G×E.

Palabras clave: agroecología, Capsicum annuum, fructosa, glucosa, sacarosa, maduración

INTRODUCCIÓN

Las condiciones agronómicas en las que se desarrolla un cultivo revisten una gran importancia para factores de rendimiento y calidad de frutos y verduras. Así, tanto la textura del suelo, como su capacidad para retener agua, los niveles de salinidad del suelo y el agua de riego, entre otros, contribuyen en numerosas ocasiones a la precocidad de la cosecha, el tamaño de los frutos, su contenido en compuestos antioxidantes o factores responsables de calidad organoléptica.

Por este motivo, las condiciones de bajos insumos del cultivo ecológico, pueden producir condiciones de estrés ante las que la planta responde acumulando compuestos antioxidantes en sus tejidos y frutos, como se ha descrito en tomate, berenjena o pimiento (Raigón et al., 2010; Hallmann y Rembialkowska, 2012; Oliveira et al., 2013). Sin embargo, el conocimiento del efecto del cultivo ecológico sobre la calidad organoléptica de frutas y hortalizas es relativamente escaso. Entre los principales factores responsables de la calidad organoléptica se cuentan los azúcares reductores y los ácidos orgánicos y, de forma complementaria, volátiles y otros componentes que producen notas adicionales de pungencia (e.g. capsaicinoides en pimientos, vanilloides en canela), amargor o astringencia (e.g. saponinas en berenjena, taninos en diversas especies), etc. (Llácer et al., 2006).

En el caso del pimiento, se tiene un amplio conocimiento sobre los capsaicinoides y, en los últimos años, de los volátiles responsables del aroma y flavor, como principales componentes de calidad organoléptica (Rodríguez-Burruezo y Nuez 2006; Kollmannsberger et al., 2011). En contraste, el conocimiento sobre la composición en azúcares y estudios relativos al efecto de las condiciones de cultivo son muy escasos o nulos en los frutos Capsicium. De hecho, a partir de estudios realizados con anterioridad a los 80, el pimiento se ha...
encasillado desde hace décadas como un tipo de fruto pobre en azúcares y nulo contenido en ácidos (Bosland y Votava, 2000; Rodríguez-Burruezo y Nuez 2006), lo que sin duda ha debido contribuir al escaso interés científico sobre estos compuestos. Sin embargo, la percepción del consumidor es de que algunos pimientos resultan relativamente dulces, frente a otros poco o nada dulces, lo que indica que debe haber componentes varietales y/o de condiciones de cultivo que motiven estas diferencias. Adicionalmente, el consumidor atribuye a las modernas variedades hortícolas una calidad interna peor que las tradicionales (Brugarolas et al., 2009; Boulay, 2010), por lo que sería de interés abordar la diversidad que contienen las variedades tradicionales de pimiento para estos factores organolépticos.

En el presente trabajo se aborda un estudio preliminar sobre contenido en azúcares reductores en frutos maduros e inmaduros de diversos tipos varietales de pimiento cultivados en condiciones de cultivo ecológico y convencional.

MATERIALES Y MÉTODOS

Se estudiaron cuatro accesiones de pimento (C. annuum) correspondientes a los tipos varietales Valenciano (i.e. morrón), Guindilla de encurtir, Jalapeño y Choricero. Las cuatro accesiones se cultivaron en el verano de 2017 en un ensayo comparativo empleando dos parcelas: cultivo ecológico y convencional (Marxal dels Moros, área de Sagunto-Puzol, norte de Valencia). Las plantas se cultivaron bajo condiciones de aire libre en ciclo de primavera-verano, para lo que se trasplantaron en estado de 4 hojas verdaderas en abril, extendiéndose el cultivo hasta octubre de 2017. Se cultivaron un total de 10 plantas por accesión y sistema de cultivo, repartidas en cinco bloques de dos plantas distribuidas de forma aleatoria en cada parcela.

Los frutos se analizaron en los dos principales estados de madurez comercial del pimiento: inmaduro o verde y maduro o rojo. Para cada estado de madurez y combinación accesión×sistema de cultivo se prepararon y analizaron cinco muestras. Cada muestra se preparó a partir de frutos de las dos plantas de cada bloque (n = 5). Las muestras fueron liofilizadas en laboratorio y conservadas en un lugar fresco y seco en oscuridad hasta el análisis cromatográfico.

Para el análisis de las muestras se empleó un dispositivo de cromatografía líquida de alta resolución (HPLC) Agilent 1220 Infinity LC. Se identificaron y cuantificaron los niveles de glucosa, fructosa y sacarosa en las muestras analizadas. El número de muestras totales ascendió a 80 (5 muestras × 4 accesiones × 2 estados de madurez × 2 sistemas de cultivo).

RESULTADOS Y DISCUSIÓN

De acuerdo a los datos obtenidos bajo cultivo ecológico se observó un claro efecto varietal (i.e. genotipo) y del estado de madurez para el contenido de los azúcares reductores individuales y totales, mientras que el sistema de cultivo, a excepción de la sacarosa, no fue significativo (Tabla 1). No obstante, el efecto estado de madurez y su interacción con la variedad podrían ocultar efectos del sistema de cultivo como se observa en sacarosa al estudiada sólo en inmaduro.

El estudio descriptivo de los resultados mostró a la variedad Jalapeño con los niveles más altos de la colección en ambos estados de madurez (>10 g/kg fructosa y glucosa y >30 g/kg totales en verde; >20 g/kg fructosa y glucosa y >50 g/kg totales en rojo), mientras que Choricero mostró los niveles más bajos (<2 g/kg fructosa y glucosa y 5.5 g/kg totales en verde; <10 g/kg fructosa y glucosa y <20 g/kg totales en rojo) (Fig. 1). El resto de variedades, i.e. Valenciano y Guindilla, mostraron niveles intermedios tanto en fruto inmaduro como maduro.
Tabla 1. ANOVA (grados de libertad, cuadrados medios y significación) para los efectos variedad, sistema de cultivo, estado de maduración y sus interacciones sobre la variación observada en azúcares reductores.

<table>
<thead>
<tr>
<th>Efecto</th>
<th>g.l.</th>
<th>Fructosa</th>
<th>Glucosa</th>
<th>Sacarosa</th>
<th>Totales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variedad (V)</td>
<td>3</td>
<td>523.55***</td>
<td>504.38***</td>
<td>166.71***</td>
<td>1858.07***</td>
</tr>
<tr>
<td>Cultivo (C)</td>
<td>1</td>
<td>1.03ns</td>
<td>4.55ns</td>
<td>85.86**</td>
<td>96.94ns</td>
</tr>
<tr>
<td>Maduración (M)</td>
<td>1</td>
<td>14720.6***</td>
<td>6579.5***</td>
<td>-</td>
<td>26507.7***</td>
</tr>
<tr>
<td>VxC</td>
<td>3</td>
<td>83.47***</td>
<td>95.40***</td>
<td>29.36**</td>
<td>435.92***</td>
</tr>
<tr>
<td>VxM</td>
<td>3</td>
<td>146.87***</td>
<td>103.58***</td>
<td>-</td>
<td>261.42***</td>
</tr>
<tr>
<td>CxM</td>
<td>1</td>
<td>6.27ns</td>
<td>0ns</td>
<td>-</td>
<td>19.47ns</td>
</tr>
<tr>
<td>Error</td>
<td></td>
<td>16.82</td>
<td>27.32</td>
<td>9.15</td>
<td>78.04</td>
</tr>
</tbody>
</table>

1 La sacarosa sólo se detectó en fruto inmaduro, por lo que el análisis de variación se realizó en este estado, y por tanto no hay efecto maduración ni sus interacciones. ns, *, ** y *** indican no significativo y significativo para p<0.05, 0.01 y 0.001, respectivamente de acuerdo estadístico F.

Los perfiles de azúcares bajo cultivo convencional fueron similares al cultivo ecológico, con algunos matices. Así, de nuevo Jalapeño destacó por sus niveles de glucosa y fructosa y azúcares totales en ambos estados de madurez, aunque a niveles ligeramente inferiores que en cultivo ecológico (10 g/kg fructosa y glucosa y 24 g/kg totales en verde; 19-24 g/kg fructosa y glucosa y >40 g/kg totales en rojo). Tanto Guindilla como Choricero incrementaron notablemente con la maduración sus niveles de fructosa, glucosa y totales en cultivo convencional, mostrando niveles similares a los de Jalapeño (Fig. 1), alcanzando niveles superiores a los alcanzados en ecológico, lo que indica la incidencia interacción genotipo×ambiente para estos parámetros. El pimiento Valenciano, al igual que en cultivo ecológico fue de nuevo el más pobre en azúcares reductores (<10 g/kg en compuestos individuales y <20 g/kg totales, tanto en fruto maduro como inmaduro) (Fig. 1).

Asimismo, salvo Guindilla y Choricero en fruto inmaduro y cultivo convencional, con independencia del estado de madurez y el sistema de cultivo, la fructosa y, con niveles similares o ligeramente inferiores, la glucosa fueron los azúcares mayoritarios (Fig. 1). Por el contrario, el disacárido sacarosa sólo se detectó en los frutos inmaduros y en proporciones muy bajas, desapareciendo con el proceso de maduración en todas las variedades. No obstante, y en contraste a la tendencia general, En Guindilla y Choricero destacaron los niveles de sacarosa en fruto inmaduro con niveles similares o superiores a los monosacáridos (en torno a 10 g/kg).

Comparando un estado fisiológico similar, i.e. fruto maduro, el contenido y perfil de azúcares reductores detectado en nuestros materiales de pimiento es similar al de hortícolas de fruto como el tomate, cuyos niveles de fructosa y glucosa entre variedades suele estar comprendido entre 10 y 30 g/kg, siendo la fructosa al que corresponden en general los niveles más altos, con la glucosa a niveles inferiores o a lo sumo similares (Roselló y Nuez, 2006). Asimismo, la sacarosa está ausente de los frutos maduros del tomate, lo que indica un proceso similar de degradación de este disacárido con la maduración en pimiento (Roselló y Nuez, 2006; Kanayama, 2017).

CONCLUSIONES

Se ha constatado que el pimiento presenta niveles considerables y variables de azúcares reductores, en fruto inmaduro y particularmente maduro. En estado maduro los niveles son similares al tomate, lo que justificaría incluir estos compuestos en programas de fitomejoramiento de calidad organoléptica, junto a capsaicinoides y volátiles. Además, se ha observado cierto efecto del sistema de cultivo y la interacción variedad x sistema de cultivo, así que determinadas variedades pueden mostrar niveles más altos de azúcares reductores según se cultiven las plantas en producción ecológica o convencional. Así, la selección para condiciones de cultivo específicas estaría justificada.
No obstante, para llegar a conclusión definitiva, este estudio preliminar debe completarse incrementando el número de accesiones, tipos varietales y especies *Capsicum*.

![Gráfico de azúcares](image)

Figura 1: Contenido (mg/kg peso fresco) en azúcares reductores (fructosa, glucosa, sacarosa) y suma total en las cuatro accesiones estudiadas en estado inmaduro y maduro bajo condiciones de cultivo ecológico (superior) y convencional (inferior).
AGRADECIMIENTOS

El presente trabajo ha sido financiado parcialmente por el proyecto INIA RTA 2014-00041-C02-02, fondos FEDER.

BIBLIOGRAFÍA

CARTELES/PÓSTERES RELACIONADOS

CIRCUITOS CORTOS DE COMERCIALIZACIÓN Y VARIEDADES LOCALES. EL CASO DE LOS TOMATES NEGROS DE LAS SIERRAS DE SEGUIRA

Romero Molina JM, De la Cruz Abarca C, Egea Fernández JM

Red Agroecológica de Granada. Universidad de Murcia.
Emails: cdecruza@yahoo.com; jromeromolina@hotmail.com; ecomercadogr@gmail.com
Tels: +34 605301679; +34 637559353

RESUMEN: El Sistema Agroalimentario actual usa principalmente variedades comerciales de tomate adaptadas al almacenamiento, transporte y distribución propio de las cadenas largas de comercialización. Las variedades tradicionales no suelen tener buen encaje en ese sistema, por lo que cada vez se cultivan menos. Por ello en esta investigación analizamos el encaje de tomates de cultivares locales en circuitos cortos de comercialización (CCC). Asimismo, a través de este trabajo pretendemos desarrollar una metodología que permita observar el comportamiento de variedades en CCC.

Se cultivaron distintas variedades locales de tomate: se distribuyeron en cuatro CCC y se realizaron entrevistas a personas consumidoras, responsables de ecotiendas, encargados de comercialización en cestas y responsables de restaurantes. Asimismo, se observó, dialogó y registró el comportamiento de personas consumidoras en el Ecomercado de Granada.

El trabajo realizado en las diferentes estrategias de CCC y la información recogida en las entrevistas, permiten afirmar, en base a hechos constatados, que los diferentes tipos de tomate “negro segureño” estudiados, unos más que otros, pueden tener un excelente comportamiento en los CCC, teniendo en cuenta ciertas características en su manejo que se deben conocer. Los tomates estudiados son valorados positivamente por parte de las consumidoras/es, así como por las personas responsables de los distintos CCC con los que se trabajó.

La experiencia de comercialización en el Ecomercado de Granada fue exitosa y se recogieron percepciones positivas no sólo de los tomates, sino también de apoyo a las y las pequeñas productoras que los cultivan.

Palabras clave: canales cortos de comercialización, mercado local, variedades tradicionales
REDES DE CIRCUITOS CORTOS DE COMERCIALIZACIÓN (CCC) AGROECOLÓGICOS EN GRANADA

De la Cruz Abarca C, Matarán Ruiz A, Ruiz Diez A

Red Agroecológica de Granada. Universidad de Granada
Email: cdecruza@yahoo.com, albi.40315@gmail.com
Teléfonos: +34 605301679; +34 673907694

RESUMEN: En muchos casos las y los pequeños productores ecológicos que comercializan a través de CCC acuden a diferentes estrategias para colocar su producción. En este sentido cabe la pregunta: ¿conforman estas estrategias una Red de Circuitos Cortos de Comercialización? ¿Hay una visión agroecológica en su funcionamiento?

Con esta investigación se pretende tener una aproximación a las características de las diferentes estrategias de CCC que operan en Granada y que son socias de la RAG (Red Agroecológica de Granada). Se busca conocer el tipo de relaciones que se dan entre los diferentes CCC estudiados y las y los productores de la RAG. También se plantea obtener información de las personas productoras y consumidoras que contribuyan a mejorar el Ecomercado de Granada.

En la investigación se usaron metodologías cuantitativas y cualitativas. Así, se realizaron entrevistas semi estructuradas, se aplicó la observación participante, se revisó documentos de la RAG y material bibliográfico sobre el tema. También se realizaron encuestas.

Las experiencias estudiadas participan del Ecomercado. Esta estrategia de CCC ha facilitado que se relacionen entre ellas, que haya flujo de información y productos, lo que configura una red “no formal” de CCC. La importancia del monto de las ventas en el Ecomercado respecto al total comercializado en un mes varía significativamente dependiendo del tipo de participantes (organizado o individual). Sin embargo, todos valoran el Ecomercado como un espacio para la promoción de la agroecología y establecer relaciones que fortalezcan las otras estrategias de CCC. Las personas entrevistadas señalan mejoras para el Ecomercado de Granada.

Palabras clave: canales cortos de comercialización, Red Agroecológica de Granada, agroecología
DETERMINACIÓN DE LISINA Y TRIPTÓFANO EN MUESTRAS DE CHUFA (C. ESCULENTUS L.) DE CULTIVO ECOLÓGICO Y CONVENCIONAL

Vilches M, García-Martínez MD, Raigón MD

Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, 46022 Valencia, Spain
mivilco1@alumno.upv.es; magarma8@qim.upv.es; mdraigon@qim.upv.es

RESUMEN: La chufa (Cyperus esculentus L.) es un cultivo tradicional arraigado a la Huerta de Valencia. Sus tubérculos son valorados por las propiedades nutritivas, principalmente por su contenido proteico. La calidad de la proteína depende en gran parte de la composición de sus aminoácidos y su digestibilidad. La lisina y el triptófano son dos aminoácidos esenciales que limitan la calidad biológica de la proteína. El principal objetivo de este trabajo es determinar el contenido en lisina y triptófano en chufa de procedencia convencional y ecológica, diferenciando dentro de la ecológica, la chufa procedente de parcelas con una larga trayectoria en manejo ecológico (ECO1), y la procedente de parcelas de reciente incorporación al modelo de agricultura ecológica certificada (ECO2). Las muestras de chufa ECO1 son las que mayor contenido en lisina presentaron, con diferencias significativas frente a las concentraciones que presentaron las chufas convencionales y las ECO2. Para el contenido en triptófano, las chufas de producción convencional son las que presentaron mayor contenido, con diferencias frente a los niveles de triptófano de la chufa ECO2. Mientras que no se presentaron diferencias entre los niveles de la chufa convencional y ECO1. Los aportes de materia orgánica y particularmente la fertilización nitrogenada, tanto a nivel de dosis, fuente del nitrógeno, como de las diferencias que se pueden generar con el metabolismo de la planta, son factores que pueden influir no sólo en la cantidad de la proteína, sino en la composición de los aminoácidos y con ello en la calidad proteica.

PALABRAS CLAVE: aminoácidos esenciales, análisis espectrofotométrico, composición nutricional, manejo ecológico de larga duración.
KEY WORDS: essential amino acids, spectrophotometric analysis, nutritional composition, long-time organic farming.

INTRODUCCIÓN

Las proteínas son junto con los hidratos de carbono y los lípidos los macronutrientes presentes en los alimentos. Las recomendaciones nutricionales indican que entre el 55 y 60% de la energía debe proceder de los hidratos de carbono, entre el 20 y 25% de los lípidos y entre el 10 y el 15% restante de las proteínas. Si el consumo de glúcidos y/o lípidos no alcanza para compensar las necesidades energéticas, las proteínas se catalizan en el organismo para la obtención de energía (Rolfes, 2011).

Las proteínas están conformadas por 20 aminoácidos conocidos, 9 de los cuales [histidina (His), isoleucina (Ileu), leucina (Leu), lisina (Lys), metionina (Met), fenilalanina (Phe), treonina (Thr), triptófano (Trp) y valina (Val)] son esenciales, es decir, no se sintetizan en los mamíferos, y la única manera de suplirlos es a través de la dieta. La degradación de proteínas es constante y puede ser superior a la ingesta diaria, existiendo un sistema de reutilización de aminoácidos para mantener el metabolismo, por lo que es necesario un balance adecuado entre ingesta y excreta de proteínas en la dieta para poder mantener los requerimientos de aminoácidos que el cuerpo necesita (National Research Council, 1989).

La calidad de las proteínas reside en su contenido en aminoácidos esenciales. Las proteínas de origen animal son ricas en la mayoría de los aminoácidos esenciales, por lo que son de alto valor biológico. Las proteínas vegetales son deficitarias en aminoácidos esenciales ricos en azufre como metionina, cistina y cisteína. Por ello, la mezcla de cereales y legumbres proporciona proteínas con cantidades adecuadas de aminoácidos esenciales (Iqbal et al., 2006), dando lugar a proteína de alto valor biológico y de origen vegetal, menos calórica, rica en fibra, sin grasas ni colesterol y con un índice glucémico bajo.
La identificación del contenido en aminoácidos, cada vez es más importante para evaluar la calidad de la proteína de un alimento. Durante los últimos años, la evolución del análisis instrumental ha permitido el análisis y cuantificación de un gran número de aminoácidos, con alta precisión y sensibilidad. Principalmente, tres son las técnicas que se usan con mayor frecuencia, 1) la cromatografía de intercambio iónico y detección por ultravioleta (UV); 2) la separación de derivados volátiles de aminoácidos por cromatografía gaseosa (CG) y detección por espectrometría de masas (EM) y 3) la separación de aminoácidos por cromatografía líquida (CL) y su detección por fluorescencia. Además, la resonancia magnética nuclear (RMN) y la electroforesis capilar (EC) son otras de las técnicas usadas en la determinación de aminoácidos (Sun et al., 2006). Estas metodologías han sido empleadas con éxito en diferentes matrices alimentarias, pero cuentan con algunos inconvenientes entre los que destacan los altos costes iniciales y de mantenimiento de los equipos, la especificidad del método, la formación del personal técnico, las interferencias con algunas matrices, la lentitud en el proceso global, la inestabilidad de los analitos en el proceso de análisis, la menor sensibilidad a la determinación de Lys y Trp, etc. Por todo ello, es importante poner a punto metodologías empleando equipos versátiles que permitan la cuantificación precisa de aminoácidos.

La elevada demanda de información relacionada con el valor nutritivo ha dado lugar al desarrollo de métodos analíticos precisos para aminoácidos. El análisis de aminoácidos tiene aplicación directa en diferentes campos de investigación, siendo uno de los más importantes, la estimación del valor nutritivo de alimentos para humanos, incluso para animales. Además, es creciente el número de aplicaciones como la detección de posibles adulteraciones en alimentos y bebidas o la determinación de aminoácidos, péptidos o derivados potencialmente tóxicos producidos por las técnicas de producción, procesado y almacenamiento alimentos (Tezcan et al., 2013).

La composición de los alimentos frescos es altamente variable y está fuertemente relacionada con el sistema productivo (diversidad genética, tipo de suelo, manejo del agricultor, sistemas de fertilización, dosis y calidad del agua de riego, prácticas fitosanitarias, etc.), así como de otras cuestiones, como las condiciones medioambientales. En este sentido, el contenido en nitrógeno del suelo y el abonado nitrogenado en los cultivos es un desencadenante del aumento del contenido proteico total en el alimento, aunque estas relaciones se correspondan poco con la distribución de aminoácidos y por tanto de la calidad de la proteína (Johansson et al., 2003). Por otro lado, las condiciones de cultivo y fertilización nitrogenada pueden influir en la concentración de principios activos (Tavarini et al., 2015), así como en la conservación del alimento y tener influencia durante el almacenamiento y posterior procesado, como por ejemplo en el caso de la chufa.

La chufa (Cyperus esculentus L.) es un tubérculo del rizoma de la planta herbácea de la familia de las Ciperáceas que lleva el mismo nombre, y la variedad población cultivada en la zona valenciana pertenece a la variedad botánica sativa (Boeck.). En algunos países los tubérculos de chufa se utilizan como pienso. En lo referente al consumo humano, con la chufa se fabrica la horchata (bebida refrescante obtenida mediante la mezcla de extracto de chufas trituradas con agua y según el gusto azucarada), que goza de una enorme tradición en la Comunidad Valenciana, desde donde se ha extendido al resto de la geografía española (Melión, 2002). En los últimos años, la harina de chufa también se está utilizando para otras elaboraciones y procesados alimenticios debido a su potencial nutricional (Albors et al., 2016).

Se ha demostrado que la harina de chufa es una fuente rica de proteínas, minerales como el hierro y el calcio (Oladele y Aina, 2007). El componente mayoritario de la chufa son los hidratos de carbono, seguido de los lípidos y las proteínas. Según la base de datos Española de Composición de Alimentos, el contenido de proteína total es de 6.13 g/100 g de porción comestible (BEDCA, 2006). Además, contiene una alta fracción de aminoácidos esenciales (Bosch et al., 2005), siendo el predominante la arginina, seguido del ácido aspártico, el ácido glutámico, leucina, alanina y lisina. Metionina, isoleucina, triptófano y valina son los que se encuentran en menor proporción (Bixquert Jiménez, 2016).

Los objetivos del presente estudio son: Aplicar el método en la determinación de la calidad proteica de chufa, a través del contenido en lisina y triptófano, en harina de tres orígenes (de agricultura ecológica de larga trayectoria, ecológica de reciente implantación y de agricultura convencional), procedente de la zona productora de L’Horta Nord (Valencia), de tres sistemas productivos.
MATERIALES Y MÉTODOS

Determinación de los aminoácidos lisina y triptófano. Para la determinación analítica de lisina se parte del trabajo de Tsai et al. (1975) modificado por Villegas et al. (1984) para muestras de maíz. Este método utiliza el compuesto 2-cloro-3,5-dinotropiridina, que reacciona con el grupo ε-amino de lisina, después de haber bloqueado con cobre los grupos α-amino de los aminoácidos y de los péptidos de bajo peso molecular presentes en el hidrolizado proteico. El ε-dinitropiridil lisina formado es soluble en agua, pero insoluble en acetato de etilo, lo que permite que los demás compuestos formados durante la reacción sean eliminados con el acetato de etilo, suprimiendo también el exceso del reactivo 2-cloro-3,5-dinotropiridina. La absorbancia de la disolución acuosa de ε-dinitropiridil lisina se lee en un espectrofotómetro de UV-visible a 390 nm. El contenido de lisina se calcula en base a una curva estándar y se expresa para el porcentaje de muestra seca.

En la determinación del contenido en triptófano se parte del método de Opienska-Blauth et al. (1963) modificado por Hernández y Bates (1969), y aplicado por Villegas et al. (1984) en muestras de maíz. En este método, el grupo indol del triptófano reacciona con el ácido glioxílico en presencia de ácido sulfúrico concentrado para formar un complejo coloreado que presenta un máximo de absorbancia a 560 nm.

Procedencia y tratamiento previo de las muestras de chufa. Los tubérculos de chufa empleados en el presente trabajo proceden de campos de cultivo situados en la comarca de L’Horta Nord de Valencia. Las chufas proceden de dos sistemas productivos (ecológico y convencional) y para el caso del ecológico, las chufas pertenecían a dos explotaciones agrícolas diferentes; una de ellas (ECO 1) procede de un agricultor con una alta trayectoria en agricultura ecológica, estando las parcelas certificadas bajo la normativa europea (CE) 834/2007, desde hace más de 20 años. La segunda muestra ecológica (ECO 2) procede de una explotación con dos años de vigencia en la certificación ecológica. Las diferencias en la composición del suelo de las diferentes procedencias de chufa se observan en la tabla 1.

<table>
<thead>
<tr>
<th>Tabla 1. Resumen de la composición del suelo de las tres procedencias de chufa</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH en agua (Extracto 1:2.5)</td>
</tr>
<tr>
<td>pH en KCl (Extracto 1:2.5)</td>
</tr>
<tr>
<td>Conductividad (dS/m, extracto 1:5)</td>
</tr>
<tr>
<td>Carbonatos totales (%)</td>
</tr>
<tr>
<td>Materia orgánica (%)</td>
</tr>
<tr>
<td>Nitrógeno total (%)</td>
</tr>
<tr>
<td>Fósforo asimilable (ppm)</td>
</tr>
<tr>
<td>Potasio asimilable (ppm)</td>
</tr>
</tbody>
</table>

Las determinaciones realizadas para evaluar la composición nutricional en las chufas han sido el contenido en humedad, determinado gravimétricamente por diferencia con el contenido en materia seca, evaluado en estufa a 105 ºC, expresando los resultados en g de agua/100 g; el contenido en grasa, determinado mediante extracción con Soxhlet, expresando el resultado en g de grasa/100 g; el contenido en nitrógeno total por el método Kjeldahl y determinación de la proteína, expresado en g de proteína/100 g; el contenido en fibra, determinado por extracción y posterior calcinación, expresado en g de fibra/100 g; el contenido en hidratos de carbono, determinado por diferencia frente al resto de macronutrientes, expresado en g de glucidos/100 g. La determinación del perfil lipídico de la grasa, se determinó por cromatografía gaseosa, expresado en porcentaje frente al total. Se han empleado métodos oficiales de análisis (AOAC, 2000).

Previo al análisis de aminoácidos, la chufa fue desecada, triturada, homogeneizada y tamizada. El desecado se realizó en estufa a 105 ºC, hasta peso constante de las muestras. Una vez secas las muestras se trituraban
y se pasan por un tamiz de 1 mm de diámetro. La harina de chufa seca y tamizada se sometió a un proceso de desgrasado en un extractor (modelo ST 243, Soxtec, Suecia) siguiendo el protocolo de extracción de grasa en alimentos en general. Las muestras para desgrasar se introdujeron en los dedales de extracción. En los vasos de recogida de grasa se añadió 40 ml del disolvente (éter de petróleo a 40-60 °C) y se realizó un ciclo de arrastre de vapor durante 135 minutos (FOSS, 2007).

Determinación de lisina en muestras de chufa. Los reactivos empleados han sido: disolución reguladora de fosfato 0.03 M a pH 7.4; disolución de papaína de latex de papaya (Sigma, USA) (4 mg de papaína por ml de disolución reguladora a pH 7.4 de fosfato 0.03 M); disolución reguladora a pH 9.0 de carbonato 0.05 M; disolución reguladora a pH 9.0 de borato 0.05 M; suspensión de fosfato de cobre (mezcla de CuCl₂.2H₂O y Na₃P₀₄.12H₂O); disolución 1.2 N de HCl; disolución al 3% en metanol de 2-cloro-3,5-dinitropiridina; acetato de etilo; lisina (L-Lysine extra pure, Scharlau).

Para la determinación, se realiza una hidrolisis previa de la muestra, para ello se pesan en balanza analítica (modelo AB204-S, Mettler Toledo, España), con exactitud 100 mg de muestra pulverizada y desengrasada y se introducen en un tubo de ensayo, al que se le adiciona 5 ml de la disolución de papaína. Se homogeniza la mezcla en el vortex y se lleva a incubar a 63 ± 2 ºC durante 16 h, en estufa modelo 3P-092, J.P Selecta, SA (España). Durante las dos primeras horas de incubación, los tubos se van agitando para facilitar la exposición de la muestra a la enzima. Transcurrido el tiempo de incubación, las muestras se dejan enfriar a temperatura ambiente y posteriormente se centrifugan a 2500 rpm durante 5 minutos.

Para el análisis, se toma 1 ml del sobrenadante y se introducen en un tubo de centrífuga, donde se añaden 0.5 ml de la disolución reguladora de carbonato 0.05 M y 0.5 ml de la suspensión de fosfato de cobre. Las muestras se agitan en un agitador orbital (modelo orbital shaker S01, Stuart Scientific, UK) durante 5 minutos. Transcurrido el tiempo de agitación se centrifuga durante 5 minutos a 2500 rpm. Del sobrenadante se toma una alícuota de 1 ml y se transfiere a un tubo de ensayo, al que se le añade 0.1 ml de la disolución 2-cloro-3,5-dinitropiridina, agitando con el vortex y se deja reposar durante 2 h, en la oscuridad, agitando cada 30 minutos. Pasado este tiempo, se añaden 5 ml de HCl 1.2 N a cada muestra y se agita vigorosamente. Se añaden otros 5 ml de acetato de etilo y se mezclan bien, invirtiendo los tubos al menos 10 veces para extraer así la fase acuosa (figura 1). Este paso se repite 3 veces, para intentar arrastrar todo el acetato de etilo.

Figura 1. Fase orgánica, en color amarillo (parte superior) fase acuosa, incolora (parte inferior)

La determinación de la lisina se realiza directamente sobre la fase acuosa en el espectrofotómetro de UV-Vis (UViline 9400, Schott Instruments) a la longitud de onda de 390 nm. En cada tanda de muestras se prepara una recta de calibrado con un rango de 0 a 250 µg de lisina por ml, a partir de patrón de lisina de concentración 2500 µg por ml (preparar diariamente). El proceso se realiza de forma idéntica para el blanco y los puntos de la recta de calibrado.

El contenido de lisina de las muestras se obtiene directamente a partir de la absorbancia, extrapolando el resultado en la curva de calibrado. El resultado se expresa en g/100 g de muestra seca.
Determinación de triptófano en muestras de chufa. Los reactivos empleados han sido: anhídrido acético; reactivo A formado por FeCl₃, 6 H₂O en ácido acético glacial más 3% anhídrido acético; reactivo B que es una disolución de ácido sulfúrico 30 N; reactivo C (1:1, volumen/volumen de reactivo A y reactivo B), este reactivo se prepara una hora antes de uso; disolución reguladora a pH 7.0 de acetato de sodio 0.1 M; disolución de papaína de latex de papaya (Sigma, USA) (4 mg de papaína por ml de disolución de acetato de sodio 0.1 M a pH 7.0); triptófano (L-tryptophan extra pure Farmur, Scharlau).

Para la determinación, se realiza una hidrolisis previa de la muestra, para ello se pesan en balanza analítica (modelo AB204-S, Mettler Toledo, España), con exactitud 80 mg de muestra pulverizada y desengrasada y se introducen en un tubo de ensayo, al que se le adiciona 3 ml de la disolución de papaína. Se homogeniza la mezcla en el vortex y se lleva a incubar a 63 ± 2 ºC durante 16 h, en estufa modelo 3P-092, J.P Selecta, S.A. (España). Durante las dos primeras horas de incubación, los tubos se van agitando para facilitar la exposición de la muestra a la enzima. Transcurrido el tiempo de incubación, las muestras se dejan enfriar a temperatura ambiente y posteriormente se centrifugan a 2500 rpm durante 5 minutos.

Del sobrenadante se toma 1 ml que se introducen en un tubo de centrífuga y se añaden 4 ml de reactivo C. Esta disolución contiene ácido glicóxlico, compuesto que es capaz, en presencia de triptófano, de producir un compuesto coloreado. Se agita vigorosamente la muestra y se incuba a 63 ± 2 ºC durante media hora para máximo desarrollo de color. Se enfría rápidamente la muestra sumergiendo el tubo en agua y hielo, para paralizar la reacción exotérmica, y se mide la absorbancia a 560 nm de longitud de onda en el espectrofotómetro UV/Vis (UViline 9400, Schott Instruments).

En cada tanda de muestras se prepara una recta de calibrado con un rango de 0 a 175 µg de triptófano por ml, a partir del patrón de triptófano de concentración 200 µg por ml (preparar diariamente). El proceso se realiza de forma idéntica para el blanco y los puntos de la recta de calibrado.

El contenido en triptófano de las muestras se obtiene directamente a partir de la absorbancia, extrapolando el resultado en la curva de calibrado. El resultado se expresa en g/100 g de muestra seca.

Análisis estadístico. Para el cálculo y tratamiento de datos se empleó el programa Microsoft Excel 2010. Para el tratamiento comparativo de los resultados del contenido en lisina y triptófano de la chufa, se realizó un análisis de la varianza mediante el programa Statgraphics Centurion versión XVII. Los datos experimentales fueron evaluados mediante ANOVA de un solo factor, error estándar de estimación y la menor diferencia significativa del test de Fisher (F-test) y el p-valor derivado como se describe por Ott (1977). Los resultados se consideran significativos cuando p≤ 0.05.

RESULTADOS Y DISCUSIÓN

La tabla 2 muestra la composición nutricional obtenida de los diferentes tipos de chufa. Los valores obtenidos están dentro del rango de variabilidad en cuanto a la concentración nutricional que presentan los bulbos de chufa, en función principalmente del origen geográfico del tubérculo (Coskumer et al., 2002).

Se observa que en todos los casos, los hidratos de carbono son los nutrientes mayoritarios del tubérculo de chufa, seguido de la fibra (para el caso de las chufas convencionales y ECO 2) y de las grasas para las chufas ecológicas de sistemas con larga trayectoria (ECO 1), mientras que las proteínas son los macronutrientes con menor representación, aunque al ser alimento de origen vegetal, el porcentaje de este nutriente es altamente significativo. De los azúcares totales, destacar que el mayoritario es la sacarosa, los altos niveles de estos azúcares hace que el tubérculo sea de sabor dulce y que en el proceso de elaboración de la horchata se pueda eximir la adición de azúcares externos. Desde un punto de vista nutricional, hay que señalar la alta fracción en ácidos grasos mono y poliinsaturados, siendo estas fracciones más importantes en los tubérculos de producción ecológica. Esta fracción lipídica le proporciona a la chufa un perfil similar al del aceite de oliva (Linssen et al., 1988).
En general, las chufas de producción ecológica, independientemente de la trayectoria, alcanzan un valor nutricional más alto que las chufas de producción convencional. Se observa que los sistemas con larga trayectoria en producción ecológica (ECO 1) producen las chufas con mayor valor nutricional. Los niveles de proteína de la chufa ECO 1 frente a los de la chufa ECO 2 son un 12.3% superiores y los niveles de proteína de la chufa ECO 1 frente a los de la chufa convencional son un 9.6% superiores. Algo similar se presenta para algunos de los nutrientes, para los niveles en grasa (ECO 1 versus ECO 2 son superiores en un 6.45%, y ECO 1 versus convencional son superiores en un 19.35%), para los niveles en hidratos de carbono (ECO 1 versus ECO 2 son superiores en un 13.8 y ECO 1 versus convencional son superiores en un 11.5%), para los niveles en ácidos grasos monoinsaturados (no existen diferencias entre las dos chufas ecológicas y ECO 1 versus convencional son superiores en aproximadamente un 1%) y para los niveles de ácidos grasos poliinsaturados (no existen diferencias entre las dos chufas ecológicas y ECO 1 versus convencional son superiores en aproximadamente un 3.8%). Por otro lado, la chufa de larga trayectoria en ecológico se caracteriza por un menor contenido en azúcares totales (ECO 2 versus ECO 1 son superiores en un 9.6% y ECO 2 versus convencional son superiores en un 6.4%), fibra (ECO 2 versus ECO 1 son superiores en un 36% y convencional versus ECO 2 son superiores en un 3.3%) y un menor contenido en ácidos grasos saturados (ECO 2 versus ECO 1 son prácticamente similares, convencional versus ECO 1 son superiores en un 5.3% y convencional versus ECO 2 son superiores en un 4.9%).

El mayor contenido en grasa y el menor contenido en fibra de la chufa procedente de sistemas ecológicos de larga trayectoria (ECO 1) tiene efectos positivos a la hora de la elaboración de la horchata, por un lado, el mayor contenido en grasa, hace que la emulsión que se forma en la elaboración sea más estable, evitando las separaciones indeseables en la bebida final. Por otro lado, el menor contenido en fibra insoluble, principalmente derivado, del menor espesor de piel que tienen estos tubérculos, provoca que el rendimiento a la hora de la molienda y/o extracción acuosa sea mayor, y por tanto, rendimiento a la hora de la elaboración de la horchata.

En función de los resultados, los sistemas ecológicos son buenos para alcanzar mayor valor nutricional, pero cuanto más tiempo llevan los suelos bajo las técnicas ecológicas, mayor equilibrio nutricional, debido posiblemente a la mayor estabilidad de los parámetros productivos, pero principalmente al de la materia orgánica en el suelo, y a la importancia de ésta sobre el cultivo de chufa.

| Tabla 2. Composición nutricional de la chufa de las tres procedencias de chufa |
|---------------------------------|------|------|------|
| Proteína (%) | 4.05 | 3.93 | 4.48 |
| Grasa (%) | 12.5 | 14.5 | 15.5 |
| Hidratos de carbono (%) | 30.8 | 30.0 | 34.8 |
| Azúcares totales (%) | 3.20 | 3.42 | 3.09 |
| Fibra (%) | 16.61| 16.09| 10.26|
| Ácidos grasos saturados (%) | 18.149| 17.262| 17.188|
| Ácidos grasos monoinsaturados (%)| 72.719| 73.324| 73.326|
| Ácidos grasos poliinsaturados (%)| 9.125 | 9.435 | 9.482 |

La tabla 3 muestra los resultados promedios (g/100 g de chufa) del contenido en lisina y triptófano en cada caso, así como los intervalos de confianza basados en el procedimiento de la diferencia mínima significativa (LSD) (p=0.05).

<table>
<thead>
<tr>
<th>Procedencia</th>
<th>Significación</th>
<th>[Lys] promedio±LSD</th>
<th>Significación</th>
<th>[Trp] promedio±LSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convencional</td>
<td>A</td>
<td>0.252±0.0136</td>
<td>B</td>
<td>0.067 ± 0.0020</td>
</tr>
<tr>
<td>ECO 2</td>
<td>A</td>
<td>0.221±0.0094</td>
<td>A</td>
<td>0.051 ± 0.0056</td>
</tr>
<tr>
<td>ECO 1</td>
<td>B</td>
<td>0.294±0.0093</td>
<td>AB</td>
<td>0.058 ± 0.0046</td>
</tr>
</tbody>
</table>

Se observa que en el estudio de composición de los contenidos de lisina y triptófano en chufas existen diferencias significativas (p<0.05) en función de la procedencia de la chufa. Las muestras de chufa de producción ecológica, con una larga trayectoria productiva, son las que mayor contenido en lisina presentan, con diferencias significativas frente a los niveles de las concentraciones que presentan las muestras de chufa convencionales y las ECO 2 (de corta trayectoria ecológica). No se observan diferencias significativas entre los niveles de lisina de las chufas de producción convencional y las ECO 2. Según la FAO (1970) el contenido en lisina en la chufa cruda es de 0.175 g/100 g de chufa, en todos los casos, los niveles de lisina obtenidos en las chufas de L’Horta Nord son ligeramente superiores a los que se indican en bibliografía.

Para el contenido en triptófano, se observan también diferencias estadísticamente significativas (95% de confianza) de forma que las chufas de producción convencional son las que presentan mayor contenido en este aminoácido, presentando diferencias frente a los niveles de triptófano de la chufa ecológica de corta trayectoria. Mientras que no se presentan diferencias entre los niveles de la chufa convencional y la ecológica de larga trayectoria, ni entre los dos tipos de ecológicas. Según la FAO (1970) el contenido en triptófano en la chufa cruda es de 0.035 g/100 g de chufa, en todos los casos, los niveles de triptófano obtenidos en las chufas de L’Horta Nord son superiores a los que se indican en bibliografía. El triptófano, es un aminoácido que favorece la síntesis de serotonina como neurotransmisor ayudando a la transmisión del impulso nervioso, favorece la síntesis de melatonina regulando el sueño y es precursor de la vitamina B3 (Estruch, 2003).

Los resultados del presente estudio dan valores más altos de lisina y triptófano que los valores estipulados en la referencia bibliográfica. La variación en los resultados del estudio comparativo puede deberse principalmente a que las concentraciones dependen de la fertilización del cultivo, la etapa de maduración y la edad de la planta en la cosecha, así como a las condiciones climáticas (Cooper et al., 2007), tal y como muestran los análisis de la composición de los suelos de donde proceden los tres tipos de chufas y la composición nutricional de las mismas.

Las diferencias encontradas en los contenidos de los aminoácidos en función de las diferentes procedencias de la chufa, son concluyentes con otros ensayos reportados en estudios comparativos entre sistemas productivos ecológicos y convencionales (Huber et al., 2011; Yu et al., 2018; Granstedt et al., 1997). Algunos estudios encontraron que los alimentos orgánicos tenían un alto contenido de proteína, tal vez porque el metabolismo de las plantas se dirigió hacia el proceso de aumentar algunos aminoácidos esenciales cuando la fuente de nitrógeno era limitada (Rembiatowska, 2007). Un mayor contenido de proteínas en alimentos ecológicos puede deberse a una mayor capacidad de translocación de nitrógeno en condiciones de fertilización orgánica. Esta capacidad puede ser debida a una mayor adaptación a condiciones de poca disponibilidad de nitrógeno, frente a los sistemas de producción convencional, bajo condiciones de uso abundante de fertilizantes nitrogenados.

El mayor contenido en triptófano de las chufas de producción convencional es concluyente con otros estudios donde se ha encontrado concentraciones totales de N más altas, pero una menor calidad de la proteína en cultivos convencionales, expresados como índice de aminoácidos esenciales y nivel de utilización de proteínas netas (Worthington, 2001; Benbrook et al., 2008; Herencia et al., 2011). Estos autores indican que la mayor tasa de fertilización con nitrógeno en los sistemas de producción convencionales puede ser la causa que explique la diferencia.
CONCLUSIONES

El modelo de producción ecológica frente al convencional proporciona mayores valores nutricionales en los tubérculos de chufa. Cuanto mayor tiempo presentan las parcelas bajo las técnicas de agricultura ecológica, mayor es el valor nutricional (proteínas, hidratos de carbono y principios activos) de la chufa. Un modelo de larga trayectoria en producción ecológica, implica una mayor estabilidad en las fuentes de materia orgánica en el suelo, y un mayor equilibrio con el sistema productivo. Los aportes de materia orgánica y particularmente los aportes de nitrógeno, tanto a nivel de dosis, fuente del nitrógeno, como de las diferencias que se pueden generar con el metabolismo de la planta, podrían ser los factores que pueden influir no sólo en la cantidad de la proteína, sino en la composición de los aminoácidos y con ello en la calidad proteica de la chufa. 100 g de chufa ecológica procedente de un sistema productivo ecológico consolidado en el tiempo aportan aproximadamente un 10% más de proteína, que las chufas ecológicas procedentes de sistemas de corta trayectoria productiva y que las chufas convencionales, repercutiendo en mayor fracción de aminoácidos esenciales de lisina y triptófano.

REFERENCIAS

USO INTEGRAL DE LA COLZA COMO ALTERNATIVA SOSTENIBLE PARA LA PRODUCCIÓN DE QUESO BAJO LA DPO IDIAZÁBAL

Salazar Gómez N
Ermitaigaña 46 1ºA Pamplona-Iruña 31008 (Navarra)
Email: noemi@noemisalazar.com Web: www.turtolio.com

RESUMEN: TURTOLIO es un proyecto enmarcado dentro de la cooperación e innovación para la mejora de la competitividad y sostenibilidad del sector agrario, tanto desde el punto de vista de las materias primas para la alimentación animal, como el uso de energías renovables.
El desarrollo del proyecto TURTOLIO es una experiencia de economía circular, en la que a partir de semilla de colza cultivada en el territorio, se obtiene alimento para el rebaño de ovejas latxas, y aceite, que se utiliza como biocombustible en la caldera de la quesería y el agroturismo.
Establece una línea de colaboración con entidades y personas, fomenta el intercambio de información y conocimiento, y da continuidad a unas relaciones fluidas, dentro y fuera del sector. Esto ha permitido el desarrollo de otro proyecto (Proyecto KALIKOLZA), en el que se estudia la calidad nutricional de los alimentos obtenidos de animales alimentados en este sistema.
Los objetivos del proyecto son proporcionar al sector conocimiento sobre el empleo de aceite en calderas, con la consiguiente reducción en el empleo de gasoil, promover el empleo de torta de colza en la formulación de las raciones de alimentación animal, con la consiguiente reducción en la dependencia de la soja de mercados internacionales, formar y sensibilizar a ganaderos, técnicos y público en general, en el empleo de aceites y torta, mostrando sus beneficios económicos y medioambientales. Para ello, el proyecto desarrolla las siguientes actividades: proyecto piloto en explotación comercial y agroturismo, acción demostrativa en centro tecnológico, transferencia del conocimiento generado.

Palabras clave: alimentación animal, calidad nutricional, colza, economía circular, energías renovables, Idiazabal
PEPINOS QUE AYUDAN A REDUCIR EL USO DE PLÁSTICO

Lopez Rodríguez M

Vitalis Organic Seed
Camino Canal de Beninar-La Maleza s/n, 04710, Santa María del Águila, Almería, España. M.lopez@enzazaden.es

RESUMEN: ¿Qué aporta Vitalis a la sociedad?
De la obtención vegetal depende en gran medida toda la cadena alimentaria y es ahí donde Vitalis tiene mucho que aportar, colaborando activamente con la sostenibilidad económica, social y medioambiental, así como favoreciendo la biodiversidad. Vitalis invierte un alto porcentaje de su facturación a la investigación y al desarrollo de variedades hortícolas ecológicas. El objetivo de Vitalis es añadir valor al agricultor aportando resistencias, calidad y mayor rendimiento, aportar variedades con mayor vida útil para el comercializador, y ofrecer al consumidor la posibilidad de comprar todo el año productos ecológicos diversos con alto valor nutricional y que sean respetuosos con el medio ambiente.
Vitalis no es ajena a la actual preocupación ciudadana por el exceso de uso de plásticos en el sector de la alimentación. La UE comienza a luchar contra el exceso de residuos plásticos en todos los países, y algunas empresas ya están optando por utilizar un etiquetado laser y evitar el retractilado o flowpack en sus productos.
Pepinos que ayudan a reducir el uso de plástico
Vitalis añade un alto valor a estas empresas en el desarrollo de variedades con una vida útil superior, logrando productos que aguantan más tiempo frescos, lo que permite reducir en la medida de lo posible el uso de plásticos en el envasado. Actualmente Vitalis aporta un programa de pepino ecológico en el segmento del tipo Almería, que ofrecen una mejora de 10 días en la postcosecha frente a otras variedades existentes en el mercado.
Vitalis seguirá trabajando, invirtiendo e investigando para ayudar a la sostenibilidad del medio!

Palabras clave: biodiversidad, compromiso, confianza, semilla ecológica, sostenibilidad
OBSTÁCULOS LEGALES A LA ECONOMÍA CIRCULAR EN EL ÁMBITO DE LOS BIORESIDUOS: UN ESTUDIO DE CASO CON RESIDUOS VERDES

Dupuis I¹, Michel M², Redondo M³

¹Dpto de Geografía e Historia - Universidad de La Laguna
²Agricultor, jardiner y compostador
³COAG-Canarias

RESUMEN: Si bien los principios de la economía circular parecen adecuarse a una gestión provechosa de los bioresiduos, el marco legal actual presenta numerosos requisitos y condiciones que frenan prácticas beneficiosas tanto a nivel ambiental, como socioeconómico y agrario. En esta comunicación, nos centramos en un estudio de caso focalizando sobre las opciones de gestión de un volumen significativo de residuos verdes generados en un complejo hotelero en Canarias, mostrando los bloqueos que representa actualmente la normativa vigente en materia de residuos, prestando una especial atención al contexto geográfico. Se completará con algunos apuntes aplicables a otras situaciones de aprovechamiento de materias orgánicas, que presentan igualmente incoherencias legales.

Palabras clave: alimentación animal, compostaje, economía circular, normativa de residuos, residuos verdes
ANÁLISIS INTEGRAL DE UNA GRANJA ECOLÓGICA BOVINA DE PRODUCCIÓN LÁCTEA EN FRIOL (LUGO). GALICIA. I) EVALUACIÓN ENERGÉTICA

Neira Seijo X*, García Romero C**

*Doctor Ingeniero Agrónomo. Escola Politécnica Superior Enxeñaría. Sociedad Española de Agricultura Ecológica (SEAE). Lugo. Galicia. Ce.xan.neira@usc.es
* * Dr. en Veterinaria. Cuerpo Nacional Veterinario. Sociedad Española de Agricultura Ecológica (SEAE). Olías del Rey (Toledo). Castilla-La Mancha. Ce. guindalejocarmelo@gmail.com;

RESUMEN: En la evaluación energética de los diferentes procesos de la granja bovina de leche se procederá a analizar energéticamente cada uno de estos procesos, fundamentalmente lo relativo a la alimentación del ganado: componentes de la ración, origen de los mismos y su transformación energética. También se contempla evaluar del mismo modo la gestión de residuos. El objetivo primario es determinar los índices energéticos de los diferentes procesos de gobierno de la granja. El objetivo último es, a través de los índices energéticos determinados para los diferentes procesos, extraer pautas para modificar, si fuere el caso, los diferentes factores de gobierno de la granja.

Palabras clave: buen gobierno, ganadería ecológica, granja de leche ecológica, índices energéticos

INTRODUCCIÓN: LA OTRA CRÓNICA

El deseo de visitar y evaluar una granja de bovino de leche en ecológico nos llevó a Casa Codesal, en el lugar de Vilapedre, parroquia da Devesa, en Friol (Lugo).

Aunque no somos unos desconocidos para Ángel que, junto con su familia, gobierna la granja, nos desplazamos con cierta prevención, dada la situación general de crisis en el sector lácteo, sobre como contempla el futuro de la granja. Esta es la otra crónica.

El contexto general. Son solamente quince años los que separan una Galicia con 100.000 granjas lácteas a otra con en el entorno de las 8.700 que, no obstante, acogen más ganado y producción. En puro, y eufemístico, lenguaje técnico quedan las que lograron superar el proceso de “modernización” del sector y pueden afrontar las cíclicas crisis de precios.

La letra pequeña de esa modernidad son unas 15 granjas que ponen el cierre cada día, 91.300 historias acabadas. Unas historias a las que acompañará un ramillete de saberes que quedarán sepultados, de un gobierno, en buena parte de los casos, sabio y equilibrado del agroecosistema. En los casos más extremos desesperación, esa historia silenciada de suicidios –la provincia de Lugo encabeza la tasa de suicidio en España-, deudas, muerte por inanición de animales.

La agricultura familiar, tan nombrada últimamente, pero tan castigada. Para las pequeñas granjas no basta todo el esfuerzo familiar y el cierre es indefectible. Por el medio una PAC desequilibrada, donde el 80% (los pequeños) solamente cobran el 20% de los fondos. Donde las grandes corporaciones lácteas que dominan el sector deciden unilateralmente no recoger la leche a pequeños productores que, por su “pequeña producción”, no hacen rentable la recogida.
Ya son muchos años que escuchamos que los ganaderos están vendiendo a pérdidas, el reclamo para que las grandes cadenas de distribución dejen de ofrecer la leche como producto reclamo en sus lineales.

La modernidad. La modernidad es entendida por un manejo de la granja con criterios economicistas, de rentabilidad, y que demandan mano de obra, donde ya se está produciendo escasez de candidatos, cualificados y motivados.

Los grupos empresariales controlan, prácticamente, todas las fases del proceso, ponen a disposición de los granjeros la tecnología de última generación, con refinados sistemas automáticos de alimentación, suplementos, piensos transgénicos, medicamentos y cadenas de distribución para dar salida a esa producción. Eso sí, no quiere saber nada de los residuos y los dejan bajo responsabilidad del ganadero, así de solución han pasado a constituir un serio problema.

Los nuevos tópicos en ese sector son ganadería de precisión, las nuevas tecnologías para aumentar la eficiencia, todo un universo de nuevas oportunidades que, no nos olvidemos, nadie regala.

Así la bromatología, la sanidad alimentaria, la reproducción, podología, el ordeño, la alimentación, y, por fin, la gestión sale del dominio del granjero y pasan a ser responsabilidad de una empresa de servicios técnicos.

El legado, aparte de la gestión de los residuos ya referido, aspectos como la resistencia creciente a antibióticos con derivaciones a la salud pública, pasando por la compleja situación económica.

La visita. Con todas estas prevenciones iniciamos la visita, era posible encontrarnos con un ganadero que, aunque ecológico, estuviera condicionado por estas circunstancias.

Pronto se disiparon esas prevenciones, Ángel transmite sosiego, y esa actitud inundó todo nuestro encuentro. Lo primero, y bien significativo, es que aquel predio es Casa Codesal de la parroquia de A Devesa. La percepción ha sido orgullo de ser lo que se es, extensible al resto de la familia, que constituyen un núcleo de agricultura familiar satisfecha de su trabajo ganadero responsable y ecológico.

En la toponimia popular, que también sabía hacer agricultura de precisión, devesa representa un terreno extenso, poblado de árboles no muy densos. La parroquia ha desempeñado un papel fundamental en la organización del espacio y la vida cotidiana del mundo rural gallego en, prácticamente, el último milenio. Es la estructura más adaptada a las características de un disperso poblamiento, más que un mero territorio de administración eclesial constituía uno de los focos principales de la vida socioeconómica de las comunidades rurales. Pertenecer a una Casa dentro de una parroquia comporta vínculos, solidaridad, trabajos cooperativos, fiestas, tradiciones, comunidad.

La estructura del mundo rural tradicional constituye un legado patrimonial, el fruto de una evolución y construcción socioambiental de muchas generaciones. Un legado de racionalidad, de adaptación del que sacar, todavía, enseñanzas, frutos y futuro.

Objetivo. Para evaluar un proceso, producción ecológica de leche, es útil la determinación de los índices energéticos implicados en el mismo, de ello, y algo más, trata este trabajo.

MATERIAL Y MÉTODOS

Localización geográfica

La ganadería ecológica está situada en Vilapedre-Friol (Lugo). Su altitud es 460 m y se encuentra en la Galicia interior, caracterizada por inviernos fríos y veranos secos.
Casa Codesal es el presente de una granja familiar donde se han sucedido varias generaciones dedicadas a esta misma actividad.

Instalaciones

Las instalaciones de la granja constan de: el establo semilibre, data de 1987, con una superficie de 24x22 m, en años posteriores se ha construido otro de 20x17 m; la sala de ordeño, reformada en 2002, posee una estructura de espina de pescado y cuenta con 8 puestos de ordeño.

La vacas están el libertad, los establos poseen cubículos a los que las vacas acuden en invierno, también, cuando acceden a la sala de ordeño, visitan los comederos donde, en función de la época del año, se encuentran con hierba, maíz y cereales ecológicos que completan su dieta.

Comederos y bebederos en finca. En los prados se dispone de comederos de hierba seca, especialmente útiles en verano, con menos cantidad de hierba verde disponible en los prados. También se han instalado bebederos circulares con flujo de agua limpia y fresca constante.

Recopilación de Datos

Los datos se obtuvieron mediante encuesta directa (FAO, 1990) y se refieren al año 2018. La información recopilada fue de carácter técnico, económico, social y comercial.

Manejo praderas

Se realiza rotación de pastos para aprovecharlos al máximo, consiste en una estrategia de pastoreo en donde se organizan terrenos y calendarios de pasto para las vacas, con tiempos suficientes de renovación.

RESULTADOS Y DISCUSIÓN

Los sistemas de cría y producción animal, en la práctica, tratan al animal como a una máquina, una máquina de la que extraer la máxima productividad y para producir leche, con el inconveniente que esa máquina-vaca también demanda energía para su sistema circulatorio, muscular, esquelético y digestivo. La ganadería ecológica cultiva el respeto por un ser vivo, por el bienestar animal, por ello no trata, hasta los límites de la salud animal, de minimizar los gastos en otros sistemas que no sean la producción de leche.

Ángel, el ganadero, tiene nombre, como cada una de sus vacas, nos transmitió con contundencia que las vacas viven libres, sin estabular, y este es un factor muy importante antiestrés, de salud animal. Las vacas pastorean, descansan, tienen actividad relacional con sus compañeras, hasta con la perrita pastora Perla, con la que las crías, especialmente, entablan especial afectividad.

Las vacas pasan todo el año en los prados, solo de noviembre a marzo se recogen por la noche para que duerman al abrigo en los establos.

Cuando un investigador parametriza al animal y convierte todo en índices, realiza una importante labor, sin duda, pero normalmente se olvida de preguntar a la vaca en un tu a tu entre especies animales ¿oye, tu eres feliz?, lo lleva a otro submundo.

Pero hay quien sí lo ha intentado (Bertenshaw, C, Rowlinson, P. 2009), la actitud de un humano frente a los animales influye en su comportamiento. En la literatura científica se extrae que el miedo a los humanos es la relación predominante en las granjas lecheras. Si las vacas son reconocidas individualmente, tienen nombre como las de esta Casa, mejoran el temperamento en el ordeño —los Codesal acompañan a cada vaca hasta el puesto de ordeño— y llegan a producir hasta 200 litros más por lactación.
Con esta praxis la ganadería ha sido premiada en 2017 con el premio Exceleite con dos premios: 1er. premio en categoría ecológico y 1er. premio en categoría extensivo-mediano. Los premios Exceleite se otorgan a los mejores en el ámbito higiénico-sanitario de la leche, convocado por la Consellería de Medio Rural de la Xunta de Galicia en colaboración con el Laboratorio Interprofesional Gallego de Análisis de la Leche (LIGAL).

Valorar un proceso productivo se puede realizar desde un punto de vista económico, mas también resulta de interés efectuarlo desde el punto de vista energético, los procesos a contabilizar (Cuadro 1) atañen a diferentes aspectos presentes en el manejo de la granja.

<table>
<thead>
<tr>
<th>LABORES AGRÍCOLAS</th>
<th>ORDEÑO</th>
<th>ENFRIADO</th>
<th>LIMPIEZA</th>
<th>ILUMINACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESCRIPCIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparación de</td>
<td>Ordeño</td>
<td>Enfriado leche</td>
<td>Limpieza en el aparato</td>
<td>Iluminación del establo</td>
</tr>
<tr>
<td>Suelo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alimentación</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONSUMO ENERÉTICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GASOLEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maquinaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tractores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 1. Diagrama energético de granja de leche. Fuente: INEGA

En cada uno de estos procesos existe, en definitiva, una componente energética que, mediante un balance de energía aportada (input) y energía obtenida (output), nos permite determinar unos índices (Cuadro 2) útiles para realizar un balance energético y comprobar la tendencia a la sostenibilidad de, en este caso, la ganadería.

<table>
<thead>
<tr>
<th>Balance energético vaca/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Pastando</td>
</tr>
<tr>
<td>Pienso concentrado (1,39 t)</td>
</tr>
<tr>
<td>Electricidad (318 kWh)</td>
</tr>
<tr>
<td>Otros (agua, edificios, almacenaje)</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Output</td>
</tr>
<tr>
<td>Leche</td>
</tr>
<tr>
<td>Terneros venta</td>
</tr>
<tr>
<td>Vacas desvieje</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>E, energía obtenida/energía aportada</td>
</tr>
</tbody>
</table>

Cuadro 2. Balance energético granja ecológica de producción láctea
Fuente: (Leach, G, 1981)
Las producciones ganaderas, como es el caso, suelen presentar balances negativos, invertir la tendencia requiere analizar cada uno de los procesos y tratar de conducirlos a prácticas que signifiquen menos gasto energético.

Es preciso mejorar estos procesos sin por ello denostar categóricamente la ganadería, la agroecología debe implicar necesariamente la presencia de ganado.

CONCLUSIONES

Se hace necesario cambiar la mirada hacia la agricultura familiar, reconociéndola como una pieza fundamental con múltiples posibilidades para el futuro del mundo rural.

La agricultura familiar es, también, prestadora de importantes servicios ambientales y contribuye sustancialmente a la sostenibilidad ambiental del mundo rural.

La ganadería ecológica de bovino de leche aporta un producto de una buena calidad biológica, respetando el bienestar animal y, al realizarse la alimentación en base a pastos, contribuye a un gobierno armónico del territorio.

Los índices energéticos en las producciones ganaderas son un muy necesario instrumento para marcar tendencias y evaluar la sostenibilidad de la granja.

REFERENCIAS BIBLIOGRÁFICAS

ANÁLISIS INTEGRAL DE UNA GRANJA ECOLÓGICA BOVINA DE PRODUCCIÓN LÁCTEA EN FRIOL (LUGO). GALICIA. II) EVALUACIÓN DEL MANEJO DEL REBAÑO

García Romero C*, Neira Seijo X **

*Dr. en Veterinaria. Cuerpo Nacional Veterinario. Sociedad Española de Agricultura Ecológica (SEAE). Olias del Rey (Toledo). Castilla-La Mancha. C. guindalejocarmelo@gmail.com;
**Doctor Ingeniero Agrónomo. Escola Politécnica Superior Enxeñaría. Sociedad Española de Agricultura Ecológica (SEAE). Lugo. Galicia. C.e.xan.neira@usc.es

RESUMEN: Galicia es un territorio que está impulsando de forma eficiente y competitiva la agroecología, en donde la ganadería ecológica de bovino lechero tiene una gran transcendencia socioeconómica dado los bajos precios de la leche convencional, por debajo de los costos de producción. La caracterización zootécnica y sanitaria realizada en una granja ecológica vacuna Frisona (Holstein) de Friol (Lugo) (Casa Codesal), es importante para otras granjas que quieran iniciar el proceso de conversión ecológica. El ciclo de cría está basado en un sistema extensivo sostenible, 0,9-1 vacas/ha, con pastoreo rotacional en praderas de Raygrass Inglés y Trébol (blanco y ladino), y suplementación con pienso, 4-6 kg/vaca en función de la curva de crecimiento de la hierba (200 g/l leche). Elabora silo de maíz forrajero sembrado en ciclo corto en mayo. Realiza inseminación artificial, fertilidad, 90%, prolificidad, 100%, mortalidad, >5%, reposición, 27 %, con una media de 188 días de lactación y 6.406 l/vaca y 6.332 l/ha. La leche contiene grasa, 3,60% y proteína, 3,10%. El secado o hace con productos no antibióticos, autorizados, a los 7-8 meses del parto. Nivel sanitario alto, pertenece ADS, libre de Brucelosis, Tuberculosis, Leucosis P Contagiosa Bovina, Rinotraqueitis infecciosa Bovina (IBR), Nesporosis y otras. Muy baja prevalencia en mamitis con recuentos celulares bajos, higiene de instalaciones y en el ordeño con productos autorizados. No mutila los rabos ni orejas. Realiza compostaje de los estiércoles, que utiliza como abonos orgánicos en los prados. Venta de leche ecológica a granel, no elabora productos derivados.

Palabras clave: ganadería ecológica, caracterización, granjas bovinas ecológicas, vacuno de leche ecológico

1. INTRODUCCIÓN

Galicia es una comunidad autónoma con un sector ecológico dinámico y creciente en producción de leche bovina, con un volumen de negocio cercano a los 18.536 millones de euros, que supone un incremento del 40.61% frente al año 2016, liderando la cabaña vacuna de leche ecológica en España, más de 95 granjas registradas, seguida de Asturias y Cantabria, con un censo de alrededor de 4.100 vacas que aportan 9.075 t de leche cruda producida en granja y 14.422 t para consumo directo, con una elaboración de queso ligeramente creciente, unas 63 t en los momentos actuales, que esta por debajo del potencial quesero ecológico de Galicia.

En Friol (Lugo), se ha realizado un estudio de caracterización de una granja ecológica de bovino lechero, con un adecuado manejo técnico del ciclo de cría, y que por tanto puede considerarse como referente para futuras granjas ecológica de leche.

El objetivo del presente trabajo ha sido contribuir al conocimiento del manejo zootécnico y sanitario en modelos ecológicos optimizados de producción y cuya productividad es aceptable, con la finalidad de su extrapolación a otras granjas bovinas ecológicas lecheras o en proceso de conversión, con escasa rentabilidad por los bajos precios de la leche actual del modelo convencional, 0,30-0,31 euros/litro por debajo del Intel de producción.

En definitiva, con este estudio se pretende divulgar la información ecológica generada en el medio rural para mejorar el funcionamiento del ciclo de cría y minimizar los puntos débiles del manejo, sobre todo los relacionados con los costos de producción y calidad lechera, como son la alimentación, reproducción y sanidad.
2. MATERIAL Y MÉTODO

El presente trabajo se realizó el 18 de mayo de 2018, en la granja ecológica de bovino lechero de raza Frisona, mayoritaria, y otras lecheras, ubicada en Friol (Lugo), Galicia, La Casa Codesal, así denominada, que cuanta con 56 ha de ecosistema pastoril, formado por praderas polifíticas naturales y mejoradas, con una base animal de 55 vacas, 44 en lactación y 11 secas junto a 15 novillos de recria, cuya mejora poblacional se hace teniendo presente la calidad de las producciones y otros aspectos reproductivos.

Desde el punto de vista del climatograma de Friol y en base a la clasificación climática de Koppen-Geiger, el clima es templado y cálido, temperatura promedio de 12,4 ·C., con una precipitación media aproximada de 1.132 mm, variable por el cambio climático, correspondiendo el mes más seco a julio-agosto, con una mayor lluvia en diciembre, que condiciona la curva anual de crecimiento de la hierba.

La metodología utilizada, como método de información, fue mediante visita y encuesta en la propia granja (GARCÍA ROMERO & CORDERO MORALES, 2010, 2012). La captación de datos del informante se hace en cuadernillo normalizado donde estaban registradas las cuestiones técnicas referentes al agro sistema, manejo de praderas, y ciclo de cría, manejo zootécnico de la alimentación, reproducción, manejo de la salud y bienestar, parámetros sanitarios y prácticas zootécnicas. La encuesta realizada al informante propietario de la granja se ha realizado con aproximadamente unas 90 cuestiones, completándola con fotos del sistema de producción, de acuerdo con la metodología ya utilizada en otros trabajos desarrollados por BARTOLOMÉ y COL (2010); FLICK (2004); CORDERO MORALES & GARCÍA ROMERO(2017).

3. RESULTADOS Y DISCUSIÓN

3.1. Manejo alimentario

La granja lechera ecológica bovina tiene un sistema de cría extensivo, en praderas, para la producción ecológica de leche cruda, sin transformaciones en productos lácteos, basando su alimentación mayoritaria en el pastoreo rotacional, con una carga ganadera que no supera 146 UGM/ha, que implica una gran sostenibilidad del modelo pecuario como indicaron GARCÍA ROMERO & NEIRA SEIJO (2016).

Las praderas están mejoradas con distintas variedades gramíneas, Raygrass Ingles, y leguminosas, trébol blanco y ladino, como ya también comunicó PIÑEIRO (1980) que aportan la proteína de la ración diaria, habiéndose introducido recientemente el 25% de Festulolium por su resistencia a la sequía, para mejor adaptación de la pradera al cambio climático (GARCÍA ROMERO, 2016). Las praderas se renuevan cada cinco años utilizando exclusivamente el estiércol (Bosta), como fertilizante orgánico esparcido por las vacas en pastoreo y con materias compostadas que se realizan en instalaciones diseñadas para tal fin. En el mes de mayo, al ser tierras muy acidas se realiza en encalado para favorecer el desarrollo del trébol aunque hay menor producción de Raygrass en verano.

Las vacas también reciben ensilado, de forma limitada, que se elabora en primavera, con unas calidades que oscilan entre 9-10% de proteína bruta, valores que están dentro de los recomendados para este tipo de forrajes (CARLOS DE BLAS, 1970). Una parte del territorio se utiliza para el cultivo de maíz (millo) forrajero ecológico sembrado en ciclo corto, en primavera, en praderas que se rotan cada cinco años, para hacer control de plantas adventicias, con rendimientos aceptables, en función del año (25-50 t/ha).

La suplementación se realiza con concentrados durante el ordeño, para facilitar la salida de la leche y liberación natural de oxitocina, con una ración media estimada de 4-6 kg/vaca en función de la mayor o menor abundancia de la hierba. La estimación, en función de la producción, está entre 150-200 g de pienso/1 de leche, un valor muy ajustado que está por debajo de lo marcado por la norma legal para el porcentaje de concentrados en la ración diaria que influye muy positivamente en la rentabilidad de la granja a diferencia de
otros sistemas convencionales en donde los consumos están muy por encima. (GARCÍA ROMERO & GARCÍA ROMERO MORENO, 2017).

El agua de bebida es de calidad, procede de pozos de la propia granja, realizando análisis periódicos, como también ha indicado GARCÍA ROMERO (2004ab).

3.2. Manejo de la cría

La reproducción se realiza mediante inseminación artificial (IA), como en todas las granjas lecheras para la producción de leche, dada la gran diversidad que existe en catálogos de toros, que limita la monta natural, aunque en granjas bovinas ecológicas es una práctica que puede verse con cierta frecuencia para mejorar ciertas infertilidades de hembras que quedan vacías tras la IA, y cruzar con toros con un potencial lechero más sostenible adaptados y mejorados en la propia granja. (GARCÍA ROMERO & GARCÍA ROMERO MORENO, 2017).

La planificación 40 l/día de la cría es de un parto/año, con una fertilidad alrededor del 90%, prolificidad 100%, y una mortalidad inferior al 5%. El intervalo entre partos se sitúa en torno a los 417 días. El destete de ternereros para venta convencional se realiza a los 30 días, y las hembras de reposición permanecen unos 90 días de lactación, que está dentro del valor marcado por el Reglamento de las producciones Ecológicas (GARCÍA ROMERO, 2008). La tasa de reposición se sitúa en torno al 27%, realizándose el secado a los 7-8 meses de preñez.

El periodo medio de vacas en lactación es de 188 días, estimándose una producción entre 6.000-7.000 l/año, con una media de, y unos 6.406 l/ha. El valor nutricional de la leche está en valores de 3,60 % de grasa y 3,10 % de proteína, valores aceptables en sistemas de producción ecológica. (GARCÍA ROMERO & GARCÍA ROMERO MORENO, 2017).

Para imprimir mayor sostenibilidad al sistema y mejorar la calidad de leche del rebaño se están realizando cruces con las razas Montbeliard y la Roja Sueca, para bajar el potencial lechero a costa de la calidad y limitar la presentación de mamitis. (GARCÍA ROMERO, 2015).

3.3. Manejo sanitario

La granja ecológica pertenece a la Asociación de Defensa Sanitaria (ADS) de Friol (Lugo), está libre de brucelosis y tuberculosis bovina, así como está oficialmente indemne de leucosis, enzootica, perineumonía contagiosa bovina, BVD, IBR, paratuberculosis y neosporosis. Un estado sanitario alto que implica se llevan a cabo unas adecuadas medidas de manejo sanitario e higiénico, así como de bioseguridad en la granja bovina ecológica (GARCÍA ROMERO & BIDARTE ITURRI, 2010; GARCÍA ROMERO, 2010).

El secado se realiza con productos no antibióticos autorizados por el reglamento de control, empleando sellador de silicona, limitando la utilización de antimicrobianos a aquellas vacas que en algún momento tuvieron recuentos celulares (RCS) por encima de las 200.000 células.

Los controles mamarios indican que no hay mamitis en la granja, presentando un nivel celular bajo, por debajo de las 100.000 células, consecuente a la higiene pecuaria, desinfección de pezones antes del ordeño con soluciones yodadas y después del ordeño con antisépticas autorizadas.
La instalación esta dimensionada, tiene sala de ordeño en espina de pescado es desinfectada con productos autorizados tras el ordeño, así como suelos y equipos de ordeño. El estiércol es retirado de la estabulación periódicamente, utilizando productos químicos que están contemplados autorizados por el Organismo de Control, CRAEGA. (GARCÍA ROMERO, 2008a).

La granja tiene balsas de purines con suficiente capacidad para realizar el tratamiento de los mismos antes de repartir por las praderas con maquinaria espardidora de estiércoles.

3.4. Manejo del bienestar

Los indicadores del bienestar del rebaño bovino ecológico son altos al ofrecer el sistema de cría un grado aceptable de libertad y estar basada en alimentación mayoritaria en el pastoreo. Las vacas, permanecen gran parte del año en las praderas y la estabulación es abierta. No realizan raboteo, ni mutilaciones de partes corporales, salvo descuerne como medida de seguridad del rebaño y operarios. La identificación es oficial mediante crotales dobles en orejas. (GARCÍA ROMERO, 2010; GARCÍA ROMERO ∞ GARCÍA ROMERO MORENO, 2017).

4. CONCLUSIONES

1.1. La granja ecológica Casa Codesal, tiene establecido un plan de gestión zootécnica con objetivos de sostenibilidad del sistema de producción lechera ecológica.
1.2. La alimentación esta basada en el pastoreo, es mayoritariamente forrajera, con una ración baja en pienso, que implica una estrategia productiva de bajos costes con aceptable productividad.
1.3. Las medidas de manejo sanitario, higiene pecuaria y de bioseguridad llevan aparejadas altas cotas de salud y bienestar del rebaño, con nula incidencia de patologías infecciosas graves y muy baja prevalencia de mamitis, que tiene como resultado producción de leche ecológica de excelente calidad sanitaria.

5. AGRADECIMIENTOS

En primer lugar, agradecer a mi buen amigo Xan Neira la oportunidad que me ha ofrecido para realizar conjuntamente un estudio sobre el vacuno lechero ecológico en galicia, uniendo los conocimientos desarrollados en el Centro de investigación de Mabegodo sobre sistemas de producción de vacuno en los años 1.980-1.984.

En segundo lugar, manifestar nuestro reconocimiento a la granja ecológica “Casa Codesal”, en particular al propietario ganadero D. Ángel Rivas, por su tiempo dedicado como informante del sistema de cría ecológico y sus valiosas aportaciones del manejo zootécnico y sanitario.

6. BIBLIOGRAFÍA

• GONZÁLEZ SANTILLANA, R. (1.984). Producción de leche en Pastoreo con consumo mínimo de pienso. 100 años de investigación agraria. 1.888-1.988. Conmemoración del Centenario de la creación de la Granxa Escola Experimental de A Coruña, actualmente Centro de Investigación Agraria de Mabegondo. Xunta de Galicia Tomo 2: 64-75.
CARACTERIZACIÓN DE UNA GRANJA AVÍCOLA ECOLÓGICA DE PUESTA EN CASTILLA LA MANCHA. ESPAÑA

Cordero Morales R*, García Romero C**

** Junta de Comunidades de Castilla-La Mancha. Toledo. Sociedad Española de Agricultura Ecológica (SEAE). Ce. guindalejocarmelo@gmail.com

RESUMEN: El moderado crecimiento de la avicultura ecológica en Castilla La-Mancha, 14 granjas (10 de puesta), justifica el objetivo estudiar el manejo zootécnico y sanitario para su divulgación a otras que inician el proceso de conversión, mediante la metodología de encuesta. La unidad ecológica en cuestión ubicada en Yeste (Albacete), tiene 480 m² de superficie cerrada, comederos tolva suspendidos en techo, bebederos circulares tolva automatizados con agua de la res pública (16), nidos suficientes de madera (256), 780 m de aseladeros de madera, con una base animal de 1.100 gallinas de la raza Isa Brown, densidad con escasa concentración 0,43 m³/gallina (2,32 aves/m²). El parque de pastoreo esta vallado (alto 2m) tiene 1,3 Ha, compuesto por almendros ecológicos y cobertura vegetal natural, dispone de espacio suficiente para las 4 m de rotación/cabeza de la norma legal. Tiene lazareto sanitario y luz solar. Las pollitas las introduce con menos de 18 semanas procedentes de granja ecológica de multiplicación. Los animales pastan al menos cinco horas y utiliza piensos ecológicos (120 g/día), desvieja a los tres años, reposición 40,9 %/año, mortalidad 7,09 %. Las aves vienen vacunadas de patologías frecuentes, coccidiosis y salmonelesis (realiza tres autocontroles/año). No tiene problemas de enfermedades endémicas. Los picos no se despuntan. La retirada estiércol manual se hace tres veces/año, para desinfección utiliza cal viva y alga de diatomeas. La producción se inicia con seis meses de edad, clasifica por peso, limpia en seco, marca de forma manual, media, 13.431 docenas/año, la venta semanal en embalaje se hace en una panadería de Letur y tiendas eco de proximidad. En conclusión, la granja avícola es referencial para la cría ecológica sostenible en Castilla-La Mancha.

Palabras clave: avicultura ecológica, gallina de puesta ecológica, zootecnia y salud ecológica, granja ecológica de Castilla-La Mancha. España

1. INTRODUCCIÓN

La ganadería ecológica en España ha experimentado un amplio crecimiento en los últimos 15 años, alcanzando en el año 2016 (MAPAMA), la cifra de 7.836 granjas inscritas, el 7,47% corresponden a aves de corral y la mayoría son de avicultura de puesta con 245 granjas inscritas.

Este aumento responde, sobre todo a la valoración de los consumidores que aprecian la diferencia de calidad entre las producciones de gallinas alojadas en jaulas con espacios ínfimos, con una alimentación basada en aditivos y los productos procedentes de granjas ecológicas donde los animales son criados en suelo con parques para desarrollar sus necesidades etológicas y con una alimentación sin aditivos.

Castilla la Mancha cuenta con un censo de gallinas ponedoras ecológicas de 15.657, de un total de 313.632 gallinas ponedoras en España en 2016 (MAGRAMA) y ocupa el quinto lugar a nivel nacional después de Cataluña, Galicia, Andalucía y País Vasco.

El moderado crecimiento de la avicultura ecológica en Castilla La-Mancha, 14 granjas (10 de puesta), justifica estudiar el manejo zootécnico y sanitario para su divulgación a otras que inician el proceso de conversión. (Cuadros 1 y 2).

El nuevo reglamento 2018/848 de producciones ecológicas que se publicó en mayo, establece unas condiciones básicas que definirán la producción avícola ecológica y al mismo tiempo encarga a la Comisión que redacte...
un reglamento de ejecución para fijar las condiciones técnicas específicas que ordenarán la actividad de la cría de aves tanto para la producción de carne como de huevos. Este reglamento deroga al anterior de la producción ecológica 834/2007. No obstante, mientras se publican las condiciones específicas para avicultura de puesta, en este trabajo vamos a discutir las condiciones de la granja Campos de Yeste con las contempladas en el reglamento 889/2008.

El nuevo reglamento, introduce una intensificación en la producción de huevos que se aleja mucho de la imagen que de la actividad tienen los consumidores. Al mismo tiempo rompe con la interpretación que en nuestro país se viene haciendo, por la cual se limitaba el tamaño del lote que se podía albergar en una nave a un máximo de 3.000 gallinas (Terraz Cuenca, 2018).

2. MATERIAL Y MÉTODOLOGÍA

La granja avícola ecológica, objeto del presente estudio, está ubicada en la Aldea de Pedro Antón, a 3,5 Km del municipio de Yeste (Albacete, Castilla-La Mancha) a cuyo término municipal pertenece, aislada y alejada de otras granjas para evitar posibles fuentes de contaminación. Localizada dentro del paraje natural Sierra del Segura, nombre que viene del principal río que la surca, constituyen la porción más meridional del espacio geográfico de la región castellano manchega en la provincia de Albacete. Es precisamente esta delimitación geográfica, entre la llanura manchega por un lado y la huerta murciana por otro, lo que dota a estas sierras de una especial importancia tanto desde el punto de vista geográfico como paisajístico y ecológico.

La granja llamada “Campos de Yeste” tiene una base animal de 1.100 gallinas de la raza Isa Brown y cuenta con 1,3 Ha bajo la misma linde de almendros ecológicos y cobertura vegetal natural propias de esta área del sur de la provincia de Albacete. La granja lleva 13 años inscrita en el registro de explotaciones ecológicas y por tanto se encuentra entre las primeras de avicultura de puesta ecológica de Castilla La Mancha.

Así pues hemos considerado interesante revisar las instalaciones así como los manejos alimentario, sanitario y zootécnico de esta granja avícola ecológica de Castilla La Mancha, para conocer de cerca su realidad técnica, socioeconómica y configurar un diagnóstico de puntos críticos de cara a la mejora de futuras granjas avícolas ecológicas.

La metodología desarrollada, encuesta directa en granja, es la utilizada en otros proyectos de investigación desarrollados en Castilla-La Mancha, en donde son estudiadas las interacciones entre los sistemas de producción, incorporando aspectos zootécnicos, ambientales y comerciales. Este procedimiento es identificado por la forma sencilla de obtención de datos del informante, y por ser una valiosa herramienta para la toma de decisiones de ganaderos y unidades medioambientales. Igual que hasta hace bien poco las ciencias sociales se sentían obligadas a adoptar los métodos de signo marcadamente cuantitativo que tanta eficacia y rigor habían demostrado en su aplicación en el ámbito de las ciencias naturales, hoy en día, debido precisamente al interesante y variado desarrollo de metodologías cualitativas por parte de las ciencias sociales, sobre todo en Antropología, investigaciones como la nuestra se ven sin duda enriquecidas recurriendo puntualmente a algunas de estas valiosas herramientas cualitativas (Flick, 2004; Guber, 2004).

Considerando lo anterior, en este estudio se ha planteado la metodología de encuesta a pie de campo, con el propietario y ganadero, como método de información, relativas a las instalaciones, manejo alimentario, manejo de la puesta, manejo sanitario, parámetros de bienestar animal y prácticas zootécnicas, y finalmente comercialización de los productos. La encuesta se ha elaborado con aproximadamente noventa cuestiones, y se ha realizado mediante entrevista directa al ganadero y encargado, completándola con fotografías de la granja. García Romero & Cordero Morales, 2010d, 2012b; Cordero Morales & García Romero, 2017).
3. RESULTADOS Y DISCUSIÓN

3.1 Instalaciones

La granja se sitúa aislada con un vallado perimetral de 2m de altura que circunda las 1,3 Ha que ocupan los parques, que a su vez se dividen en cuatro parcelas de 2.500 m² cada uno. Por tanto según las necesidades que marca el reglamento RD 834/2007, sobraría espacio para disponer de 4m²/gallina en rotación. (Cuadro 3). Si hay suficiente terreno es recomendable no superar las 1000 gallinas/ha (Ballesteros Herencia & Cordero Morales, 2006). Estos parques están compuestos por almendros ecológicos y vegetación espontánea, cubriendo así las exigencias legales de los espacios al aire libre para aves de corral que estarán en su mayor parte cubiertos de vegetación; y proporcionando sombra y cobijo gracias a los almendros ecológicos, aumentando considerablemente el bienestar de las gallinas en los veranos calurosos de nuestro clima mediterráneo y permitiendo así que las gallinas se alejen más del gallinero. El cercado perimetral debe garantizar tanto que no salgan las gallinas como que no entren predadores (perros, zorros etc.) (Pont Andrés, 2009, 2010,2012).

La granja dispone de una nave central de 480 m2, de 80 x 6 m. Por tanto, dispone de espacio suficiente de nave para las 1,100 gallinas, con una densidad sostenible, con escasa concentración 0,43 m²/gallina (2,32 aves/m²), muy inferior a las exigencias del reglamento en cuanto a densidades (6 gallinas /m²). La ubicación del gallinero en el parque es muy importante, cuanto más centrado esté mayor proporción de superficie utilizarán (Pont Andrés 2010, 2012). (Cuadro 3)

La nave está dividida en cuatro apartados de 94,5 m² cada uno. Esta partición permite un manejo más adecuado dividiendo los animales en cuatro lotes según su edad y estado productivo. Dispone de 20 trampillas de entrada y salida en los parques de unas dimensiones de 1 m x 40 cm, ajustándose a la normativa de al menos de 4m/100 m2 de nave. La altura a la que están del suelo es beneficiosa pues las gallinas al tener que subir y bajar en los peldaños dejan el barro y la suciedad de sus patas (García-Menacho Osset & García Romero, 2012). (Cuadro 3)

El aislamiento y la ventilación del edificio deberán garantizar que la circulación del aire, el nivel de polvo, la temperatura, la humedad relativa del aire y la concentración de gases se mantengan dentro de unos límites que aseguren el bienestar de los animales. El edificio tiene ventanas con telas mosquiteras que permiten una abundante ventilación y entrada de luz naturales. El suelo de la nave es continuo, está solado y cubierto de cama de viruta de madera sin tratar. La cama es lo que pisotean los animales en la nave, de su manejo a lo largo de la crianza dependerá no solamente la salud de las gallinas, sino también la limpieza posterior, debiendo evitar que se peguen las heces al suelo. El contenido de humedad de la cama no debe sobrepasar del 35% (García-Menacho Osset & García Romero, 2012).

Cuenta con 64 comederos suspendidos del techo, circulares tipo tolva de 20 kg de capacidad, están mecanizados y el pienso se distribuye desde el silo a través de un sinfín. En este sentido, lo adecuado es mantenerlos a la altura escapular de las gallinas para evitar que tiren el pienso (Pont Andrés, 2009). El agua se distribuye mecanizada desde el depósito de agua a los 20 bebederos circulares tipo campana.

La granja dispone de 256 nidales, 64 en cada uno de los cuatro apartados, son de madera y la recogida de huevos se hace manual. Cada uno de ellos tiene unas medidas de 25 x 25 cm. Disponen de 145 cm² de nidal / gallina, superando las necesidades que marca el reglamento de 120 cm²/ ave. Los ponederos no deben ser lugares para que duerman las gallinas, pues los ensucian y con ello a los huevos, por ello el diseño tiene que prevenir a toda costa que se produzca esto. (García-Menacho Osset & García Romero, 2012). (Cuadro 3)

Los aseladeros son de madera, dispone de 380m de aseladero, con 95m en cada uno de los cuatro apartados, disponiendo así de 34,5 cm de aseladero/ gallina, superando los valores que marca el reglamento de 18cm/ aseladero/gallina. (Cuadro 3)
La nave dispone de luz eléctrica a través de paneles solares y un grupo electrógeno, así como de almacén y nave para clasificación de huevos. Por todo lo anterior referido podemos afirmar que las infraestructuras de la granja son adecuadas a las necesidades de bienestar y comodidad de los animales.

3.2. Manejo Alimentario

La alimentación de las gallinas está acorde al nuevo reglamento 2018/848 de la producción ecológica, donde se indica que al menos el 30 % de los piensos procederá de la propia explotación o, si no fuera posible o no se dispusiera de ellos, se producirá en colaboración con otras unidades de producción ecológica o en conversión y operadores que utilicen piensos y materias primas para piensos procedentes de la misma región. El avicultor no dispone de tierras de cultivo para elaborar su propio pienso ecológico, por tanto lo compra en un municipio próximo (Lezuza-Albacete) a la fábrica de piensos ecológicos Cereales Montoya, Ecolucat. El uso de piensos compuestos certificados es la base de la nutrición en avicultura ecológica (Palacios & Castillo, 2017).

Los animales disponen continuamente de un pienso completo y equilibrado elaborado a base de cereales y leguminosas ecológicas como el trigo, haba de soja, cebada, maíz, semilla de girasol y guisante en semilla y materias primas no agrarias como el carbonato de calcio, fosfato bicálcico y sal marina. El pienso incorpora además las vitaminas, enzimas, oligoelementos y colorantes autorizados en la producción de piensos ecológicos.

A pesar de que los animales toman el pienso ad libitum el ganadero calcula una ración aproximada de 120 gramos por animal/día, que está de acuerdo con lo indicado por García-Menacho & García Romero, 2012. Las necesidades de las gallinas difieren mucho dependiendo del medio en que se encuentran, temperatura, edad, peso vivo, crecimiento, emplume e intensidad de puesta. Las exigencias de proteína apenas dependen del peso vivo, sin embargo están muy relacionadas con la producción, número y peso medio del huevo. Cuanto mayor sea el valor energético del pienso, más alto debe ser el porcentaje de proteína que contenga.

El Reglamento 2018/848 hace referencia a que en las raciones diarias se añadirán forrajes bastos, forrajes comunes frescos o desecados, o forrajes ensilados. En este sentido, en la granja avícola las gallinas diariamente salen a los parque donde satisfacen sus necesidades fisiológicas de forrajes frescos, cumpliendo así con la obligatoriedad y disminuyendo el consumo de pienso, complementada la ingesta con insectos y lombrices que las gallinas obtienen escarbando en la tierra y que proporcionan proteínas de alta calidad al tiempo, contribuyendo a que se desarrollen sus necesidades fisiológicas y etológicas que repercuten en la salud y bienestar de los animales (Ballesteros Herencia & Cordero Morales, 2006).

La carga avícola en los parques es baja, disponen de 9 m²/gallina, superando así las necesidades de 4 m² por gallina en rotación que marca la norma legal.

El consumo de agua se incrementa con la edad y está asociado al consumo de alimento, la producción y la temperatura ambiente. A una temperatura moderada las aves consumen el doble de agua que de alimento por unidad de peso vivo. Los nutrientes que aumentan la excreción de mineral es por el riñón pueden incrementar el consumo de agua, como es el caso de la sal o alimentos ricos en sodio. (García Trujillo et al., 2014). El agua consumida en la granja según estima el avicultor es de 150-200ml/gallina/día. Dispone de un depósito de 15.000 litros que
se abastece de la red pública, lo cual garantiza las condiciones de potabilidad y desde donde se distribuye a los bebederos de forma automatizada. En el de verano durante los meses de julio y agosto coloca bebederos a lo largo de los parques cumpliendo con los requerimientos del reglamento y satisfacer las necesidades etológicas de la especie.

3.3. Manejo de la puesta

La selección de las razas tiene que ser acorde a los principios de la producción ecológica, garantizará un nivel elevado de bienestar animal y contribuirá a prevenir todo sufrimiento y a evitar la necesidad de mutilar animales. Aunque en Castilla La Mancha se ha desarrollado y adaptado durante siglos una raza de gallina autóctona como la Gallina Castellana Negra (García Romero & Cordero Morales, 2006ab, 2009, 2012a, 2015), sin embargo la falta de oferta de pollitas hace que las granjas avícolas ecológicas opten por otras razas híbridas, como es el caso del avicultor de referencia que desde sus inicios eligió Isla Brown, que se adapta bien a la avicultura ecológica con aceptables niveles de puesta. (García-Menacho Osset & García Romero, 2012).

Los animales de reposición se introducen en lotes homogéneos procedentes de una granja avícola ecológica con edades inferiores a 18 semanas, anualmente compra unos 450 ejemplares, lo que supone un 40.90 % de reposición. El avicultor encuentra complejo las actuaciones burocráticas que se derivan de la introducción de animales, pues, debe comunicarlo a la empresa certificadora, que posteriormente lo solicita a la Autoridad Competente, así, desde que se inicia el trámite hasta que recibe el visto bueno, pasan de 2 ó 3 meses. Los animales se desvieján a los tres años, y la mortalidad de la granja es del 7,09%.

La influencia que tiene la luz sobre la puesta de las gallinas es a través de la secreción hormonal de la glándula pituitaria ubicada en el cerebro, así pues la luz natural podrá complementarse con medios artificiales para obtener un máximo de 16 horas de luz al día, con un período de descanso nocturno continuo sin luz artificial de ocho horas al menos. Nunca se darán en periodos alternos para favorecer la puesta, sino que se realizarán al atardecer o al amanecer. (García-Menacho & García Romero, 2012). En la granja avícola Campos de Yeste los animales salen diariamente a los parques una media de cinco horas al día y se suplementa con una hora de luz artificial que suele establecerse al amanecer.

La producción se inicia cuando las gallinas tienen seis meses, diariamente recoge los huevos manualmente y los lleva a la sala de clasificación sita la lado de la granja, limpia los que están manchados, los clasifica por peso con balanza digital, los marca de forma manual y embala. La producción durante al año 2017 fue de 258 docenas de media semanales.

3.4. Manejo Sanitario

Las pollitas de reposición entran en la granja con menos de 18 semanas provenientes de GRAPISA (Granja Avícola Eológica Pinseque de Zaragoza). Los animales vienen vacunados desde el origen frente a las enfermedades de Marek, Gumboro, Coccidiosis, Bronquitis infecciosa, Enfermedad de Newcastle, Laringotraqueitis, Rinotraqueitis, Difteroviruela, Encefalomielitis, Síndrome de caída de puesta y Salmonella.

La granja ecológica cumple con los programas sanitarios oficiales establecidos por la Consejería de Agricultura y Medio Ambiente de Castilla la Mancha, según el decreto 20/2004, que para gallinas ponedoras es específicamente el Programa de lucha frente a Salmonella, con la obligatoriedad de realizar autocontroles cada 15 semanas durante el periodo que los animales están en la explotación. Así pues, se realizan tres autocontroles anuales de heces. Como la explotación posee un censo superior a 1.000 gallinas, pasa a tener un control oficial anual que se suele hacer coincidir con uno de los autocontroles. Las muestras se remiten a un laboratorio oficial donde se analizan las muestras. El resultado de las mismas ha sido siempre negativo.

Además el avicultor ecológico, participa en el Programa Nacional de Vigilancia frente a la Influenza Aviar, con la vigilancia pasiva, de tal manera que debe avisar a la Autoridad Competente en cuanto observe una disminución de la puesta, disminución en el consumo de alimento, un incremento de mortalidad.
En cuanto al programa de desparasitaciones, como en esta granja se mantiene ajustadas las densidades gallina/m², se retiran las yacijas y camas para compostar e higienizar la gallinaza, estas medidas junto con la limpieza y programa DDD (Desinfección, desinsectación y Desratización), con productos autorizados disminuyen las cargas parasitarias (García-Menacho & García Romero, 2012). En esta granja, al venir vacunados desde origen de coccidiosis, no se presentan problemas de parásitos aparentes, y por ello no se desparasita de forma rutinaria a los animales. Tampoco tiene problemas de enfermedades endémicas.

En la granja se lleva a cabo anualmente un programa DDD, primero se retira del estiércol tres veces al año de forma manual, posteriormente se utiliza cal viva y algas diatomeas en el suelo. La limpieza de paredes se hace con lechada de cal distribuida con mochila, como es habitual en muchas granjas ecológicas. (García Romero & Cordero Morales, 2010bcd, 2012b, 2016, 2017). La desratización se hace anualmente a través de productos autorizados disminuyen las cargas parasitarias (García-Menacho & García Romero, 2012). En esta granja, al venir vacunados desde origen de coccidiosis, no se presentan problemas de parásitos aparentes, y por ello no se desparasita de forma rutinaria a los animales. Tampoco tiene problemas de enfermedades endémicas.

Los comederos y bebederos se limpian con hipoclorito sódico cada 15 días en verano debido al aumento de polvo y cada mes en invierno, garantizando que el agua de bebida sea de buena calidad, factor muy importante para el bienestar y salud de los animales (García-Merchán & García Romero, 2012). La gallina es un animal muy nervioso, y por tanto es necesario un manejo correcto para reducir el estrés que es la fuente principal del malestar en estos animales. Así es conveniente realizar los manejos en el menor tiempo posible, de forma tranquila, siempre por el mismo operario, a la misma hora y sin separar grupos familiares. (Pont Andrés, 2005; García-Menacho & García Romero, 2012).

Además, es obligatorio dentro del programa sanitario, la correcta eliminación de cadáveres, que en este caso se realiza enviando los animales muertos a una incineradora autorizada.

El programa sanitario se completa con unas estrictas medidas de bioseguridad, con control de visitas, pediluvios a la entrada de la nave, control de acceso a la nave de animales domésticos o salvajes y telas mosquitera en las ventanas de la nave. Mantener la higiene puede ser la clave para prevenir afecciones en la cría ecológica, con densidades ganaderas bajas e instalaciones limpias y secas. (García Romero, 2004ab; García Romero & Bidarte Iturri, 2004; García Romero & Cordero Morales, 2010bd, 2012b, 2016, 2017).

3.5. Bienestar y Prácticas Zootécnicas

El bienestar de la granja ecológica es un factor que condiciona la salud del gallinero y el grado de mortalidad de sus componentes. Se trata de aplicar unas prácticas avícolas racionales compatibles con las razas o estirpes empleadas en la granja avícola. (García-Menacho & García Romero, 2012). La gallina es un animal muy nervioso, y por tanto es necesario un manejo correcto para reducir el estrés que es la fuente principal del malestar en estos animales. Así es conveniente realizar los manejos en el menor tiempo posible, de forma tranquila, siempre por el mismo operario, a la misma hora y sin separar grupos familiares. (Pont Andrés, 2005; García-Menacho & García Romero, 2012).

Está prohibido el desplume de aves de corral vivas, en esta granja la muda se suele hacer en verano cuando los animales están más horas en los parques.

En las granjas ecológicas avícolas el manejo zootécnico debe respetar la integridad física de las partes corporales, al formar parte importante de los sistemas funcionales orgánicos, por cuanto condicionan el comportamiento innato de muchas actividades básicas para un desarrollo fisiológico equilibrado, y en este marco están prohibidas las mutilaciones sistemáticas de picos (García Romero, 2015). En la granja Campos de Yeste, no se realizan ni cortes ni despuntes de pico.

El estiércol de la nave, haciendo un correcto uso de su manejo y distribución, se retira mediante carretilla y se composta durante dos años, con riegos sucesivos y evitando lixiviados, para después venderlo a los agricultores de la zona que lo utilizan como abono en la parcelas de siembra de cereal-leguminosa.

El nivel de tecnificación, modernización y conocimiento de las granjas ganaderas ecológicas en Castilla-La Mancha es medio-bajo, y por tanto esta debilidad del sistema influye en la productividad real, siendo necesario corregir estos desequilibrios incidiendo en varias direcciones del modelo ecológico, siendo importante la innovación en avicultura ecológica (García Romero, 2017). Hay una falta de asesoramiento técnico y veterinario por expertos en la zootecnia ecológica, y de especialización de los profesionales, que repercute en la productividad de las granjas pecuarias. La investigación y experimentación junto a la transferencia tecnológica e innovación en este campo es escasa, y debe estar orientada a resolver los problemas reales del sector ecológico como ha puesto de manifiesto la diagnosis del presente trabajo, siendo muy importante la implicación de los servicios de extensión agraria para potenciar la transferencia de resultados, a través de la red de fincas colaboradoras de difusión tecnológica, con ensayos divulgativos (García Romero, 2006c, 2007ab, 2009ce, 2017ab; García Romero & Cordero Morales 2010bcd, 2012b, 2017ab).

3.6. Comercialización

La producción de huevos se vende semanalmente a la panadería Rincón del Segura de Letur. Allí son utilizados en la elaboración de dulces propios. El excedente de huevos se reparte entre las tiendas eco y herbolarios de proximidad.

Las granjas de gallinas con una media de 1.000 aves, que son una buena parte de las actuales granjas avícolas ecológicas en España, solo tienen como destino los circuitos cortos de comercialización, que por fortuna cada día, gozan de más aprecio por parte de los consumidores. Aquí se logra el necesario margen económico ofreciendo a los clientes un producto apreciado por su calidad a un precio comparable con el que se puede encontrar en grandes superficies. Al tiempo que el consumidor puede conocer los detalles de la producción con una comunicación directa con el productor. Estas granjas tienen que hacer un gran esfuerzo por aplicar la mejor técnica avícola para obtener la mayor calidad posible. Cuidado los circuitos cortos de comercialización es favorecer la agricultura familiar, nuestro mundo rural y su cultura y tradiciones (Terraz Cuenca, 2016, 2018) Al no establecerse límites en el nuevo reglamento, se puede dar pie a una intensificación de las producciones avícolas ecológicas, alejándose de la imagen que tiene el consumidor de estas producciones ecológicas con tamaños sostenibles.

El avicultor, considera que el trabajo en la granja avícola es gratificante, aunque obtiene un escaso sueldo mensual, un poco inferior al sueldo base. Las razones que alega son principalmente, que el precio de los huevos ecológicos está estancado desde hace cinco años, mientras que los piensos y costes de producción han aumentado considerablemente en los últimos años.

La mayor dificultad del sistema ecológico en Castilla-La Mancha está en la comercialización de productos ecológicos, mucho más acusado en los procedentes de la ganadería, consecuente a la falta de industrias agroalimentarias, que es necesario incrementar, lo que redundará en un bajo consumo interno.

4. CONCLUSION

1. Las infraestructuras de la granja avícola son adecuadas para mantener las necesidades de bienestar y comodidad de las gallinas, así como una productividad sostenible.
2. Las condiciones de cría sostenible de la granja, bajas cargas ganaderas y manejo compatibles con la etología, se identifican con aceptables umbrales de salud y bienestar.
3. En el control de parásitos y otras afecciones no se utilizan las terapias naturales por falta de veterinarios expertos en avicultura ecológica.
4. Hay una falta de tecnificación en la granja, con un equipamiento de madera que puede ser de difícil limpieza y desinfección, sobre todos en los nidales y aseladeros.
REFERENCIAS

ANEXOS

<table>
<thead>
<tr>
<th></th>
<th>BOV</th>
<th>OVI</th>
<th>CAPR</th>
<th>PORC</th>
<th>EQUI</th>
<th>AVI</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albacete</td>
<td>3</td>
<td>42</td>
<td>54</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Ciudad Real</td>
<td>42</td>
<td>35</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cuenca</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Toledo</td>
<td>45</td>
<td>33</td>
<td>2</td>
<td></td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Totales</td>
<td>90</td>
<td>117</td>
<td>75</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>BOV</th>
<th>OVI</th>
<th>CAPR</th>
<th>PORC</th>
<th>EQUI</th>
<th>AVI</th>
<th>API</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albacete</td>
<td>72</td>
<td>17.481</td>
<td>9.379</td>
<td>6</td>
<td>21</td>
<td>1.733</td>
<td>232</td>
</tr>
<tr>
<td>Ciudad Real</td>
<td>2847</td>
<td>19.768</td>
<td>1.990</td>
<td></td>
<td></td>
<td>1.820</td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td>2.131</td>
<td>126</td>
<td></td>
<td></td>
<td></td>
<td>12.000</td>
<td></td>
</tr>
<tr>
<td>Guadalajara</td>
<td>33</td>
<td>2.096</td>
<td>114</td>
<td>37</td>
<td>20</td>
<td>1.770</td>
<td></td>
</tr>
<tr>
<td>Toledo</td>
<td>2.490</td>
<td>10.701</td>
<td>831</td>
<td></td>
<td></td>
<td>1.904</td>
<td>80</td>
</tr>
<tr>
<td>Totales</td>
<td>5.377</td>
<td>52.177</td>
<td>12.440</td>
<td>43</td>
<td>21</td>
<td>15.657</td>
<td>3.902</td>
</tr>
</tbody>
</table>

Cuadro nº 3. Resumen de los resultados obtenidos en las instalaciones.

<table>
<thead>
<tr>
<th>Zona cubierta</th>
<th>N°animales/m²</th>
<th>cm de aseladero / animal</th>
<th>Nido</th>
<th>Trampilla</th>
<th>Zona al aire libre M² de espacio en rotación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Granja avícola ecológica Campos de Yeste</td>
<td>2,32 gallinas /m²</td>
<td>34,5 cm/gallina</td>
<td>145cm²/gallina</td>
<td>20 (1mx 40cm)</td>
<td>4,5 m²/gallina en rotación</td>
</tr>
</tbody>
</table>
ESTÁNDAR DE PASTOREO REGENERATIVO Y SOSTENIBLE: VERIFICACIÓN POR RESULTADOS DE PRÁCTICAS AGROECOLÓGICAS

Catalán Balmaseda M1,2, Lozano Diéguez B2, Moreno Marcos G1, Palomo Guijarro G1,2

1Universidad de Extremadura
Avda. Virgen del Puerto, s/n
E10600 Plasencia

2ACTYVA S. Coop.
Avda. Hernán Cortés 46, Bº
E10080 Cáceres
927240523
m.catalan.balmaseda@bbbfarming.net

RESUMEN: Los pastizales ocupan 1/3 de la superficie terrestre desprovista de hielo, desempeñando un papel clave cómo sumideros de carbono y en la conservación de la biodiversidad y medios rurales. En la actualidad, muchos de estos hábitats presentan signos de degradación del suelo y biodiversidad, amenazando con ello el suministro de bienes y servicios ambientales que generan.

El Estándar de Pastoreo Regenerativo y Sostenible (GRASS, en el inglés original) se presenta como una herramienta para verificar los resultados ambientales generados por prácticas agroecológicas que restauran los ecosistemas, cómo pudiera ser el manejo holístico. El estándar GRASS, bajo un marco de manejo adaptativo, combina procedimientos de evaluación anual de la salud de los pastos, con monitorizaciones a largo plazo del carbono de los suelos, biodiversidad y regeneración del arbolado, entre otros.

En 8 dehesas del suroeste peninsular dentro de los proyectos Life Regenerate y Dehesas&Montados se está verificado dicha estándar y evaluando las diferencias que existen entre fincas bajo manejo holístico frente a los controles. Para ello se ha evaluado el funcionamiento de los procesos del ecosistema a través del Índice de Salud de Pastos (ISP), disponibilidad forrajera y la calidad del suelo (porcentaje de carbono y nitrógeno). Los resultados en el primer año de estudio muestran una correlación positiva entre el ISP y los indicadores de calidad de suelo, aunque esta no es estadísticamente significativa. Asimismo, los valores de ISP, porcentaje de carbono y nitrógeno y disponibilidad forrajera son mayores en las fincas bajo manejo holístico frente a los controles, no obstante, tampoco son estadísticamente significativos. Por ello, es necesario aumentar el número de casos y años de estudio, así como incluir indicadores tempranos de variables más sensibles a los cambios del manejo.

Ante un mercado demandante de productos que generen servicios ambientales, cómo la mitigación del cambio climático, es necesario implementar estándares auditables que permitan verificar los resultados de las prácticas agroecológicas para brindar confianza y veracidad a la sociedad, mercados y administraciones públicas.

Palabras clave: monitorización ecológica, pastizales, pastoreo regenerativo, secuestro de carbono, servicios ambientales

INTRODUCCIÓN

Las zonas de pastos (rangeland) ocupan más de 1/3 de la superficie desprovista de hielo, desempeñando un papel clave cómo sumideros de CO₂, almacenando en sus suelos entre un 10 y un 30 % del carbono orgánico mundial además de la cantidad de carbono acumulado en los árboles, arbustos y vegetación herbácea (Schuman et al. 2002), así como son claves en la conservación de la biodiversidad y economías rurales.

El ejemplo más representativo en la Península Ibérica son las dehesas y montados, que con una superficie estimada de más de 3 millones de ha. es considerado el Sistema Agrario de Alto Valor Natural más extenso de Europa (Moreno y Pulido 2008). La integración de un estrato arbóreo disperso (10-60 pies/ha), asociado con un estrato herbáceo ligado al aprovechamiento agrosilvopastoril ha permitido la coexistencia de una gran biodiversidad de especies y hábitats, considerándose como un hábitat de interés comunitario por la Unión Europea (Directiva Hábitat 32/43/CEE, Anexo 1 p.18) (Plieninger et al. 2004).
Además del valor ecológico, las dehesas son clave en la economía rural del suroeste de España, siendo la ganadería en extensivo la principal actividad económica de las mismas (Escribano y Pulido 1998). Debido a la intensificación y simplificación en el manejo en unos casos y abandono en otros, la sostenibilidad del ecosistema se encuentra amenazada, produciéndose cambios en la vegetación (matorralización, enfermedades del arbolado, falta de regeneración del arbolado…) y en las propiedades del suelo, así como un incremento en las tasas de erosión (Papanastasis 2004; Roig y San Miguel 2013).

Las prácticas de pastoreo tradicionales en la dehesa (pastoreo dirigido, trashumancia, redileo o majadeo) han permitido la conservación de las mismas, no obstante, hoy en día estos manejos prácticamente han desaparecido o son meramente residuales.

En los últimos años están surgiendo diversas estrategias de pastoreo (manejo holístico, pastoreo masivo, manejo intensivo del pastoreo, pastoreo en celdas, pastoreo racional), que hacen referencia a sistemas planificados de pastoreo con altas densidades ganaderas – doble o incluso cuádruple que con pastoreo estante – pero con un movimiento muy frecuente del ganado, desde pocas horas a una semana según las condiciones bióticas y abióticas del agrosistema (McCosker 2000).

Fig. 1 Pastoreo planificado holístico en finca Mundos Nuevos (Retamal de Llerena, Badajoz)

Dichas estrategias de pastoreo ya se están aplicando en diferentes países y ecosistemas produciendo una mejora en las propiedades del suelo, biodiversidad, y rentabilidad de las explotaciones (Joyce 2000; McCosker 2000; Stinner et al. 1997; Ferguson et al. 2013).

El Estándar de Pastoreo Regenerativo y Sostenible (grASS, en el inglés original) se presenta como una herramienta para verificar los resultados ambientales generados por prácticas agroecológicas que restauran los ecosistemas, cómo pudiera ser el manejo holístico.

Dicho estándar fue desarrollado por Ovis 21 y The Nature Conservancy (TNC) y ha sido aplicado en la Patagonia Argentina en más de 1,3 millones de hectáreas, reportando mejoras en el funcionamiento del ecosistema y en la productividad de las fincas bajo manejo holístico en comparación con las de pastoreo continuo. (Borreli et al. 2012).
En 8 dehesas del suroeste peninsular se ha evaluado el funcionamiento de los procesos del ecosistema a través del Índice de Salud de Pastos (ISP) descrito por Borreli et al. 2012 y disponibilidad forrajera, así como el porcentaje de carbono y nitrógeno a través del método de combustión seca (método Dumas) (Grewal et al. 1991). A través de análisis estadístico se ha determinado la relación entre el ISP y los indicadores de calidad de suelo y disponibilidad forrajera, así como las diferencias de dichos indicadores entre fincas bajo manejo holístico frente a fincas controles.

Los objetivos del presente trabajo son 1) validar el estándar GRASS como una herramienta para la verificación de resultados ambientales de prácticas agroecológicas 2) Verificar los efectos del manejo holístico sobre el funcionamiento del ecosistema y salud del suelo.

MATERIALES/MÉTODOS

El estándar GRASS, bajo un marco de manejo adaptativo, combina procedimientos de evaluación anual de la salud de los pastos, con monitorizaciones a largo plazo del carbono de los suelos, biodiversidad y regeneración del arbolado, entre otros.

El procedimiento de evaluación anual de pastos consiste en evaluar en cada estación de muestreo determinada el Índice de Salud de Pastos (ISP), así como estimar la disponibilidad y calidad forrajera.

El Índice de Salud de Pastos (ISP) fue desarrollado por Borreli et al 2012 para pastos extensivos de la Patagonia, y adaptado por ACTYVA S. Coop. y la Universidad de Extremadura para el contexto de las dehesas de la Península Ibérica. El ISP es un indicador cualitativo, rápido y barato de aplicar, que indica el estado de salud de los pastos en relación al resultado ponderado de 11 indicadores biológicos que hacen referencia al funcionamiento de los procesos del ecosistema (tabla 1). Dichos indicadores han sido calibrados con Áreas de Referencia, que son lugares considerados la mejor expresión de la biodiversidad, la estabilidad del sitio y la función del ecosistema dentro de un Área Ecológica.

<table>
<thead>
<tr>
<th>NUM</th>
<th>ATRIBUTO</th>
<th>INDICADOR BIOLÓGICO</th>
<th>PUNT.</th>
<th>CICLO DEL AGUA</th>
<th>CICLO MINERAL</th>
<th>FLUJO DE ENERGÍA</th>
<th>DINÁMICA DE LA COMUNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suelo desnudo</td>
<td>% suelo desnudo</td>
<td>20 a -20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Compactación</td>
<td>Dureza de la costra superficial</td>
<td>0 a -10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Erosión</td>
<td>Microsurcos, Cárcavas</td>
<td>0 a -20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Edafofauna</td>
<td>Evidencia de microfauna</td>
<td>10 a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Descomposición de las bostas</td>
<td>Antigüedad de las bostas</td>
<td>10 a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Gramíneas perennes</td>
<td>cobertura</td>
<td>10 a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Leguminosas</td>
<td>Abundancia y vigor</td>
<td>10 a 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Arbuscos</td>
<td>Tipo</td>
<td>10 a -10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Arbolado</td>
<td>Salud adulto</td>
<td>10 a -10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Regeneración</td>
<td>10 a -20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Productividad</td>
<td>% potencial</td>
<td>10 a -10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
La puntuación del ISP oscila entre de +100 a -100, en dónde las puntuaciones más negativas indican una degradación de los procesos ecológicos y puntuaciones más próximas a + 100 una alta eficiencia en el funcionamiento del ciclo del agua, ciclo de nutrientes, flujo de energía y dinámica de la comunidad (Fig. 2).

Fig. 2 Ejemplos de puntuaciones del ISP con dos prácticas diferentes evaluadas en la misma fecha. En rojo, zona sin redileo ISP= -55. En verde, zona tras dos años de redileo ISP=+25.

Asimismo, en la evaluación anual de pastos además de evaluar el ISP en cada estación de muestreo se realiza la estimación de la disponibilidad forrajera, lo que ayudará a realizar la planificación del pastoreo del periodo cerrado, cuándo ya no hay crecimiento vegetativo. Hay diversos métodos para realizar la estimación forrajera, debido a su rapidez y practicidad el estándar GRASS recomienda el método de estimación visual descrito en Butterfield et al. 2006, en dónde visualmente se determina el área requerida para alimentar a un animal durante un día, día animal (DA).

Dentro del proyecto Dehesas&Montados (Asociación Trashumancia y Naturaleza y Fundación MAVA, 2017-2020) y Life Regenerate se está verificando el estándar GRASS así como se está evaluando los efectos de diferentes prácticas sobre la salud del suelo y biodiversidad (manejo holístico vs control, redileo vs no redileo y pastoreo ovino vs pastoreo vacuno).

En el presente trabajo se presentan los resultados del ISP y disponibilidad forrajera (Días animal/ha), así como los relativos al porcentaje de nitrógeno y carbono total del suelo.

El estudio se ha realizado en 8 dehesas del suroeste peninsular (fig. 3), en dónde en cada finca se han determinado 6 estaciones de muestreo (3 por cada tratamiento), y en cada estación de muestreo se han realizado 3 evaluaciones del ISP y de disponibilidad forrajera en zonas representativas, a más de 5 m de distancia de la copa de árboles. Las muestras de suelo se tomaron con un calador de suelo hasta 8 cm de profundidad, tomando en cada una de las estaciones una muestra total de suelo debajo de la copa del árbol, y una muestra total de suelo bajo la copa del árbol, ambas muestras totales compuestas por 3 sub-muestras. El porcentaje de nitrógeno y carbono total se han obtenido por combustión seca (método Dumas) (Grewal et al. 1991).
RESULTADOS Y DISCUSIÓN

Existe una correlación positiva entre el Índice de Salud de Pastos (ISP) y % de carbono fuera de copa (0,195) y nitrógeno fuera (0,250) y bajo copa (0,070), no obstante, estas correlaciones no son estadísticamente significativas (p=0,184, 0,087 y 0,660, respectivamente) (tabla 3).

En este caso, y coincidiendo con los trabajos de Pulido Fernández 2014, los valores de carbono y nitrógeno bajo copa son superiores a los valores fuera de copa. Teniendo en cuenta los resultados anteriores, podemos afirmar que la copa de los árboles está ejerciendo una función en el ciclo de nutrientes, mejorando considerablemente el porcentaje de carbono (93%) y nitrógeno (50%) del suelo bajo influencia del arbolado (tabla 2).

<p>| Tabla 2. Estadísticos descriptivos. Dónde: ISP es índice de salud de pastos; DA/Ha son los días animal por hectárea; C fuera: % carbono total fuera de copa; C copa: % carbono total debajo de copa; C media: media del % de carbono dentro y fuera de copa; N fuera: % nitrógeno total fuera de copa; N copa: % nitrógeno total debajo de copa; N media: media del % de nitrógeno dentro y fuera de copa. |</p>
<table>
<thead>
<tr>
<th>Media</th>
<th>Desviación estándar</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISP</td>
<td>5,73</td>
<td>26,53</td>
</tr>
<tr>
<td>DA/Ha</td>
<td>1233,31</td>
<td>2200,11</td>
</tr>
<tr>
<td>C fuera (%)</td>
<td>1,84</td>
<td>0,93</td>
</tr>
<tr>
<td>C copa (%)</td>
<td>3,54</td>
<td>2,15</td>
</tr>
<tr>
<td>N fuera (%)</td>
<td>0,22</td>
<td>0,08</td>
</tr>
<tr>
<td>N copa (%)</td>
<td>0,33</td>
<td>0,14</td>
</tr>
</tbody>
</table>
Tabla 3. Correlación de Pearson entre las variables del ISP y Días Animal Hectárea (DA/Ha), porcentaje de carbono total fuera de copa, bajo copa, la media de ambas y nitrógeno fuera de copa, bajo copa y la media de ambas.

<table>
<thead>
<tr>
<th>ISP</th>
<th>Correlación de Pearson</th>
<th>Sig. (bilateral)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C fuera (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>0,195</td>
<td>0,000</td>
<td>43</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C copa (%)</td>
<td>0,809</td>
<td>48</td>
</tr>
<tr>
<td>Holístico</td>
<td>-0,033</td>
<td>0,825</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C media (%)</td>
<td>0,825</td>
<td>48</td>
</tr>
<tr>
<td>Holístico</td>
<td>-0,033</td>
<td>0,825</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N fuera (%)</td>
<td>0,087</td>
<td>48</td>
</tr>
<tr>
<td>Holístico</td>
<td>0,250</td>
<td>0,660</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N copa (%)</td>
<td>0,087</td>
<td>48</td>
</tr>
<tr>
<td>Holístico</td>
<td>0,070</td>
<td>0,588</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N media (%)</td>
<td>0,080</td>
<td>48</td>
</tr>
<tr>
<td>Holístico</td>
<td>0,070</td>
<td>0,660</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La correlación es significativa en el nivel 0,01 (bilateral).

Por otra parte, se observa una correlación positiva y estadísticamente significativa, entre el Índice de Salud de Pastos (ISP) y días animal hectárea (0,596 y p=0,000) (tabla 3), lo cual indica que a mejor funcionamiento de los procesos del ecosistema mayor autonomía forrajera. Dichos resultados, coinciden con los de Jacobo et al. 2006 en dónde mejoras en la condición de los pastizales reportan aumentos en la capacidad de carga de las fincas.

En relación a las prácticas de manejo ganadero implementadas se observa una mayor concentración de carbono y nitrógeno y mayores puntuaciones del ISP y días animal por hectárea en las fincas con manejo holístico frente a los controles, no obstante, estas diferencias no son estadísticamente significativas (Tabla 4). Estos datos coinciden con los ofrecidos por los informes Ovis 21 y base de datos GRASS, en dónde las cercas bajo manejo holístico (N=417) aumentan el ISP anualmente 6,2 puntos, mientras que las cercas bajo pastoreo continuo (N=95) disminuyen el ISP promedio 1,9 puntos por año. Asimismo, durante el periodo analizado (2012-2016) las fincas bajo manejo holístico (N=25) aumentaron la autonomía forrajera en un 25 % anual, mientras que las fincas bajo pastoreo continuo (N=6) la disminuyeron en un 6% anual. Diferentes autores han reportado mejoras en el suministro de servicios ecosistémicos y la productividad en manejos del pastoreo con enfoques adaptativos (Earl y Jones 1996; Müller et Alabama. 2007; Teague et al. 2011, 2013)

Tabla 4. Resumen prueba t para la igualdad de medias en relación a las fincas que aplican manejo holístico, frente a los controles de pastoreo convencional. (Holística N=9 y control N=9)

<table>
<thead>
<tr>
<th></th>
<th>Media</th>
<th>Dif Media</th>
<th>P Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C fuera (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>1,7</td>
<td>0,21</td>
<td>0,463</td>
</tr>
<tr>
<td>Control</td>
<td>1,49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C copa (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>2,97</td>
<td>0,56</td>
<td>0,344</td>
</tr>
<tr>
<td>Control</td>
<td>2,41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C media (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>2,33</td>
<td>0,38</td>
<td>0,227</td>
</tr>
<tr>
<td>Control</td>
<td>1,95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N fuera (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>0,21</td>
<td>0,02</td>
<td>0,517</td>
</tr>
<tr>
<td>Control</td>
<td>0,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N copa (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>0,3</td>
<td>0,04</td>
<td>0,356</td>
</tr>
<tr>
<td>Control</td>
<td>0,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N media (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>0,25</td>
<td>0,03</td>
<td>0,261</td>
</tr>
<tr>
<td>Control</td>
<td>0,22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>11,78</td>
<td>10,89</td>
<td>0,282</td>
</tr>
<tr>
<td>Control</td>
<td>0,89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA/ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holístico</td>
<td>1434,36</td>
<td>754,74</td>
<td>0,067</td>
</tr>
<tr>
<td>Control</td>
<td>679,626</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONES

Se ha demostrado, utilizando el ISP y el método visual de la parcela, que a mayor eficiencia en el funcionamiento de los procesos del ecosistema mayor autonomía forrajera.

No obstante, no se ha podido demostrar suficientemente la relación entre el ISP e indicadores concretos de la calidad del suelo (porcentaje de carbono y nitrógeno). Lo cual precisa de aumentar el número de casos (fincas) y años (efecto acumulado más evidentes), así como incluir indicadores tempranos de variables muy dinámicas y sensibles (Ej.: actividad enzimática).

Los resultados sugieren que el manejo holístico puede ser una herramienta para el manejo de pastos con sostenibilidad ambiental y económica. No obstante, será necesario abordar el estudio con una metodología longitudinal para estimar en qué medida se producen estas mejoras ambientales y de la productividad, así como incluir un mayor número de casos en el estudio y cómo se ha comentado anteriormente, incluir indicadores más sensibles a los cambios del manejo.

REFERENCIAS COMPLETAS

- Earl JM, Jones CE. 1996. The need for a new approach to grazing management - is cell grazing the answer? Rangeland Journal 18: 327–350
PROYECTO MOSAICO: VENTAJAS Y BARRERAS A LA GANADERÍA ECOLÓGICA PARA PREVENIR LOS INCENDIOS FORESTALES EN LA ALTA EXTREMADURA

Universidad de Extremadura/INDEHESA
Avda. Virgen del Puerto, s/n
E- 10600 Plasencia, Cáceres
Tel.: +34 638272620
e-mail: gpalomo@unex.es
Web: www.mosaicoextremadura.es

RESUMEN: El modelo paisajístico que nos inspira es el mosaico de pastizales, cultivos leñosos y bosques gestionados que evitan el establecimiento de una masa forestal continua y de alto riesgo de incendio (convenio Junta-Universidad de Extremadura, 2016 - 2018). Desde 1999 el número de explotaciones agropecuarias en Sierra de Gata y Las Hurdes ha descendido más de un 50% hasta las 3.234 censadas en 2009. Para esta nueva ordenación territorial se plantea la colaboración de numerosos agentes mediante una estrategia participativa en contraposición a la metodología de adopción/difusión desarrollada en los Estados Unidos en el marco de la “revolución verde” durante la segunda mitad del siglo XX. Según este modelo se requiere que al menos un 10 - 20% de los agricultores y ganaderos susceptibles de adoptar la innovación se consoliden para asegurar su implantación. Se han entrevistado 160 iniciativas catalogadas como ganaderas, agrícolas, forestales, agroforestales o bien globales según el carácter principal de las mismas. En las ganaderías se ha seguido la metodología del Manejo Holístico para apoyar su consolidación y su acción preventiva forestal. Como resultado colateral cinco ganaderías de caprino (de 20 pastorías con más de 50 animales censados) se han consorciado para producir y comercializar leche ecológica. Se ha alcanzado un 50% del objetivo en cuanto a pioneros-difusores necesarios para garantizar la continuidad del modelo mosaico. Las principales barreras detectadas (biofísicas, económicas, sociales y normativas) requieren de un abordaje metodológico transdisciplinar/holistico en tanto en cuanto la complejidad de estos sistemas no puede ser abordada con un enfoque lineal.

Palabras clave: comunales, ganadería ecológica, incendios, investigación y acción participativas, Las Hurdes, mosaico agroforestal, Sierra de Gata

INTRODUCCIÓN

De acuerdo a datos de la FAO (2013), entre 2006 y 2010 más de 2 millones de hectáreas (ha) ardieron en la Europa mediterránea, un 65% del total en la Península Ibérica donde los incendios forestales son cada vez de mayor intensidad y extensión como consecuencia de los mayores esfuerzos en extinción que en prevención de forma que los pequeños conatos se extinguen enseguida dando pie a una acumulación mayor de combustible hasta el siguiente megaincendio forestal (más de 500 ha). Castellnou y García (2018) llaman la atención sobre la dimensión que está tomando el problema, poniendo como ejemplo 2017 cuando los incendios forestales emitieron más cenizas a la atmósfera que el equivalente a diez años de erupciones volcánicas. Portugal, primer país en tasa de incendios, está viendo una nueva generación de incendios de más de 50.000 ha y además con intensidades caloríficas de hasta 68 y 142 veces a la bomba atómica de Hiroshima. En los incendios de octubre de 2017 se registró la mayor ratio de superficie quemada de las que se tiene noticia con más de 14.000 ha/h.

Según Huntsinger et al. (2016) la principal causa de esta mayor intensidad de los incendios forestales sería la suma de despoblación rural y que los tradicionales paisajes agroforestales europeos han dado paso mayoritariamente a plantaciones monoespecie y altamente inflamables de pino y eucalipto. La fuerte emigración rural de la segunda mitad del siglo XX ha supuesto una disminución de actividad más acusada en aquellas ocupaciones
agrarias más intensivas en mano de obra como sería el caso de la ganadería de ovino y sobre todo caprino facili-
tando la reforestación cuando no directamente prohibiendo el pastoreo. Sirvan como ejemplo que en el Congreso
Nacional Hurdanófilo, celebrado en Plasencia en junio de 1908, se establece que el ganado caprino era uno de
los principales obstáculos para la repoblación forestal. De hecho entre el plan forestal de 1930 y 1975 el número
medio de cabras por familia pasó de 30 a dos (Calero et al. 2009).

No sólo la actividad ganadera ha disminuido en la Sierra de Gata y Las Hurdes donde la superficie agraria
útil se situó en 52.435,70 hectáreas en 2009, disminuyendo un 59,78% con respecto al censo agrario anterior
consecuencia de la disminución en el número de titulares y de explotaciones que pasaron de 6.853 en 1999 a
3.234 explotaciones en 2009 (INE, 2012). También ha variado la composición de la cabaña ganadera con una
drástica disminución del ganado menor (ovino y caprino) con mayor aptitud ramoneadora y de pastoreo en zonas
de difícil acceso a favor del ganado vacuno (figuras 1, 2 y 4).

El objetivo general de este trabajo es analizar las oportunidades (ventajas) y debilidades (barreras) de la ga-
nadería en Sierra de Gata y Las Hurdes en tanto en cuanto son claves para establecer una estrategia participativa
de prevención de incendios forestales.

