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Abstract Green manure mixtures including legumes

and forbs can help to increase N availability in organic

arable systems. Anaerobic digestion of green manures

may provide ammonium rich digestate, which can be

redistributed as fertilizer. The aim of this study was to

investigate the effect of plant species composition,

cutting strategy and anaerobic digestion on the N

fertilizer replacement value (NFRV) of different green

manures. Digestates obtained from silages of pure

stand lucerne (four cuts/year) and a mixture including

lucerne, grass and forbs (two or four cuts/year) were

used to fertilize winter wheat (surface banding) and

spring barley (injection). In general, NFRV was

46–173% higher in spring barley than winter wheat,

due to the different application method and timing,

which reflect the common practices in Denmark.

NFRV of digestates were 25–63% higher than the

corresponding silages, with the largest increase with

the most fibrous material (mixture at two cuts/year).

Total N concentration (DM based) in the silages

largely explained NFRV of the digestates. To obtain

NFRV above 60%, total N concentration of silage

should exceed 3.5 g 100 g-1 DM, achievable with

silages from four-cut strategies. Silages of plant

materials with different composition and N content

may be similar in terms of biomethane production, but

the fertilizer value of the digestates varies consider-

ably depending on total N concentration.

Keywords Arable � Cutting frequency � Forage

legumes � Multi-species mixtures � Organic farming �
Slurry

Abbreviations

N Nitrogen

DM Dry matter

NFRV Nitrogen fertilizer replacement value

Mix2 Mixture, two cuts

Mix4 Mixture, four cuts

Lu4 Lucerne, four cuts

CS Cattle slurry

D Digested

U Untreated

NDF Neutral detergent fiber
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Introduction

Nutrients and especially nitrogen (N) availability and

weed infestations are two major constraints to organic

production in stockless systems. The inclusion of

forage legumes in the rotation is a strategic way to

increase the robustness of the system, by providing N

through biological fixation and by competing against

perennial weeds (Melander et al. 2016). In stockless

systems, forage biomass is a valuable green manure,

and it is a common practice to leave the cuts on the

field as mulch (Stinner et al. 2008). Mulching of green

manure contributes to soil organic N, but it also

increases the risk of N losses to the environment

(Dahlin et al. 2011). Nadeem et al. (2012) reported that

mulching significantly increased N2O emissions dur-

ing the green manure growing season, if compared to

cuts removal. Moreover, leaving plant residues on the

soil surface can potentially increase NH3 emissions

(de Ruijter et al. 2010). Even though part of the N in

the mulch can be recycled to the regrowth (Dahlin

et al. 2011), a significant increase in N leaching occurs

during the green manure growing season (De Notaris

et al. 2018). In a crop rotation perspective, mulching

provides a high N supply in the first year following the

green manure, but this can cause a low N use

efficiency (Stinner et al. 2008). Moreover, N avail-

ability decreases with time after incorporation of the

green manure biomass, mismatching N demand along

the rotation, with negative consequences in terms of

crop yields and N recovery efficiency (Brozyna et al.

2013). To overcome these problems, removal of green

manure cuts from the field and redistribution of the

biomass as ‘‘mobile green manure’’ is recognized as a

valid alternative to mulching (Sørensen and Thorup-

Kristensen 2011; Sørensen et al. 2013).

In order to obtain the maximum benefit for the

system, the removed biomass can be used as a

substrate for anaerobic digestion (Brozyna et al.

2013; Dahlin et al. 2011; Stinner et al. 2008). The

outcome of anaerobic digestion of green manure cuts

is the production of biogas and digestate, which can be

returned to the crop rotation as strategic fertilizer.

Digestates have a higher NH4
?-N/total N ratio and a

lower dry matter (DM) content than the undigested

material, due to the transformation of the easily

degradable carbon (C) into biogas, leading to lower

C/N ratios (Arthurson 2009; Möller and Müller 2012).

The high proportion of mineral N, the possibility to

target N application and the improved synchronization

between nutrient availability and crop demand can

lead to increased N use efficiency and crop yields

(Stinner et al. 2008). This, combined with the utiliza-

tion of the produced biogas, can increase the environ-

mental sustainability of organic arable systems

(Knudsen et al. 2014).

