Hot water treatment (HWT) of fresh produce to prolong shelf life and reduce losses and waste

Merete Edelenbos and Hinrich Holthusen Department of Food Science Aarhus University, Denmark

Merete.Edelenbos@food.au.dk

Gloeosporium rot (Neofabraea spp.)

Why is there a growing interest for HWT?

- HWT can reduce food losses and waste
- HWT is an eco-friendly and safe alternative to synthetic fungicides
- A good alternative for organic products
- No residues on the treated product
- There is no human health risks with HWT
- Accepted by consumers

Photo: Connie Krogh Damgaard

Agenda

- The history of hot water treatment (HWT)
- HWT of fresh produce for disease control
- The mechanisms behind HWT
- Examples with HWT of apples and pears
- The future for HWT

The history of hot water treatment (HWT)

There are basically two treatment strategies:

- Immersion / dipping between 43 and 53 °C for several minutes up to 2 h
- Showering / rinsing between 48 and 63 °C for 10 30 s

During treatment:

- Heat is efficiently transferred from the water to the produce
- Operation times are short
- Water (> 50 °C) can be recycled /reused

The history of hot water treatment (HWT)

Hot water treatment has been used for:

- Postharvest disease control
- Insect disinfection
- Inhibit ripening, sprouting, geotropic curvature
- Induce resistance to chilling injury

Examples of disease control:

- Brown rot in citrus fruits (Fawcett, 1922)
- Gloeosporium / Bull's eye rot (Neofabraea spp.) in apples (Burchill, 1964)
- Grey mold in kiwifruit (Cheah et al., 1992)
- Green and blue mold in oranges (Strano et al., 2014)

Examples of treated horticultural crops

- Apples, pears, peach, nectarine, plum
- Banana, mango, papaya, litchi, kiwifruit
- Clementine, grapefruit, lemon, mandarin, orange, tangerine
- Molon muclimaton strawk
- Melon, muskmelon, strawberry
- Avocado, potato, tomato, pepper

The mechanisms behind hot water treatment

UNIVERSITY

Penicillium expansum

Neofabraea spp.

FRUTIC 2018

Optimizing Water Use in the Supply Chain of Wesh Province

Effect on the pathogens

- Lethal or sub-lethal effect on Germ tube length (µm) spore germination / mycelial growth
- 3 4 log reduction in CFU -and thus a 'cleaner' product

Pathogens isolated from infected kiwifruit

Chen et al. 2015

A more 'clean' fruit with brushing and HWT

Brushed

Brushed & hot water rinsed (55 °C for 12 s)

Scanning electron microscopy of the calyx after 2 weeks at 7 °C

Fallik et al. 1999

S: stomata; C: conidiophore/conidium; h: hyphae

Effect on the fresh produce

- Melting of the epicuticular wax
- Occlusion of entry points for wound pathogens
- Physiological changes that induce resistance
- HWT is a balance between mild stress and wounding

Melting and occlusion of entry points in pepper fruits

Untreated

Brushed & hot water rinsed (55 °C for 12 s)

Scanning electron microscopy of skin after 2 weeks at 7 °C

Fallik et al. 1999

Physiological changes that induce resistance

Inducing treatments

Physiological changes in host tissues

HWT is a balance between mild stress and wounding

PAL: phenylalanine ammonia-lyase PPO: Polyphenol oxidase Partly from Saltveit 2003

HWT of apples

Effect of 3 min HWT on fruit temperature

Effect of 3 min HWT on fruit temperature

Effect of HWT on skin browning in apples

Prediction of skin browning at treatment by volatile analysis

3 ml

Gas sampling after 2 h at 20 °C

GC-MS analyses

AARHUS

UNIVERSITY

Prediction of skin browning by volatile analysis

Effect of 3 min HWT on apple quality

Effect of HWT on storage rot in apples

HWT for 3 min

Equipment for hot water showering

Showering of big boxes with apples

Developed by Möstl Anlagenbau, Passail, Austria Photo: Hanne Lindhard Pedersen. AU, DK. Showering of single fruits

Developed by Shelah Systems, Kibbutz Alumim, Israel Modified by ESTEBURG Obstbauzentrum, DE. Photo: Hinrich Holthusen, ESTEBURG Obstbauzentrum, DE.

FRUTIC 2018

Optimizing Water Use in the Supply Chain of Resh Province

Equipment for hot water dipping of single fruits

Developed by Innotheque Aps, Røjle, Denmark. Photoes: Kim Nielsen, AU, DK

Effect of short time HWT on rots in pears

Marianne G. Bertelsen, 2015

Effect of short time HWT on skin browning

Chlorophyll fluorescence

Future for hot water treatment

- Cheap, safe and eco-friendly
- HWT is more suitable for fruit than vegetables
- HWT can be used at harvest and or before packaging
- A strict control of temperature and time is a paramount
- HWT is a balance between mild stress and wounding
- HWT can be used alone or in combination with other techniques
- Improper HWT should be prevented screening methods before treatment are needed
- A better understanding of the pathogen / tissue response to HWT would help further developments

Acknowledgements

Department of Food Science

Thank you for your attention!

Merete.Edelenbos@food.au.dk