Figura 1. Unidades de ganado mayor (UGM) en Sierra de Gata entre 1980 y 2010 según especie ganadera.
Nótese la doble escala según se trate o no de ganado bovino. Pulido et al. (2017).

Figura 2. Unidades de ganado mayor (UGM) en Las Hurdes entre 1980 y 2010 según especie ganadera. Nótese
la doble escala según se trate o no de ganado bovino. Pulido et al. (2017).
METODOLOGÍA

En agosto de 2015 ardieron 7.831 ha de monte, bosque y cultivos en la Sierra de Gata, Cáceres, 6% de las 137 mil hectáreas quemadas como consecuencia de un total de 12 mil siniestros declarados dicho año en España. Este gran incendio, que obligó a evacuar tres pueblos, fue el detonante para hacer reaccionar a la sociedad civil quien, organizada junto a algunas instituciones locales, demandó un nuevo modelo de ordenación territorial que acabara con el pernicioso ciclo de acumulación de biomasa seguida de gran incendio forestal. En julio de 2016 la Junta de Extremadura convenía con la Universidad de Extremadura “El diseño de una estrategia de prevención de incendios basada en actividades agro-silvo-pastorales en las comarcas de Sierra de Gata y Las Hurdes”.

El modelo paisajístico que inspira a la Universidad de Extremadura es el mosaico de bosques ordenados, pastizales y cultivos entrelazados para romper la actual masa forestal continua. Esta nueva ordenación territorial sólo será posible gracias a la colaboración de numerosos agentes mediante “una estrategia participativa de prevención de incendios basada en actividades agrícolas, ganaderas y forestales que gradualmente recuperen un paisaje diverso, habitado y con menor riesgo” (Fig. 3).

La metodología de adopción/difusión fue desarrollada en los Estados Unidos en el marco de la “revolución verde” durante la segunda mitad del siglo XX (Roger, 1983). Los centros de extensión agraria serían su traducción a la realidad española con un sistema y currículum dirigido desde las Administraciones. Según este modelo se requiere que al menos un 10-20% de los agricultores y ganaderos susceptibles de adoptar la innovación se consoliden para asegurar su implantación (Padel, 2001).

Desde agosto de 2016 se comienza el trabajo de publicidad del proyecto por las municipios de las comarcas afectadas y se recogen, tanto in situ (en los Ayuntamientos y eventos de presentación) como vía web, las primeras propuestas por parte de los actores privados y públicos. Se valora si la propuesta implicará una disminución del combustible forestal en cuyo caso se incluyen en el catálogo de iniciativas y comienza la consultoría para conciliar la iniciativa particular con la prevención de incendios forestales. En las explotaciones de ganadería, caso que nos ocupa, se realiza el siguiente recorrido de asesoramiento de acuerdo a la metodología del Manejo Holístico planteada por el naturalista y ganadero Savory (1999):

- Determinación del contexto holístico silvopastoril, para tener un diagnóstico inicial de necesidades así como la misión del proyecto.
- Planificación financiera.
- Planificación del pastoreo (plan abierto con crecimiento vegetativo en otoño-primavera y plan cerrado para la temporada seca del verano).
- Monitorización en campo para comprobar los efectos de la planificación (Índice de Salud de Pastizales según el modelo establecido por Borrelli et al. (2012) y replanteamiento de los planes en caso necesario.

Figura 4. Ganado caprino en las comarcas de estudio según censo por términos municipales.

RESULTADOS Y DISCUSIÓN

A septiembre de 2018 se trata de 160 iniciativas catalogadas como ganaderas, agrícolas, forestales, agroforestales o bien globales según el carácter principal de las mismas. Las, por ahora, ocho únicas propuestas globales -implican a diversos actores y con gran trascendencia de la gobernanza para su ejecución- suponen un 48% de la superficie afectada por el proyecto MOSAICO (Fig. 5). Dentro de esta categoría encuadramos propuestas para la gestión mancomunada de territorios con fórmulas diversas desde “Bosque protector”, “Juntas gestoras” o nuevas infraestructuras compartidas.

En el caso concreto de la producción de caprino en ecológico (Cuadros 1 y 2) las barreras (biofísicas, económicas, sociales y normativas) más citadas por los emprendedores en la fase determinar el contexto holístico fueron las relacionadas con la normativa en tanto en cuanto se requiere un periodo de conversión de dos años de los pastos como norma general según el Reglamento (CE) 889/2008 de la Comisión de 5 de septiembre de 2008 por el que se establecen disposiciones de aplicación del Reglamento (CE) 834/2007 del Consejo sobre producción y etiquetado de los productos ecológicos, con respecto a la producción ecológica, su etiquetado y su control.

Durante ese periodo los animales tendrán un manejo acorde con la normativa citada (sustituida por el Reglamento (CE) 848/2018 que entrará en vigor el 1 de enero de 2021 y sin cambio sustancial al respecto) mientras que la leche no se puede vender como ecológica. El periodo de conversión de los animales per sé es sin embargo menor (seis meses) por lo que hay un destase de al menos año y medio durante el que se soportan los sobrecostes de la suplementación ecológica sin poder vender la leche ecológica. Como solución se plantea a la autoridad de control la certificación únicamente de los rebaños que pastoreen todo el año en pastos comunales en los que se pueda certificar la ausencia de tratamientos fitosanitarios durante al menos los tres últimos años para los que la normativa estipula que no se daría tiempo de conversión. Con dicha premisa el sobrecoste medio sería de 1.400 euros en lugar de los 5.600 euros con el modelo de conversión dos años en lugar de seis meses. De las
12 pastorías que reunían los requisitos tan sólo cinco han completado el proceso (de un total de 20 pastorías con más de 50 animales censados). Según el censo agrario de 2009 en ambas comarcas estaban censadas 5.854 cabras, de manera que estas cinco pastorías en ecológico supondrían al menos un 12,4% de la cabaña caprina de Sierra de Gata y las Hurdes.

Figura 5. Mapa con el área de influencia de las diversas iniciativas que ya cuentan con base territorial en el proyecto MOSAICO.

Las siete que se han quedado por el camino han aducido: problemas para conservar el pago básico de la PAC (venían de derechos históricos y en el momento que se declara la superficie se pasaría al modelo de pago por hectárea), cultivos para consumo propio ya iniciados en modelo convencional, inseguridad sobre la continuidad de la explotación e imposibilidad de certificar no tratamientos fitosanitarios en los pastos.

<table>
<thead>
<tr>
<th>Pueblo</th>
<th>Censo</th>
<th>Raza</th>
<th>Producción (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadalso</td>
<td>150</td>
<td>CRUZADAS</td>
<td>9865</td>
</tr>
<tr>
<td>Santibáñez el Alto</td>
<td>170</td>
<td>CRUZADAS X FLORIDA</td>
<td>36498</td>
</tr>
<tr>
<td>Santibáñez el Alto</td>
<td>90</td>
<td>CRUZADAS</td>
<td>7564</td>
</tr>
<tr>
<td>Torre Don Miguel</td>
<td>200</td>
<td>VERATA PURA</td>
<td>6242</td>
</tr>
<tr>
<td>Hernán Pérez</td>
<td>116</td>
<td>CRUZADAS X ALPINA</td>
<td>2540</td>
</tr>
</tbody>
</table>

Cuadro 1. Características de los cinco rebaños en conversión a ecológico y producción de leche en el primer semestre de 2018.
Por otro lado lo que ha determinado el inicio de la conversión de las cinco pastorías definitivas ha sido:

- Precio prefijado con industria.
- Contrato agroalimentario entre las partes.
- Asistencia técnica gratuita desde la Universidad de Extremadura.
- Apoyo en el grupo para realizar el proceso de conversión conjuntamente.
- A pesar de existir un sobrecoste de producción este se limita a los seis meses de conversión de las cabras.

<table>
<thead>
<tr>
<th>ID</th>
<th>L/cabra</th>
<th>Lactación</th>
<th>Ordeños</th>
<th>Ración (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65,77</td>
<td>Octubre-Junio, Abril-Octubre</td>
<td>2</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>214,69</td>
<td>Junio-Febrero y Enero-Julio</td>
<td>2</td>
<td>168</td>
</tr>
<tr>
<td>3</td>
<td>84,04</td>
<td>Octubre-Junio</td>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>4</td>
<td>31,21</td>
<td>Noviembre-Agosto</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>21,90</td>
<td>Febrero-Septiembre</td>
<td>1</td>
<td>140</td>
</tr>
</tbody>
</table>

Cuadro 2. Datos productivos de los rebaños en conversión a ecológico indicando litros por cabra en primer semestre de 2018, periodo de lactación, número de ordeños al día y ración media anual por animal de producción.

Los primeros en Europa que plantean desde la academia la ganadería no como una amenaza sino como una herramienta forestal son los investigadores del Instituto de Investigación Agraria francés (INRA) de Avignon en los años 1970 y comienzan una serie de estudios para comprobar el efecto comparado de las diversas especies sobre las reforestaciones, etología del pastoreo, impacto de compactación e infiltración, modelización de las relaciones hierba-herbívoro, etc... En 1985 se promulga la nueva ley forestal francesa que autoriza el pastoreo en los bosques y comienzan multitud de experimentos en la parte Sur del país ya con la misión expresa de combatir los incendios forestales. Desde entonces los programas de prevención de los Défense des Forêts contre les Incendies (DFCI) confieren gran relevancia al silvopastoralismo básicamente en torno a dos estrategias: a) recuperar la trastuminancia y/o trashumancia entre pastos de montaña en verano y los de invernada en el litoral y b) la reintroducción de la ganadería en las masas forestales para disminuir su fitomasa de manera permanente (Etienne, 1996). Hace una década en la Región Provenza, Alpes y Costa Azul se estima que 180 ganaderos participaban del modelo (57% trashumantes) para 25.000 ha afectadas a un coste medio 120 euros/ha (Métailié, 2017).

El modelo francés fue importado a la Península Ibérica a finales de los 1990 por la Junta de Andalucía y el Consejo Superior de Investigaciones Científicas dando forma a la Red de Áreas Pasto-Cortafuegos de Andalucía (RAPCA). El pastoreo como herramienta para la prevención de incendios se ha experimentado también en Galicia, Cantabria, Valencia, Castilla y León y está ampliamente aceptado en otros territorios peninsulares como Cataluña (en las Asociaciones de Defensa Forestal), Madrid o Portugal. A nivel insular hay ejemplos ya muy integrados en la política de prevención en algunas islas canarias como sería el caso del programa gestionado por el Servicio de Medio Ambiente del Cabildo de Gran Canaria (Pulido et al. 2018). En todos lo casos los objetivos que se persiguen serían compatibles con los que establece el MARM en su ficha “Pastoreo controlado en áreas cortafuegos” (2008):

- Reducir la carga de combustible, controlando el desarrollo del matorral en las áreas cortafuegos. Con ello disminuye el riesgo de incendios y se facilitan las tareas de extinción.
- Proteger el suelo. El pastoreo controlado garantiza la permanencia de la cubierta vegetal y la naturalización de los ecosistemas naturales.
- Fijar la población rural en su medio e implicarla en las labores de vigilancia del monte.
A pesar de los intentos en todos esos puntos de la geografía peninsular la única experiencia totalmente consolidada es la de la RAPCA en Andalucía a través de convenios promovidos por la Dirección General de Gestión del Medio Natural de la Consejería de Medio Ambiente de la Junta de Andalucía bajo la gestión de la empresa pública EGMASEA. Desde su comienzo en 2003 con un ganadero y 500 cabezas de ganado para 39 ha se ha creditado hasta: 223 pastores para 6.350 ha con 109.157 cabezas de ganado que mantienen 677 cortafuegos (datos de 2016) (Jiménez, 2017).

Precisamente esta comunidad es la que más ganaderías y cabezas de caprino presenta en ecológico, si bien no conocemos cuántas de ellas participan en los programas de RAPCA. En total son 117 de 185 explotaciones totales de caprino de leche certificadas en ecológico en España frente a una de Extremadura en 2017. Que agrupan a 19.252 animales (57% del total) frente a los 116 de Extremadura (MAPAMA, 2018). Este subsector andaluz presentaba una rentabilidad bruta de 1,39 hace una década, objetivo a lograr por los ganaderos agrupados en esta experiencia bajo el paraguas del proyecto MÓSICO (García et al. 2008).

CONCLUSIONES

Aunque es pronto para valorar los efectos reales para la prevención de incendios de la gestión participativa del territorio prácticamente se ha alcanzado un 50% del objetivo en cuanto a pioneros-difusores necesarios para garantizar la continuidad del modelo mosaico más allá de la financiación pública inicial.

El abordaje metodológico transdisciplinar/holístico realizado ha permitido integrar la vertiente humana, financiera y productiva en cuanto al abordaje de las barreras para la conversión a ecológico para solventar, especialmente, la resistencia al cambio en tanto en cuanto la complejidad de los sistemas silvopastoriles no puede ser abordada con un enfoque lineal.

REFERENCIAS

• Pulido F., Palomo G., Bermejo M.A., Giménez J.C., Moreno G., Navalpoiro J., Corbacho J.C. 2018. INFORME TRIMESTRAL 5 Constitución de la red local de gestores agroforestales. Estudio de experiencias previas de especies ganaderas idóneas en pastoreo cortafuego. Convenio interadministrativo de colaboración entre la Consejería de medio ambiente y rural, políticas agrarias y territorio de la Junta de Extremadura y la Universidad de Extremadura para el diseño de una estrategia de prevención de incendios basada en actividades agro-silvo-pastorales en las comarcas de Sierra de Gata y Las Hurdes. Universidad de Extremadura, 37 pp.

• Pulido F., Palomo G., Bermejo M.A., Bertomeu M., Giménez J.C., Moreno G., Navalpoiro J., Corbacho J.C. 2017. INFORME TRIMESTRAL 2 Descripción del sector agroforestal y Mapas de profesionales, empresas y asociaciones potencialmente participantes. Convenio interadministrativo de colaboración entre la Consejería de medio ambiente y rural, políticas agrarias y territorio de la Junta de Extremadura y la Universidad de Extremadura para el diseño de una estrategia de prevención de incendios basada en actividades agro-silvo-pastorales en las comarcas de Sierra de Gata y Las Hurdes. Universidad de Extremadura, 96 pp.

INTEGRACIÓN DE LA GANADERÍA EN LA AGRICULTURA POSIBILITANDO LA REGENERACIÓN DEL AGRO-ECOSISTEMA DE LA FINCA

Orellana M, Orellana B
Finca Ecorellana, Carretera Villalones s/n (521,75 km), Montecorto (Málaga)
ecorellana@gmail.com

RESUMEN: Desde el año 2005 gestionamos una finca en la serranía de Ronda, al término municipal de Montecorto (Málaga). Desde un principio, nos planteamos cómo conservar el ecosistema, respetando los principios de la agroecología. Los retos son y han sido diversos y variados, y desde hace unos años centramos nuestra atención en potenciar la presencia del ganado en las zonas agrícolas. Para ello, fuimos dividiendo la finca en parcelas con superficies que oscilan entre 5 y 18 hectáreas. Pusimos en marcha un sistema de pastoreo en coordinación con labranza de los cultivos. Cada año, controlamos el periodo que pasta cada especie (ovejas merinas de Grazalema en peligro de extinción, vacas Berrendas, asnal), cuantificando el volumen de estiércol depositado en parcela, la materia seca y los nutrientes teóricos. Al mismo tiempo, se ha venido realizando control y retenciones de agua, mediante curvas de nivel y otras actividades relacionadas con la recuperación de semillas autóctonas, como el trigo recio de Ronda, con el apoyo de agricultores sensibilizados de la zona y en colaboración con la Red Andaluza de Semillas. Obteniendo unos resultados muy positivos, estas experiencias en finca despierta nuestro interés en profundizar sobre: la retención de CO2, el análisis evolutivo del suelo y su incidencia en nuestra zona – agrícola de dehesa – y de pastos permanentes.

Palabras clave: fertilización, ganadería, semillas autóctonas
MODELO AGROSILVOPASTORIL AGROECOLÓGICO EN SASIAINGO BARATZA

Arregi G, Egino E, González D

Sustraiak Habitat Design Koop, Plaza Nueva 12, 2º Dcha. E 01010, Vitoria-Gasteiz, 68872876. dgonzalez@sustraiak.coop

RESUMEN: El diseño agroecológico propuesto se asienta sobre un modelo muy diversificado agrosilvopastoril, que actualiza el concepto de caserío tradicional que ha generado el gran parte de nuestro entorno, modelando nuestro paisaje, incorporando técnicas y manejos propios de la ciencia sostenible del siglo XXI, basados en la agroecología y la permacultura. Esto nos permite una mayor integración de los diferentes manejos, que redunda en una mejora creciente de todo el agroecosistema. De esta forma, se logra salir de la espiral de degradación de los recursos disponibles por medio de prácticas convencionales intensivas de los modelos agrícolas y ganaderos convencionales, a una espiral positiva recurso-uso-regeneración, al que conducen los proyectos diseñados desde el marco metodológico que proporciona la permacultura. Se trata de una forma de gestionar los recursos locales de una manera que no compromete su disponibilidad para las generaciones futuras, a la vez que regenera los existentes y permite un desarrollo en armonía tanto con el entorno natural como social. Un modelo de producción y de desarrollo sobre la base de ecosistemas sanos y funcionales, que son el sustrato sobre el que se asienta un sistema sano y sostenible.

Ejes sobre los que se asienta la experiencia:
- Diseño hidrológico en Línea Clave - Keyline
- Producción hortícola en bancales permanentes
- Bosque comestible: la huerta perenne
- Suelos sanos, suelos fértiles. Biofertilización agroecológica con los recursos del entorno
- Pastoreo dirigido: ganadería regenerativa

Palabras clave: agroforestería, biofertilización, keyline, permacultura, regeneración, viabilidad

INTRODUCCIÓN

Experiencia de producción agroecológica y de economía social y solidaria protagonizada por una mujer sobre una superficie total de 3 Ha localizado en Abaltzisketa (Gipuzkoa), a través de la cual se favorece la conservación del medio ambiente, seguridad alimentaria, salud comunitaria, circuitos cortos de comercialización y en las relaciones sociales y de género.

El objetivo es la generación de un modelo agroecológico muy diversificado de producción hortícola, frutícola y ganadero, que permita la generación de 3 puestos de trabajo de manera progresiva en el plazo de 3-4 años (Fig.1)

El terreno sobre el que se está desarrollando el proyecto, es una finca con elevadas pendientes, con un pastizal bastante degradado, en el que las elevadas precipitaciones del lugar generan grandes problemas de escorrentía, ocasionando cárcavas y desprendimientos de terreno que dificultaban el desarrollo de la producción que se deseaba comenzar.

La fase de diseño se comienza en 2017 y es en el verano de ese mismo año cuando se comienzan las primeras labores de implementación, en las que se implementaron 4 mesetas de cultivo y el canal camino superior. A lo largo del verano de 2018 se han terminado 2 mesetas que faltaban y se han establecido los 2 estanques. El resto de la implementación del diseño se finalizará en verano de 2019.
El proyecto se asienta sobre los siguientes ejes:

- **Generación de un modelo agrosilvopastoril agroecológico**, adaptado a las características culturales, sociales y ambientales del entorno, que actualiza el concepto de caserío tradicional como herramienta generadora de un rico paisaje diversificado en mosaico, bajo un modelo de conservación cultural de la naturaleza.

Un modelo de producción y de desarrollo sobre la base de ecosistemas sanos y funcionales, que son el sustrato sobre el que se fundamenta una economía sana y sostenible.

El proyecto se fundamenta sobre la base de la diversificación tanto de cultivos y ganadería, como de diferentes zonas productivas y de formas de comercialización. Las zonas productivas son: bosque comestible, agroforestería en pradera adehesada, pasture cropping, producción hortícola biointensiva, silvicultura y cultivos semiestensivos.

Se incorporan técnicas y manejos basados en la Agroecología y la Permacultura que redundan en una mejora creciente de todo el agroecosistema, con lo que se logra salir de la espiral de degradación de los recursos generados por las prácticas intensivas de los modelos agrícolas y ganaderos convencionales, para generar otra espiral positiva recurso-uso-regeneración.

Se trata de una forma de gestionar los recursos locales de manera que no compromete su disponibilidad para las generaciones futuras, a la vez que regenera los existentes y permite un desarrollo en armonía tanto con el entorno natural como social.

- **Lucha contra el cambio climático**, La agricultura es responsable directa e indirectamente del 30 al 50% de las emisiones de gases de efecto invernadero y las prácticas agrícolas convencionales ocasionan la pérdida de las reservas de carbono del suelo contribuyendo de esta forma a incrementar las emisiones de gases de efecto invernadero.

Prácticas como la fertilización sintética nitrogenada, la extensión del monocultivo y manejos únicamente basados en el incremento de la productividad a toda costa, han acelerado el agotamiento de las reservas de carbono del suelo. La mayoría de los suelos agrícolas han perdido del 30% al 75% de su carbono orgánico original.

A lo largo del siglo XX, se fueron empleando tractores cada vez de mayor potencial, que entre otras consecuencias, llevó asociada una reducción de materia orgánica en el suelo de aproximadamente un 60% en 60 años. La utilización de vertedera o arado de discos, provoca el volteo del suelo, el cual da lugar a una mezcla e inversión de los horizontes edáficos, sacando a la superficie material originariamente subsuperficial. Generalmente, este material va a presentar unas cualidades de peor calidad respecto al horizonte superficial, en cuanto al contenido de materia orgánica, estabilidad estructural, permeabilidad, etc., que van a ocasionar un descenso neto de la fertilidad natural de la capa de labranza así como un aumento de su erosiónabilidad.

Esta práctica, unida a la de dejar los suelos de cultivo desprotegidos de cobertura vegetal, generan rasgos erosivos provocados por el agua de lluvia o el viento, como regueros y cárcavas, que permanecen visibles sobre la superficie del suelo. Esto supone que en la Unión Europea se pierdan 970 millones de toneladas de suelo por año debido a la erosión del agua.
La pérdida de materia orgánica del suelo, lleva asociada una disminución de la capacidad de retención de agua en el suelo y por tanto, lo hace más vulnerable y menos resiliente a la hora de adaptarse a las condiciones de fenómenos adversos a los que nos conduce el Cambio Climático. Esto supondrá, que determinadas zonas de Europa como en toda la cuenca mediterránea, las sequía irán en aumento, por lo que aquellos terrenos con prácticas que les permita disponer de una concentración suficiente de materia orgánica y almacenar agua en sus suelos, tendrán mayor capacidad de resistir las adversidades y por otro lado, ser capaces de reconducir y almacenar el agua de lluvia de tormentas, avenidas, etc.

Los pastizales son ecosistemas que tiene una gran capacidad de fijación de carbono y son capaces de almacenar COS mucho más rápido que los ecosistemas agrícolas.

Cuando es una cobertura de plantas perennes el secuestro de carbono es aún mayor, gracias al sistema radial más complejo y profundo.

En general, los sistemas basados en pastizales o en pastizales con sistemas mixtos rotativos de cultivo y ganadería, consiguen unos niveles de eficiencia en la captación de carbono debido a que los sistemas convencionales de producción son más propensos a la erosión que cuando son reemplazados por pastos permanentes bajo manejos mejorados de pastoreo.

El planteamiento general de este proyecto pasa por la conversión de todos los agroecosistemas en praderas que serán pastoreados por diferentes ganaderías y sobre las que se implantará producción agrícola extensiva (incluido producción hortícola), frutícola, etc.

Para que se de un balance positivo de fijación de carbono en el suelo, es necesario que además de la presencia de microorganismos descomponedores de la materia orgánica, también se encuentren presentes bacterias humificantes.

Las micorrizas, que dependen del carbono proporcionado de las plantas, intercambian el carbono con colonias de bacterias a través de sus hifas, lo que permite obtener a las raíces macronutrientes como fósforo, nitrógeno o calcio y otros como zinc o cobre, que estimulan su crecimiento.

Mediante el establecimiento de un pastizal permanente en toda la superficie del proyecto, dada la gran capacidad de este agroecosistema para la fijación de carbono. Sobre él se desarrollarán manejos y prácticas basados en la mejora del suelo por medio de diferentes fertilizantes naturales que contribuyan al incremento de carbono, mejora de la estructura y capacidad de retención de agua, mayor actividad microbiológica y aumento de la disponibilidad de nutrientes. Empleo de abono verdes, biofertilizantes, compost y estercolado por pastoreo.

Las técnicas a implementar son: diseño hidrológico Keyline, fijación de carbono por medio de praderas permanentes y agroforestería, pastoreo rotacional dirigido, siembra directa y roller-crimper y planes de fertilización agroecológicos.

• Desarrollo de un modelo económico, basado en la Economía Social y Solidaria que permita la creación de 3 puestos de trabajo de carácter endógeno que incrementen la producción de alimentos sanos, locales y sostenibles del entorno. El modelo se basa en el establecimiento de micro-proyectos para la generación de una economía que soporta el proyecto de manera dinámica, desarrollando inicialmente la producción hortícola para ir luego disminuyendo su volumen a la vez que se van dando mayor importancia a otros cuyo planteamiento es a más largo plazo, como es el caso de la producción de frutos silvestres, bosque comestible y maderables.

Se pretende también contribuir a la dinamización de los mercados locales y comercializar diferentes productos transformados dotándolo de un valor añadido, rompiendo la estacionalidad en cuanto a la producción y venta de productos en fresco.
El marco de la Economía Social y Solidaria permite incorporar a los proyectos valores universales tales como la equidad, la justicia, la fraternidad económica, solidaridad social y democracia directa. Y, en tanto que una nueva forma de producir, de consumir y de distribuir, se propone como una alternativa viable y sostenible para la satis-
facción de las necesidades individuales y globales.

El proyecto se apoya en los cinco principios básicos de la economía social y solidaria:

- **Empleo digno y estable**: el objetivo es generar puestos de trabajo dignos. No se busca únicamente tener un buen salario sino también el desarrollo profesional a través de la formación continua, así como la estabilidad laboral.
- **Conciliación**: se cuida el desarrollo y satisfacción integral de todas las personas que forman parte de las mismas. Por eso se fomentan las jornadas laborales que permiten atender adecuadamente la vida personal y familiar.
- **Cuidado del entorno**: se favorecen formas de producción y consumo respetuosas con el medio ambiente, para lo que se fomenta el comercio local y de cercanía. Así, se contribuye a la transformación y mejora de nuestros barrios y ciudades.
- **Cooperación**: entre empresas e iniciativas económicas redunda en su viabilidad y resistencia. Gracias a la creación de redes, se comparten conocimientos, estrategias y, en algunos casos, recursos, lo que permite ofrecer mejores productos y servicios.
- **Participación y transparencia**

MATERIALES Y MÉTODOS

- **Diseño integral de Permacultura**

 Establecimiento de una metodología de intervención (Fig. 2) propia basada en la Permacultura, que nos permi-
te integrar la parte económica, ecológica y social del proyecto y establecer un cronograma de implantación y un plan de viabilidad adaptado a las necesidades del proyecto.

Fig 2. Metodología de intervención

- **Diseño hidrológico en Línea Clave – Keyline**

 Diseño de un sistema (Fig. 3) que controle las aguas en escorrentía, consiguiéndose de esta forma:

 > reducir la velocidad del agua, evitar la erosión y mejorar el suelo
 > retener el agua para utilizarla en los momentos necesarios
 > ubicación de estanques
> establecer caminos y zonas de tránsito
> determinar zonas para su aprovechamiento hortícola, ganadero y forestal
> diseño de movimientos por la finca

Fig. 3 Diseño hidrológico en finca

El diseño Keyline o Línea Clave es una herramienta que nos permite gestionar de manera inteligente el paisaje agrícola de manera que nos permite optimizar las aguas de escurrimiento para su captación, almacenamiento, distribución y manejo óptimo, de cara a asegurar la viabilidad y productividad de las tierras agroforestales.

Combina la captación y conservación del agua con técnicas de regeneración de la tierra. Es capaz de proteger a los suelos de los fenómenos de escurrimiento y erosión, restaurar rápidamente suelos degradados y protegerlos de los efectos de la sequía. Además considera beneficioso el uso de animales de pastoreo en el proceso.

En este diseño Keyline hemos añadido la integración de árboles frutales y autóctonos, y ganadería, lo que nos permite tener un sistema muy resiliente capaz de satisfacer las necesidades agrícolas y ganaderas y jugar un papel importante en la captura y el secuestro del CO₂ de la atmósfera en forma de suelo fértil.

El estudio hidrológico de las líneas clave establece los usos del agua así como el manejo que optimiza el agua (caudales y cuencas de captación, vías de drenaje, zonas de embalse y vías de distribución) que fluye por el terreno.

Los pasos que se han realizado son:

1. Detectar los puntos clave más útiles.

2. Determinar la ubicación correcta de canales de conducción-infiltración de agua para modificar y aprovechar al máximo el comportamiento de las escurrimientos.

3. Seleccionar el lugar idóneo para la ubicación de embalses de agua.

4. Designar la ubicación de los canales de riego.

5. Marcar las áreas de captación y recarga (bosque), infiltración (cultivos de temporada), irrigación (cultivos o frutales) y aprovechamiento (árboles útiles ubicados en zonas bajas).
6. Realizar las mediciones, planificación de obra y presupuesto orientativo basado en precios unitarios de trabajo de maquinaria adecuada y materiales necesarios, así como los tiempos de ejecución.

- **Producción hortícola biointensiva en bancales permanentes**

Los bancales (Fig.4), una vez establecidos, no volverán a ser laboreados a fin de evitar la pérdida de estructura del suelo y la destrucción de la microbiología existente. Para la recuperación del disturbio inicial, se realizan labores de falsa siembra, aporte de compost y biofertilizantes, para conseguir avanzar la sucesión ecológica del suelo y llevarlo a estados de pastizales permanentes, que son de más fácil manejo y de mayor capacidad de fijación de carbono.

Los bancales se cultivarán según el método biointensivo y vendrán acompañados de arbustos y árboles de especies de interés comestible o fijadores de nitrógeno.

Se emplearán diferentes técnicas como roller-crimper y pastoreo controlado con diversos animales, que permitirán secuestrar carbono y fijarlo en el suelo.

La zanja de infiltración va acompañado de estructuras vivas (Salix Spp.) que permiten el cultivo de especies trepadoras que tapizan los taludes, lo retienen y estabilizan.

Para el manejo y control se utiliza un tractor de pequeña potencia y tracción animal.

Fig 4. Bancales de producción hortícola

Roller-crimper o rodillo para encamar, es un sistema de encamado de abonos verdes o praderas que lleva trabajándose desde hace dos décadas en el mundo agroecológico. Esta técnica, prepara el terreno tumlando los cultivos existentes y dejando una capa de vegetación de unos 5 a 10 centímetros de altura para después, poder trabajar de manera más eficiente con la sembradora directa. También se utiliza en sistemas hortícolas como acolchado vivo durante las primeras semanas de plantación.

El cultivo encamado al no ser segado, solo partida su caña, sigue con vida una o dos semanas más por lo que en el caso de las leguminosas, sigue fijando nitrógeno atmosférico un tiempo extra. Este encamado hace liberar a las plantas exudados que sirven de alimento a la microbiología que mejora la estructura del suelo.

Como no hace falta labrar el terreno para siembras y plantaciones, se hace de manera directa, previene la erosión, además de aumentar la retención de humedad en el terreno. También genera menos diferencia térmica en el suelo, con lo que los cultivos posteriores sufrirán menos stress por sobrecalentamiento de la corteza superficial.
• Bosque comestible: la huerta perenne

La zona de bosque comestible (Fig. 5) cuenta con una superficie aproximada de 1 Ha, en el que coexistirán conjuntamente árboles, arbustos, herbáceas, enredaderas y hongos en simbiosis, siendo todos potenciales fuentes de alimento. En su mayoría son especies perennes o anuales que tengan la facultad de semillar y volver a crecer espontáneamente, con lo que se asegura un sistema permanente.

La plantación sigue los patrones generados por el Keyline y generando una serie de callejones, por los cuales se combinará la gestión animal. Dichos callejones también contemplan la entrada para mantenimiento, recogida de fruta y otros elementos comestibles, así como dentro de varios años, la retirada de madera y la implantación de nuevas especies dentro del bosque.

Fig. 5. Diseño de bosque comestible con abreviatura de las diferentes especies

Zonas de aprovechamiento de frutos silvestres y de bosque comestible con tramos habilitados para el paso, en las que se podrá recolectar directamente del árbol. La fertilización de estas áreas se llevará a cabo por medio de innovadoras técnicas de pastoreo controlado, que abona el suelo y lo mejora a la vez que desparasita y elimina plagas, imitando los procesos que se dan de manera natural.

El bosque comestible es un organismo en constante y dinámica evolución donde interactúan de manera simbiótica una gran cantidad de especies. Su desarrollo y sustento se basa en los principios de cualquier bosque existente en el planeta.

Todo lo que el bosque genere sirve de alimento para él mismo mediante la descomposición, incrementando así su fertilidad y producción. En él coexisten conjuntamente árboles, arbustos, herbáceas, enredaderas y hongos en simbiosis con todos ellos, siendo todos potenciales fuentes de alimento.

En su mayoría las especies serán perennes o anuales que tengan la facultad de semillar y volver a crecer espontáneamente, con esto se asegura un sistema permanente.

Las plantación del bosque se harán por fases, comenzando con marcos de plantación de estratos arbóreo y arbustivo de 10x14 m y siembra de callejones el primer año, para ir densificando el marco con más planta en
Años sucesivos. El bosque comestible deberá contar con un vallado perimetral para evitar que el ganado que se gestiona en la granja entre sin ningún tipo de control. No se utilizará vallado cinegético pues se pretende el paso de fauna silvestre.

- **Suelos sanos, suelos fértiles. Biofertilización agroecológica con los recursos del entorno**

 El objetivo de potenciar la propia dinámica del suelo, fomentando la activación de los procesos biológicos de descomposición de la materia orgánica en humus. Para ello se realiza una captura y reproducción de la microbiología existente en el bosque autóctono de la zona, así como diferentes estiércoles animales que nos sirve de base para la preparación de los diferentes fermentos que empleamos a modo de biofertilizantes.

 En este sentido, para la revitalización del suelo, se emplearán recursos propios o cercanos de las fincas y el fomento de la autonomía.

 Los biofertilizantes elaborados a base de suero de leche, microorganismos de montaña, estiércol bovino, mix mineral, melazas, cenizas de fogón y levaduras.

 Los biofermentos son el producto de un proceso de fermentación de materiales orgánicos. Dicho proceso se origina a partir de la intensa actividad de microorganismos que se encuentran en la naturaleza de manera libre. Muchos microorganismos de los que se pueden encontrar en los biofermentos juegan un papel importante en la agricultura así como también en la producción de algunos alimentos. Tal es el caso, de los microorganismos responsables de producir yogurt, chicha, vino, entre otros.

 Los biofermentos representan una alternativa para los agricultores dependientes de insumos agrícolas sintéticos. La elaboración es sumamente sencilla y los materiales son de alta disponibilidad. Los biofermentos son abonos líquidos ricos en energía y en equilibrio mineral. Están compuestos básicamente de estiércol disuelto o semillero de microorganismos nativos en agua, melaza, suero de leche o leche, sales minerales, harinas de roca molida, entre otros componentes. El proceso de hacer biofermentos es un proceso anaeróbico en donde diversos microorganismos son responsables de que se genere del proceso de fermentación.

 A lo largo del proyecto, realizaremos los siguientes biofermentos:

 - Reproducción de Microorganismos Nativos: formadores de suelos, fijadores de nitrógeno, micorrizas…
 (Microbiología de suelos)
 - Autoproducción de Biofermentos (Biofertilizantes) y caldos minerales (Biofertilidad)
 - Remineralización de suelos y cultivos, solubilizando los minerales contenidos en harinas de rocas, huesos,…
 - Producción de fermentos controladores de plagas

- **Pastoreo dirigido: ganadería regenerativa**

 Para cerrar el ciclo de la fertilización de la zona de bancales y pastizales, se utilizan una sucesión de diferentes animales por medio de pastoreo dirigido que permite además la fijación de carbono.

 Una de las mejores prácticas para el secuestro de carbono, consiste en el pastoreo rotacional (regenerativo) en pradera. Numerosos estudios atestiguan el hecho de que las praderas degradadas pueden ser restauradas para beneficio de la biodiversidad y la salud de los ecosistemas, usando métodos de baja tecnología que secuestran el carbono. Estos ecosistemas terrestres son un gran sumidero de carbono.

 Las praderas representan aproximadamente el 40% de la superficie terrestre global.

 Durante muchos siglos, los pastizales se han degradado principalmente a través de prácticas de pastoreo no controlado y la transformación de estos pastizales en tierras de cultivo.
Los pastizales con suelos sanos y diversidad de plantas y animales son más productivos, estables y resistentes que aquellos en peores condiciones y proporcionan mayores ganancias y mejores servicios ecosistémicos. De hecho, pueden representar el uso más benigno de los recursos naturales. Contrariamente a lo que se cree comúnmente, los pastizales se regeneran con perturbaciones periódicas y se deterioran en ausencia de dichas perturbaciones en forma de pastoreo adecuado o uso apropiado y limitado del fuego.

A lo largo de millones de años, la microbiología y la fauna del suelo han co-evolucionado para que el reciclaje de nutrientes o la mejora de la estructura del suelo, permitieran la creación de suelos más fértiles y estructurados, con una mejor capacidad de infiltración y retención de agua, que permitieran a su vez, el incremento de los niveles de carbono en el suelo.

Los grandes herbívoros juegan un papel fundamental en en el correcto funcionamiento de los ecosistemas al aumentar la concentración de forraje, la concentración de nutrientes forrajeros y la producción de plantas sobre el suelo. Sus sistemas digestivos están diseñados para proporcionar humedad y microorganismos para producir la descomposición biológica de grandes volúmenes de material vegetal.

Los nutrientes vuelven al suelo en forma de orina y estiércol, que, de lo contrario, se bloquearían en la biomasa de la vegetación aérea. También mejoran la disponibilidad de minerales mejorando el enriquecimiento de nutrientes microbianos del suelo y los procesos microbiológicos del suelo que finalmente aumentan la nutrición y fotosíntesis de las plantas además de aumentar el ciclo de nutrientes por medio de la orina y su excremento.

En consecuencia, el pastoreo es una función de optimización: niveles excesivamente bajos o altos de pastoreo producen bajos niveles de producción primaria, mientras que los niveles intermedios de pastoreo producen la máxima productividad.

El suelo, las plantas y los animales se benefician cuando los herbívoros pastan. Estos son comportamientos naturales en respuesta a cambios en la calidad y disponibilidad de los forrajes y en respuesta a los depredadores. Más allá de eso, los mecanismos de saciedad aseguran que los herbívoros coman una variedad de alimentos y forraje en una variedad de lugares. La variedad estimula el apetito y mejora la nutrición, la producción, la salud del suelo, plantas, herbívoros y seres humanos.

La gestión animal del proyecto, estará basada en técnicas de una combinación entre Manejo Holístico, Pastoreo Racional Voisin y de Polyface Farm.

RESULTADOS ESTIMADOS

- ** Cambio Climático – Fijación de carbono – Ahorro emisiones**

 Fijación de carbono: estimamos 1.000 kg C/Ha/año. Si este valor se alcanzase en los terrenos que actualmente se dedican a la agricultura y ganadería en el planeta, se podrían alcanzar los objetivos de control del aumento de temperatura del planeta planteados por el IPCC. Se han tomado datos de partida de de las condiciones del suelo y se irá viendo la evolución de los contenidos de materia orgánica a lo largo de por lo menos 3 años.

 Combustible: descenso de entre un 40% a un 60% en el consumo de gasoil respecto a sistemas convencionales.

 Agua: con un incremento de carbono en suelos anual de 132 Tm/Ha, el suelo es capaz de retener 144 m³ de agua.

 Metano: reducir las emisiones de metano en comparativa con la ganadería industrial entre un 25% y un 45%.
• Diseño hidrológico en Línea Clave – *Keyline*. Pradera permanente

Se establece un canal de captación que permite frenar la velocidad de las aguas para, ser infiltradas evitando erosiones y reconducirlas a través de una pendiente reducida a una zona de retención temporal. Este canal, permite establecer un camino que no sufrirá erosión, con lo que se evitan labores de mantenimiento.

Los caminos de la finca se han diseñado con el mismo criterio.

Por debajo del canal-camino queda una zona que siguiendo los patrones de línea clave, es pastoreada de manera rotacional, lo que permite una gestión controlada de los pastos reduciendo en su recuperación, la generación del suelo y la introducción de una cabra ganadera diversificada compuesta por 3 vacas, 100 gallinas y 400 pollos anuales y 10 núcleos de abejas.

Se han implantado dos estanques de 200 y 80 m3 respectivamente.

<table>
<thead>
<tr>
<th>CABEZA</th>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
<th>Año 6</th>
<th>Año 7</th>
<th>Año 8</th>
<th>Año 9</th>
<th>Año 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>VACAS</td>
<td>2 madres</td>
</tr>
<tr>
<td>6000 €</td>
<td>3000 €</td>
</tr>
<tr>
<td>GALLETAS (100)</td>
<td>6 €</td>
</tr>
<tr>
<td>4000 €</td>
</tr>
<tr>
<td>POLLOS (500)</td>
<td>1000 €</td>
</tr>
<tr>
<td>4000 €</td>
</tr>
</tbody>
</table>

Cuadro 1. Producción ganadera

• Producción hortícola en bancales permanentes

6000 m2 producción biointensiva y semieextensiva.

Se han establecido una serie de aterrazamientos donde ubicar bancales permanentes siguiendo el patrón de la línea clave. De esta forma, se dispone de zonas cómodas para el trabajo y que retienen la cantidad de agua que necesita.

Se trata de una superficie con bajos desniveles de 6 metros de ancho por 180 mt. de longitud donde cultivar de manera biointensiva hortalizas, frutos rojos y fruta.

<table>
<thead>
<tr>
<th>Año 1</th>
<th>Año 2</th>
<th>Año 3</th>
<th>Año 4</th>
<th>Año 5</th>
<th>Año 6</th>
<th>Año 7</th>
<th>Año 8</th>
<th>Año 9</th>
<th>Año 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frutas y cereales</td>
<td>5.250 €</td>
<td>1.250 €</td>
<td>2.500 €</td>
<td>5.000 €</td>
<td>7.500 €</td>
<td>10.000 €</td>
<td>12.500 €</td>
<td>12.500 €</td>
<td>12.500 €</td>
</tr>
<tr>
<td>Envejecidas</td>
<td>3.000 €</td>
</tr>
<tr>
<td>Balance (ingresos-gastos)</td>
<td>3.521 €</td>
<td>7.504 €</td>
<td>12.593 €</td>
<td>15.713 €</td>
<td>22.889 €</td>
<td>28.308 €</td>
<td>36.328 €</td>
<td>44.286 €</td>
<td>55.188 €</td>
</tr>
</tbody>
</table>

Cuadro 2. Producción hortícola

• Bosque comestible

1 Ha de plantación de diferentes estratos vegetales en marcos de 12 x 12 metros y 6x6 metros.

En la capa herbácea, se primará la regeneración de los suelos para aumentar la productividad de árboles y arbustos una vez establecidos. Los patrones en línea clave y el marco de plantación generan la formación de calles de pradera permanente, de alta capacidad de fijación de carbono gestionado con animales.

Se contempla también la entrada para mantenimiento, recogida de fruta y otros elementos comestibles, así como la retirada de madera y la implantación de nuevas especies dentro del bosque. 60% en cuanto a cultivos de herbáceas y un 50% en arbolado.
Cuadro 3. Producción frutícola

- Suelos sanos, suelos fértil. Biofertilización agroecológica con los recursos del entorno

Autoproducción de biofertilizantes, preparados microbiológicos de mejora de suelos, inoculación micorrizas en plantel, control de estiércoles animales, utilización de acolchados BRF, abonos verdes.

Insumos

> Biofertilizante de semilla de microorganismos nativos: 1.000 litros anuales
> Abonos orgánicos fermentados tipo bocashi: 2.000 kg
> Compost recogida domiciliaria: 3.000 kg/año
> Caldo sulfocálcico: 100 litros/año

Fertilización

> Abono verde: 150 kg de N/Ha (leguminosas)
> Incorporación materia verde: 20.000 kg/ha
> Pastoreo dirigido: 140 kg N/ha, 125 kg P₂O₅, 52 kg K₂O. Control de parásitos
> Biofertilizantes: microbiología y trazas de gran diversidad mineral

Indicadores / Analíticas

> Materia orgánica, N, P y CIC
> Tarjetas de salud del suelo: biodiversidad.
> Cromatografía circular: fertilidad del suelo

- **Diversificación de la producción**

Más de 100 especies productivas (subterráneas, herbáceas, arbustivas, trepadoras y arbóreas).

- **Comercialización**

Venta directa (grupo de consumo, tiendas y restaurantes de la zona y red de productores promovida por Sustraiak Habitat Design Koop)

CONCLUSIONES

- Este proyecto agroecológico consolida la participación, visibilización y valorización del trabajo de las mujeres a la vez que se avanza hacia una organización agroalimentaria más sustentable, confluyendo con las tesis ecofeministas.

- Contribuye a la mitigación del cambio climático proponiendo prácticas y manejos capaces de fijar grandes cantidades de CO₂ de la atmósfera en forma de humus estable en el suelo, aumentando la fertilidad del mismo.
• Establece una producción agroecológica silvopastoral de una elevada biodiversidad, aumentando la resiliencia del agroecosistema.

• Mejora la fertilidad de los suelos y soluciona diferentes problemas asociados al control de aguas en escorrentía generadas por la orografía del terreno.

• Implementa técnicas y manejos basados en la Permacultura que permiten una disminución del trabajo de control de adventicias y permite una mayor eficiencia en el trabajo diario que puede ser destinado a labores de comercialización y transformación.

• Desarrolla un modelo replicable de producción agroecológica adecuado a las características del territorio en el que se asienta.

• Permitirá la generación de 3 puestos de trabajo.

Cuadro 4. Viabilidad económica del proyecto

• Diversificación de las áreas del proyecto en cuanto a la producción, comercialización y fuentes de ingresos.

• Generación de empleo – Economía Social y Solidaria en base a modelos cooperativos que busca sinergias con otras personas y proyectos.

BIBLIOGRAFÍA

• www.ioia.net/AGMReports/2016/Andre.Leu.Keynote.organic%203.0%20childrens%20healthclimatechange.pdf
• The state of soil in Europe. A contribution of the JRC to the European Environment Agency’s environment state and outlook report — SOER 2010 - Estudio. https://doi.org/10.2788/77361
• (Evaluación de los Ecosistemas del Milenio, 2005)
LA AVICULTURA DESDE LA VISIÓN AGROECOLÓGICA: ALTERNATIVAS Y SOLUCIONES

Gracia Cárdenas R, Vásquez D, Mayor M

Institución Universidad Nacional de Colombia
Correo electrónico de los autores: rgraciac@unal.edu.co

RESUMEN: El estudio aporta elementos para conocer la avicultura familiar campesina mediante la observación de indicadores de sostenibilidad de varias fincas en la zona rural de Palmira, para proponer modelos alternativos que permitan la conversión paulatina a sistemas sostenibles, con base en los principios agroecológicos que garanticen la seguridad alimentaria y el bienestar de los campesinos.

Se analiza la morfología de las aves, el manejo, la nutrición y el estado de sostenibilidad ambiental. De la caracterización morfológica de las aves criollas se determina que existe un predominio de plumajes de tonos oscuros y rojizos; presencia de plumas en patas y prevalencia de la cresta de tipo simple, presencia de aves con cuello desnudo, copetonas y barbudas, la piel blanca predomina sobre las amarillas. La conformación corporal es de talla media y de pechuga angulosa sin tendencia cárnica. No se encontraron diferencias morfométricas, ni fanerópticas en las aves criollas en los tres pisos térmicos.

Palabras clave: avicultura sostenible, biodiversidad, caracterización morfológica, gallina criolla, indicadores de sostenibilidad

INTRODUCCIÓN

La Biodiversidad además de ser la base las múltiples formas de vida en el planeta, es la fuente de la salud ambiental, pues en ella descansa la capacidad de los ecosistemas para recuperarse de los impactos ambientales generados por diversas causas. Por lo tanto, en la naturaleza biodiversa tiene origen el bienestar y la calidad de vida de la humanidad mediante el usufructo de los servicios ecosistémicos que ella brinda (M. Á. Altieri & León Sicard, 2010; Ángel Sánchez, 2016; Instituto Humboldt, 2016; Millennium Ecosystem Assessment, 2009; Silvetti, 2011).

Es fundamental que se mitiguen y corrijan las causas que originan la alteración de la salud ambiental, tarea nada fácil, pues en los gobiernos prima el actual orden económico y donde la solución a los problemas ambientales es postergada ante los intereses sociopolíticos y financieros de los conglomerados empresariales (nacionales y multinacionales) (M. Á. Altieri & León Sicard, 2010; Gracia Cárdenas, 1996; Márquez Serrano & Funes-Monzote, 2013; Sánchez de Prager, Prager Mosquera, Naranjo, & Sanclemente, 2012). Erróneamente se espera que los acuerdos internacionales y los convenios firmados por los países contribuyan a dar solución a las múltiples patologías ambientales, manifestadas en el cambio climático por los gases de efecto invernadero, la contaminación, la alteración de la capa de Ozono, la irreparable pérdida de especies, los desequilibrios en las poblaciones de las comunidades, todo lo cual constituye verdaderas calamidades que enmarcan el nada alentador escenario actual, donde los daños y sus afectaciones sobrepasan la capacidad de recuperación (resiliencia) de los ecosistemas y vaticinan catástrofes en el planeta (M. A. Altieri & Nicholls, 2012; Nicholls & Altieri, 2017; Sarandón, 2009; Spedding, 1981; Zurrita, Badii, Guillen, Lugo Serrato, & Aguilar Garnica, 2015).

Desafortunadamente el principal actor de estas calamidades es la humanidad, la cual no ha entendido aún, que, de no recuperar y mantener el orden funcional de la biodiversidad, es imposible la continuidad de los servicios ecosistémicos y por ende la supervivencia de las especies y la vida en el planeta (Caparrós, 2014; Capra, 1998; Harari, 2014).
Colombia se caracteriza por su amplia diversidad en ecosistemas, que albergan valiosos Recursos Genéticos (RG), que durante el transcurso del tiempo han logrado niveles de adaptación a las diferentes condiciones ambientales propias de cada una de las zonas ecológicas, que varían conforme cambia la posición litoral, la dimensión topográfica o la altitudinal en la franja ecuatorial tropical (FAO, 1997; Segura-Correa & Montes-Pérez, 2001).

En nuestro país la Política Nacional sobre Biodiversidad aprobada en noviembre de 1995 establece un marco general para orientar las estrategias tendientes a la conservación y uso sostenible de la diversidad biológica en Colombia, basada en tres ejes principales de acción, la conservación, el conocimiento y la utilización sostenible de la biodiversidad. Para lo cual se determinaron estrategias para su desarrollo y ejecución de las cuales se destacan (Ministerio de Ambiente y Desarrollo Sostenible, 1996):

- Caracterizar los componentes de la biodiversidad, mediante un impulso decidido a los programas de investigación realizados por los institutos y las universidades a nivel nacional.
- Recuperar el conocimiento tradicional y fomentar la capacitación de líderes comunitarios para que este saber pueda mantenerse vivo entre generaciones.
- Desarrollar y promover la transferencia de tecnología, como mecanismo para la conservación y utilización sostenible de la biodiversidad.
- Establecer sistemas de información, que reúnan el conocimiento sobre la biodiversidad depositado dentro y fuera del país y sirvan como base para la toma de decisiones a nivel nacional y regional.
- Establecer y promover el establecimiento de bancos genéticos y programas de biotecnología, como mecanismo para facilitar la utilización de los recursos genéticos.

El sector agropecuario en Colombia presenta contrastes que van desde el modelo de la agricultura familiar o pequeña agricultura de subsistencia hasta el agroempresarial (Comunidad Andina, 2011; Departamento de Agricultura y Protección del Consumidor, 2002; Leparati, Salcedo, Jara, Boero, & Muñoz, 2014; Minagricultura et al., 2017; Sánchez de Prager, 2017). En cada nivel el uso y empleo de los medios de producción se incrementa partiendo desde el mínimo, donde solo se aplica la fuerza de trabajo del campesino. De igual forma los impactos ambientales y la afectación de los agroecosistemas siguen el mismo camino a tal punto, que se puede proponer que a mayor utilización de recursos en tecnificación, mecanización, aplicación de insumos y semillas, mayores serán las consecuencias y el deterioro del medio ambiente. Así las cosas, desde el punto de vista ambiental no es muy clara la relación costo/beneficio al tener en cuenta las externalidades o al considerar el grado de afectación ambiental y el discutible nivel de sostenibilidad de la explotación agropecuaria convencional.

La generalidad de las políticas públicas agrarias de fomento y asistencia técnica se basan en prototipos de producción agropecuaria convencional, donde se privilegia la producción de bienes y servicios bajo el criterio rentista, donde se busca maximizar utilidades y minimizar costos, sin tener en cuenta los efectos de las externalidades, los impactos ambientales y las consecuencias de carácter sociocultural. Bajo ese principio los sistemas de producción deben garantizar el rendimiento financiero sobre cualquier consideración diferente.

Por lo tanto, las explotaciones agropecuarias que utilicen especies de plantas o animales que no responden a dicho propósito, serán sustituidas del sistema de producción y reemplazadas por especies por lo general foráneas y en el peor de los casos modificadas genéticamente (OMG), las cuales exigen ser manejadas bajo condiciones especiales definidas por un “paquete tecnológico”, que por lo general es altamente dependiente de insumos de síntesis química, tecnologías foráneas, exigente equipamiento y alta inversión de capital. En resumen los agroecosistemas son explotados mediante criterios extractivos y consumistas originados en los modelos de la revolución verde y en las políticas que privilegian los proyectos con finalidad rentista, los agronegocios, la agroindustria y la agroexportación.

En contraste y a consecuencia de las políticas descritas, el campesinado se encuentra en desventaja competitiva, fuera del alcance de los medios de producción, sujeto a los costos elevados de los insumos, recibiendo bajos precios por sus productos y condenado a la pobreza y a dificultades para satisfacer sus necesidades básicas.
Por su parte, la agroecología ofrece alternativas sostenibles que permiten la utilización de los recursos locales con racionalidad y eficiencia siguiendo principios que se fundamentan en criterios ecológicos y sociales, de utilidad para promover y establecer programas y sistemas de desarrollo rural que sustituyan los patrones establecidos por el modelo neoliberal, extractivista, consumista y agroexportador.

Es necesario proponer y desarrollar sistemas de producción que brinden salidas a las condiciones de pobreza del campesinado sin tener que recurrir a los modelos convencionales que exigen cantidad de insumos exógenos y desperdigas los recursos y oportunidades endógenas que posee el campesino en su parcela, quien puede dar mejor uso al suelo, el agua, las plantas y los animales.

Las gallinas criollas que aún disponemos en las zonas rurales, constituyen un importante recurso genético para responder inseguridad alimentaria de las comunidades campesinas y en un valioso banco de germoplasma de interés científico y económico, dadas las características de resistencia y adaptación que poseen dichas aves. Razón por la cual se impone la necesidad emplear metodologías para la protección, conservación y fomento en sistemas de producción saludables que sumen los recursos naturales, el saber y conocimiento tradicional campesino con los conocimientos técnicos para lograr una avicultura rural sostenible orientada bajo los principios y criterios de la agroecología.

Hipótesis. El trabajo de investigación se propone demostrar la hipótesis de que bajo condiciones saludables de alojamiento, alimentación, manejo sostenible, selección y mejoramiento genético, es factible obtener aves criollas mejoradas que por su gran capacidad de resistencia y adaptación a las dificultades y limitaciones que presenta el medio rural campesino, pueden generar rendimientos aceptables en su producción de huevos y carne, comparables a la producción de las aves comerciales convencionales.

Objetivos. Los objetivos del proyecto fueron formulados para conocer estado actual de los predios, el tipo de las aves criollas campesinas, la producción, el grado de integración entre la agricultura y la explotación de las aves, las condiciones socioeconómicas de la familia campesina y los conocimientos, usos y tradiciones relacionadas con las gallinas.

La fase siguiente se propuso como objetivo tomar la información y las observaciones de campo para diseñar y formular diferentes metodologías que están siendo socializadas entre la comunidad para que una vez discutidas y adoptadas sean puestas en marcha mediante proyectos de gestión solidaria y asociativa, con apoyo de instituciones y organizaciones campesinas.

METODOLOGÍA

El trabajo de campo fue realizado en Palmira, Valle del Cauca, Colombia con una muestra de 388 aves criollas ubicadas en tres pisos térmicos. Fue iniciado a partir de la determinación y diagnóstico de los predios campesinos y de la caracterización morfológica y productiva de las gallinas criollas que eran explotadas por los campesinos. La afectación de los predios por las actividades agropecuarias sobre el agroecosistema fue identificada aplicando la metodología denominada “Marco para la Evaluación de Sistemas de Manejo de recursos naturales mediante Indicadores de Sostenibilidad” MESMIS, con la cual mediante la determinación de los indicadores de sostenibilidad de las explotaciones, se logra obtener datos para la evaluación y valoración del predio, obteniendo así información para plantear y formular las propuestas metodológicas que basadas en los principios agroecológicos permitan orientar la progresiva conversión del sistema convencional tradicional a un sistema ambientalmente sostenible. En nuestro caso la metodología MESMIS fue aplicada para hacer la valoración de los predios para proponer metodologías apropiadas para encausar la producción avícola familiar con técnicas con las cuales se brinde oportunidades para lograr el manejo de la producción avícola campesina bajo condiciones viables de rentabilidad económica y sostenibilidad ambiental.

El estudio de la variabilidad morfológica de las Gallinas Criollas (GC), se realizó mediante labores de campo consistentes en la localización, identificación y selección de explotaciones campesinas donde se manejan...
solamente aves criollas, para determinar en ellas las características morfológicas cuantitativas y cualitativas que permitan establecer los descriptores fenotípicos que orienten la búsqueda de atributos en dichas aves que justifiquen su uso y conservación.

La caracterización productiva fue desarrollada en una granja donde se tomaron los registros de postura y de crecimiento en condiciones de manejo, alimentación y sanidad que permitieron a las aves expresar su capacidad productiva sin restricciones ambientales y sanitarias.

RESULTADOS Y DISCUSIONES

Se observaron características comunes en los predios encuestados, por lo general: bajo uso intensivo de los suelos, reducido uso de abono de síntesis, alto uso de materiales sobrantes de la producción. No existe mecanización dentro de los cultivos. En todos los predios, el ingreso económico proveniente de la venta avícola es importante, ya que, en algunos casos, es el único ingreso de capital del predio. Utilizan distintos tipos de alojamiento, el pastoreo va desde el totalmente extensivo, el pastoreo por horas o períodos al día y el totalmente confinado. El tipo de explotación extensiva predomina en todas las zonas. El agua es, quizá, el punto más crítico, ya que la mayoría tiene un uso de agua de acueducto, sin reservorios ni fuentes acuíferas cercanas, generando así mayor costo de producción. No hay la costumbre de recolectar aguas lluvias ni hacen tratamiento de aguas residuales. No existen cultivos importantes y en cría las aves por lo general, no tienen cultivos que ayuden a la alimentación de la familia ni de las aves. El sistema agrario está desvinculado del sistema pecuario.

La determinación de las características morfológicas cualitativas de las gallinas criollas provenientes de tres localidades del municipio de Palmira, Valle del Cauca (Colombia), ubicadas entre 1000 y 1300 m.s.n.m., señalan que el tipo del plumaje liso (97.06%) predominó sobre el rizado (2.94%); los colores del plumaje rojizo y negro (27.45% y 24.51%) predominaron sobre los claros; la presencia de plumas en los tarsos fue alta (43%). El color de la piel mostró predominio de la blanca sobre la amarilla y en los tarsos predominó el amarillo; la forma de la cresta predominante fue la simple y que en las orejuelas de color rojo predominó sobre el blanco y sus mezclas. Las características cualitativas se analizaron mediante Estadísticos simples, Frecuencia y Correspondencia Múltiple y las características cuantitativas se analizaron mediante Clúster; fue utilizado el Software SAS Versión 9.2.

El registro morfométrico de las características cuantitativas de las aves se realizó por pesaje, la medición del largo corporal, largo del muslo y pierna y el perímetro pectoral; con los valores obtenidos se estableció el valor medio (mínimo y máximo), la desviación estándar y el coeficiente de variación y finalmente con los valores morfométricos se realizó la comparación entre sexos mediante la prueba de t para obtener el Coeficiente de Correlación para cada sexo. Los resultados morfométricos señalan que el peso corporal y las medidas corporales fueron superiores en los machos frente a las hembras (P < 0.05).

CONCLUSIONES

El avance obtenido de resultados hasta la fecha indica que existe una amplia variedad de morfotipos de GC, resultante del cruce entre aves ancestrales con diferentes razas y linajes de variado fenotipo y diversa procedencia pertenecientes al grupo de aves comerciales convencionales. Las poblaciones analizadas presentan algún grado de Contaminación Genética a causa de la utilización de machos de recría de las razas comerciales. Este proceso es causa de la Erosión Genética, lo que junto con la sustitución por razas comerciales, está causando la pérdida del patrimonio y biodiversidad aviar representado por las GC. El riesgo de la pérdida de la biodiversidad genética aviar debe ser afrontado mediante procedimientos que involucren la conservación, el fomento y mejoramiento de las aves criollas, junto con la capacitación sobre prácticas agroecológicas, que permitan establecer sistemas de producción sostenibles, en los cuales se mejoren las condiciones de manejo y sanidad de las aves a fin de que puedan lograr niveles satisfactorios de producción.
En el trabajo de campo con las comunidades campesinas se dio iniciación a la aplicación de las metodologías de investigación, acción, participación, con la finalidad de lograr la motivación e integración de la comunidad al proceso investigativo, con miras a que en la posterior utilización de los resultados en el proceso de transferencia tecnológica, se facilite y permita la aplicación y apropiación del conocimiento en beneficio de los usuarios.

En términos generales el proyecto ha buscado y pretende contribuir al mejoramiento de las condiciones de producción agropecuaria en las unidades familiares rurales y periurbanas, donde las limitaciones de espacio y recursos son condicionantes para alcanzar niveles apropiados de desarrollo y bienestar.

Los productores practican la explotación de aves de postura criollas principalmente por la tradición familiar, por el beneficio económico y por la fuente alimentaria para el consumo.

Con la implementación de tácticas que permitan mejorar el sistema productivo, se puede aumentar la productividad y eficiencia del mismo, permitiendo así que el productor reciba mejores ganancias por la venta del producto. Además de incluir el conocimiento tradicional a la explotación, la facilidad de la tenencia de estos animales permite que se alcance un mayor aprovechamiento por sus cualidades de adaptación y resistencia.

Las metodologías Sostenibles que son propuestas por el proyecto son: Manejo de la Reproducción de la gallina criolla, Incubación Artificial de Huevos de gallina criolla, Cría y Levante de Pollas Criollas, Engorde de Pollos Criollos, Producción de Huevo con la gallina Criolla, Técnicas de Caponización en Pollos Criollos, Sistemas de Alojamiento y Pastoreo de Aves Criollas, Preparación de Raciones con materias primas no convencionales, Producción de Materias Primas no convencionales, Manejo Sanitario y Bioseguridad en Gallinas Criollas y Tratamiento y Medicación con productos Homeopáticos y Naturales.