In order to improve the economic sustainability of

anaerobic digestion of green manure, the amount of

harvested biomass should be maximized (Tersbøl and

Malm 2013). Inclusion of forbs increases the above-

ground productivity of grass–clover mixtures, thus

increasing the energy yield (Cong et al. 2017).

Additionally, multiple species mixtures can provide

several ecosystem services, such as increased abun-

dance of pollinators and biodiversity (Allan et al.

2013; Bluthgen and Klein 2011). In addition, pollina-

tors also benefit from a reduced cutting frequency

(Potts et al. 2009). Performing fewer cuts per year

would also decrease management costs, with effects

on the initial quality of the material but no significant

reduction in the biogas yield (Wahid et al. 2015).

However, the initial quality of a specific material,

and in particular its degradability and total N content,

is directly affecting the NH4
?-N and the DM content

of the digestate obtained after anaerobic digestion

(Möller and Müller 2012). NH4
?-N content is consid-

ered to be the most important factor for the N fertilizer

replacement value (NFRV) of an organic fertilizer

(Jensen 2013). In addition, N availability from the

organic fraction is influenced by the C/N ratio of the

material (Jensen 2013), which can in turn be related to

the DM/N ratio, as the C content on a DM basis is

fairly stable (Sørensen et al. 2003; Wahid et al. 2015).

Thus, the management of green manure biomass

should take into consideration its effect on digestate

NFRV.

The aim of this study was to determine the effect of

plant species composition, cutting strategy and anaer-

obic digestion on NFRV of green manures, applied to

winter wheat by surface banding and to spring barley

by injection. In addition, we aimed to quantify the

relation between total N concentration (on a DM basis)

in the green manure and the NFRV of the correspond-

ing digestates. This would provide a practical estima-

tion of how the initial quality of the substrate will be

reflected in the NFRV of mono-digested plant

materials.
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Materials and methods

Plant material used as substrates

Substrates for anaerobic digestion included plant

material obtained from a field experiment established

in 2014 at Foulumgaard (56�300N, 9�340E), Denmark.

Three substrates were selected for anaerobic diges-

tion: a mixture composed of perennial ryegrass

(Lolium perenne L.), lucerne (Medicago sativa L.),

chicory (Cichorium intybus L.), ribwort plantain

(Plantago lanceolata L.) and caraway (Carum carvi

L.) under two- and four-cut regimes (Mix2 and Mix4)

and a monoculture of lucerne under four-cut regime

(Lu4). In this way, the substrates varied based on their

plant composition (Mix4 and Lu4) and the cutting

strategy (Mix2 and Mix4). In early October 2015, the

last annual cut was harvested at 0.07 m stubble height.

The botanical composition of the mixture under the

two-cut regime was 49% lucerne, 33% chicory, 9%

plantain, 3% grass, 1% caraway and 5% unsown

species on a dry matter basis, while under the four-cut

regime the dry matter mass fractions were 34%

lucerne, 23% chicory, 19% plantain, 12% grass, 1%

caraway and 11% unsown species (Wahid et al. 2018).

The plant material from the four replicates was mixed,

chopped to approximately 0.05 m, vacuum packed

and ensiled at room temperature for three months

before anaerobic digestion. The silages obtained had

different fiber compositions (Table 1). In particular,

NDF (Neutral detergent fiber, which includes hemi-

cellulose, cellulose and lignin) was the highest in

Mix2 (51.9 g 100 g-1 DM) and the lowest in Lu4

(33.3 g 100 g-1 DM) (Wahid et al. 2018).

Anaerobic digestion and quality of the material

Three 20 L continuous stirred tank reactors (CSTR)

with 15 L working volume were used for anaerobic

mono-digestion of the substrates. During an initial

stabilization phase, the reactors were fed with cattle

manure. Thereafter, semi-continuous feeding was

followed by continuous feeding with a mass ratio of

40% silage and 60% water for 65 days. The procedure

consisted in adding 600 g of substrate after manually

unloading a corresponding amount of digestate. A

constant temperature of 52 �C and a hydraulic reten-

tion time (HRT) of 25 days were kept during the

experiment, in accordance to the common practice in

the Danish biogas sector. More details about the

digestion process and biogas production can be found

in Wahid et al. (2018). Subsamples of digestates from

the reactors and silages were used for determination of

DM, ammonium and total N content. Total N was

determined by Kjeldahl analysis and ammonium-N by

distillation (Sommer et al. 1992).

Field experiment

A field experiment was established in September 2015

at Foulumgaard (56�300N, 9�340E), Denmark, in order

to test the NFRV of digestates obtained from the

digestion of Lu4, Mix2 and Mix4 and the correspond-

ing silages. The quality of silages, digestates and raw

and digested cattle slurry are reported in Table 1. The

soil is classified as a Typic Hapludult, according to the

USDA Soil Taxonomy System with 7% clay, 10% silt,

81% sand and 1.7% C in the topsoil (0–0.02 m). Soil

pH was 5.8 (CaCl2), bicarbonate-extractable P (Olsen-

P) 34 mg kg-1 DM soil and exchangeable K was

120 mg kg-1 DM soil.

The selected test crops were winter wheat and

spring barley both following spring barley in an arable

rotation. In September 2015 winter wheat was sown

with a distance of 0.12 m between rows. In November

2015, after emergence of winter wheat, 52 PVC

cylinders with an internal diameter of 0.3 m

(area = 0.0707 m2) and a length of 0.3 m were

inserted leaving 0.05 m above ground. Each cylinder

included two rows of wheat. In April 2016, after spring

ploughing of barley stubble without catch crop,

another 52 similar cylinders were inserted in bare soil

to be hand-seeded with spring barley after fertilization.

In winter wheat cylinders, digestates (D) from Lu4,

Mix2 and Mix4, untreated (U) and digested cattle

slurry (CS) and five rates of liquid ammonium nitrate

(0, 50, 100, 150, 200 kg N ha-1) were applied, in

April 2016, for a total of ten treatments. The three

digestates and the cattle slurry had a similar pH, which

was approximately 8. The organic materials were

applied by surface-banding at a rate of 120 kg total

N ha-1. Bands were placed at the center of each

cylinder between the two plant rows. The treatments

were organized in a complete randomized block

design, with four replicates each.

In spring barley cylinders, untreated silages and

digestates from Lu4, Mix2 and Mix4, raw and digested

cattle slurry were applied before sowing, at a rate of
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80 kg total N ha-1. To simulate direct injection, the

materials were placed in 0.01 m deep slits at the center

of each cylinder in the direction of the rows. After

fertilizer application, spring barley was hand-seeded

(26 kernels per cylinder) in two rows with a distance of

0.12 m. Spring barley was seeded also around and in

between the cylinders. By the end of April, ammonium

nitrate in liquid form was applied at five rates (0, 30,

60, 90, 120 kg N ha-1) to establish an N response

curve. In this way, totally 13 treatments were estab-

lished in barley, organized in a complete randomized

block design in four replicates.

To avoid deficiency of other nutrients than N,

phosphorus (P), potassium (K) and sulphur (S) were

applied in liquid form at a rate of 25 kg P, 99 kg K,

15 kg S ha-1 to both wheat and barley. Furthermore,

calcium (100 kg ha-1), magnesium (49 kg ha-1),

manganese (2.3 kg ha-1), zinc (0.26 kg ha-1), boron

(0.15 kg ha-1), copper (0.14 kg ha-1), molybdenum

(0.06 kg ha-1) and cobalt (0.1 kg ha-1) were applied.

Hand weeding was performed three–four times during

the growing season.

Plant sampling, analyses and calculations

Total above-ground biomass of winter wheat and

spring barley was harvested at maturity by hand in

August 2016. Grain and straw were divided and dried

(60 �C for 48 h) for DM determination. The samples

were then finely milled for total N determination using

the Dumas method (Hansen 1989).

Based on DM and N yield from the cylinders

fertilized with mineral N, it was possible to fit

N-fertilizer response curves (Schröder 2005), which

identify the yield response to different levels of

fertilization. Both winter wheat and spring barley

DM and N yield showed linear responses to mineral

fertilizer levels. Regression coefficients of the differ-

ent N response curves were then used to calculate the

NFRV of the applied materials, based on grain and

total DM and N yield (Jensen 2013). In this way, the

NFRV indicates the equivalent amount of mineral N

(kg N ha-1) that the applied material can replace,

under those specific conditions, which was then

expressed as a percentage of the amount of total

applied N (120 kg N ha-1 in winter wheat,

80 kg N ha-1 in spring barley).

Statistical analysis

Statistical analysis and data exploration were per-

formed using R (R Core Team 2016), following the

protocol described by Zuur et al. (2010). After a visual

investigation of the data, the effect of treatment

(applied material) on DM and N yields, N concentra-

tion and NFRV was assessed using analysis of

variance (ANOVA) tests, separately for winter wheat

and spring barley. The assumptions of normality and

homoscedasticity were verified with the Shapiro–Wilk

test and visual examination of the residuals against

fitted values. When the assumptions were not met, data

were log transformed. Post-hoc comparisons were

performed using the Tukey’s HSD test, and allowed to

identify differences between specific treatments.

NFRV based on total N yield can be used as an

indicator of N utilization from the applied material

Table 1 Initial quality of the materials used as fertilizer for winter wheat and spring barley

Material DM

(g 100 g-1

FM)

Hemicellulose

(g 100 g-1

DM)

Cellulose

(g 100 g-1

DM)

Lignin

(g 100 g-1

DM)

Total N

(g 100 g-1

DM)

NH4-N

(g 100 g-1

tot N)

Lucerne 4 cut, U (Lu4-U) 17.2 3.2 25.3 4.8 4.9 23

Lucerne 4 cut, D (Lu4-D) 3.7 – – – 8.9 73

Mixture 4 cut, U (Mix4-U) 15.1 9.6 26.7 5.7 3.6 9

Mixture 4 cut, D (Mix4-D) 2.8 – – – 7.9 59

Mixture 2 cut, U (Mix2-U) 21.8 9.2 33.8 8.9 2.6 14

Mixture 2 cut, D (Mix2-D) 5.9 – – – 4.1 54

Cattle slurry, U (CS-U) 6.4 – – – 4.5 59

Cattle slurry, D (CS-D) 4.8 – – – 6.2 67

DM dry matter, FM fresh matter, NDF neutral detergent fiber; U untreated, D digested
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(Jensen 2013). Correlations between initial quality of

the material and NFRV based on total N yield were

assessed with Pearson correlation coefficients, using

the cor.test function of the R Stats package.

For all statistical tests a = 0.05.

Results

Climate

From October 2015 until August 2016, the minimum

average monthly temperature was 0 �C in January

2016 and the maximum average monthly temperature

was 16 �C in July 2016. The cumulative precipitation

during the same period amounted to 776 mm, with a

minimum of 25 mm in March 2016 and a maximum of

119 mm in November 2015. Figure 1 shows the daily

average temperature and precipitation during the

whole period. The average temperature for the whole

period was 8.5 �C and for comparison, the average

temperature during the same months in the previous

10 years (2004–2014) was 7.8 �C, while the average

cumulative precipitation was 598 mm.

Winter wheat yield

There was a significant effect of treatment (P\ 0.001)

on winter wheat DM and N yield (Fig. 2). A post hoc

comparison among treatments revealed that the cut-

ting strategy had an effect on winter wheat yield (Mix4

higher than Mix2), as well as plant composition (Lu4

higher than Mix4). However, the effect of plant

composition was significant just for total N yield.

Grain DM yield ranged from 3.6 to

5.1 Mg DM ha-1, and it was the lowest in the

treatment with application of digestate from Mix2

and the highest with digestate from Lu4. Total DM

yield followed a similar pattern, and it ranged from 6.6

to 9.6 Mg DM ha-1. Grain N yield ranged from 47 to

68 kg N ha-1 and total N yield ranged from 61 to

89 kg N ha-1. Total N yield was significantly higher

in Lu4-D than in Mix4-D, which was significantly

higher than Mix2-D.

Nitrogen concentration in winter wheat grains and

straw was not significantly affected by the treatment,

with grain N concentration ranging from 1.28 to

1.40 g 100 g-1 DM (Table 2).

Both DM and N yield showed a linear response to

increasing levels of mineral N fertilization (Fig. 2).

Spring barley yield

The effect of treatment on spring barley DM and N

yield was statistically significant (P\ 0.001) (Fig. 3).

A post hoc comparison among treatments revealed

that spring barley yield was generally higher with

digested than with untreated silages and it was

influenced by plant composition and cutting strategy.

The effect of the treatment factors varied among the

different yield types.

Grain DM yield ranged from 3.0 to

5.4 Mg DM ha-1, being the lowest in treatments with

Mix2-U and the highest with Lu4-D. Anaerobic

digestion of the plant material increased grain DM

yield by an average of 23%. The effect of plant species

composition was similar in digested and untreated

silages (Lu4 17% higher than Mix4), while the effect

of cutting strategy was more pronounced with

untreated silages than with digested materials (Mix4-

D 19% higher than Mix2-D, Mix4-U 30% higher than

Mix2-U). Total DM yield followed a similar pattern,

with some of the differences being more pronounced.

Conversely, even though anaerobic digestion

increased grain and total N yields, the effect was not

significant. Grain N yield was the lowest in treatments
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with Mix2-U and the highest with Lu4-D, and ranged

from 45 to 66 kg N ha-1. There was no significant

difference based on plant composition, while cutting

strategy significantly affected grain N yield after

application of untreated silages (Mix4-U higher than

Mix2-U). Total N yield followed a similar pattern. The

non-significant effect of digestion on N yield can be

explained by the generally increased grain N concen-

tration after application of untreated silages, if com-

pared to digested material (Table 2).

Similarly to winter wheat, spring barley DM and N

yield increased linearly with increasing levels of

mineral N fertilization (Fig. 3).

NFRV based on DM and N yield

NFRV of the applied materials was generally higher

for spring barley than for winter wheat (Figs. 4, 5).

NFRV indicates the amount of mineral fertilizer N that

can be replaced by 100 units of N in the applied

organic material.

In winter wheat, the effect of treatment on NFRV

was significant (P\ 0.001). NFRV varied slightly

according to the choice of reference (either DM or N),

although the general trend was consistent. When based

on grain DM yield, the average NFRV varied from

28% (Mix2-D) to 57% (Lu4-D), while when based on

total N yield, it varied from 24% (Mix2-D) to 55%

(Lu4-D). Lu4-D had a generally higher NFRV than

Mix4-D, which had an average NFRV of 42% (effect

of plant species composition), but the main difference

was between Mix4-D and Mix2-D (effect of cutting

strategy).

Also in spring barley, there was a significant effect

of treatment on NFRV (P\ 0.001), with Mix4-U

having the lowest and Lu4-D the highest NFRV. When

NFRV was based on grain and total DM yield, a post

hoc comparison showed that treatments with diges-

tates had significantly higher NFRV than the ones with

the corresponding untreated silages. Also plant species

composition and cutting strategy affected NFRV, with

the differences being most pronounced when based on

total DM. When based on grain DM yield, NFRV

ranged from 16 to 83%. Most of the differences among

treatments were leveled out when NFRV was calcu-

lated based on spring barley grain N yield, and in

particular the effect of digestion and plant composi-

tion. In this case, NFRV ranged from 69% in Mix2-U

to 81% in Lu4-D. This reflected the increase in barley

grain N concentration after application of untreated

silages (Table 2). When based on total N yield, which

is an indicator of the overall N uptake, NFRV ranged

from 24 to 86%. In this case, the effect of digestion and

plant species composition was positive, but not

statistically significant.

