Direct drilling of winter cereals

Problem
In crop rotations where winter cereals follow a crop harvested in autumn, it may be difficult to prepare the seedbed.

Solution
The cereal can be directly sown, skipping the seedbed preparation, if the preceding crop left the soil well structured and free from weeds.

Outcome
Direct drilling has achieved results similar to conventional sowing techniques (including seedbed preparation) if the soil is well structured.

Practical recommendations

Observations and practical tips
- Pay attention to the soil structure when applying any mechanical operation. During the harvest, offloading should take place at the headlands.
- In the case of a high presence of deep-rooting weeds, choose a double-layer soil preparation (instead of compacting the soil) in order to increase porosity.
- Avoid sowing if heavy rains are expected in the next 5-6 days.
- Include cover crops in the rotation to improve soil structure. Cover crops are a key element to fine-tune direct drilling techniques.
- Directly drilled soil warms up more slowly in springtime. An early harrowing in springtime to facilitate nitrogen mobilization is recommended.
- Avoid crop residue coming into contact with the seeds (see link on hairpinning on page 2).
- To reduce the risk of mycotoxins, implement appropriate crop rotations and avoid sowing more than one winter cereal in a row or a winter cereal on corn residues with direct drilling.

Picture 1: Wheat drilling on minimum tillage with soybean residues on the surface. Date: November 09, 2015.

Picture 2: Direct drilling of wheat after soybean harvest. Date: November 04, 2016.

Applicability box
- **Theme:** Crop cultivation
- **Geographic coverage:** Global
- **Application time:** It replaces usual sowing
- **Required time:** It reduces times, since seedbed preparation is not required
- **Period of impact:** Crop sowing
- **Equipment:** Direct drilling machine
- **Best in:** Areas with low rainfall in autumn
Assessment and sharing results

Assess yield: Assess soil porosity in the field (see Visual soil assessment: field guide for cropping). Lower yields, compared to crops sown after seedbed preparation, are generally due to reduced soil porosity.

Assess weed presence and type: quantify weed pressure and type in a sample areas on the field.

Assess the effect of cover crops on weed presence: visually assess the effect of cover crops on the succeeding crop in terms of weed presence.

Earthworm assessment: Assess the number of earthworms by the number of worm droppings per m² (see Earthworms: architects of fertile soils).

Use the comment section on the Farmknowledge platform to share your experiences with other farmers, advisors and scientists! If you have any questions concerning the method, please contact the author of the practice abstract by e-mail.

Further information

Links

- At www.aiab-apробio.fvg.it, information on organic arable crop management is available in a biweekly bulletin and a topic-specific info sheet.

- The knowledge platform of OK-Net Arable offers information and practical updates on weed management and soil quality in organic arable cropping systems.

- Information on hairpinning

About this practice abstract and OK-Net Arable

Publisher: Associazione Italiana Agricoltura Biologica (AIAB), Italia
Via Molajoni 76 - 00159 ROMA
Tel. +39 064386450, info@aiab.it, www.aiab.it

IFOAM EU, Rue du Commerce 124, BE-1000 Brussels
Tel. +32 2 280 12 23, info@ifoam-eu.org, www.ifoam-eu.org

Authors: Stefano Bortolussi (AIAB-FVG)
Contact: s.bortolussi@aiab.it

Permalink: Orgprints.org/32950

OK-Net Arable: This practice abstract was elaborated in the Organic Knowledge Network Arable project. OK-Net Arable promotes exchange of knowledge among farmers, farm advisers and scientists with the aim to increase productivity and quality in organic arable cropping all over Europe. The project is running from March 2015 to February 2018.

Project website: www.ok-net-arable.eu

Project partners: IFOAM EU Group (project coordinator), BE; Organic Research Centre, UK; Bioland Beratung GmbH, DE; Aarhus University (ICROFS), DK; Associazione Italiana, per l’Agricoltura Biologica (AIAB), IT; European Forum for Agricultural and Rural Advisory Services (EUFRAS); Centro Internazionale di Alti Studi Agronomici Mediterranei - Istituto Agro- nomico Mediterraneo Di Bari (IAMB), IT; FiBL Projekte GmbH, DE; FiBL Österreich, AT; FiBL Schweiz, CH; Ökológiai Mezőgazdasági Kutatóintézet (ÖMKI), HU; Con Marche Bio, IT; Estonian Organic Farming Foundation, EE; BioForum Vlaanderen, BE; Institut Technique de l’Agriculture Biologique, FR; SEGES, DK: Bioselena, Bulgaria
© 2018

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 652654. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided.