Protein feed from clover grass for pigs and poultry.
Results from Danish innovation projects

Erik Fog
SEGES Organic Innovation

Tagung: Grünland nutzen und erhalten, Saarbrücken
20.11.2018
SEGES is one of Europe’s leading agricultural innovation companies
Scope of activities

- Veterinary matters
- Feed
- Nature & the environment
- CROPS & ROUGHAGE
- Buildings & machinery
- DanBred and other breeding
- Agricultural economics
- Training and advisory services
- Management
 - Livestock: cattle, pigs, poultry
- Legal matters & tax
- Digital tools for management and documentation
- RESEARCH TRIALS & ANALYSIS WITHIN ALL DISCIPLINES
- Quality
- Organic production
SEGES is the bridge-builder between research and practical farming
We innovate and disseminate knowledge to:

37,000 Farms

900 Horticulturists or nurseries

7,000 Small or medium-sized companies

SEGES
650 employees

8 out of 10 have an academic background

70 different educational qualifications
Why proteins from grass are so interesting - changing annual crops into grass land

- EU animal production is largely dependent on imported proteins (mainly soya).
 - A strategic plan for more EU produced protein is launched this week.
- The climate load from animal production has to be reduced – more carbon sequestration in grass.
- Less nitrate leaching from grassland
 - Danish environmental programs for coastal waters.
- Difficult to supply organic pig and poultry with organic and locally produced proteins. Combined with nitrogen deficiency in organic plant production.
- Better conditions for insects and wildlife / higher biodiversity.
Danish research and innovation projects on grass proteins

- **Biobase**: A pilot plant for green biorefinery has been established at Aarhus University, Foulum.

- Expanding in 2019 to demonstration scale (10 x pilot scale) – Project: **Grønbioraf**

M. Ambye-Jensen, Aarhus University
Danish research and innovation projects on grass proteins

• **OrganoFinery**: Developing a concept for grassprotein supply for organic animals combined with biogas production and digestate fertilizer for organic crops

• **BioValue**: Broard research platform on biorefinery

 Mutual big scale trials with grass protein production for feeding trials.

Aalborg and Aarhus Universities
Danish research and innovation projects on grass proteins

- **MultiPlant**: Developing a multi species concept of forage for grass protein and biogas.
- **SuperGrassPork**: Feed value of grass protein for pigs and further development of the biorefining process.
- **GreenEggs**: Egg quality and production on grass protein combined with green leaves from willows in the hen yard.
Danish implementation projects on grass proteins

- Grass Protein Factory: A Danish consortium setting up a factory concept for grass protein production. Including Aarhus University, engineering company, machinery suppliers, feed company and farmers.

- Biomass Protein: A project with similar goals.

- Bioraf-Business: Optimizing grass supply and business plans.
Bio-refinery as improvement of Danish organic production

More grass clover - More Nitrogen

Extraction of grass protein - Less protein import

Biogas from residues and household waste - Bio-energy and nutrient recycling

SEGES
THE GRASS BIOREFINERY CONCEPT

Harvest of fresh grass clover

Juice press

Press cake

Cattle feed

Feed for pigs and poultry

Protein separation

Fermentation

Biogas

Digestate fertilizer

Recidue liquid
High protein yields in legume rich forage

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yield (ton DM / ha)</th>
<th>Protein Kg / ha</th>
<th>Lysine Kg / ha</th>
<th>Methionine Kg / ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grass – clover mixture</td>
<td>13</td>
<td>2600</td>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>12</td>
<td>2600</td>
<td>200</td>
<td>90</td>
</tr>
<tr>
<td>Peas</td>
<td>6</td>
<td>1300</td>
<td>92</td>
<td>13</td>
</tr>
<tr>
<td>Field bean</td>
<td>6</td>
<td>1500</td>
<td>92</td>
<td>11</td>
</tr>
<tr>
<td>Soy-bean (US)</td>
<td>3</td>
<td>1050</td>
<td>65</td>
<td>14</td>
</tr>
</tbody>
</table>

Modified from S. Krogh Jensen, Aarhus University
Season variations have to be managed

- Calculated yields during the grass season.
 - 3000 ha
 - 5 cuts
 - 4 blocks of 750 ha
 - 4 blocks of 900, 1050, 600 and 450 ha

T. Frandsen - SEGES
Harvest technic is important for protein yield and quality
Feed value – Grass-clover protein concentrate

- Hens (OrganoFinery)
 - Feed with 4, 8 or 12 percent grass protein concentrate gave the same egg yield as the control feed. – And more yellow yolks.

(Stenfeldt et al. 2017, Aarhus University)
Feed value – Grass-clover protein concentrate

- Chicken (MultiPlant)
 - Up to 3% of crude protein (8% protein concentrate) can come from grass protein without influencing the growth rate. (Trial with relatively low protein concentration in test feed)
 - Yellow pigments from the grass embedded in the chickens.
 - Higher levels of omega-3 fatty acids in chicken fat with higher levels of grass protein in feed.

(L. Stødkilde, Aarhus University)
Feed value – Grass-clover protein concentrate

- Pigs (Biobase & Feed-a-gene / SuperGrassPork)
 - Pigs had good appetite to feed with grass protein.
 - The protein digestibility of protein from test feed with low protein content (35 % crude protein) was lower than in soy-concentrate.
 - Expected to be better in grass protein concentrate with higher protein content.
 - Feeding trial with slaughter pigs started November 2018. Test feed with 48 % protein in grass protein concentrate.

(L. Stødkilde, Aarhus University)
Feed value – Press cake from grass-clover protein production

• Milking cows (BioValue)
 • Test feeding with press cake compared to grass-clover silage.
 • Lower dry matter content and higher fiber content in the press cake compared to the grass-clover silage.
 • Good appetite to the press cake silage, higher in vivo digestibility, higher feed efficiency and a higher milk yield with press cake.

(Vinni K Damborg phd work, Aarhus University)
Grass protein and biodiversity

- Project MultiPlant has tested different mixtures of grass, legumes and fobs.
 - Similar drymatter yield and even higher biogas yield in mixtures with fobs.
 - Nitrogen fixation follows the amount of legumes.
 - Different plant species promote different insect species.

J. Eriksen, Aarhus University
Economy in green biorefinery
- only profitable in organic farming

<table>
<thead>
<tr>
<th></th>
<th>Conventional (k-DKK / year)</th>
<th>Non- GMO (k-DKK / year)</th>
<th>Organic (k-DKK / year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total income</td>
<td>22,078</td>
<td>26,423</td>
<td>31,095</td>
</tr>
<tr>
<td>Total costs</td>
<td>29,780</td>
<td>29,781</td>
<td>29,730</td>
</tr>
<tr>
<td>Result</td>
<td>-7,702</td>
<td>-3,358</td>
<td>1,365</td>
</tr>
</tbody>
</table>

Model calculation on a biorefinery plant processing 20,000 tons DM grass-clover per. year and producing 3,600 tons dried protein concentrate.

Source: M. Gylling (2018), Copenhagen University, IFRO.
Great perspectives in grass land for biorefinery

- Prospect for more conversion to organic farming
 - Especially in areas with few cattle.
- Next step: Grass protein for human consumption
- Environmental benefits
 - Less nitrate leaching, higher biodiversity
- Greenhouse gas mitigation
 - More carbon sequestration in the soil (humus)

SEGES
Thank you for your attention