Correlation between NFRV (based on total N

yield) and initial quality of the applied material

There was a significant linear correlation between

NFRV and total N content (g 100 g-1 DM), in the

applied materials for both winter wheat (P\ 0.05)

and spring barley (P\ 0.01) (Fig. 5a). In both cases, it

explained approximately 75% of the variation in

NFRV. The slopes of the regression lines indicate that

NFRV increased with increasing total N content to a

similar rate in winter wheat and spring barley. NH4
?-

N content, expressed as percentage of total N, can be

used as an indication of the N that is immediately

available to the crop. Its correlation with NFRV was

statistically significant for winter wheat (P\ 0.05),

with a coefficient of determination of approximately

Table 2 Average N

concentration (g 100 g-1

DM) in winter wheat and

spring barley grain and

straw (n = 4)

In each column, values

followed by different letters

are significantly different

(P\ 0.05)

U untreated, D digested

Treatment Winter wheat Spring barley

Grain N Straw N Grain N Straw N

Lucerne 4 cut, U (Lu4-U) – – 1.28 a 0.68 a

Lucerne 4 cut, D (Lu4-D) 1.33 a 0.48 a 1.22 a 0.62 a

Mixture 4 cut, U (Mix4-U) – – 1.46 b 0.72 a

Mixture 4 cut, D (Mix4-D) 1.36 a 0.45 a 1.25 a 0.67 a

Mixture 2 cut, U (Mix2-U) – – 1.49 b 0.84 b

Mixture 2 cut, D (Mix2-D) 1.33 a 0.46 a 1.27 a 0.66 a

Cattle slurry, U (CS-U) 1.40 a 0.46 a 1.25 a 0.66 a

Cattle slurry, D (CS-D) 1.28 a 0.42 a 1.23 a 0.62 a
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90% (Fig. 5b). Conversely, the correlation between

NH4
?-N and NFRV in spring barley was not signif-

icant, indicating that N uptake varied irrespective of

NH4
?-N content.

For the digestates, the NFRV could be explained

almost exclusively by the total N concentration (based

on DM) in the silages (Fig. 6). In spring barley an

increase in total N concentration of silages by 1

percentage point lead to a 20 percentage points

increase in NFRV of the corresponding digestate. To

obtain NFRV above 60%, total N concentration in

silage should exceed 3.5 g 100 g-1, which was

achievable for the silages from 4-cut-strategies

(Table 1). In winter wheat, an increase in total N

concentration of silages by 1 percentage point lead to a

13 percentage point increase in NFRV of digested

material, while a total N concentration of 3.5 g

100 g-1 in silage resulted in only 37% NFRV.

Discussion

Effect of plant species composition and cutting

strategy

The initial quality of the green manure biomass was

determined by plant species composition and cutting

strategy. In particular, inclusion of forbs and the two

cuts/year strategy led to an increase in DM and NDF

and a decrease in N concentration, as also reported by

Khalsa et al. (2014) and Wahid et al. (2015). The

differences in the initial quality of green manure were

reflected in the digestates, where N concentration and

NH4-N/total N proportion were the highest in Lu4 and

the lowest in Mix2. This is in accordance with the idea

that fiber content and initial N concentration (based on

DM) will determine the proportion of NH4-N/N in the

digestate (Möller and Müller 2012).

NH4-N/N proportion in the mobile manure is

considered to be the main factor determining its

fertilizer value (Jensen 2013). This could be confirmed

in winter wheat, where NFRV was strongly correlated

with NH4
?-N/N (r2 = 0.91), which varied with plant

species composition and cutting strategy. In winter

wheat, where digestates and slurry were applied to the

surface, also DM content of the applied material

played an important role in the determination of

NFRV. Materials with higher DM have lower infiltra-

tion rates, thus higher risk of ammonia volatilization

and a reduced N availability to crops (de Jonge et al.

2004; Webb et al. 2013). In the present study, Mix2-D,

Mix4-D and CS-U had similar proportions of NH4
?-

N/N but different NFRV. This could be explained by

the different DM content, whose effect should be

interpreted in combination with the proportion of

NH4
?-N/N, which is generally negatively correlated

with DM content (Jensen 2015). In this way, in winter

wheat, plant species composition and cutting strategy

affected the fertilizer value of the applied materials by

influencing the proportion of NH4
?-N/N and DM

content, thus the readily available N and the infiltra-

tion rate.

In spring barley, where the untreated and digested

materials were injected, the proportion of NH4
?-N/N

was non-significantly correlated to NFRV (based on

total N yield). However, NFRV was significantly

correlated to total N concentration, on a DM basis

(r2 = 0.73). This indicates that the crop could take up

inorganic N after mineralization of the organic N, as

also reported by Jensen (2015). The mineralization of

organic N is mainly influenced by the C/N ratio of the

material (Parton et al. 2007), which can be directly

related to the DM/N ratio, thus to the N concentration

(Sørensen et al. 2003). Materials with a lower N

concentration (higher DM/N ratio) lead to a slower

release of mineral N (Parton et al. 2007). In the present

study, a later availability of mineral N from Mix4-U

and Mix2-U was associated with a significant increase

in grain N concentration, which is mainly determined

by N assimilation during the grain filling phase (Cox

et al. 1986). However, grain and total DM yield were

negatively affected by the low initial N availability.

Overall, in spring barley, plant species composition

and cutting strategy affected the fertilizer value of the

applied materials by influencing the total N concen-

tration of the silages and the timing of N availability,

with consequences on DM yield and grain N

concentration.

bFig. 3 Spring barley N response curves to five mineral N levels

(left) and spring barley grain, total dry matter (DM), grain N and

total N yields measured after direct injection of digested (D) and

untreated (U) green manures and cattle slurry (right). Error bars

indicate standard errors (n = 4), and different letters indicate

significant differences (P\ 0.05) within the same yield type
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Effect of anaerobic digestion

Anaerobic digestion of green manure biomass

increased the proportion of NH4-N/N, which is readily

available for plant uptake, as well as the total N

concentration, due to a decrease in DM content

(Möller and Müller 2012). In spring barley, where

both untreated silages and digestates were injected

prior to sowing, application of digestate significantly

increased DM yield, thus the relative NFRV. This can

be attributed to the higher initial N availability (NH4
?-
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N/N) in digestate than in untreated silages. However,

anaerobic digestion did not significantly affect grain N

yield. This was due to an increase in grain N

concentration in the treatments with untreated silages,

where the low N content corresponded to a later

release of mineral N. This effect counterbalanced the

lower DM yield, resulting in similar grain N yields

from untreated silages and the corresponding diges-

tates, in agreement with results reported by Froseth

et al. (2014). When considering the total N yield,

NFRV was on average 15 percentage point higher in

digestates than in untreated silages, indicating an

overall positive effect of anaerobic digestion on N

availability. In general, differences in NFRV were less

pronounced among digestates than for untreated

silages, suggesting that anaerobic digestion could

partly counterbalance the effect of a reduced cutting

frequency and of the plant composition.

In the context of organic arable farms, anaerobic

digestion of green manure should be considered as an

alternative to mulching. Benefits derived from biogas

production (Wahid et al. 2018), increase in N recovery

(Froseth et al. 2014) and redistribution of N among

different crops (Möller and Müller 2012) should be

taken into account, in addition to the positive effect on
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N availability. Moreover, when compared to digested

cattle slurry, NFRV of digestates from Lu4 and Mix4

were higher or similar. This suggests that anaerobic

digestion of green manure can provide a valuable

source of N to organic arable systems, able to

substitute imported animal manure and improve N

utilization, if compared to mulching. However, the

green manure must be relatively rich in legumes and

the plant material must be harvested at an early growth

stage with low fiber content to obtain fertilizer

replacement values above 50%.

Difference between winter wheat and spring barley

NFRV of the applied materials was higher in spring

barley than in winter wheat, in agreement with Jensen

(2015). This was true not only for the degassed plant

materials, but also for untreated and digested cattle

slurry. The reasons behind this difference can be

several, and include method and timing of application.

