Choosing cover crops for arable crop rotations

Problem
Growing cover crops in organic arable crop rotations provides many agronomical benefits. Cover crops improve soil fertility and N self-sufficiency, limit nitrate leaching and soil erosion and/or break weed, pest or disease cycles. Nevertheless, choosing appropriate cover crops can be a challenging task.

Solution
A French working group initiated by ITAB developed a decision tree for selecting adequate cover crops in arable crop rotations. The decision tree is complemented by technical guides that provide information on cover crop management and appropriate cover crops, depending on specific constraints and objectives.

Outcome
The tools aim at highlighting the main technical challenges as well as the ways and means of reflection, which can improve the understanding and the implementation of direct sowing into vegetal cover in organic agriculture.

Practical recommendation

First step: Determining the constraints
Considering constraints with regard to suitability of cover crops helps to narrow the number of potential plant species. A first selection refers to the main crops, the intercropping period, dates of sowing and the soil type.

Second step: Ranging objectives
In a second step, applicable objectives are selected from a proposed list. The species that are best suited to meet the objectives are selected.

Third step: Adapting cover crop management
In a third step, the methods of sowing and crop termination are taken into account. If the selected species with the best characteristics do not match the available workforce and machinery, species selection is redefined.

Fourth step: Final choice
The fourth step refers to the selection of a single species or a combination of different species. Seed costs and seed availability on the market or the farm finalize cover crop selection.

Figure 1: Red clover (Trifolium pratense L.) (Laurence Fontaine/ITAB)
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 652654. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided.

PRACTICE ABSTRACT

Figure 2: Decision tree for choosing adequate cover crop (ITAB)

Practical testing and sharing of results

If this tool may be suitable for you, we recommend that you test it under your conditions.

Use the comment section on the Farmknowledge platform to share your experiences with other farmers, advisors and scientists! If you have any questions concerning the method, please contact the author of the practice abstract by e-mail.

Further information

Further readings


About this practice abstract and OK-Net Arable

Publishers:
Institut Technique de l’Agriculture Biologique (ITAB)
149, rue de Bercy, 75 595 PARIS cedex 12, France
Phone +33 1 40 04 50 64, secretariat.itab@itab.asso.fr, www.itab.asso.fr
IFOAM EU, Rue du Commerce 124, BE-1000 Brussels
Phone +32 2 280 12 23, info@ifoam-eu.org, www.ifoam-eu.org
Authors: Marion Casagrande and Laurence Fontaine (both ITAB)
Contact: marion.casagrande@itab.asso.fr

Permalink: Orgprints.org/32606

OK-Net Arable: This practice abstract was elaborated in the Organic Knowledge Network Arable project. The project is running from March 2015 to February 2018. OK-Net Arable promotes exchange of knowledge among farmers, farm advisers and scientists with the aim to increase productivity and quality in organic arable cropping all over Europe.

Project website: www.ok-net-arable.eu

Project partners: IFOAM EU Group (project coordinator), BE; Organic Research Centre, UK; Bioland Beratung GmbH, DE; Aarhus University (ICROFS), DK; Associazione Italiana, per l’Agricoltura Biologica (AIAB), IT; European Forum for Agricultural and Rural Advisory Services (EUFARAS); Centro Internazionale di Alti Studi Agronomici Mediterranei - Istituto Agronomico Mediterraneo Di Bari (IAMB), IT; FiBL Projekte GmbH, DE; FiBL Österreich, AT; FiBL Schweiz, CH; Õkológiai Mezőgazdasági Kutatóintézet (ÖMKI), HU; Con Marche Bio, IT; Estonian Organic Farming Foundation, EE; BioForum Vlaanderen, BE; Institut Technique de l’Agriculture Biologique, FR; SEGES, DK; Bioselena, Bulgaria © 2018

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 652654. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided.