Root traits differ between wet- and dry-adapted sets of faba bean accessions selected by FIGS

Hamid Khazaei¹, Kenneth Street², Abdallah Bari² and F.L. Stoddard¹

¹ Department of Agricultural Sciences, University of Helsinki, Finland
² International Centre for Agricultural Research in the Dry Areas, ICARDA, Rabat, Morocco
Faba bean genetic resources

ICARDA
International Centre for Agricultural Research in the Dry Areas (Syria)

ICGR-CAAS
Institute of Crop Germplasm Resources, Chinese Academy of Agricultural Sciences (China)

ATFCC
Australian Temperate Field Crops Collection (Australia)

~ 7.5 million plant genetic resources

18% Food legumes

43,695 faba bean accessions

FIGS represents a dynamic, direct and practical approach that focuses on specific adaptive traits rather than on generalized measures of diversity.
Why faba bean
(Vicia faba L.)?
During 2010-2011

201 accessions of faba bean from wet and 201 from dry region of the world, were chosen according to principals of the FIGS.
Measurements

- Stomatal morphology
- Stomatal function
- Relative Water Content
- Days to flowering
- Number of tillers
- Seed size (*major*, *equina*, *minor*)
ROC plots (left) and density plots class prediction (right) for dry and wet sets using the three models.

rpart - caret: Classification and Regression Training
RF: Random Forests
SVM: Support Vector Machines

Rank of measurements that contribute the most to discriminate the sets.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Drought related parameter</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Leaflet temperature</td>
<td>34.91</td>
</tr>
<tr>
<td>2</td>
<td>Canopy temperature</td>
<td>13.68</td>
</tr>
<tr>
<td>3</td>
<td>Relative water content</td>
<td>12.46</td>
</tr>
<tr>
<td>4</td>
<td>Leaflet area</td>
<td>9.95</td>
</tr>
<tr>
<td>5</td>
<td>Stomatal length</td>
<td>6.70</td>
</tr>
<tr>
<td>6</td>
<td>Fertile tillers</td>
<td>4.72</td>
</tr>
<tr>
<td>7</td>
<td>Stomatal area</td>
<td>4.13</td>
</tr>
<tr>
<td>8</td>
<td>Transpiration rate</td>
<td>3.61</td>
</tr>
<tr>
<td>9</td>
<td>Stomatal area per unit area of leaflet</td>
<td>2.75</td>
</tr>
<tr>
<td>10</td>
<td>Photosynthetic rate</td>
<td>2.34</td>
</tr>
<tr>
<td>11</td>
<td>Days to flowering</td>
<td>2.21</td>
</tr>
<tr>
<td>12</td>
<td>Intercellular CO₂</td>
<td>1.64</td>
</tr>
<tr>
<td>13</td>
<td>Stomatal density</td>
<td>1.26</td>
</tr>
<tr>
<td>14</td>
<td>Water use efficiency</td>
<td>1.21</td>
</tr>
<tr>
<td>15</td>
<td>Stomatal conductance</td>
<td>0.86</td>
</tr>
<tr>
<td>16</td>
<td>Stomatal width</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Distribution of FIGS sets before and after evaluation

Geographical distribution of the two sets based on *a priori* information (climate data)

Distribution of the two sets based on **PCA** of evaluation data
Objectives

• To test whether faba bean germplasm from drought-prone (dry) and drought-free environments (wet) differed in root traits.

• The initial findings were then tested in a subset of materials to examine response of wet and dry set accessions under drought conditions.
How the subsets chosen (6+6)
Accessions used for root traits screening

<table>
<thead>
<tr>
<th>Set</th>
<th>Accession number</th>
<th>Country</th>
<th>Province</th>
<th>Altitude (m)</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Seed size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet set</td>
<td>Aurora/2</td>
<td>Sweden</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>minor</td>
</tr>
<tr>
<td></td>
<td>IG 114476</td>
<td>Bangladesh</td>
<td>Dhaka</td>
<td>50</td>
<td>23.8167</td>
<td>90.0833</td>
<td>paucijuga</td>
</tr>
<tr>
<td></td>
<td>IG 99501</td>
<td>China</td>
<td>Zhejiang</td>
<td>299</td>
<td>28.8167</td>
<td>121.1</td>
<td>equina</td>
</tr>
<tr>
<td></td>
<td>IG 114985</td>
<td>Nepal</td>
<td>Kosi</td>
<td>140</td>
<td>26.4664</td>
<td>87.4469</td>
<td>paucijuga</td>
</tr>
<tr>
<td></td>
<td>IG 132238</td>
<td>China</td>
<td>Guangdong</td>
<td>200</td>
<td>24.36</td>
<td>115.59</td>
<td>equina</td>
</tr>
<tr>
<td></td>
<td>IG 117833</td>
<td>China</td>
<td>Yunnan</td>
<td>1680</td>
<td>24.8594</td>
<td>103.278</td>
<td>major</td>
</tr>
<tr>
<td>Dry set</td>
<td>IG 13987 (ILB 938)</td>
<td>Ecuador</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>equina</td>
</tr>
<tr>
<td></td>
<td>Mélodie/2</td>
<td>France</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>minor</td>
</tr>
<tr>
<td></td>
<td>IG 11689</td>
<td>Afghanistan</td>
<td>Baghlan</td>
<td>1640</td>
<td>35.6</td>
<td>69.1667</td>
<td>minor</td>
</tr>
<tr>
<td></td>
<td>IG 131708</td>
<td>Tajikistan</td>
<td>Khudzhand</td>
<td>2000</td>
<td>39.378</td>
<td>68.591</td>
<td>minor</td>
</tr>
<tr>
<td></td>
<td>IG 72309</td>
<td>Syria</td>
<td>Damascus</td>
<td>931</td>
<td>33.4333</td>
<td>36.0833</td>
<td>major</td>
</tr>
<tr>
<td></td>
<td>IG 13505</td>
<td>Cyprus</td>
<td>Nicosia</td>
<td>320</td>
<td>35.0667</td>
<td>33.0667</td>
<td>major</td>
</tr>
</tbody>
</table>

\[a\] more information on accessions available at: https://www.genesys-pgr.org/
Evaluating 12 accessions (6 wet and 6 dry set)

- Well watered conditions
- Randomized complete block with 4 replicates

(4 accessions, 2+2 wet \ dry)
response to drought stress

- Completely randomized factorial design with 4 replicates

Water holding capacity = 18% (w/w)
Each box (7.72 kg) brought to WHC by adding 1400 ml of water

- Stress treatment plants got 50 % of field capacity.

Soil : sandy soil with organic matter 3-6 % (m). pH 6.7, Ca 1300, P 21, K 130, Mg 113
Experimental units

How the experimental units arranged
Experiment 1

Root profile after 32 days

Wet set

IG 114476
IG 114985
Aurora/2
IG 132238
IG 117833
IG 99501

Dry set

IG 131708
IG 11689
Mélodie/2
ILB 938
IG 72309
IG 13505

© H Khazaei
Characteristics of the roots and shoot of faba bean accessions (32-day-old seedlings)

<table>
<thead>
<tr>
<th>Accessions</th>
<th>Root length (cm)</th>
<th>Shoot length (cm)</th>
<th>Root DM (g)</th>
<th>Shoot DM (g)</th>
<th>Root / Shoot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aurora/2</td>
<td>49.43</td>
<td>22.67</td>
<td>0.679</td>
<td>0.649</td>
<td>1.05</td>
</tr>
<tr>
<td>IG 114476</td>
<td>48.17</td>
<td>21.27</td>
<td>0.256</td>
<td>0.305</td>
<td>0.84</td>
</tr>
<tr>
<td>IG 99501</td>
<td>40.20</td>
<td>25.60</td>
<td>0.524</td>
<td>0.607</td>
<td>0.86</td>
</tr>
<tr>
<td>IG 114985</td>
<td>51.73</td>
<td>19.60</td>
<td>0.372</td>
<td>0.314</td>
<td>1.18</td>
</tr>
<tr>
<td>IG 132238</td>
<td>41.80</td>
<td>28.37</td>
<td>0.469</td>
<td>0.913</td>
<td>0.51</td>
</tr>
<tr>
<td>IG 117833</td>
<td>47.80</td>
<td>24.90</td>
<td>0.462</td>
<td>0.542</td>
<td>0.85</td>
</tr>
<tr>
<td>mean</td>
<td>46.52</td>
<td>23.73</td>
<td>0.460</td>
<td>0.555</td>
<td>0.88</td>
</tr>
<tr>
<td>SEM</td>
<td>1.85</td>
<td>1.30</td>
<td>0.058</td>
<td>0.093</td>
<td>0.10</td>
</tr>
<tr>
<td>ILB 938</td>
<td>41.37</td>
<td>26.03</td>
<td>0.524</td>
<td>0.729</td>
<td>0.72</td>
</tr>
<tr>
<td>Mélodie/2</td>
<td>51.13</td>
<td>25.07</td>
<td>0.551</td>
<td>0.820</td>
<td>0.67</td>
</tr>
<tr>
<td>IG 11689</td>
<td>43.37</td>
<td>26.20</td>
<td>0.518</td>
<td>0.526</td>
<td>0.98</td>
</tr>
<tr>
<td>IG 131708</td>
<td>49.67</td>
<td>26.07</td>
<td>0.640</td>
<td>0.845</td>
<td>0.76</td>
</tr>
<tr>
<td>IG 72309</td>
<td>46.50</td>
<td>34.10</td>
<td>0.831</td>
<td>1.256</td>
<td>0.66</td>
</tr>
<tr>
<td>IG 13505</td>
<td>49.73</td>
<td>30.90</td>
<td>0.847</td>
<td>1.209</td>
<td>0.70</td>
</tr>
<tr>
<td>mean</td>
<td>46.96</td>
<td>28.06</td>
<td>0.652</td>
<td>0.897</td>
<td>0.75</td>
</tr>
<tr>
<td>SEM</td>
<td>1.60</td>
<td>1.47</td>
<td>0.062</td>
<td>0.115</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Root growth in wet and dry set under well watered conditions (6+6)
Effects of water treatments on the root dry weight in dry and wet set accessions (2+2).

<table>
<thead>
<tr>
<th>Accession</th>
<th>Wet set (%)</th>
<th>Dry set (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>99501</td>
<td>51%</td>
<td>49%</td>
</tr>
<tr>
<td>114985</td>
<td>49%</td>
<td>10%</td>
</tr>
<tr>
<td>Mélodie/2</td>
<td>10%</td>
<td>30%</td>
</tr>
<tr>
<td>ILB 938</td>
<td>30%</td>
<td></td>
</tr>
</tbody>
</table>

Experiment 2

- **Wet set**
 - 99501
 - 114985
- **Dry set**
 - Mélodie/2
 - ILB 938
Effects of water treatments on the shoot dry weight in dry and wet set accessions (2+2).

Experiment 2

Wet set

Dry set

Shoot DM (g)

Accession

99501
114985
Mélodie/2
ILB 93ε

64%
51%
39%
37%
Effects of water treatments on the stomatal conductance in dry and wet set accessions (2+2).

Experiment 2

Stomatal conductance (mol m$^{-2}$ s$^{-1}$)

Accession

- 99501
- 114985
- ILB 938
- Mélodie/2

Wet set

Dry set

Control

Drought
Root length in response to water deficit

Experiment 2

Root length (cm) vs. Days after sowing

- 99501 control
- 114985 control
- Melodie control
- ILB 938/2 control
- 99501 drought
- 114985 drought
- ILB 938/2 drought
- Melodie drought
Conclusions

• The results supported that germplasm sets originating from environments with contrasting seasonal water availability will display root traits differences when they exposed under water stress.

• FIGS can reduce the cost and increase efficientness of germplasm evaluation by reducing the number of accessions screened while providing a higher probability of identifying sought-after traits.

• Further studies should be conducted under conditions where taproot expansion is not restricted.
Acknowledgments

CIMO (Centre for International Mobility)

Emil Aaltosen Säätiö

ICARDA

Department of Agricultural Sciences, HU

FIGS

Finnish Doctoral Program in Plant Science

Niemi Säätiö
Thank you for your attention
Climate change and crop production

Positive impacts
- CO₂-fertilization, productivity
- Longer growing season (high lat. & alt.)
- Growing new crops
- Warmer climate for plant production (high lat. & alt.)

Negative Impacts
- Heat stress
- Drought stress
- Increased soil erosion
- Increased weed growth
- Increase pest infestation
- Planning issue due to less reliable forecast
- Melting snow and ice, rising global sea level
- Losing biodiversity

Combined impacts
- Accelerate mutation rate

Climate change
- Average temperature
- CO₂ concentration
- O₃ concentration

Impacts on diseases can be + or -, depending on host-pathogen interaction