The application methods used in this study (surface

banding in winter wheat and injection in spring barley)

are representative of the common practice of organic

liquid fertilizer application in Denmark, and were

reported also in previous literature (Sørensen and

Eriksen 2009). Surface banding is less efficient than

injection in regards to ammonia emissions after

manure application (Sogaard et al. 2002). The risk of

ammonia losses is particularly high when surface

banding of manure is done in early spring, like it was

done in this study, because of the limited height of the

crop (Jensen 2013; Sommer and Hutchings 2001). In

addition to the reduced ammonia loss after injection,

the materials were applied prior to sowing of spring

barley, allowing more time for the organic N to be

mineralized and match the crop N demand. The

situation was different for winter wheat, which was

already growing at the time of fertilization. As N

demand is mainly determined by crop growth rate

(Limaux et al. 1999), immediate N availability was

important for winter wheat, and less for spring barley.

This was clearly shown by the correlation between

NFRV and NH4
?-N/N, which was significant and with

a high coefficient of determination in winter wheat,

while non-significant in spring barley.

NFRV and the importance of the reference yield

response

NFRV can be calculated based on the marketable yield

(e.g. grain DM yield), on the N yield or on the plant N

uptake responses (Jensen 2013; Schröder 2005).

Advantages and disadvantages are associated to all

possible references, and different arguments can be

used in support of one or the other. To calculate NFRV

based on the marketable yield seems the most relevant

choice from a farmer�s perspective (Jensen 2013;

Schröder 2005). However, grain yield response to

increasing N fertilization rates is often non-linear, as

in the study by Eriksen et al. (2006). A non-linear

response means that the calculated NFRV will be

influenced by the rate of manure N application,

whereas NFRV is independent of the application rate

when the response is linear. Below optimal N fertil-

ization rates, N uptake response to N fertilization is

usually linear, allowing a more reliable estimation of

NFRV. Due to the need for chemical analysis and the

difficulty of sampling the entire crop biomass (includ-

ing below-ground), the NFRV is often calculated just

based on the harvested N yield (Jensen 2013). This

was done, for example, by Askegaard and Eriksen

(2007), who studied the residual effect of different

catch crop species on the following spring barley crop.

The results from the present study, however,

highlight how different reference yields can provide

very different NFRV, which can reflect different

processes. This was particularly true for spring barley

where, for example, NFRV of Mix2-U varied from 10

to 69% according to the reference used. The variation

in NFRV was mainly associated to timing of mineral N

release, which was low at the beginning of the growing

period (low DM yield) and higher at the end (high

grain N concentration). The same cannot be stated for

winter wheat, where NFRV was consistent. This

difference can be attributed to the different fertilizer

application methods and growing rates of the two

crops, and underlines how the NFRV of a chosen

material cannot be generalized. On the contrary, it is

necessary to evaluate carefully the specific conditions

and to choose the reference yield response with

knowledge of the processes that will be reflected.
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Conclusions

Silages of plant materials with different composition

and N content may be similar in terms of biomethane

production (Wahid et al. 2018), but the N fertilizer

value of the digestates can vary considerably. This

study showed how NFRV of anaerobically digested

green manures could be explained almost exclusively

by the total N concentration (based on DM) of the

corresponding silages, which varied based on plant

species composition and cutting strategy. In particular,

inclusion of non-leguminous forbs and a reduced

cutting frequency reduced NFRV. On the contrary, a

high proportion of legumes and a frequent cutting

strategy can ensure a high total N concentration (based

on DM) in the plant material leading to a high NFRV

of the digestate. In general, anaerobic digestion

increased the NFRV of green manure biomass, with

a stronger effect for the material with the lowest N

concentration (based on DM). The importance of

fertilizer application method and timing was high-

lighted by the higher NFRV in spring barley than in

winter wheat. The choice of reference yield (either

DM or N) can greatly influence the estimation of the

NFRV. This was the case of spring barley, where DM

and N yields were affected in different ways by green

manure plant species composition, cutting strategy

and anaerobic digestion, mainly due to the timing of

mineral N release, which determines DM yield and N

concentration.
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