REFERENCIAS BIBLIOGRÁFICAS

• Sánchez de Prager, M. Agricultura Familiar Agroecológica (2017). Colombia.
CARTELES/PÓSTERES RELACIONADOS

DIAGNÓSTICO ECOSISTÉMICO PARA LA PREVENCIÓN DE LA TUBERCULOSIS BOVINA Y CAPRINA EN EXTREMADURA

Lozano Diéguez B2, Catalán Balmaseda M1,2, Moreno Marcos G1, Palomo Guijarro G1,2, Martínez Pérez R1, Benítez Medina JM1, Hermoso de Mendoza Salcedo J1

1Universidad de Extremadura Avda. Virgen del Puerto, s/n, E-10600 Plasencia
2ACTYVA S. Coop., Avda. Hernán Cortés 46, Bº, Apdo. 385, E-10080 Cáceres
b.lozanodieguez@bbbfarming.net

RESUMEN: La tuberculosis es una zoonosis sujeta a campaña de control oficial que está íntimamente relacionada con los agroecosistemas de pastizales. Como enfermedad multifactorial con amplio rango de hospedadores, su control está suponiendo un gran coste económico para la Administración y sobre todo para las ganaderías extensivas y por ende ecológicas. El objetivo de este estudio (en el marco del convenio firmado entre la Junta de Extremadura y la Universidad de Extremadura, 2016-2020) es determinar la salud ambiental de una serie de dehesas de orientación cinegética, ganadera o mixtas. Así como proponer medidas correctoras a nivel de manejo de pastos, sanitario y financiero para mejorar las condiciones de manejo de las fincas que permitan la prevención de la tuberculosis. El diagnóstico del ecosistema (suelo, ciclos de nutrientes, agua y energía; y biodiversidad) se determina mediante la aplicación del Índice de Salud de Pastizales o de la Dehesa, desarrollado por ACTYVA S. Coop a partir del estándar GRASS de Ovis21 y The Nature Conservancy. Asimismo se hace una caracterización funcional de la vegetación y una estimación de la capacidad de carga de las fincas mediante el método de la parcela de ración diaria para animal tipo. Posteriormente los resultados de la salud ambiental y capacidad de carga de las fincas se correlacionan con la prevalencia de tuberculosis y parámetros de salud. La hipótesis de partida es que las condiciones ambientales permiten un mejor ciclo de nutrientes de los cuales ya han sido relacionados anteriormente con una mayor resistencia ante esta enfermedad.

Palabras clave: agroecología, ganadería ecológica, ganadería extensiva, planificación del pastoreo, salud ambiental
EL CULTIVO DEL MEJILLÓN EN GALICIA. PROBLEMAS, RETOS Y OPORTUNIDADES

Cano Guervós A

Asociación Medioambiental Estela. C/ Arzobispo Malvar 7, 1C, E-36002 Pontevedra
Tel: +34 697 763 887; Email: canoa12@gmail.com

Las bateas de mejillón se disponen en polígonos. Para la ordenación del cultivo debe cuantificarse la capacidad de carga de cada polígono y batea y fijar la posición de los artefactos fondeados en función del alimento disponible. Una densidad de bateas excesiva, una elevada demanda de filtración de las aguas, menos fitoplancton disponible, conllevan menores rendimientos y menor calidad de la vianda.

El fondeo de las bateas produce una acumulación de restos de flora y fauna asociada y biodeposiciones del molusco. Ante el incremento de las cantidades de residuos, la acción de los organismos detritívoros es insuficiente, llegando a la colmatación del fondo marino.

Para la solución de estos problemas con un enfoque multidisciplinar, proyectos recientes como “AquaSpace”, tienen como objetivo incrementar el espacio y la calidad del agua disponible, adoptando el “Ecosystem Approach to Aquaculture” (EAA), mediante la aplicación de tecnologías GIS a la ordenación del espacio marino (MSP). Optimizar producción y rendimientos es posible con la gestión de la densidad de organismos filtradores y alimento disponible.

Palabras clave: batea, biodeposiciones, green design, Mytilus gallo-provincialis
POTENCIAL DE LOS MONOGÁSTRICOS EN GANADERÍA ECOLÓGICA: PORCINO EN ESPAÑA

Sanz-Fernández S, Díaz-Gaona C*, Reyes-Palomino C, Sánchez-Rodríguez M, Rodríguez-Estévez V

Cátedra Ganadería Ecológica Ecovalia-Clemente Mata. Campus Universitario de Rabanales. Ctra. Madrid-Cádiz Km. 396. E-14071, Córdoba; Tel: +34 957212074/ +34 607197863
*pa2digac@uco.es

RESUMEN: España es el cuarto productor porcino mundial y el segundo de la UE (censo de 29.231.595 cabezas a final de 2016). El porcino ibérico representa el 10,8% del censo; pero aunque éste se asocie a la dehesa, únicamente el 20% es “de bellota” (el 80% es “de cebo” o pienso, mayoritariamente intensivo). No obstante, el consumidor asocia el ibérico a la dehesa y a una producción tradicional, próxima a la ganadería ecológica.

El porcino ecológico sólo representa un 0,03% del censo español y, aunque España es el segundo productor de porcino convencional de la UE, este censo sólo es el 1% del porcino ecológico de la UE. A diferencia de España, en Europa éste está aumentando; pero queda mucho por hacer, porque Dinamarca, que es el máximo productor de cerdo ecológico, éste sólo supone el 2% de su censo.

Una de las razones alegadas es la dificultad para encontrar piensos ecológicos. Sin embargo, España tiene suficiente superficie agraria ecológica para promover esta producción. La relación entre censos de porcino y superficie agraria ecológica es un indicador del potencial existente. Sin embargo, Castilla-La Mancha, que tiene la mayor superficie ecológica cultivada, sólo produce el 0,5% del porcino ecológico español.

En cuanto a la comercialización, la comparación de precios entre diferentes establecimientos y productos muestra un incremento medio del 158% con respecto al cerdo blanco convencional (del 85% al 187%).

En conclusión el porcino ecológico es un sector con gran potencial aunque actualmente representa una ínfima parte de la producción ecológica.

Palabras clave: comercio ecológico, producción sostenible, situación de mercado
CONCLUSIONES DEL SCIENCE BAZAAR DEL PROYECTO OK NET ECOFEED PARA LA BÚSQUEDA DE ALTERNATIVAS EN LA ALIMENTACIÓN DEL PORCINO ECOLÓGICO

Díaz-Gaona C*, Reyes-Palomo C, Sanz-Fernández S, Sánchez-Rodríguez M, Rodríguez-Estévez V

*pa2digac@uco.es

RESUMEN: La alimentación del porcino ecológico requiere de alternativas que cumplan, entre otras, tres condiciones: satisfacción de las necesidades nutrítivas, origen local, y bajo coste. La búsqueda de estas alternativas es uno de los objetivos del proyecto OK NET Ecofeed financiado por el programa europeo H2020. En el marco de éste el 17 septiembre 2018 se celebró una reunión de 14 expertos en la sede de Ecovalia en Sevilla. Las conclusiones fueron: I) Es necesario recuperar el empleo de los productos “olvidados” por la ganadería convencional (ej. orujo de uva o de aceituna) y buscar nuevos productos (ej. algas o insectos). II) Para estos productos alternativos y para los subproductos de la agricultura ecológica se requiere: conocer y/o actualizar los valores nutricionales, conocer la disponibilidad geográfica y estacional, valorar el coste económico de su procesado (transporte, conservación, etc.). III) Es necesario probar técnicas de procesado y conservación de los productos (ej. desecación al sol del orujo de aceituna y posterior mezcla con sal). IV) Se requieren auxiliares tecnológicos que mejoren la conservación y la digestibilidad de las materias primas alternativas (ej. ácido cítrico). V) Además de con piensos hay que trabajar con alimentos o mezclas complementarias para lo obtenido en pastoreo o proporcionado por los recursos locales. VI) Se necesita buscar materias primas proteicas (ej. algas o insectos). VII) Hay que intentar diseñar dietas de acuerdo con el reglamento de la ganadería ecológica pero sin aumentar los niveles de proteína, para evitar diarreas y un aumento de la contaminación por la excreción del exceso de nitrógeno. VIII) Se requiere un vademécum actualizado de auxiliares tecnológicos, fitobióticos y otros nutraceúticos que estén autorizados y sean comercializados para ganadería ecológica.

Palabras Clave: alimentos de proximidad, alimentación porcina, materias primas alternativas
MATERIAS PRIMAS ALTERNATIVAS PARA UNA ALIMENTACIÓN 100% ECOLÓGICA Y DE ORIGEN LOCAL: RESULTADOS DEL PROYECTO OK-NET ECOFEED PARA EL CERDO

Rodríguez-Estévez V, Reyes-Palomo C, Sanz-Fernández S, Sánchez-Rodríguez M, Díaz-Gaona C*

*pa2digac@uco.es

RESUMEN: El proyecto OK-Net EcoFeed tiene por objetivo conseguir una alimentación 100% ecológica y de origen local para los monogástricos. Una de las primeras fases ha sido la búsqueda de ingredientes alternativos basados en recursos locales y aprovechando la omnivoría del cerdo. Para ello se ha revisado el conocimiento científico y práctico disponible. Entre los alimentos encontrados destacan: I) Frutos forestales: bellotas (Quercus sp.), castañas (Castanea sativa), algurubbas (Ceratonia siliqua) y acebuchinas (Olea europaea var. sylvestris); pastures. II) cultivos forrajeros: alfalfa (Medicago sativa), mezclas de cereales y leguminosas, berzas (Brassica oleracea var. capitata), grelos (B. rapa), esparceta (Onobrychis viciifolia). III) Cultivos hortícolas: tomate (Solanum lycopersicum), col (Brassica oleracea L. var Acephala), calabacín (Cucurbita pepo), calabaza (Cucurbita maxima). IV) Frutas: higos (Ficus carica), chumbos (Opuntia ficus-indica). V) Forrajes arbóreos: morera (Morus alba) y otras (Ulmus minor, Crataegus monogyna, Populus alba, U. glabra, Prunus avium, Fraxinus excelsior). VI) Raíces y tubérculos. VII) Rastrojos y hierbas adventicias estivales. VIII) Subproductos: suero, orujo de aceituna, huesos de aceituna, orujo de uva. IX) Leguminosas grano: altramuces (Lupinus spp.), garbanzos (Cicer arietinum L.), habas (Vicia faba), guisantes (Pisum sativum) y otras legumbres tradicionales (Vicia monanthos, V. narboensis, Trigonella foenum-graecum, Lathyrus sativus L. cicero y V. ervilia). X) Raíces silvestres hozadas: helecho (Pteridium Aquilinum), juncia (Cyperus rotundus), cardo (Eryngium campestre) y gamones (Asphodelus sp). Además una revisión etnobotánica muestra que más de 140 especies fueron utilizadas en otro tiempo como forraje o pienso para los cerdos.

Palabras Clave: autosuficiencia, conocimiento tradicional, etnobotánica, forrajes, omnivoría, subproductos
MESAS
REDONDAS
MR1. POLÍTICAS QUE IMPULSAN LA AGROECOLOGÍA

POLÍTICAS QUE IMPULSAN LA AGROECOLOGÍA:
PLANES AGROECOLÓGICOS LOCALES EN EL MARCO DEL MÉTODO TERRAE

Martín M
Ayuntamiento de Redueña
Ayuntamiento miembro la Red TERRAE, Plaza de la Villa, 2, E-28721 Redueña (Madrid)
+34 606346071; adl@reduena.com; tierrasagroecologicas.es

RESUMEN: El MUNICIPALISMO debe adquirir un papel relevante participando y comprometerse en un modelo actual de gobernanza agraria, mediante políticas agroecológicas locales que desarrollen y garanticen actuaciones integradas en el ámbito del desarrollo sostenible, la soberanía alimentaria, la biodiversidad, el empleo, la custodia del territorio y la innovación social.
Los municipios agroecológicos constitutivos de la Red TERRAE, han diseñado una Estrategia de Desarrollo Agroecológico, como itinerario hacia el diseño de Políticas Agroecológicas Locales, MÉTODO TERRAE, que supone, recuperar paisaje, cultura agraria, cuidado de la tierra, custodia del territorio, empleo, fijación de población, crecimiento económico y mejora de la calidad de vida y de los alimentos. No es la panacea del crecimiento económico local, pero sí es la OPORTUNIDAD de activar y dinamizar los recursos endógenos, de integrar producciones con actividades turísticas, culturales, medioambientales y educativas convirtiéndose en el motor de desarrollo de dichos territorios.
Las Políticas Agroecológicas Locales se dirigen a consolidar y a asentar a una generación de nuevos agricultores agroecológicos que garantizarán la sostenibilidad de un paisaje agrario abandonado y desnaturalizado y a generar oportunidades que mitiguen el despoblamiento rural. Se materializan en Planes Agroecológicos Locales contribuyen a determinar la Agroecología como eje estratégico y transversal en las Políticas de Desarrollo Locales, a mejorar la capacidad de la agricultura y la ganadería para garantizar su adaptación al Cambio climático, a aprovechar los biorresiduos para reducir costes de gestión, consumo de energía y de emisiones de GEI, a fertilizar los suelos agrarios como reservas de carbono que permitan obtener productos más sanos y sanear la degradación de las tierras, a planificar e innovar en la biodiversidad de productos de temporada, a incluir al sector comercial local en circuito corto como prescriptores del producto local y a innovar en la oferta de platos agroecológicos de temporada. Y se ejecutan con Proyectos Agroecológicos Locales como Mercados de productores, banco de tierras y semillas, agrocompostaje y compostaje comunitario, jardines comestibles, rebaños y huertos comunitarios, Escuelas Itinerantes de emprendimiento agroecológico, Ferias Artesanas, Laboratorios del Gusto TERRAE, etc.

Palabras clave: agroecología, cambio climático, despoblamiento, gobernanza agraria, municipalismo, sistemas agroalimentarios locales
IMPULSANDO LA AGROECOLOGÍA DESDE LA ADMINISTRACIÓN LOCAL EN ORDUÑA

Aginako I, Imaz MJ
Ayuntamiento de Orduña, Foru Plaza, Orduña E-48460
ekoizpen@urduna.com

RESUMEN: En el municipio de Orduña, el Ayuntamiento ha impulsado la agroecología a través de cambios en sus políticas públicas. La apuesta municipal, junto con el trabajo de los y las agriculturas y otros colectivos locales, está definiendo la transición agroecológica del municipio.

Desde inicios de los 2000, el ayuntamiento ha apostado por el desarrollo agroecológico del sistema alimentario del municipio, para lo que en el año 2006 puso en marcha el servicio de dinamización local agroecológica, lo que ha resultado una herramienta clave en todo el desarrollo posterior.

Diferentes colectivos locales, principalmente las asociaciones que agrupan a los y las productoras, han marcado las necesidades, y junto con el servicio de dinamización han marcado los ritmos de trabajo. El Ayuntamiento ha dado solidez a la transición reflejando la apuesta por el desarrollo del sistema alimentario en varias de sus políticas públicas.

Como muestra de la apuesta municipal, en 2011 el Ayuntamiento presenta el manifiesto a favor de la soberanía alimentaria con los votos a favor de todos los grupos municipales. En 2014 se apuesta por la compra pública de alimentos para el consumo colectivo en la cocina municipal. En los siguientes años se actualizan las ordenanzas reguladoras de los aprovechamientos de la tierra pública, lo que facilita la incorporación de jóvenes en la agricultura, y la renovación de la edad media de las personas que disfrutan de los bienes comunes.

En la última década el Ayuntamiento va incorporando poco a poco criterios agroecológicos para el desarrollo del municipio.

Palabras clave: dinamización local agroecológica, políticas públicas, sistema alimentario
RESUMEN: En abril de 2016 se aprobó un proyecto INTERREG EUROPE denominado SME ORGANICS cuyo objetivo es la mejora de la competitividad y sostenibilidad empresarial de PYMES en ecológico en la que participan once países europeos, de ocho regiones.

Con este proyecto se pretende mejorar las políticas, de las regiones europeas participantes, relacionadas con el sector ecológico. Para alcanzar el objetivo, de acceder a nuevos mercados, de fomentar el establecimiento de relaciones internacionales para mejorar la capacidad comercial y productiva de las empresas y así como aumentar las oportunidades de éxito de empresas que participan en la producción, transformación y venta de alimentos ecológicos.

Para ello, los socios han trabajado con los agentes del sector en su región, han hecho un estudio de diagnóstico y un análisis dafo para terminar con un plan de acción. Además, los socios y algunos agentes regionales tuvieron la oportunidad de realizar visitas para conocer las buenas prácticas del resto de regiones del proyecto.

Uno de los resultados del proyecto ha sido la elaboración de un Plan Ecológico para Navarra, así como para el resto de regiones. Las buenas prácticas identificadas en todos los países han servido a cada región para que decida que acciones quiere implementar en su propia región.

Se presentarán las principales acciones derivadas del proceso de aprendizaje dentro del SME ORGANICS con las políticas relacionadas en cada una de ellas que las apoyarán o financiarán.

Las regiones objeto de estudio son: New Aquitaine (Francia), Puglia Region (Italia), Lombardy (Italia), North West Romania (Rumanía), Lodzkie Region (Poland), Seinajoki (Finland), Aargau (Suiza) y Navarra (España).

https://www.interregeurope.eu/smeorganics/

Palabras clave: agricultura ecológica, alimento ecológico, políticas, política Agraria
HERRAMIENTAS GLOBALES PARA REFORZAR LO LOCAL

Álvarez I

URGENCI Internacional.
Maison de la vie associative 13400 AUBAGNE (France)
isa.urgenci@gmail.com

RESUMEN: Sin duda en los últimos años estamos viviendo un momento político bien interesante en lo que se refiere a la agroecología y su relación con las políticas públicas. Las crudas evidencias del cambio climático y sus consecuencias, así como la articulación de diferentes sectores de la Sociedad Civil que trabajan hacia la Soberanía alimentaria con la agroecología como pilar fundamental, son algunos factores que han llevado a un reconocimiento en espacios institucionales de la necesidad de impulsar el modelo agroecológico.

En este sentido, son fundamentales las políticas locales tanto a nivel municipal como regional o Estatal. Pero en la medida en las amenazas y la política son globales es necesario incidir en espacios más amplios.

En los últimos años la Sociedad Civil está incidiendo en múltiples foros internacionales para lograr dotarse de herramientas que apoyen la propuesta agroecológica. La Declaración de Derechos campesinos en Naciones Unidas o el proceso abierto en la actualidad sobre Directrices Voluntarias sobre Sistemas alimentarios y Nutrición en el Comité de Seguridad alimentaria son algunos ejemplos de herramientas de incidencia que pueden contribuir a reforzar el desarrollo de políticas locales.

Estas herramientas se ven lejanas y muchas veces se ignoran pero es clave contar con voz en espacios internacionales visibilizando que el modelo agroecológico y no falsas recetas son las que pueden conducir a un mundo que alimente a las personas y al planeta.

Palabras clave: articulación, global, herramientas, incidencia
AVANCES DEL I PLAN VALENCIANO DE PRODUCCIÓN ECOLÓGICA: BALANCE DEL PRIMER TRIENIO 2015-17

Cháfer Nácher MT¹, Gomis Moratal I¹, Roselló Oltra J², Domínguez Gento A²

¹Direcció General de Des. Rural i Politica Agrària Comuna, Conselleria d’Agricultura, Medi Ambient, Canvi Climàtic i Des. Rural, Generalitat Valenciana, C/ de la Democràcia, 77. Ciutat Adva. 9 d’octubre, E-46018 València, Tel: 961247277; chafer_mar-nac@gva.es; gomis_isa@gva.es
²Servei de Producció Ecològica, innovació i tecnologia (DG DRIPAC, GVA), Estació Experimental Agrària de Carcaixent, Pda. Barranquet, s/n, 46740 Carcaixent; 034-962469863; rosello_josolt@gva.es; dominguez_alf@gva.es

RESUMEN: El 17 de noviembre de 2016 se presentó en Alzira el I Plan Valenciano de Producción Ecológica (I PVPE) tras de más de 1 año de trabajo codo con codo entre el sector y la administración, cumpliendo el compromiso del Pacte del Botànic del Govern Valencià, que incluyó dentro de sus líneas de trabajo la política de desarrollo rural sostenible y del impulso hacia la transición ecológica de la agricultura valenciana. En este I PVPE se recogían 5 líneas estratégicas de actuación, con más de 60 acciones a ejecutar para lograr alcanzar los principales objetivos pactados con el sector.

Poco más de dos años después, el balance es más que positivo. Algunas cifras nos ponen en contexto: se ha pasado del 7% de la SAU de la Comunitat a más del 9%, con unas 100.000 ha totales y más de 2.600 operadores. En el período de vigencia del PVPE (2015-17) se ha aumentado un 40% la superficie de producción ecológica frente al 5,73% del trienio anterior (2012-14). En cuanto a operadores, ha ido de un 5% en los 3 años anteriores más de un 25% en el del PVPE.

Se han diseñado y ejecutado una serie de cambios en líneas de subvenciones vigentes y creado nuevas con las que posibilitar esta transición ecológica. Son destacables algunas acciones, como el duplicado el presupuesto de ayudas directas a la producción ecológica, la priorización en diversas ayudas del PDR (jóvenes agricultores, mejora para fincas o industrias, Cooperación) o para la distribución de frutas y hortalizas en centros escolares, subvenciones propias a programas y proyectos educativos y de formación y divulgación para estrategias de dinamización agroecológicas o las ayudas a la formación, investigación y experimentación agroecológica.

Facilitar la creación, asesoramiento, formación y dinamización de diferentes agrupaciones de productores y empresas ecológicas en diferentes municipios, potenciar la AE en espacios protegidos, la mejora de la normativa de venta de proximidad de productos primarios y agroalimentarios o el Decreto de fomento de una alimentación saludable y sostenible en centros de la Generalitat (para servicios de restauración colectiva, que deberán incorporar obligatoriamente frutas y hortalizas frescas de temporada y productos ecológicos), son algunas de las acciones que se han desarrollado junto a otras administraciones.

Palabras clave: alimentación saludable, dinamización agroecológica, diversidad agraria, experiencias innovadoras y sostenibles, fertirrigación comunitaria, variedades tradicionales, venta de proximidad
LAS POLÍTICAS AGROECOLÓGICAS EN FRANCIA: EL IMPULSO DE UNA ACCIÓN COLECTIVA, POLIFACÉTICA Y TERRITORIALIZADA

Charbonneau M

Laboratoire PASSAGES (UMR 5319 - UPPA/UB/UBM/ENSAPBx/CNRS)
Universidad de Pau y des los países del Adour (UPPA)
Institut Claude Laugénie,
Domaine universitaire, 64000 Pau
marion.charbonneau@univ-pau.fr

RESUMEN: Hoy, la agricultura francesa está marcada por un triple movimiento: el aumento de las preocupaciones por la salud y el medio ambiente, el reconocimiento internacional de la agroecología como una alternativa a la agricultura convencional, y un doble movimiento de ecologización y de territorialización de las políticas públicas. En este contexto la última LAAAF - "Loi d’avenir pour l’agriculture, l’alimentation et la forêt" - de 2014 colocó a la agroecología en el corazón del proyecto agrícola francés. Considerando que el nivel local y la territorialización de la acción pública constituyen palancas esenciales para la transición agroecológica -porque confieren una forma de legitimidad a la acción sectorial y garantizarían el éxito de los proyectos- los instrumentos propuestos favorecen a un modo de acción participativo y ajustable, que implica a una pluralidad de actores. En este contexto, la transición agroecológica actual se caracteriza por una diversidad de instrumentos agroecológicos y territorializados que abren el campo de posibilidades y permiten que los actores se organicen para co-construir proyectos de territorio capaces de hacer evolucionar a las prácticas agrícolas. La latitud que se deja a los actores de estos proyectos autoriza a diversos enfoques y implementación de los procedimientos. A través de la presentación de una gama de instrumentos - Proyectos de alimentación territorial (PAT), Grupos de Interés Económico y Ambiental (GIEE), granjas DEPHY, Medidas agroambientales y climáticas (MAEC) - existente en Francia esa ponencia analizará tanto los mecanismos que subyacen a estos instrumentos como los resultados que producen. El estudio de sus implementaciones en Nueva Aquitania dará una idea concreta del tipo de agroecología que se está etiquetando y estabilizando. Demostrara la diversidad de los procesos en marcha, tanto en sus funcionamientos como en sus contenidos.

Palabras clave: Francia, instrumentos agroecológicos, Nueva Aquitania, territorio, proyectos
MR2. NUEVO REGLAMENTO EUROPEO DE AGRICULTURA ECOLÓGICA

EL NUEVO REGLAMENTO EUROPEO PARA LA PRODUCCIÓN AGRARIA ECOLÓGICA

Calafat A

Sociedad Española de Agricultura Ecológica / Agroecología (SEAE)
Camí del Port s/n, km 1, Catarroja (Valencia)
proyectos@agroecologia.net

RESUMEN: El 30 de mayo se aprobó el Reglamento UE 2018/848 del Parlamento Europeo y del Consejo, sobre producción ecológica y etiquetado de los productos ecológicos, después de 4 años de negociaciones. La Comisión lanzó la primera propuesta en marzo de 2014 y hasta que fue aprobado por el Parlamento, el sector ecológico trabajó mucho aportando propuestas de mejora. SEAE-Sociedad Española de Agricultura Ecológica, Intereco- asociación de autoridades públicas de control y certificación de la producción ecológica, todas y cada una de las entidades de control y certificación, algunas asociaciones de operadores y de consumidores ecológicos hemos trabajado en red con otras organizaciones europeas del sector agroecológico, con organizaciones ambientalistas, organizaciones de productores, partidos políticos y algunos gobiernos. El texto aprobado recoge muchas de esas aportaciones e incluye objetivos más ambiciosos en aspectos como el mantenimiento de la fertilidad de los suelos a largo plazo, el refuerzo de la relación entre cultivo y suelo, el uso de preparados vegetales, la posibilidad del uso e intercambio de semillas y material de propagación de variedades heterogéneas, los requisitos para el uso de aromatizantes, la promoción de los canales cortos de distribución y las producciones locales, la posibilidad de la certificación de grupos de operadores, la identificación de insumos utilizables en producción ecológica y la prohibición del uso de nanomateriales artificiales. Pero aún queda mucho por definir por parte de la Comisión, mediante actos delegados y de ejecución, antes de que el Reglamento 2018/848 entre en vigor el 1 de enero de 2021.

Palabras clave: aplicación, nueva normativa, producción ecológica
MR3. AGROECOLOGÍA Y COOPERACIÓN EN LOS OBJETIVOS DE DESARROLLO SOSTENIBLE (ODS)

AGROECOLOGÍA: SU CONTRIBUCIÓN A LOS ODS

Salgado MN

Movimiento Agroecológico de América Latina y el Caribe (MAELA)
zr.agroecologia@gmail.com

RESUMEN: Los Objetivos de Desarrollo Sostenible (ODS) son el nuevo horizonte que acordaron lograr y animar a través de acciones concretas y medibles para combatir la pobreza y el hambre, los países del mundo.

Un principio de acción clave es que para lograr los mismos objetivos que su versión anterior de los Objetivos de Desarrollo del Milenio, no cumplidos, se deben revertir las vías para lograrlos.

He aquí la oportunidad para la AGROECOLOGÍA: LOS ESTADOS MIEMBROS deben de permitirse abrir el margen de análisis y puesta en marcha de modelos agroalimentarios, diversos y diferentes al modelo homogeneizante actual: el agronegocio como instrumento dogmático que es vendido como el más eficiente y capaz de revertir los problemas de la seguridad alimentaria y la nutrición.

Pero además la oportunidad que deben visibilizar otros actores claves que hoy están dando respuesta al hambre en el mundo, otros actores del ámbito rural: la agricultura familiar capesina e indígena. El año de la agricultura familiar organizado por FAO, dio evidencia suficiente para mostrar que somos capaces de producir hoy en día el 70 % de los alimentos del mundo.

Y por último, la Agroecología, permite explorar con evidencia creciente, el potencial polifuncional de los sistemas agroalimentarios organizando el territorio para generar líneas interconectadas que dan respuestas polivalentes a la problemática de la pobreza, hambre y malnutrición de los pueblos.

Palabras clave: agricultura familiar, campesino, hambre, indígena, mundo
EL DERECHO A LA ALIMENTACIÓN Y A LA NUTRICIÓN, LA AGROECOLOGÍA Y LOS ODS

Morena MA
FIAN Internacional
Willy-Brandt-Platz 5, 69115 Heidelberg, Alemania
morena@fian.org

RESUMEN: En su informe de 2010, el Relator del Derecho a la Alimentación de Naciones Unidas hizo un llamamiento a los Estados a facilitar la transición del sistema alimentario hacia la agroecología a fin de combatir la crisis alimentaria, la pobreza y el cambio climático. Concluye que la agroecología no sólo "presenta fuertes conexiones conceptuales con el derecho a la alimentación" sino que también ha dado resultados para avanzar rápidamente hacia la realización de ese derecho para grupos vulnerables en varios entornos y países. Desde entonces, la urgencia de tal llamamiento se exacerbó. Existe hoy un reconocimiento generalizado del fracaso del sistema agroindustrial. El número de personas que sufren hambre ha aumentado por tercer año consecutivo. Y la agroindustria sigue siendo una de las principales causas del cambio climático. Nuestros sistemas alimentarios se encuentran en una encrucijada.

El enfoque del derecho a la alimentación presenta elementos importantes para fomentar políticas que favorezcan la agroecología. La Declaración de los Derechos del Campesinado, que se espera sea adoptada a fin de año, reconoce por primera vez de manera explícita el derecho a la tierra y hace referencia a la agroecología y el derecho a decidir los sistemas alimentarios. Los ODS, si bien tienen ciertas limitaciones, contienen aspiraciones importantes relacionadas, incluyendo el fin de la pobreza, el hambre cero, la salud y el bienestar, y la reducción de las desigualdades. Desde las organizaciones y movimientos sociales debemos utilizar estas herramientas para avanzar hacia la transformación de los sistemas alimentarios y la realización del derecho a la alimentación y a la nutrición de todas las personas.

Palabras clave: agroecología, derecho a la alimentación y a la nutrición, derechos del campesinado, ODS
AGROECOLOGÍA Y COOPERACIÓN. TRANSICIÓN AGROECOLÓGICA EN EL VALLE DEL RÍO SENEGAL, MAURITANIA

García Brea A, Darphin L

Centro de Estudios Rurales y Agricultura Internacional (CERAI)
Cami del Port s/n, E-46470 Catarroja, Valencia
laura.darphin@cerai.org.;Tel: 963521878

RESUMEN: En Mauritania se lleva a cabo un proceso de transición agroecológica en las regiones de Trarza y Gorgol, en el Valle del Río Senegal, bajo los principios de agroecología familiar y soberanía alimentaria. Además de la aplicación de técnicas agroecológicas, en la región se está avanzando en el conocimiento aplicado del sistema agro-pecuario familiar con estudios y diagnósticos, y en el refuerzo de capacidades a través de un plan de formación y acompañamiento basado en la metodología campesino a campesino, adaptado a las necesidades de los productores/as y en el seno de las organizaciones campesinas.

Se pretendía comprobar que un cambio de sistema disminuiría el abandono de tierras y atraería la atención de administraciones sobre la producción local. Se trabaja desde un plano horizontal en aprendizaje entre familias campesinas, en la recuperación de oficios ya abandonados, en la creación de biodiversidad a pie de finca, y desde un plano vertical en la inclusión de autoridades en el conocimiento generado, la creación de foros, etc.

Se han recuperado y/o mejorado 107 Has de cultivos de regadío y 104 Has de secano en manos del campesinado.

Desde la experiencia se considera clave la interacción entre agricultura y ganadería locales, la promoción de políticas y ajustes que apoyen las actuaciones (apoyo con la titularidad de la tierra, con el acceso a recursos, con los mercados locales, etc.), así como integrar en la parte productiva los procesos de venta posteriores que garanticen la continuidad.

Palabras clave: Mitigación, cambio climático, recuperación tierras, recursos naturales, local, género y equidad.
LA AGROECOLOGÍA, LOS ODS Y EL DESARROLLO SOSTENIBLE

Raigón MD

Sociedad Española de Agricultura Ecológica/Instituto de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV), Universitat Politècnica de València, Camino de Vera 14, E-46022 Valencia; Tel: 34 963877347 ext. 73470
mdraigon@qim.upv.es

RESUMEN: La agenda 2030 plantea 17 objetivos que abarcan las esferas económica, social y ambiental, cada uno de estos objetivos de desarrollo sostenible (ODS) proponen una serie de metas, para garantizar el grado el cumplimiento. El objetivo número 2 es “Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible”, para cumplir con este objetivo es necesario llevar a cabo una profunda reforma del sistema agroalimentario mundial, así como del modelo de consumo.

