Diverse fertility building leys in arable rotations

Problem

Leguminous leys are a cornerstone of organic arable systems. However, they do not always deliver reliably, and there is a need to improve their fertility-building capability and resilience. A typical ley of one or two legume and grass species can be vulnerable to failure under unfavourable conditions. Good establishment, weed suppression and controlling the quantity and timing of N release can be especially challenging.

Solution

Different legume species have different growth characteristics and nutrient use profiles. Growing a complex mixture of species can maximise the exploitation of nutrients, aid weed suppression, attract a more diverse range of pollinators and enhance the stability and resilience of the stand. On-farm and field trials (including trials as part of the three year LegLINK project) have evaluated the role of functionally diverse species-rich leys in arable rotations in the UK.

Outcome

The results of a three year study in the UK suggest that there are several advantages to more complex mixtures:

- Greater resilience to variable conditions
- Combine early and late weed suppression
- Slower decomposition on incorporation
- Extends forage availability for key insect pollinators
- Generally achieve higher forage yields
- Potential for higher subsequent crop yields.

Practical recommendation

- There are a number of plant characteristics that have an impact on nitrogen release and mobilisation, namely C:N ratio, lignin and polyphenol content which result in slower N release and lower N losses or better N utilisation.
- Including grass species in the mix takes up the N fixed by the legumes and reduces the free N in the soil; the rhizobia bacteria respond to the low soil N, resulting in higher N fixation and greater biomass. Moreover the higher C:N ratio prolongs the release of N to subsequent crops. The balance of grass and legumes is important.
- The annual N accumulation of ley mixtures decreases after two years, although there may be other advantages from longer leys such as weed control.
- In terms of forage yield including a 3rd or 4th legume is generally advantageous.
- The best multifunctional mixtures contain one or more species of Black Medic, Lucerne and Red Clover, plus other legumes according to the circumstances.
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 652654. This communication only reflects the author’s view. The Research Executive Agency is not responsible for any use that may be made of the information provided.

<table>
<thead>
<tr>
<th>Species</th>
<th>Forage yield</th>
<th>Yield of subsequent crop</th>
<th>Resistance to decomposition</th>
<th>Value for pollinators</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red clover</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Significant</td>
</tr>
<tr>
<td>White clover</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Black medic</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
<td>Significant</td>
</tr>
<tr>
<td>Crimson Clover</td>
<td>High</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birdsfoot trefoil</td>
<td>Good</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucerne</td>
<td>High</td>
<td>High</td>
<td>High</td>
<td>Significant</td>
</tr>
<tr>
<td>Sainfoin</td>
<td>Moderate</td>
<td>High</td>
<td>High</td>
<td>Significant</td>
</tr>
</tbody>
</table>

Figure 2: Species with useful characteristics (data from LegLINK, 2014)

Practical testing and sharing of the results

If this method seems to be suitable for your farm, we recommend that you test it under your own farm conditions. Use the comment section on the Farmknowledge platform to share your experiences with other farmers, advisors and scientists! If you have any questions concerning the method, please contact the author of the practice abstract by e-mail.

Further Information

Video
- Herbal Leys with Alex Joynson (English), Cotswolds Seeds First Hand: A farmer from Wiltshire, UK, describes his experience of planting herbal leys on his farm.

Further readings
- IOTA Technical Leaflet 7: Fertility Building Leys
- IOTA Technical Leaflet 10: Sowing and management of multispecies leysto encourage pollinators
- Cotswolds Seeds: Herbal Leys
- HGCA/LegLINK (2013) Project Report No. 513 Using legume-based mixtures to enhance the nitrogen use efficiency and economic viability of cropping systems
- Grass-clover ley in Organic Rotations (IBERS)
- Modelling the ability of legumes to suppress weeds (Storkey et al. 2011)
- A win-win for legume mixtures (Doring et al. 2011)

Weblinks
- The OSCAR Cover Crops and Living Mulch Toolbox: www.covercrops.eu
- Check the Farmknowledge Tool Database for more practical recommendations.

About this practice abstract and OK-Net Arable

Publishers:
Organic Research Centre, Elm Farm, Hamstead Marshall, Berkshire, RG20 0HR, United Kingdom, Phone +44 1488 657646, elmfarm@organicresearchcentre.com, www.organicresearchcentre.com
IFOAM EU, Rue du Commerce 124, BE-1000 Brussels, Belgium Phone +32 2 280 12 23, info@ifoam-eu.org, www.ifoam-eu.org
Authors: Katie Bliss, Mark Measures (ORC)
Contact: mark.m@organicresearchcentre.com
Permalink: Orgprints.org/31040
OK-Net Arable: This practice abstract was elaborated in the Organic Knowledge Network Arable project. The project is running from March 2015 to February 2018. OK-Net Arable promotes exchange of knowledge among farmers, farm advisors and scientists with the aim to increase productivity and quality in organic arable cropping all over Europe.
Project website: www.ok-net-arable.eu
Project partners: IFOAM EU Group (project coordinator), BE; Organic Research Centre, UK; Bioland Beratung GmbH, DE; Aarhus University (ICROFS), DK; Associazione Italiana, per l’Agricoltura Biologica (AIAB), IT; European Forum for Agricultural and Rural Advisory Services (EUFRAS), Centro Internazionale di Alti Studi Agronomici Mediterranei - Istituto Agro-nomico Mediterraneo Di Bari (IAMBA), IT; FIBL Projekte GmbH, DE; FIBL Österreich, AT; FIBL Schweiz, CH; Ökológiai Mezőgazdasági Kutatóintézet (ÖMKI), HU; Con Marche Bio, IT; Estonian Organic Farming Foundation, EE; BioForum Vlaanderen, BE; Institut Technique de l’Agriculture Biologique, FR; SEGES, DK; Bioselena, Bulgaria
© 2017