Functional agrobiodiversity for pest control in apple

Stine K. Jacobsen, Xueqing He & Lene Sigsgaard

Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark (stikra@plen.ku.dk)

Functional agrobiodiversity

Functional agrobiodiversity (FAB) has been shown to:
- reduce pest damage
- increase abundance and diversity of natural enemies
- allow growers to reduce pesticide use

The rosy apple aphid, *Dysaphis plantaginea*, is a major pest in apples. Flower strips can provide a good habitat for naturally occurring predators, such as spiders, coccinellids, anthocorids, lacewings and syrphids - all natural enemies of aphids.

In this project we investigate the effect of wild flower strips in organic apple orchards, by assessing:
- pest infestation
- crop damage
- predator abundance and diversity
- predation activity
- predator longevity and fecundity

Field assessments

Flower strips were established in 2015, consisting of 40 perennial plant species.

The flower strip is replacing a row of apples. Pest and predator assessments are done 2 m and 10 m from the flower strip.

Assessment methods include:
- Visual observations of aphid colonies and predators
- Predation activity assessed by sentinel prey
- Beating samples
- Damage assessments

Field trials have been conducted in 2016 and repeated again in 2017.

The value of flowers to insects

There is a growing body of literature reporting direct beneficial effects of specific flowering plant species for predators.

How and to which extent do flowering plant species improve predators’ fitness?

A meta-analysis of flowering plant species on predators’ fitness

- comprehensively evaluate the suitable floral resources available for predators
- focusing on predators’ longevity and fecundity

The potential of selected flowering plants to improve predators’ fitness

Seven plant species will be tested
- The dietary value of access to floral pollen and nectar for *Adalia bipunctata* development time, mortality, longevity and fecundity
- How access to pollen and nectar affect predation activity of *A. bipunctata*

Links


Acknowledgements
ProtecFruit is financed by GUDP and is a part of the Organic RDD-2 program, coordinated by ICROFS.