Si bien es cierto que el sector agrícola y ganadero ofrece soluciones claves para el desarrollo y es fundamental para la eliminación del hambre y la pobreza, la sobreexplotación del modelo productivo imperante, la degradación de los recursos (suelo, bosques, agua potable, océanos y biodiversidad) unido a los efectos de cambio climático, que repercuten sobre los recursos y aumenta la vulnerabilidad de las zonas de producción de alimentos, están poniendo en riesgo el fin último de la agricultura y la ganadería, así como la posibilidad de que los agricultores y ganaderos puedan ganarse la vida en las tierras que trabajan, lo que vulnera también el objetivo número 1 de los ODS, forzando a emigrar a otras zonas en busca de oportunidades.

Por ello, se necesita un cambio de paradigma productivo, realizar un giro hacia los modelos agroecológicos, que permitan una gestión adecuada de la agricultura, la silvicultura y la acuicultura, y que fruto de la buena gestión productiva se ofrezca comida nutritiva a todo el planeta, así como unos ingresos dignos a los productores, apoyando el desarrollo sostenible del modelo rural y la protección del medio ambiente.

Palabras clave: alimentación, pobreza, producción ecológica
COMITÉS

COMITÉ ORGANIZADOR LOCAL

J C Atienza (Arieco), Y Azofra (DG Agricultura), J B Chavarri (GdlR-La Grajera), H Cifre (SEAE), J Colas (Asoc consum.), Z Guadalupe (UR), E González (UR), V González (SEAE), B Iglesias (SEAE), D Lafuente (SEAE), M J Miriana (DG Agricultura), J L Moreno (SEAE), J Ochoa (SEAE), M Palacios (SEAE), P Salguero (CPAER), E López (DG Agricultura), G Villalba (Agrovidar)

COMITÉ DE HONOR

Luis Planas, Ministro Agricultura, Pesca y Alimentación (MAPA)
Jose Ignacio Ceniceros, Presidente de Gobierno La Rioja
Julio Rubio, Rector Universidad de La Rioja (UR)
Concepción Gamarra, Alcaldesa Ayuntamiento Logroño
Andrés Serrano, Presidente CPAER
Mª Dolores Raigón, Presidenta SEAE

COMITÉ CIENTÍFICO

A Cirujeda (CITA), F J Diaz (CIEMAT), A Dominguez (SPEIT-GV), C Fabián (UCIM), C García (JCCLM), R García (UIJAEI), V González (SEAE), J S Labrador (UNEX), A Lladosa (CAECV), J M Losada (UDC), V S Marco (UNIRIOJA), L Martinez (UMH), J R Mauleón (UPV/EHU), M M Moreno (UCLM), F B Navarro (IFAPAJA), M J Navarro (EPSO-UMH), X X Neira (USC), A Ortiz (NEIKER), D Palmero (EUITA-UPM), G Palomo (BBBFarming), G Pardo (CITA), MD Raigón (ETSIAWWW-UPV), M Rivera (UVIC), L Roca (SEAE), A Rodríguez (UPV), G Romero (EPSO-UMH), F J Sans (UB), E Sendra (EPSO-UMH), J M Torres (SEAE)

COMITÉ TÉCNICO-ASESOR

A Calafat (CBPBAE), M Escutia (Asoc. Vida Sana), P Galindo (La Garbancita Ecológica), F Llobera (SEAE), J Mateu (SSV-DARPA), J Ochoa (SEAE), M Pajaron (SEAE), M Paya (SEAE), A Plata (SEAE)
<table>
<thead>
<tr>
<th>Autor</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABAD SÁEZ J</td>
<td>64</td>
</tr>
<tr>
<td>ACEITUNOMATA L</td>
<td>416</td>
</tr>
<tr>
<td>ACHOTEGUI-CASTELLS A</td>
<td>338</td>
</tr>
<tr>
<td>ADAUD AM</td>
<td>550</td>
</tr>
<tr>
<td>ADARVE J</td>
<td>398</td>
</tr>
<tr>
<td>AGINAKO I</td>
<td>632</td>
</tr>
<tr>
<td>AGUILAR F</td>
<td>374</td>
</tr>
<tr>
<td>AGUILERA E</td>
<td>98, 109, 471</td>
</tr>
<tr>
<td>AGUIRRE ROSALES D</td>
<td>73, 129</td>
</tr>
<tr>
<td>ALCÁNTARA FA</td>
<td>134</td>
</tr>
<tr>
<td>ALMENAR L</td>
<td>467</td>
</tr>
<tr>
<td>ÁLVAREZ I</td>
<td>634</td>
</tr>
<tr>
<td>AMIÁN NOVALES I</td>
<td>57</td>
</tr>
<tr>
<td>AMORÓS F</td>
<td>243</td>
</tr>
<tr>
<td>ANDRÉS-SODUPE M</td>
<td>251</td>
</tr>
<tr>
<td>ANGEL-SANCHEZ D</td>
<td>470</td>
</tr>
<tr>
<td>ANGULO A</td>
<td>26</td>
</tr>
<tr>
<td>ANTICO H</td>
<td>260</td>
</tr>
<tr>
<td>ANTÓN L</td>
<td>516</td>
</tr>
<tr>
<td>ARCOS JM</td>
<td>399</td>
</tr>
<tr>
<td>ARREGI G</td>
<td>606, 619</td>
</tr>
<tr>
<td>ARREGLA S</td>
<td>296</td>
</tr>
<tr>
<td>ARROJO P</td>
<td>49</td>
</tr>
<tr>
<td>ASTIZ M</td>
<td>633</td>
</tr>
<tr>
<td>BALLESTER R</td>
<td>374</td>
</tr>
<tr>
<td>BARBOSA O</td>
<td>199</td>
</tr>
<tr>
<td>BARRERA SALAS C</td>
<td>328, 396</td>
</tr>
<tr>
<td>BARRIOS ARANGO L</td>
<td>84</td>
</tr>
<tr>
<td>BARTRÁ E</td>
<td>29, 188</td>
</tr>
<tr>
<td>BASTERRECHEA T</td>
<td>26</td>
</tr>
<tr>
<td>BEAUCOURT LE BARZIC N</td>
<td>272</td>
</tr>
<tr>
<td>BÉLLO A</td>
<td>177</td>
</tr>
<tr>
<td>BELLOSTAS N</td>
<td>633</td>
</tr>
<tr>
<td>BELTRÁN C</td>
<td>240</td>
</tr>
<tr>
<td>BELTRÁN R</td>
<td>331</td>
</tr>
<tr>
<td>BENÍTEZ MEDINA JM</td>
<td>625</td>
</tr>
<tr>
<td>BENYEI P</td>
<td>416</td>
</tr>
<tr>
<td>BERLANAS C</td>
<td>251</td>
</tr>
<tr>
<td>BERMEJO MA</td>
<td>597</td>
</tr>
<tr>
<td>BERTOMEU M</td>
<td>597</td>
</tr>
<tr>
<td>BLANCA-GIMÉNEZ V</td>
<td>472</td>
</tr>
<tr>
<td>BLANCO P</td>
<td>241</td>
</tr>
<tr>
<td>BLANCO-PÉREZ R</td>
<td>218</td>
</tr>
<tr>
<td>BORRUEL M</td>
<td>633</td>
</tr>
<tr>
<td>BURBI S</td>
<td>411</td>
</tr>
<tr>
<td>CAETANO C</td>
<td>470</td>
</tr>
<tr>
<td>CALAFAT A</td>
<td>47, 637</td>
</tr>
<tr>
<td>CALLE COLLADO A</td>
<td>17</td>
</tr>
<tr>
<td>CALVENT-MIR</td>
<td>416</td>
</tr>
<tr>
<td>CAMPOS-HERRERA R</td>
<td>218</td>
</tr>
<tr>
<td>CANO A</td>
<td>240</td>
</tr>
<tr>
<td>CANO GUERVÓS A</td>
<td>626</td>
</tr>
<tr>
<td>CARRASCOSA-GARCÍA M</td>
<td>54, 349, 416</td>
</tr>
<tr>
<td>CARTER M</td>
<td>199</td>
</tr>
<tr>
<td>Autor</td>
<td>Páginas</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>CARVAJAL-MONTOYA LD</td>
<td>154, 217</td>
</tr>
<tr>
<td>CASAS A</td>
<td>287</td>
</tr>
<tr>
<td>CASTILLO D</td>
<td>241</td>
</tr>
<tr>
<td>CATALÁN BALMASEDA M</td>
<td>589, 625</td>
</tr>
<tr>
<td>CEBOLLA J</td>
<td>397</td>
</tr>
<tr>
<td>CERRADA O</td>
<td>130</td>
</tr>
<tr>
<td>CHABLE V</td>
<td>27</td>
</tr>
<tr>
<td>CHÁFER NÁCHER MT</td>
<td>635</td>
</tr>
<tr>
<td>CHAMORRO L</td>
<td>188</td>
</tr>
<tr>
<td>CHARBONNEAU M</td>
<td>636</td>
</tr>
<tr>
<td>CIFRE H</td>
<td>36, 465, 466, 467, 468</td>
</tr>
<tr>
<td>CIRERA JC</td>
<td>431</td>
</tr>
<tr>
<td>CIRIACO CASTAÑEDA P</td>
<td>373</td>
</tr>
<tr>
<td>CIRIJUEDA A</td>
<td>322</td>
</tr>
<tr>
<td>COMENARES R</td>
<td>330</td>
</tr>
<tr>
<td>COMPÉS R</td>
<td>80</td>
</tr>
<tr>
<td>CONTINENTE J</td>
<td>205</td>
</tr>
<tr>
<td>CORBACHO J</td>
<td>597</td>
</tr>
<tr>
<td>CORDERO MORALES R</td>
<td>71, 579, 605</td>
</tr>
<tr>
<td>CORTÉS-OLMOS C</td>
<td>472</td>
</tr>
<tr>
<td>COSTANZO TALARICO MG</td>
<td>32</td>
</tr>
<tr>
<td>CRUZ F</td>
<td>40</td>
</tr>
<tr>
<td>CUENCA F</td>
<td>227, 243</td>
</tr>
<tr>
<td>DARPHIN L</td>
<td>640</td>
</tr>
<tr>
<td>DE LA CRUZ ABARCA C</td>
<td>421, 450, 488, 555, 556</td>
</tr>
<tr>
<td>DE LA VEGA N</td>
<td>44</td>
</tr>
<tr>
<td>DEL-CANTO A</td>
<td>329, 339</td>
</tr>
<tr>
<td>DEL CURA DELGADO F</td>
<td>53</td>
</tr>
<tr>
<td>DEL VALLE J</td>
<td>122</td>
</tr>
<tr>
<td>DE PORRAS M</td>
<td>30</td>
</tr>
<tr>
<td>DE SOTO I</td>
<td>205, 477</td>
</tr>
<tr>
<td>DÍAZ CARRASCO P</td>
<td>262</td>
</tr>
<tr>
<td>DÍAZ-CARRO M</td>
<td>91</td>
</tr>
<tr>
<td>DÍAZ-GAONA C</td>
<td>66, 98, 109, 471, 627, 628, 629</td>
</tr>
<tr>
<td>DIEZ GONZALEZ M</td>
<td>48</td>
</tr>
<tr>
<td>DIEZ M</td>
<td>397</td>
</tr>
<tr>
<td>DIEZ MA</td>
<td>177</td>
</tr>
<tr>
<td>DIEZ MJ</td>
<td>397</td>
</tr>
<tr>
<td>DOMÍNGUEZ GENTO A</td>
<td>219, 227, 242, 243, 253, 387, 635</td>
</tr>
<tr>
<td>DOMÍNGUEZ GÓMEZ MJ</td>
<td>529</td>
</tr>
<tr>
<td>DORREGO CARLÓN A</td>
<td>122, 450</td>
</tr>
<tr>
<td>DUPUIS I</td>
<td>568</td>
</tr>
<tr>
<td>DUQUE I</td>
<td>477</td>
</tr>
<tr>
<td>DURÁN-SALGUERO O</td>
<td>374</td>
</tr>
<tr>
<td>EGÉA FERNÁNDEZ JM</td>
<td>555</td>
</tr>
<tr>
<td>EGINO E</td>
<td>606</td>
</tr>
<tr>
<td>ENRIQUE A</td>
<td>205, 477, 633</td>
</tr>
<tr>
<td>ESCUTIA M</td>
<td>62, 465</td>
</tr>
<tr>
<td>ESTEBAN A</td>
<td>240</td>
</tr>
<tr>
<td>FABEO C</td>
<td>330</td>
</tr>
<tr>
<td>FABÓN ANCHELERGUES G</td>
<td>272</td>
</tr>
<tr>
<td>FERNÁNDEZ DE-CÓRDOVA P</td>
<td>472</td>
</tr>
<tr>
<td>FERNÁNDEZ P</td>
<td>240, 296, 305</td>
</tr>
<tr>
<td>FERNÁNDEZ RICO AI</td>
<td>272</td>
</tr>
<tr>
<td>FERNÁNDEZ-ROCA BAQUERO MP</td>
<td>145</td>
</tr>
<tr>
<td>FERNÁNDEZ S</td>
<td>188</td>
</tr>
<tr>
<td>FERNÁNDEZ-VILLANUEVA JL</td>
<td>478</td>
</tr>
</tbody>
</table>
Agroecología

• FERRAGUT F ... 252, 253
• FERRIOL M ... 331, 397
• FIGAS MR ... 379
• FIGUEROA M ... 374
• FIGUEROA-NÚÑEZ M .. 374
• FIGUEROA-ZAPATA M ... 504
• FITA A .. 472
• FITA AM .. 200, 550
• FITA-FERNÁNDEZ I .. 472
• FLORES-LEÓN A .. 397
• FONTEVEDRA CARREIRA E ... 46
• GALINDO MARTÍNEZ P .. 19, 39, 439
• GALLAR HERNÁNDEZ D .. 144
• GARCÍA A .. 227
• GARCÍA ÁLVARO Mª A ... 272
• GARCÍA BREA A .. 640
• GARCÍA-DÍAZ A .. 252
• GARCÍA-ESPAÑA L .. 337
• GARCÍA MARÉS F .. 337
• GARCÍA-MARTÍNEZ MD ... 379, 504, 516, 557
• GARCÍA-MARTÍNEZ S .. 397
• GARCÍA ROCES I ... 41
• GARCÍA ROMERO C ... 569, 574, 579
• GARMENDIA A .. 331
• GARRIDO EM .. 399
• GAVARA-VIDAL J ... 252, 253
• GIANELLA-ESTREM S T .. 450
• GIL-MARQUÉS MA .. 374
• GIMÉNEZ JC .. 597
• GISBERT C .. 397
• GOMIS MORATAL I .. 635
• GONZÁLEZ-BARRAGÁN MI ... 327
• GONZÁLEZ-C uervo S ... 219, 227, 387
• GONZÁLEZ D ... 606
• GONZÁLEZ-MORA S ... 462
• GONZÁLEZ MUÑOZ M ... 54, 144
• GONZÁLEZ REYES L .. 34
• GONZÁLEZ V ... 80, 465, 466, 467, 468
• GRACIA CÁRDENAS R .. 619
• GRAMAJE D ... 251
• GUERRERO I .. 327
• GUIRAO P ... 240, 296, 305
• GURREA-YSA S G .. 472
• GUZMÁN OJEDA A .. 61
• HARO PÉREZ I ... 37
• HERMOSO DE MENDOZA SALCEDO J ... 625
• HERNÁNDEZ DE LA PUERTA N ... 439
• HERNÁNDEZ JIMÉNEZ V .. 122
• HERNÁNDEZ LA .. 51
• HERNÁNDEZ M .. 469
• HERNÁNDEZ-MORA N ... 50
• HIDALGO ZAPATA VY ... 449
• HUERTAS E .. 469
• HUETE CUEVAS J .. 251
• HURTADO R .. 374
• IBÁÑEZ PASCUAL S .. 163
• IBÁÑEZ-PASCUAL S ... 154, 217, 218
<table>
<thead>
<tr>
<th>Autor/Institución</th>
<th>Páginas</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMAZ MJ</td>
<td>632</td>
</tr>
<tr>
<td>INIESTA S</td>
<td>330</td>
</tr>
<tr>
<td>JAUREGUI J</td>
<td>399</td>
</tr>
<tr>
<td>JIMÉNEZ-GÓMEZ A</td>
<td>131, 132</td>
</tr>
<tr>
<td>JURADO MA</td>
<td>399</td>
</tr>
<tr>
<td>KOLLER B</td>
<td>54</td>
</tr>
<tr>
<td>LABRADOR MORENO J</td>
<td>432</td>
</tr>
<tr>
<td>LACASA A</td>
<td>240, 296, 305</td>
</tr>
<tr>
<td>LACASA CM</td>
<td>240</td>
</tr>
<tr>
<td>LACUESTA M</td>
<td>329, 339</td>
</tr>
<tr>
<td>LANDETE-TORMO MB</td>
<td>386</td>
</tr>
<tr>
<td>LARRAIN J</td>
<td>199</td>
</tr>
<tr>
<td>LARREGA S</td>
<td>305</td>
</tr>
<tr>
<td>LAUREANO RG</td>
<td>98</td>
</tr>
<tr>
<td>LEPIN Z</td>
<td>56</td>
</tr>
<tr>
<td>LEVIDOW L</td>
<td>18</td>
</tr>
<tr>
<td>LLADOSA A</td>
<td>80</td>
</tr>
<tr>
<td>LLOBERA F</td>
<td>58</td>
</tr>
<tr>
<td>LLOBET I</td>
<td>272</td>
</tr>
<tr>
<td>LLORENTE N</td>
<td>52</td>
</tr>
<tr>
<td>LÓPEZ C</td>
<td>397</td>
</tr>
<tr>
<td>LÓPEZ CA</td>
<td>539</td>
</tr>
<tr>
<td>LÓPEZ COMA X</td>
<td>261</td>
</tr>
<tr>
<td>LÓPEZ-DAVAULLO ARCE J</td>
<td>272</td>
</tr>
<tr>
<td>LÓPEZ-GARCÍA D</td>
<td>416</td>
</tr>
<tr>
<td>LÓPEZ GONZÁLEZ P</td>
<td>54</td>
</tr>
<tr>
<td>LÓPEZ JA</td>
<td>177</td>
</tr>
<tr>
<td>LÓPEZ I</td>
<td>280, 287</td>
</tr>
<tr>
<td>LÓPEZ-MANZANARES B</td>
<td>251</td>
</tr>
<tr>
<td>LÓPEZ-MARCO L</td>
<td>69</td>
</tr>
<tr>
<td>LÓPEZ-OLMOS S</td>
<td>252, 253</td>
</tr>
<tr>
<td>LÓPEZ RODRÍGUEZ M</td>
<td>567</td>
</tr>
<tr>
<td>LÓPEZ SANTIAGO CA</td>
<td>68</td>
</tr>
<tr>
<td>LOZANO DIÉGUEZ B</td>
<td>589, 625</td>
</tr>
<tr>
<td>LUŞIĆ D</td>
<td>22</td>
</tr>
<tr>
<td>MACIAS-GONZÁLEZ F</td>
<td>374</td>
</tr>
<tr>
<td>MAEZTU F</td>
<td>633</td>
</tr>
<tr>
<td>MAIXENT F</td>
<td>465, 466, 467, 468</td>
</tr>
<tr>
<td>MALDONADO-GONZÁLEZ MM</td>
<td>251</td>
</tr>
<tr>
<td>MARCO-MANCEBÓN VS</td>
<td>154, 217, 218</td>
</tr>
<tr>
<td>MARI AI</td>
<td>322</td>
</tr>
<tr>
<td>MARQUÍES O</td>
<td>331</td>
</tr>
<tr>
<td>MARTÍNEZ E</td>
<td>287</td>
</tr>
<tr>
<td>MARTÍNEZ-GARCÍA H</td>
<td>154, 217</td>
</tr>
<tr>
<td>MARTÍNEZ-GURREA L</td>
<td>504</td>
</tr>
<tr>
<td>MARTÍNEZ MARTINA MA</td>
<td>398, 449</td>
</tr>
<tr>
<td>MARTÍNEZ PÉREZ R</td>
<td>625</td>
</tr>
<tr>
<td>MARTÍNEZ V</td>
<td>240</td>
</tr>
<tr>
<td>MARTÍNEZ-VILLAR E</td>
<td>154, 217, 218</td>
</tr>
<tr>
<td>MARTÍN M</td>
<td>631</td>
</tr>
<tr>
<td>MARTÍN PLAZA L</td>
<td>638</td>
</tr>
<tr>
<td>MATARAN RUIZ A</td>
<td>556</td>
</tr>
<tr>
<td>MATEU J</td>
<td>260</td>
</tr>
<tr>
<td>MAYOR M</td>
<td>619</td>
</tr>
<tr>
<td>MAZUELAS REPTETO D</td>
<td>464</td>
</tr>
<tr>
<td>MEC DE</td>
<td>280, 287</td>
</tr>
<tr>
<td>MENA-PETITE A</td>
<td>329, 339</td>
</tr>
<tr>
<td>Autor</td>
<td>Página(s)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>MÉNDEZ CARTÍN I.</td>
<td>73, 129</td>
</tr>
<tr>
<td>MENÉNDEZ GRENOT M</td>
<td>385</td>
</tr>
<tr>
<td>MERLE H.</td>
<td>331</td>
</tr>
<tr>
<td>MICHEL M.</td>
<td>568</td>
</tr>
<tr>
<td>MIRANDA-APODACA J.</td>
<td>329, 339</td>
</tr>
<tr>
<td>MIRANDA BARBIER O</td>
<td>385</td>
</tr>
<tr>
<td>MONFORTE A.</td>
<td>397</td>
</tr>
<tr>
<td>MONTERO HERRERA S</td>
<td>129</td>
</tr>
<tr>
<td>MONTERO HERRERA SL</td>
<td>73</td>
</tr>
<tr>
<td>MORALES E</td>
<td>63</td>
</tr>
<tr>
<td>MORALES-MORALES J</td>
<td>457</td>
</tr>
<tr>
<td>MORÁN A.</td>
<td>35</td>
</tr>
<tr>
<td>MORENA MA</td>
<td>639</td>
</tr>
<tr>
<td>MORENO C</td>
<td>462</td>
</tr>
<tr>
<td>MORENO COBO JA.</td>
<td>67</td>
</tr>
<tr>
<td>MORENO G</td>
<td>597</td>
</tr>
<tr>
<td>MORENO J.</td>
<td>337</td>
</tr>
<tr>
<td>MORENO MARCOS G</td>
<td>589, 625</td>
</tr>
<tr>
<td>MORENO MM.</td>
<td>462</td>
</tr>
<tr>
<td>MORENO N</td>
<td>199</td>
</tr>
<tr>
<td>MORENO-PERIS E.</td>
<td>550</td>
</tr>
<tr>
<td>MUGICA M.</td>
<td>43</td>
</tr>
<tr>
<td>MUÑOZ-RUEDA A</td>
<td>329, 339</td>
</tr>
<tr>
<td>NAVALÓN F.</td>
<td>36</td>
</tr>
<tr>
<td>NAVALPOTRO J</td>
<td>597</td>
</tr>
<tr>
<td>NAVARRO J</td>
<td>322</td>
</tr>
<tr>
<td>NAVARRO LLOPIS V.</td>
<td>242</td>
</tr>
<tr>
<td>NEIRA CERVERA M.</td>
<td>426</td>
</tr>
<tr>
<td>NEIRA SEJIO X</td>
<td>317, 322, 426, 569, 574</td>
</tr>
<tr>
<td>NUNO PALACIO C.</td>
<td>70</td>
</tr>
<tr>
<td>OGEHEN B.</td>
<td>349</td>
</tr>
<tr>
<td>ÓRDENES E.</td>
<td>350, 361</td>
</tr>
<tr>
<td>ORELLANA B.</td>
<td>605</td>
</tr>
<tr>
<td>ORELLANA M.</td>
<td>605</td>
</tr>
<tr>
<td>ORJUELA-GARCÍA C</td>
<td>470</td>
</tr>
<tr>
<td>ORTIZ BARREDO A</td>
<td>198</td>
</tr>
<tr>
<td>PADEL S.</td>
<td>349</td>
</tr>
<tr>
<td>PALOMO G.</td>
<td>597, 606, 619</td>
</tr>
<tr>
<td>PALOMO GUIJARRO G.</td>
<td>589, 625</td>
</tr>
<tr>
<td>PAOLETTI F.</td>
<td>25</td>
</tr>
<tr>
<td>PARDO-DE-SANTAYANA M.</td>
<td>416</td>
</tr>
<tr>
<td>PARDO G.</td>
<td>322</td>
</tr>
<tr>
<td>PEITEADO MORALES C.</td>
<td>45</td>
</tr>
<tr>
<td>PERDOMO-MOLINA A</td>
<td>416</td>
</tr>
<tr>
<td>PEREGRINO Y PARADA S.</td>
<td>328, 396</td>
</tr>
<tr>
<td>PÉREZ A.</td>
<td>397</td>
</tr>
<tr>
<td>PÉREZ-LÓPEZ U.</td>
<td>329</td>
</tr>
<tr>
<td>PÉREZ-LÓPEZ U.</td>
<td>339</td>
</tr>
<tr>
<td>PÉREZ-MORENO I.</td>
<td>154, 217, 218</td>
</tr>
<tr>
<td>PERRIÑÁ G.</td>
<td>397</td>
</tr>
<tr>
<td>PICÔ B.</td>
<td>397</td>
</tr>
<tr>
<td>PINO C.</td>
<td>20, 199</td>
</tr>
<tr>
<td>PINZÁS GARCÍA T.</td>
<td>450</td>
</tr>
<tr>
<td>PIRES CHERRINE K.</td>
<td>550</td>
</tr>
<tr>
<td>PORRAS J.</td>
<td>539</td>
</tr>
<tr>
<td>PROHENS J.</td>
<td>379, 472</td>
</tr>
<tr>
<td>PUENTE GONZÁLVEZ A.</td>
<td>432</td>
</tr>
<tr>
<td>Autor</td>
<td>Páginas</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Puig Rocaj</td>
<td>338</td>
</tr>
<tr>
<td>Pulido F.</td>
<td>597</td>
</tr>
<tr>
<td>Quesada J</td>
<td>133</td>
</tr>
<tr>
<td>Quesada MA</td>
<td>386</td>
</tr>
<tr>
<td>Raigón MD</td>
<td>31, 145, 331, 374, 379, 468, 504, 516, 529, 557, 641</td>
</tr>
<tr>
<td>Ramírez-Ferrer G</td>
<td>227</td>
</tr>
<tr>
<td>Ramírez García R</td>
<td>272</td>
</tr>
<tr>
<td>Ramón R</td>
<td>43</td>
</tr>
<tr>
<td>Ramos P</td>
<td>330</td>
</tr>
<tr>
<td>Ramos-Sáez de Ojer JL</td>
<td>251</td>
</tr>
<tr>
<td>Redondo M</td>
<td>568</td>
</tr>
<tr>
<td>Reyes Barroso J</td>
<td>464</td>
</tr>
<tr>
<td>Reyes-García V</td>
<td>416</td>
</tr>
<tr>
<td>Reyes-Palomó C</td>
<td>98, 109, 471, 627, 628, 629</td>
</tr>
<tr>
<td>Rivera V</td>
<td>398</td>
</tr>
<tr>
<td>Rodrigo JF</td>
<td>327</td>
</tr>
<tr>
<td>Rodrigo R</td>
<td>327</td>
</tr>
<tr>
<td>Rodríguez-Burruezo A</td>
<td>55, 200, 374, 472, 550</td>
</tr>
<tr>
<td>Rodríguez-Estévez V</td>
<td>98, 109, 471, 627, 628, 629</td>
</tr>
<tr>
<td>Rodríguez Terrero M</td>
<td>385</td>
</tr>
<tr>
<td>Roig D</td>
<td>60</td>
</tr>
<tr>
<td>Roldán Pérez MA</td>
<td>272</td>
</tr>
<tr>
<td>Romanyá J</td>
<td>338</td>
</tr>
<tr>
<td>Romero C</td>
<td>397</td>
</tr>
<tr>
<td>Romero D</td>
<td>597</td>
</tr>
<tr>
<td>Romero Molina JM</td>
<td>555</td>
</tr>
<tr>
<td>Romo Quilodrán J</td>
<td>396</td>
</tr>
<tr>
<td>Rosa-Martínez E</td>
<td>379</td>
</tr>
<tr>
<td>Ros C</td>
<td>240</td>
</tr>
<tr>
<td>Roselló Oltra J</td>
<td>262, 635</td>
</tr>
<tr>
<td>Rojo J</td>
<td>331</td>
</tr>
<tr>
<td>Rubio A</td>
<td>227, 243</td>
</tr>
<tr>
<td>Rúïpe Gómez V</td>
<td>42</td>
</tr>
<tr>
<td>Ruiz de Arcaute Rivero R</td>
<td>198</td>
</tr>
<tr>
<td>Ruiz Diez A</td>
<td>556</td>
</tr>
<tr>
<td>Ruiz Garrido I</td>
<td>471</td>
</tr>
<tr>
<td>Ruiz J</td>
<td>397</td>
</tr>
<tr>
<td>Ruíz M</td>
<td>539</td>
</tr>
<tr>
<td>Sáenz de Cabezón Irigaray FJ</td>
<td>272</td>
</tr>
<tr>
<td>Sáenz-Romo MG</td>
<td>154, 217, 218</td>
</tr>
<tr>
<td>Sáez C</td>
<td>397</td>
</tr>
<tr>
<td>Salazar A</td>
<td>199</td>
</tr>
<tr>
<td>Salazar Gómez N</td>
<td>566</td>
</tr>
<tr>
<td>Saldaña Zavala J</td>
<td>373</td>
</tr>
<tr>
<td>Salgado MN</td>
<td>21, 638</td>
</tr>
<tr>
<td>San Bautista A</td>
<td>200</td>
</tr>
<tr>
<td>Sánchez Agirregoyézegorta D</td>
<td>38</td>
</tr>
<tr>
<td>Sánchez-Domingo A</td>
<td>219, 227, 387</td>
</tr>
<tr>
<td>Sánchez E</td>
<td>330</td>
</tr>
<tr>
<td>Sánchez García J</td>
<td>464</td>
</tr>
<tr>
<td>Sánchez M</td>
<td>59</td>
</tr>
<tr>
<td>Sánchez-Rodríguez M</td>
<td>98, 109, 471, 627, 628, 629</td>
</tr>
<tr>
<td>Sánchez Toruño H</td>
<td>73, 129</td>
</tr>
<tr>
<td>Sansolo D</td>
<td>18</td>
</tr>
<tr>
<td>Sant J</td>
<td>330</td>
</tr>
<tr>
<td>Sanz-Cobeña A</td>
<td>98</td>
</tr>
<tr>
<td>Sanz-Fernández S</td>
<td>471, 627, 628, 629</td>
</tr>
</tbody>
</table>
• SANZ MJ ... 24
• SANZ-SÁEZ A .. 329
• SARAVIA NAVARRO D .. 373
• SCHIAVINATTO M .. 18
• SCHMUTZ U .. 411
• SEPULVEDA T .. 350, 361
• SERRANO S ... 468
• SESMERO R .. 386
• SIFRÉS A ... 397
• SILLERO-MARTÍNEZ A .. 329
• SIMÓN ROJO M ... 91
• SOLER MONTIEL M ... 41
• SOLER S ... 379
• SORIAÑO NIEBLA JJ ... 54
• SORIAÑO SOTO MD .. 337
• SOTO GONZÁLEZ AM .. 449
• SULIS E ... 262
• TERRANOVA D ... 398
• TIERNO R ... 339
• TOBAR-PARDO V ... 251
• TORRENTE L ... 65
• TORRES C .. 199
• TORRES JM ... 177, 280, 287
• TRILLAS MI .. 338
• VACAS GONZÁLEZ S .. 242
• VALCÁRCEL JV .. 397
• VARA SÁNCHEZ I .. 28, 144
• VÁSQUEZ D .. 619
• VEAS-BERNAL A .. 154, 217
• VEGA CARVAJAL M .. 328
• VELA-CAMPOY M .. 131, 132
• VÉLEZ ME ... 449
• VÉLEZ ZABALA FJ .. 398, 449
• VERCHER R ... 219, 227, 387
• VICENTE-DIEZ .. 217
• VICENTE-DIEZ I .. 154, 163, 217, 218
• VILCHES M .. 557
• VILLAGA EGUREN G .. 272
• VILLENA J ... 462
• VILLEN J ... 330
• VIRTO I ... 205, 477
• YANES FIGUEROA M .. 349
• YOLDI A ... 329